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INTRODUCTION

I. Exemple : Température dans une plaque
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Soit u représentant la température dans I'élément de
taille dx x dy a I'état stable (tps — o)

e Flot de chaleur circulant dans I'élément en z
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e Flot de chaleur circulant dans I'élément en y

0
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Propriétés physiques

Flot chaleur entrant dans I’'élément =
Flot de chaleur sortant + Flot de chaleur perdu... (1)



Flot de chaleur entrant (resp. sortant) dans I'élément

Flot de chaleur entrant (resp. sortant) dans la
direction des x
+ Flot de chaleur entrant (resp. sortant) dans la
direction des y

e Flot de chaleur sortant de I'élément + perdu
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Finalement (Equation (1))
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Si I'objet a considérer est en trois dimension, un déve-
loppement similaire conduit a
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II. Méthodes de Résolution

e 1. Equations aux différences

On approxime les dérivés secondes par la formule des
difféerences centrées (cf. chap. 5 page 8) avec ici h = Ax
O?u ul —2u0+uR

ox2 (Ax)?

ou ulL et uR sont les températures a gauche et a droite
du noeud dont la température est ©0. De méme

Py uA—-—2u04+uB

oy2 (Ay)2

ou uA et uwB sont les températures en haut et en bas
du noeud dont la température est © 0. En prenant Az =
Ay =nh

ul +uR + uA 4+ uB — 4u0

2 __
Veu = 3




Soit une plaque rectangulaire (20 cm & 10 cm). Les
bords supérieurs, gauches, bas sont maintenus a 0° et le
bord droit est maintenu a 100°. Soit des noeuds espaceés
de h = Ax = Ay = 2.5cm. Soit u;, la température au
noeud z.
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(uL +uR 4+ uA + uB — 4u0)
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On obtient 21 équations pour la résolution de ce pro-

bléme en exprimant le fait que le laplacien pour chaque
noeud est nulle (V?u = 0, Vu)

0

Exemples

Pour le noeud 1
Pour le noeud 7
Pour le noeud 9
Pour le noeud 14
Pour le noeud 18

—4u1 +us2+ug =0
ue — 4u7r + u14 = —100
u2 + ug — 4ug + w10 + u1e = 0
u7 + u13 — 4u1s + up1 = —100
u11 + u17 — 4uig +u19 =0

Soit 21 Equations avec 21 inconnus. Le systéme est

solvable par élimination Gaussienne (par exemple), et
on trouve

Colonne | Ligne 1 | Ligne 2 | Lignhe 3
1 0.3530 0.4988 0.3530
2 0.9132 1.2894 0.9132
3 2.0103 2.8323 2.0103
4 4.2957 7.0193 4.2931
5 9.1531 | 12.6537 | 9.1531
6 19.6631 | 27.2893 | 19.6631
7 43.2101 | 53.1774 | 43.2101




Inconvénients
» Colt calculatoire élevé lorsque h est faible
» Colt de stockage mémoire élevé lorsque h est faible

e 2. Méthode itératives
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Initialisation

e Valeurs u;; intérieurs initialisées a zéro
e Valeurs wu;; intérieurs initialisés par la moyenne des
valeurs frontieres

Accélération de la Convergence

» Méthode de sur-relaxation successive

(U'L[',T;]—l + “@[Z]H + uz['i]l,j + u’l{iﬂl,j B 4u%[7'])

[n4+1] [n]
u; - = U, + w 2

1,]

avec i=1,....3 j=1,...,7

Le terme w est le facteur de sur-relaxation

w | Nb. d’'itér.
26
22
18
15
18
21

e S S g =
aOPpPWNEFRO

Remarque : La valeur optimum de w n’est pas toujours
estimable, mais pour une région rectangulaire, comme
la plaque considérée

[cos (E> + cos (Z)] w? — 16w + 16
p q



e 3. Méthode implicite de direction alternée (I.D.A)

La méthode 1. (Equations aux différences) demande Ia
résolution d’'une matrice creuse (i.e., bcp de 0) dont les
valeurs non nuls sont concentrées sur une bande diago-

nale de la matrice
v
Lorsque la matrice est tri-diagonale, les méthodes de ré-

solution de ce type de matrice sont directes et efficaces

» La méthode I.D.A permet de se ramener a un pro-
bléme de résolution de matrice tri-diagonale

