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I. Méthode d'Adams-Moulton d'ordre lo
al en h
4Utiliser la méthode d'Adams-Moulton1 d'ordre lo
al 4, pour h = 0.1, pour résoudre l'équation di�éren-tielle suivante,

y′(t) = −y(t) + t2 + 1,ave
 les 
onditions initiales suivantes
y0 = y(0.0) = 1

y1 = y(0.1) = 1.0003252

y2 = y(0.2) = 1.0025385Cal
uler y3 = y(0.3).RéponsePosons y′(t) = f(t, y) ave
 f(t, y) = −y(t) + t2 + 1 et les relations itératives suivantesPrédi
tion,
ỹn+1 = yn +

h

12

(

23f(tn, yn) − 16f(tn−1, yn−1) + 5f(tn−2, yn−2)
)

f̃n+1 = f(tn+1, ỹn+1)Corre
tion,
yn+1 = yn +

h

12

(

5f̃n+1 + 8f(tn, yn) − f(tn−1, yn−1)
)D'abord, la prédi
tion

ỹ3 = y2 +
h

12

(

23f(t2, y2) − 16f(t1, y1) + 5f(t0, y0)
)

= 1.0025385 +
0.1

12

(

23f(0.2, 1.0025385)− 16f(0.1, 1.0003252)+ 5f(0.0, 1)
)

= 1.008428648

f̃3 = f(0.3, ỹ3)

= −1.008428648+ (0.3)2 + 1

= 0.081571352Ensuite, la 
orre
tion
y3 = y2 +

h

12

(

5f̃3 + 8f(t2, y2) − f(t1, y1

)

= 1.0025385 +
0.1

12

(

5(0.081571352)+ 8(0.0374615)− (0.0096748)
)

≈ 1.008351Cf. Notes de Cours, Chapitre 6, page 22.



II. Equation di�érentielle d'ordre supérieur (ordre 2)Utiliser la méthode de Runge Kutta2 d'ordre lo
al 4, ave
 h = 0.1, pour résoudre l'équation di�érentielled'ordre 2 suivante
y′′(t) − 2y′(t) + 2y(t) = exp(2t) sin(t)ave
 les 
onditions initiales suivantes, y(0) = −0.4 et y′(0) = −0.6. Cal
uler y(0.1) = y1.RéponsePosons

x(t) = y′(t)

x′(t) = y′′(t)On trouve don
 le système d'ordre un suivant
x′(t) = 2x(t) − 2y(t) + exp(2t) sin(t) = f1(t, y, x)

y′(t) = x(t) = f2(t, y, x)ave
 les 
onditions initiales suivantes
y(0) = −0.4et x(0) = −0.6Notons Kx,y, les di�érents 
oe�
ients pondérateurs de la méthode de Runge Kutta. L'indi
e y est asso
iéà la fon
tion f1 ou f2.

K1,1 = hf1(t0, y0, x0)

= 0.1(2(−0.6)− 2(−0.4) + 0.0)

= −0.04

K1,2 = hf2(t0, y0, x0)

= 0.1(−0.6)

= −0.06

K2,1 = hf1(t0 +
1

2
h, y0 +

1

2
k1,2, x0 +

1

2
k1,1)

= 0.1f1(0.05,−0.43,−0.62)

= 0.1(2(−0.62)− 2(−0.43) + exp(0.1) sin(0.05))

= −0.03247644757

K2,2 = hf2(t0 +
1

2
h, y0 +

1

2
k1,2, x0 +

1

2
k1,1)

= 0.1f2(0.05,−0.43,−0.62)

= 0.1(−0.62)

= −0.0622Cf. Notes de Cours, Chapitre 6, page 28.



K3,1 = hf1(t0 +
1

2
h, y0 +

1

2
k2,2, x0 +

1

2
k2,1)

= 0.1f1(0.05,−0.431,−0.616238)

= 0.1(2(−0.616238)− 2(−0.431) + exp(0.1) sin(0.05)

= −0.03152409

K3,2 = hf2(t0 +
1

2
h, y0 +

1

2
k2,2, x0 +

1

2
k2,1)

= 0.1f2(0.05,−0.431,−0.616238)

= 0.1(−0.616238)

= −0.0616238

K4,1 = hf1(t0 + h, y0 + k3,2, x0 + k3,1)

= 0.1f1(0.1,−0.4616238,−0.63152409)

= 0.1(2(−0.63152409))− 2(−0.4616238)+ exp(0.2) sin(0.1)

= −0.02178637

K4,2 = hf2(t0 + h, y0 + k3,2, x0 + k3,1)

= 0.1f2(0.1,−0.4616238,−0.63152409)

