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I. Méthode d’Adams-Moulton d’ordre local en h*

Utiliser la méthode d’Adams-Moulton' d’ordre local 4, pour h = 0.1, pour résoudre I’équation différen-
tielle suivante,

y'(t) = —yt) +t* +1,

avec les conditions initiales suivantes

yo=y(0.0) = 1
y1 =y(0.1) = 1.0003252
y2 =y(0.2) = 1.0025385

Calculer y3 = y(0.3).

Réponse

Posons y'(t) = f(t,y) avec f(t,y) = —y(t) + % + 1 et les relations itératives suivantes

PREDICTION,

- h
Ynt1 = Yn + 12 (23f(tnv Yn) = 16f(tn—1,Yn—1) +5f(tn—2, yan))
f~n+1 - f(thrla ?jnJrl)

CORRECTION,

h ~
Yn+1 = Yn + E (5fn+1 + Sf(tnvyn) - f(tnflvynfl))

D’abord, la prédiction

U3 Y2 + % (23f(t2,y2) —16f(t1,y1) + 5f(fo7yo))

0.1
= 1.0025385+ (23f(0.2, 1.0025385) — 16.£(0.1, 1.0003252) + 5 £ (0.0, 1))
= 1.008428648

f3 = f(0.3,73)
—1.008428648 + (0.3)* + 1
= 0.081571352

Ensuite, la correction

hoo-
Y2 + ﬁ(5f3 + 8f(t2,y2) — f(t1,y1)

0.1
1.0025385 + — (5(0.081571352) +8(0.0374615) — (0.0096748))

~ 1.00835
LCf. Notes de Cours, Chapitre 6, page 22.
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I1. Equation différentielle d’ordre supérieur (ordre 2)

Utiliser la méthode de Runge Kutta? d’ordre local 4, avec h = 0.1, pour résoudre I’équation différentielle
d’ordre 2 suivante

Y1)~ 2/ () +25(t) = exp(2t)sin(t)
avec les conditions initiales suivantes, y(0) = —0.4 et 3’(0) = —0.6. Calculer y(0.1) = y;.

Réponse
Posons
z(t) = y't)
a'(t) = y'(t)
On trouve donc le systéme d’ordre un suivant
2'(t) = 2x(t) —2y(t) + exp(2t) sin(t) = f1(t,y, )

yl(t) = .’L'(t) = f2(t7y7$)
avec les conditions initiales suivantes
y(0) = -04
et z(0) = —-0.6

Notons K, 4, les différents coefficients pondérateurs de la méthode de Runge Kutta. L’indice y est associé
a la fonction f; ou fs.

K11 = hfi(to,yo,0)
— 0.1(2(—0.6) — 2(—0.4) + 0.0)
— 0.4
Kio = hfa(to,yo, o)
— 0.1(-0.6)
= —0.06
1 1 1
Kyy = hfl(to+§h,y0+§/€1,27$0+§k1,1)

= 0.1£1(0.05,—0.43, —0.62)
= 0.1(2(—0.62) — 2(—0.43) + exp(0.1) sin(0.05))
= —0.03247644757

Koo = hfa(to+ %h7y0 + %k1,2,$0 + %kl,l)
—  0.1/2(0.05,—0.43, —0.62)
— 0.1(~0.62)
= —0.062

2Cf. Notes de Cours, Chapitre 6, page 28.



K31 = hfl(fo-i-%h,yo—i— %kmwo—i— %/@,1)
= 0.1f1(0.05,—-0.431, —0.616238)
—  0.1(2(—0.616238) — 2(—0.431) + exp(0.1) sin(0.05)
= —0.03152409

1 1 1
Kso = hfa(to+ §h790+§k2,2,170+§k2,1)
= 0.1f2(0.05, —0.431, —0.616238)

= 0.1(—0.616238)
= —0.0616238

Ks1 = hfi(to+h,yo+ ka2, z0+ ks 1)
= 0.1f1(0.1,—0.4616238, —0.63152409)
—  0.1(2(—0.63152409)) — 2(—0.4616238) + exp(0.2) sin(0.1)
= —0.02178637

Kso = hfa(to+h,yo+ k32,20 + k3 1)
= O.1f2(0.1, —0.4616238, —0.63152409)
= —0.063152409

Donc, on trouve,

1 1 1 1

Ty = To+ 6k1,1 + 3k2,1 + 3k3,1 + 6k4’1
1 1 1 1
= —-0.6+ E(_O'M) + g(—0.03247644) + 5(_0'03152409) + 6(—0.02178637)
= —0.631631
1 1 1 1
= —k -k —k —k
51 y0+61’2+32’2+33’2+64"2

1 1 1 1
= 0.4+ £(=0.06) + 5(~0.062) + 5 (~0.0616238) + +(~0.063)
= —0.461733

Donc y; = —0.461733.

IT1I. Méthode de tir

Soit I’équation différentielle suivante,




avec les conditions frontiéres suivantes

y(1)=1
y(2) =2

avec 1 <t < 2. Résoudre ’équation (1) avec la méthode d’Euler-Modifiée avec le pas h = 0.1.

