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Chap. I : Chiffres Sign. & Prop. d’Erreurs
CHIFFRES SIGNIFICATIFS (COMPLEMENT)

Exercice

X* = 4085.6

Intervalle de confiance, erreur absolue & relative 7

Convention

X* = 0.0002780

7 cse dans X* (i.e., aprés la virgule) ou 8 cse en tout

X*=0.2780 x 1073

4 cse dans la mantisse (notation flottante)

X* = 3.0002780

8 cse (en tout)



Chap. I : Chiffres Sign. & Prop. d’Erreurs
ERREURS D'ARRONDIS (EXEMPLE)

Défaillance du missile US patriote

Le 25/02/1991, durant la guerre du golf, un missile
patriote US a Dharan manque un scud Iraquien et frappe
une caserne US tuant 28 soldats et blessant une centaine
d'autres.

» La cause de ce probléeéme fut une erreur d'estimation
du temps écoulé depuis la mise en tension de I'ordinateur
du missile (100 heures), causée par une simple erreur
d’'affectation.

Tps de I'horloge interne est mesuré en diziéme de se-
condes puis multiplié par la valeur 1/10 = 1/2%+1/2%+
1/28 4+ 1/2° + ... = (0.00110011001...)> (stocké dans
un registre de 24 bits).

» introduit une erreur de e= (0. —23 x0—11001100...)>
ou (0.000000095)1¢0. Soit une erreur totale = € x 100 x
60 x 60 x 10 = 0.34 secondes.

Cf. Page Web du Cours (Rubriques : Interesting Links)



Chap. I : Chiffres Sign. & Prop. d’Erreurs
ERREURS D'OVERFLOW (EXEMPLE)

L'explosion de la fusée Ariane 5 juste aprés son décollage
le 04/06/1996 est la conséquence d'un simple overflow.

Explosion d'Ariane 5

» La cause de la défaillance venait d'une erreur logicielle
dans le sytéme de référence inertielle. Plus précisement
un nombre flottant de 64 bits (> 32768) lié a la vitesse
horizontale de |la fusée fut convertit en 16 bits.



Chap. II : Résol. d’Egs Non-Linéaires
CONDITION DE CONVERGENCE DU POINT FIXE

Méthode de Newton / du point fixe » 1z, = g(xp-1)
L'erreur d’'estimation a I'itération n est » &= |z, — 7|
g(zn-1) — g(r)

(zp —1) = (Zn1—1) (Tp-1—1)

9' (&) (n-1—71)

avec £ € J (J est un interval contenant zo,z1,...,Tn)

Si g est continue sur J = [a,b]

g(b) —g(a) _

Sged ta TE =g

En posant K = |¢'(£)]

K |zp-1 — 7|
K? |xp o — 7|

[n — 7|

K" |xg — 7|
K" (b—a)

I

Convergence si limz, = r, cad ssi |¢g'(§)| <1 (V& € J)

n—oo

Convergence d’autant plus rapide que K <1



Chap. II : Résol. d’Eqs Non-Linéaires
APPLICATION DES POINTS FIXES

Génération d'images fractales

S IR

©

lmage watale
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VAT 3
Ah ph e AR b A
[rage nitale lere copic 2eme. copie Jermne cople

Les trois premiéres copies générées par la photocopieuse
pour difféerentes images d’entrée

» Toute les copies convergent vers la méme
image finale, que I'on appelle |'attracteur



Chap. II : Résol. d’Eqs Non-Linéaires
COMPRESSION FRACTALE (2)

Résultat final » dépend uniquement de |la maniére dont
I'image d’'entrée est transformée
v

Résultat final peut étre décrit par un ensemble de trans-
formations affines du type

X a; bz X €
wy ==
ol =1 al B[
Condition Nécessaire : transformation contractante (i.e.,

1 transformation donnée appliquée a 2 points de |I'image
initiale les rapproche I'un de I'autre dans la copie)

A

Y
Y

Des transformations, leurs attracteurs et un agrandissement
de ceux-cCi



Chap. II : Résol. d’Egs Non-Linéaires
COMPRESSION FRACTALE (3)

Chaque image est formée de copies transformées (et
réduites) d’elle-méme et donc doit avoir des détails a
toute les échelles » image fractale

Principe de la compression fractale

Consiste a stocker les parameétres de la transformation
donnant I'image finale considérée comme étant un at-
tracteur (M. Barnsley)

Compression fractale d’'images réelles

L'image d’'un visage n'est pas fractales ou pas exacte-
ment auto-similaire, par contre ...