Exemple
2 uL—QuO—I—uR_I_uA—QuO—I—uB 0
u = —
(Azx)? (Ay)?
Lorsque Az = Ay =1
(WL —2u0+uR)Y = —(uA—2u0+uB)H
(WA —2u04+uB)*t2d = (4L - 240+ uR)FH]

En re-arrangeant, on obtient le systéme tri-diagonal
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III. Régions irréguliéres et grilles non rectangulaires

Si la grille n'est pas rectangulaire et que les u;; ne
peuvent pas étre réguliérement espaceés, il existe trois
meéthodes possibles

e 1. Placement des noeuds sur la frontiére

o= 1007




Estimations des dérivés premiéres et secondes

q..-!.
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e 2. Distorsion de la frontiére
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e 3. Utilisation des coordonnées polaires

O2%u 1 Ou 1 62w
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On trouve,
_ (uL —2u0 4+ uR) 1 (uR — ul)]
Viu = (Ar)2 + (¥) 8 [ (2A7)
1 (uA — 2u0 + uB)1
T | (06)2
/
|...
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IV. Equations Différentiels Paraboliques/Hyperboliques

2 2 2
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0x2 O0xOt o2 ox’ Ot

A = B? — 4AC
A < 0 L'équation différentielle est elliptique
e Si A = 0 L’équation différentielle est parabolique
A > 0 L’équation différentielle est hyperbolique

Equation de la Chaleur
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V. Méthode de Résolutions

e 1. Méthode Explicite

» consiste a remplacer les dérivés premiéres et secondes
par leur approximation

9 L1 L)
5 = i ~ ! (pts z; et tps t;)
@ _ uz[{i]—l - Quz[j] + uy—]l

Ox? (Azx)?

En utilisant ces approximations

I A2%u ou
- = Ccp——
Ox2 P Ot

\ 4

uz[-j—i_l] = r X (ug]_l + u,EJ_]l) + (1 —-2r) x u!j]

avec —kAt
r =
cp(Az)?

Remarque

u est d’ordre o(At) et 2% est d’ordre o(Ax)?
» source d’erreur d’'estimation
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e 2. Méthode de Crank-Nicholson

» On utilise les mémes ordres d’approximation pour
estlmer 4 et ‘9“

I 02w ou
- _— C -
o0x? p ot

v
’U,Z-U_I_l] _ uz[j] B 1 k [UEJ—I]—I 2u[.7] _|_u[J] 7F]—|-+11] 2 [J+1] _|_u]+1]
At  2¢p (Azx)? (AZB)Q
Ce qui donne, aprés ré-arrangement
ru,E‘f—ll] + (2 + r)uz[j"' ) rul[J"il] = ruz+1 + (2 —r)u; bl ru[]]
avec —kAt
r =
cp(Az)?
Remarque

Ne peut étre résolu itérativement » Nécessite la
résolution d’un systéme tri-diagonal
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Equation de la corde vibrante

» En remplacant les dérivés par leur approximation nu-
meérique, on trouve

uz[{i]—l — 2u£j] + u,EJ_]l _w uz[-j_i_l] — QuZ[-j] + u,Ej_l]

(Ax)? Ty (At)2

ou l'indice désigne les valeurs de z et I'exposant les va-
leurs de t. En ré-arrangeant, on trouve

LU Tg (At)?

’ w (Ax)?

] (] l-1] Tg (At)*\ 1)
(u[i—l-l] + u) — u; —+ 2(1 - (Do) )uz
Si on rend Tg(At)?/w(Ax)? égal a 1, le probléme se
simplifie considérablement

: : . : A
L T L N &

v (Tg/w)

Remarque

L’équation peut se résoudre itérativement si on trouve

une astuce pour estimer uZ[_l], valeurs de u;, une
itération avant le départ!
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» L’oscillation de la corde vibrante est périodique. En
utilisant I'approximation des différences centrées

¢ = en x; et t=20

(Ou/0t) = 0 est connu (condition initiale).
Soit g(xz) = (Ou/0t) a t = 0, on peut écrire

ul[_l] = uz[l] — 2g(x) At

Et en substituant dans I'équation (1), on trouve pour
t=1

ufl = @l + %) + (@)t
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