Réponse

On va transformer ce probléme de condition frontiére en deux problémes de conditions initiales. Essayons
de résoudre avec les conditions initiales suivantes, (pour alléger la notation, on notera x au lieu de z(t) et
idem pour y).

y(1) =1
on pose dans le premier tir ~ 3'(1) =0
Posons z(t) = y'(t), Nous devons résoudre le systéme suivant,
2 2 sin(In(¢
) = el + g+ 0O gy
y/(t) = I(t) = fQ(tvya I)
avec les conditions initiales y(1) =1 et 2(1) = ¢'(1) = 0.
On utilise les équations itératives de la procédure d’Euler-Modifiée.
Uivr =y + hfa(ty, ys 75)
Tjv1 = xj+hfit;,y;, ;)
h - -
Yi+1 = Yj+ §(f2(tjvijxj) + fQ(tj+1vyj+1an+1))
h - -
Tj+1 = Tj+ B} (fl(tjvyja l‘j) + fl(tj+1, yj+1,33j+1))
On obtient,
F1 = wo+0.1£1(1,1,0)=0+0.1(2) = 0.2
7 = yo+01f(1,1,0)=14+0=1
0.1
2 o= 0+ 7(fl(1, 1,0)+ f1(1.1,1,02)) = 0.168
0.1
o= 1+ 7(fg(1, 1,0) + fo(1.1, 1,0.2)) —1.01
190 = 0.682334
Y10 = 1.46675

Or on a y10 = y(2) = 2, donc on a raté le tir. Essayons maintenant avec les conditions initiales y(1) =1
et £(1) = 1 et on posera pour le deuxiéme tir, y'(1) = 1.



On obtient,

F1 o= 1+0.1f(1,1,1)=0

G o= 14+01f(L1L1) =1+01=11
0.1

o = 1+7(f1(1,1,1)+f1(1.1,1.1,0)):1.00393
0.1

o = 1+7(]‘2(1,1,0)+f2(1.1,1.1,0)):1.1

r10 = 1.09941

Yyio = 2.04757

Or on a y10 = y(2) = 2, donc on a encore rateé le tir. Cependant, si u(t) et v(¢) sont solutions de ’équation
différentielle (1), alors w(t) = au(t) + (1 — a)v(t) sera aussi une solution de cette équation différentielle 3.
On considére donc la fonction associée au premier essai comme étant u(t) et la deuxiéme comme étant v(t),
nous devons déterminer a pour que,

y(2) =w(2) =2
On a
w(2) = «(1.46675)+ (1 — «)(2.04757) =2
d’ont a = 0.0819014

Donc, w(t) = 0.0819014 u(¢t) + (1 — 0.0819014) v(t) est aussi solution de I’équation différentielle (1) et donc
nous avons la relation suivante w’(t) = 0.0819014 v/(¢) 4+ (1 — 0.0819014) v'(¢), i.e., w'(t) = 0.0819014 v'(t) +
0.918099 v'(t), et donc

w'(1) = 0.0819014 /(1) 4 0.9180990' (1)
w'(1) = 0+ (0.918099)(1)
w'(1) = 0.918099

Donc il faut prendre y'(1) = 0.918099.

IV. Méthode de Gershgorin, des puissances

Soit A la matrice suivante

) 2 =2
A=1 2 2 -1
-2 -1 2

1. Tracer les disques de Gershgdrin et déterminer par cette méthode les intervalles ot doivent se trouver
les valeurs propres de cette matrice.

3Cf. Notes de Cours, Chapitre 6, page 36.



2. En supposant qu’il n’existe pas de valeurs propres complexes, donner 'intervalle o1 doivent se trouver
ces valeurs propres.

3. En utilisant ces disques de Gershgorin, donner une borne supérieure pour la plus grande valeur propre
de cette matrice. En utilisant le corollaire 3 4 , essayer de trouver une borne supérieure plus intéressante.

4. Déterminer en partant du vecteur z9 = (1 2 3)%, la plus grande valeur propre de la matrice par la
méthode des puissances (faites seulement cing itérations).

Réponse

1. On trouve un disque C; de centre (5 0)! et de rayon r = 4, un disque Cs de centre (2 0) et de rayon
r = 3 et finalement un disque C3 de centre (2 0)! et de rayon r = 3. Puisque la matrice est symétrique, les
disques de Gershgorin construit & partir de la matrice transposée A’ sont identiques.

Les valeurs propres de cette matrice sont, puisque Cy = Cj3, éléments de 'union des disques Cy | Cs.

2. Dans I’hypothése ou il n’y a pas de valeurs propres complexes, ce qui est n’est pas une hypothése mais
une réalité puisque la matrice est symétrique, celles-ci sont comprises dans l'intervalle [—1,9].

3. En utilisant les disques de Gershgorin, la borne supérieure pour la plus grande valeur propre de cette
matrice est donc 9. En utilisant le corollaire 3. cette borne supérieure est donnée par min{max(Q, 5,5), max(9,5, 5)} =
9. On obtient donc le méme résultat car la matrice A est symétrique.

4. On a successivement

1
r=12
3
1 3 1
Az =A[2]| =13 gt =11 avec pltl =3
3 2 2/3

Les composantes des vecteurs y[™ et les valeurs de pl™ (la plus grande valeur propre de A) pour chaque
itération sont données dans le tableau ci dessous. La valeur de pl™ a I’itération n = 5 semble étre une bonne
estimée de la valeur propre dominante.

| n | Composantes de y"] | pl™ |
1] 1.00| 1.00 | 0.667 | 3.00
1.00 | 0.587 | -0.295 | 5.67
1.00 | 0.513 | -0.470 | 6.76
1.00 | 0.502 | -0.495 | 6.97
1.00 | 0.501 | -0.499 | 6.99

T W N

Par cette méthode, on trouve que la plus grande valeur propre de cette matrice est égale 4 6.99 et que le
vecteur propre associé est égale & (1.00 0.501 — 0.499)%.

Les valeurs propres exactes sont 1,1, 7 et le vecteur propre associé & A = 7 a pour composantes (1.00 0.5 —0.5)%.

4Cf. Notes de Cours, Chapitre 7, page 8.