Exemple de régions qui sont similaires a différentes échelles
v
L'image est formée de copies convenablement transformée
de parties d'elle-méme
v

Compression d'une image quelconque : stockage des dé-
formations permettant de générer cette image



Chap. II : Résol. d’Egs Non-Linéaires
COMPRESSION FRACTALE (4)

Exemple

Image originale, premiére, seconde et dixieme
itération de la décompression fractale



Chap. III : Résol. Syst. d’Eq. Linéaires
CRAMER

det |

det |




Chap. III : Résol. Syst. d’Eq. Linéaires
CALCUL DE DETERMINANT ?

Super Calculateur 2004

Earth Simulator (ES)

Installé au Japon a I'Agence spatiale japonese NASDA
(2004)

5120 CPUs (640 x 8) NEC 500 Mhz

Puissance de calcul : 41 TeraFlops (8 GFlops par CPU)
Mémoire de 2 Giga Octets par CPU

16 GigaOctet par noeuds

Utilisé pour la simulation de phénomeéne climatique, océa-
nique, atmosphérique, tectonique, etc.



Chap. III : Résol. Syst. d’Eq. Linéaires
CALCUL DE DETERMINANT ?

Super Calculateur 2014

National Super Computer Center in Guangzhou (China)

- 3 120 000 CPUs (Intel Xeon)
- Puissance de calcul : 40 000 TeraFlops

Utilisé a I'Université nationale de technologie de la dé-
fense de la République populaire de Chine



Chap. III : Résol. Syst. d’Eq. Linéaires
INVERSION DE MATRICE (RESUME)

Inversion de la Matrice A

1 2 -1
A= |2 1 O
-1 1 2

(cf. Chap. 3 page 5)

2- Elimination de Gauss

1 2 -1
A= |2 1 O
-1 1 2

Pour calculer A—1, on doit résoudre le systéme augmenté
suivant

1 2 -1 1 0 O
A=|12 1 O O 1 0
-1 1 2 O 0 1



Par élimination de Gauss (sans pivotage)

1 2 -1 1 0 O
A= |0 -3 2 —2 1 0
O O 3 -1 1 1

On doit résoudre par substitutions arriére les trois sys-
témes suivants

1 2 -1 1 1 2 -1 0 1 2 -1 0
O -3 2 —2 O -3 2 1 O -3 2 0
O O 3 -1 O O 3 1 O O 3 1
Ce qui donne par substitutions arriére
1 —2/9 1 5/9 1 —1/9
x| = | 4/9 x| = [—1/9 x| = | 2/9
3 —1/3 3 1/3 3 1/3
donc
-2 5 -1
Al=Z214 -1 2



3- Gauss Jordan

1 2 -1 1 0 O
A={12 1 O O 1 O
-1 1 2 O 0 1

v

1 00 -2/9 5/9 -—1/9
A=1l0 1 0 4/9 -1/9 2/9
o001 -1/3 1/3 1/3

4- Factorisation LU

Elimination de Gauss

1 O O 1 2 -1
LU = | 2 1 O| [0 -3 2
-1 -1 1] [0 O 3
Factorisation directe
1 O O 1 2 -1
Lv=|(2 -3 0||0 1 -2/3
-1 3 3] |0 O 1

1- Résolution pour

1 0 o)
bp = |0|, bx= |1, b3= |0
0 0 1



LUx = b
en posant y=Ux » Ly = b
Uz = vy

2- On trouve U~ et L= (respectivememt par substitu-
tion arriére et avant pour chaque vecteur b;), puis

Al=w@wu)yt=vu"1L?1?
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Chap. III : Résol. Syst. d’Eq. Linéaires

FACTORISATION DIRECTE

Exercices

whHH
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Chap. IV : Interpolation Poly. & Colloc.
APPLICATION DES BEZIERS (1)

\e{
402 276 moveto départ point 1

399 380 334 458 226 458 curveto courbe de 1 a 2
102 458 22 356 22 214 curveto courbe de 2 a 3
22 95 97 =10 212 -10 curveto courbe de 3 a 4 2
312 -10 390 68 421 158 curveto courbe de 4 a 5
405 164 lineto droite de 5 a 6
6 a7
140 57 92 181 91 276 curveto courbe de 7 a 8

fermer contour extérieur
départ au point 9
courbe de 9 a 10
courbe de 10 a 11
fermer contour intérieur

closepath

94 308 moveto

103 372 134 424 204 423 curveto
270 423 297 366 300 308 curveto

%
%
%
%
%
%
374 109 319 57 253 57 curveto % courbe de
%
%
%
3
%
closepath} def %

FIGURE 15 — Un caractére est défini par quelques points de contrdle et tangentes. En
haut, le schéma d’un « e »; en bas, le programme PostScript le décrivant.

