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INTRODUCTION

I. Exemple : Température dans une plague
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Soit u représentant la température dans |I'élément de
taille dr x dy a I'état stable (tps — o0)
e Flot de chaleur circulant dans I'élément en x

—(Conductivité)(Aire)(Gradient) = —k A —

ou
= —k(tdy) 7

e Flot de chaleur circulant dans I'élément en y

—k:Aa—u =—k(t da:)@
Oy oy

Propriétés physiques

Flot chaleur entrant dans I’élément =
Flot de chaleur sortant + Flot de chaleur perdu... (1)




Flot de chaleur entrant (resp. sortant) dans I’élément

Flot de chaleur entrant (resp. sortant) dans la
direction des x
+ Flot de chaleur entrant (resp. sortant) dans la
direction des y

e Flot de chaleur sortant de I'élément + perdu

ou = O3%u du = O3%u
—k (tdy) [% + @dx] — k (tdz) [a—y + a—yzdy} + Q(dx dy)

Finalement (Equation (1))

0%u . O%u
kt (83:2 + 8y2> (dz dy) = Q(dz dy)
ou
0? 0?
0x?2 = Oy? kt

Si I'objet a considérer est en trois dimension, un déve-
loppement similaire conduit a

Pu  Pu 02
O%u O, Ou) @
o0x?2 = Oy? 022 kt

Pu ) _ o
02 = Oy? Tkt

Viu = =~

II. Méthodes de Résolution

e 1. Equations aux différences‘

On approxime les dérivés secondes par la formule des
différences centrées (cf. chap. 5 page 8) avec ici h = Ax

@ . ul —2u0+uR
ox2 (Ax)?

ou u L et u R sont les températures a gauche et a droite
du noeud dont la température est ©«0. De méme

@ _uA-2u0+uB
oy? (Ay)?

ou uA et uB sont les températures en haut et en bas
du noeud dont la température est « 0. En prenant Ax =
Ay=h

ul +uR + vA + uB — 4u0

2
Veu = 2




Soit une plague rectangulaire (20 cm & 10 cm). Les
bords supérieurs, gauches, bas sont maintenus a 0° et le
bord droit est maintenu 3 100°. Soit des noeuds espaceés
de h = Az = Ay = 2.5¢m. Soit w;, la température au
noeud 7.

SiQ=0
Pu o)
0x2 = Oy?
Avec
@ _ (uL —2u0 + uR)
o2 0.252
@ _ (uA—2u0+ uB)
oy 0.252

(uL +uR + uA +uB — 4u0) 0
0.125 o

2 1 1
Vu:—2 1 -4 1,u0=0
h 1

On obtient 21 équations pour la résolution de ce pro-
bléme en exprimant le fait que le laplacien pour chaque
noeud est nulle (V?u = 0, Yu)

Exemples
Pour le noeud 1 —4ui +ur4+ug=0
Pour le noeud 7 ue — 4u7 + u1a = —100
Pour le noeud 9 us» + ug — 4ug + uig + uie = 0
Pour le noeud 14 uy —|— ui3 — duqg + uz1 — —100

Pour le noeud 18 u11 + u17 — 4uig + w19 =0

Soit 21 Equations avec 21 inconnus. Le systéme est
solvable par élimination Gaussienne (par exemple), et
on trouve

[ Colonne | Ligne 1 | Ligne 2 | Ligne 3 |
0.3530 0.4988 0.3530
0.9132 1.2894 0.9132
2.0103 2.8323 2.0103
4.2957 7.0193 4.2931
9.1531 12.6537 | 9.1531
19.6631 | 27.2893 | 19.6631
43.2101 | 53.1774 | 43.2101
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Inconvénients
» Codt calculatoire élevé lorsque h est faible
» Colit de stockage mémoire élevé lorsque h est faible

e 2. Méthode itératives|
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[n] [n] [n] [n]
it — (uiljos + uis ity +wi )
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Initialisation

e Valeurs u;; intérieurs initialisées a zéro

e Valeurs wu;; intérieurs initialisés par la moyenne des
valeurs frontiéres

Accélération de la Convergence

» Méthode de sur-relaxation successive

(uz[jljlfl + UEZ']+1 + uz[Ti]l,j + uz[ﬂl,j - 4“1[3'])
4

UEZ-F 1] — ul[f;] + w

avec i=1,...,3 j=1,...,7

Le terme w est le facteur de sur-relaxation

w | Nb. d’itér.
1.0 26
1.1 22
1.2 18
1.3 15
1.4 18
1.5 21

Remarque : La valeur optimum de w n’est pas toujours
estimable, mais pour une région rectangulaire, comme
la plague considérée

Woptimal = PlUS petite racine de I’équation

[cos <7r> + cos <W>] w? — 16w+ 16
p q




e 3. Méthode implicite de direction alternée (I.D.A) ‘

La méthode 1. (Equations aux différences) demande la
résolution d'une matrice creuse (i.e., bcp de 0) dont les
valeurs non nuls sont concentrées sur une bande diago-
nale de la matrice

v
Lorsque la matrice est tri-diagonale, les méthodes de ré-

solution de ce type de matrice sont directes et efficaces

» La méthode I.D.A permet de se ramener 3§ un pro-
bléme de résolution de matrice tri-diagonale