Fia. 2: Extrait de Caractéres numériques : introduction, de Jacques André




Chap. IV : Interpolation Poly. & Colloc.
APPLICATION DES BEZIERS (2)




Chap. IV : Interpolation Poly. & Colloc.
APPLICATION DES B-SPLINES CUBIQUES

WINRJA\

C. DESCRIPTION OF AFFINE TRANSFORMATIONS
Finally, we intreduce a sct of admissible lincar transformatiens on ~ invelving translation,
scaling, rotation, and stretching of the template.

Let 4 be a defoermed version of + according to the aferementioned transformations with
paramcter vector §. g is described by 5 parameters (affine transfermations) + 1 pairs of
global nen affine defermation parameters 4 (n — 2} (9., 6, ).

(a) ih) (e] (]

Local snd glabal non-affine deformations : {a} Initial template. (b} 4y with local randam perturbations.
Clabal nan-affine defarmations an this locally deformed template with ¢ (e} M =N =1 and &, =&, =2
Yne (1P M=N=3and &, =&, =2 Ym,nc {0,1,2}%

. il /

[ TRACKING STEP | Bl inriA \

SE- S S, . @SS SBNs & £
Tracking of the cndecardial contour in a medical echographic sequence at different time
frames during the cardiac cycle. From top loft to hottom right : frame 1, 4, 6, 9, 12, 13,
18, 20, 27, 30, 35, 40, 41, 44, 46.

1y




Chap. V : Dérivation Numeérique
EXERCICE

Qu'approxime la formule de différence suivante ? :

%[f(ajo -+ Qh) — 2 f($0) + f(xo o h)]



Chap. V : Dérivation Numeérique

EXERCICE
x O |n/4 | w/2 | 3n/4 | =
f@) | o | 2] 1 | 2 | o0
(fo) | (f1) | (f2) (fz) | (fa)
Formule centrées :
//_f0_2fl+f2N_ 2
fi= (n/2)2 ~ —0.67149 4+ O(h°)
//_f1_2f2+f3N_ 2
fo = (n/4)2 ~ —0.95 + O(h?)
//_f2_2f3+f4N_ 2
5= (n/2)2 ~ —0.67149 4+ O(h®)
Formule non centrées :
//_f2_2f1+f0N_ 2
fo = (r /)2 ~ —0.67149 4+ O(h°)

—{f2—2f1+ fo}

G Tay? ~ 0.67149 4+ O(h?)
T

f//_
4 =




Chap. VI : Résol. Eq. Difféerentielles
METHODES DE RUNGE-KUTTA D'ORDRE N

Compromis Precision/Rapidité

Euler Modifié (RK2) | RK 4 | RK5 | RK 6
Ordre Glob. O(h?) O(h*)
Pas h=0.1
Précision 0.01
Cout calc. /iter.
Nb. d'Iter.
Cout calc. Glob.




Chap. VI : Résol. Eq. Differentielles
EULER MODIFIE ET MID-POINT

METHODE D'EULER MODIFIE

to t: t

h
h
Yi+1 = Y; + > [y§ + y§+1]

Ui+1 = vy; + hf(t),y5),
h -
Yi+1 = y; + E[f(tw yi) + f(t, Ji+1)]-

METHODE DU POINT MILIEU

to to+(h2) t. t

h /
Yi+1 = Yj + h[yj+0.5]

- h
Yit1/2 = yj+5f(tj,yj),
Yi+1 = yj +h f(tr1/2, Ujg1/2)-



Chap. VII : Valeurs & Vecteurs Propres
APPLICATION DES VALEURS PROPRES

Modes de déformations des vertébres

ﬁlz—3 )\.2 /11:0 /91=+3\/E

b= — 3@ 6,=0 bH=+73 )\,2

Fig. 1. Visualization of mean shape (middle row) from the sagittal (top row) and coronal views (bottom row), and two deformed shapes obtained by applying
=+ 3 standard deviations of the first and second deformation modes to the mean shape for the L3 vertebra.