Exemple
V2 ulL —-2u0+4+uR  vwA—-2u0+uB 0
U = —
(Ax)? (Ay)?
Lorsque Az = Ay =1
(uL-2u0+uR)* Y = —(wA-2u0+uB)H
(WA—2u0+uB)*t2 = (4L —2u0+uR)*H]

En re-arrangeant, on obtient le systéme tri-diagonal

[£]
—u LW 4 o ol _ gy Rl — [uA —2u0+ uB}

[k+1]
_qu AlEF2] + 2u olk+2 _, glk+2 — |:uL —2u0 + UR}

III. Régions irréguliéres et grilles non rectangulaires

Si la grille n'est pas rectangulaire et que les u;; ne
peuvent pas étre réguliérement espacés, il existe trois
méthodes possibles

e 1. Placement des noeuds sur la frontiére

we= 100°




Estimations des dérivés premiéres et secondes

A
(1.5 cmm)
1]

L —am GEam "
(2.5 cm)
. |
<@) _ (u0—ul) (@) __ (uR —w0)
dz/rLo hL dz/or hR

o @ @),

922 (hL+hR)
2
_ 2 ul (hL 4+ hR) uR
= (hL+hR)|hL (hL x hR) x u0 ' hR

e 2. Distorsion de la frontiére|

10

e 3. Utilisation des coordonnées polaires

d%u 1 Ou 1 52%u

2, ¥ U 1OU
Viu= or2  r or 12 962
On trouve,
5> (uL —2u0+ uR) 1 (uR —ulL)
Viu= (Ar)? +( ) % { (2A7r) }
1 (uA — 2u0 + uB)
to2 [ (06)2 }
/
|...
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IV. Equations Différentiels Paraboliques/Hyperboliques

2 2
PR 2u (xtu8u8u>_o

Ox2 ozxd ot? ox’ Ot

A = B? - 4AC

e Si A < 0 L’éguation différentielle est elliptique
e Si A = 0 L’équation différentielle est parabolique
e Si A > 0 L’éguation différentielle est hyperbolique

Equation de la Chaleur

I
3 __I_____ ..____:::.
0 Id.rl- =L
Ou (£2)v2
ot? w
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V. Méthode de Résolutions

e 1. Méthode Explicite

» consiste a remplacer les dérivés premiéres et secondes
par leur approximation

G+1 _ Ul

% = % (pts z; et tps t;)
o2u bl — 208 4l

Ox? (Azx)?

En utilisant ces approximations

NCAW
Oz2 _Cpé)t

v
uiLj—i_l] =rx (ul[ﬂ]_l + uyjl) +(1-2r)x uim

kAt

avec r=-—_—_
cp(Ax)?

Remarque

9u est d'ordre o(At) et 2% est d’ordre o(Ax)?
» source d’erreur d’estimation
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e 2. Méthode de Crank-Nicholson

» On utilise les mémes ordres d’gpproximation pour
estimer 2 et 2u

L 0%u ou
) = epm
Oz2 pat

v

) 1l
(Ax)? (Az)?

At 2 cp

Ce qui donne, aprés ré-arrangement

—rul[-ﬁ_ll] + 2+ r)uiLH_l] — ruz[-j_tl] = 7"“1['{3-1 +(2- r)uz[-j] + Tui[i_]l
avec 7kAt
r
cp(Ax)?
Remarque

Ne peut étre résolu itérativement » Nécessite la
résolution d'un systéme tri-diagonal
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Equation de la corde vibrante‘

» En remplacant les dérivés par leur approximation nu-
mérique, on trouve

“ﬁl - Quz'm + “zb—]1

w Wbt bl U

(Azx)? o Tg (At)2

ou I'indice désigne les valeurs de z et I’exposant les va-
leurs de t. En ré-arrangeant, on trouve

i+ _ Ig (At)?

i w (Az)?

(5] 4] -1
(u[i—i-l] +u) —u; + 2(1 T (Bn)?

Si on rend Tg(At)?/w(Ax)? égal 3 1, le probléme se
simplifie considérablement

0 _ -1 Ay AT (1)

e ~ /Tafw)

ul[j+1] = ug]_l +u

Remarque

L’éguation peut se résoudre itérativement si on trouve
une astuce pour estimer ul[’”, valeurs de u;, une
itération avant le départ!
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Tg(At)?
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» L’oscillation de la corde vibrante est périodique. En
utilisant I'approximation des différences centrées

uzlll — uz[_ll __ Ou

= — en xz; et t=20
2At ot

(Ou/0t) = 0 est connu (condition initiale).
Soit g(z) = (Ou/dt) a t = 0, on peut écrire

ul[-_ll = ul[»ll —2g(z) At

Et en substituant dans I’équation (1), on trouve pour
t=1

1
!l = S +ul?) + (@) A
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