= −0.063152409Don
, on trouve,
x1 = x0 +

1

6
k1,1 +

1

3
k2,1 +

1

3
k3,1 +

1

6
k4,1

= −0.6 +
1

6
(−0.04) +

1

3
(−0.03247644)+

1

3
(−0.03152409) +

1

6
(−0.02178637)

= −0.631631

y1 = y0 +
1

6
k1,2 +

1

3
k2,2 +

1

3
k3,2 +

1

6
k4,2

= −0.4 +
1

6
(−0.06) +

1

3
(−0.062) +

1

3
(−0.0616238) +

1

6
(−0.063)

= −0.461733Don
 y1 = −0.461733.III. Méthode de tirSoit l'équation di�érentielle suivante,
y′′(t) = −

2

t
y′(t) +

2

t2
y(t) +

sin(ln t)

t2
(1)



ave
 les 
onditions frontières suivantes
y(1) = 1

y(2) = 2ave
 1 ≤ t ≤ 2. Résoudre l'équation (1) ave
 la méthode d'Euler-Modi�ée ave
 le pas h = 0.1.RéponseOn va transformer 
e problème de 
ondition frontière en deux problèmes de 
onditions initiales. Essayonsde résoudre ave
 les 
onditions initiales suivantes, (pour alléger la notation, on notera x au lieu de x(t) etidem pour y).
y(1) = 1on pose dans le premier tir y′(1) = 0Posons x(t) = y′(t), Nous devons résoudre le système suivant,

x′(t) = −
2

t
x(t) +

2

t2
y(t) +

sin(ln(t))

t2
= f1(t, y, x)

y′(t) = x(t) = f2(t, y, x)ave
 les 
onditions initiales y(1) = 1 et x(1) = y′(1) = 0.On utilise les équations itératives de la pro
édure d'Euler-Modi�ée.
ỹj+1 = yj + hf2(tj , yj , xj)

x̃j+1 = xj + hf1(tj , yj, xj)

yj+1 = yj +
h

2

(

f2(tj , yj, xj) + f2(tj+1, ỹj+1, x̃j+1)
)

xj+1 = xj +
h

2

(

f1(tj , yj , xj) + f1(tj+1, ỹj+1, x̃j+1)
)On obtient,

x̃1 = x0 + 0.1f1(1, 1, 0) = 0 + 0.1(2) = 0.2

ỹ1 = y0 + 0.1f2(1, 1, 0) = 1 + 0 = 1

x1 = 0 +
0.1

2

(

f1(1, 1, 0) + f1(1.1, 1, 0.2)
)

= 0.168

y1 = 1 +
0.1

2

(

f2(1, 1, 0) + f2(1.1, 1, 0.2)
)

= 1.01...
x10 = 0.682334

y10 = 1.46675Or on a y10 = y(2) = 2, don
 on a raté le tir. Essayons maintenant ave
 les 
onditions initiales y(1) = 1et x(1) = 1 et on posera pour le deuxième tir, y′(1) = 1.



On obtient,
x̃1 = 1 + 0.1f1(1, 1, 1) = 0

ỹ1 = 1 + 0.1f2(1, 1, 1) = 1 + 0.1 = 1.1

x1 = 1 +
0.1

2

(

f1(1, 1, 1) + f1(1.1, 1.1, 0)
)

= 1.00393

y1 = 1 +
0.1

2

(

f2(1, 1, 0) + f2(1.1, 1.1, 0)
)

= 1.1...
x10 = 1.09941

y10 = 2.04757Or on a y10 = y(2) = 2, don
 on a en
ore raté le tir. Cependant, si u(t) et v(t) sont solutions de l'équationdi�érentielle (1), alors w(t) = αu(t) + (1 − α)v(t) sera aussi une solution de 
ette équation di�érentielle 3.On 
onsidére don
 la fon
tion asso
iée au premier essai 
omme étant u(t) et la deuxième 
omme étant v(t),nous devons déterminer α pour que,
y(2) = w(2) = 2On a

w(2) = α(1.46675) + (1 − α)(2.04757) = 2d'où α = 0.0819014Don
, w(t) = 0.0819014 u(t) + (1 − 0.0819014) v(t) est aussi solution de l'équation di�érentielle (1) et don
nous avons la relation suivante w′(t) = 0.0819014 u′(t) + (1− 0.0819014) v′(t), i.e., w′(t) = 0.0819014 u′(t) +
0.918099 v′(t), et don


w′(1) = 0.0819014 u′(1) + 0.918099v′(1)

w′(1) = 0 + (0.918099)(1)

w′(1) = 0.918099Don
 il faut prendre y′(1) = 0.918099.IV. Méthode de Gershgörin, des puissan
esSoit A la matri
e suivante
A =





5 2 −2
2 2 −1
−2 −1 2



1. Tra
er les disques de Gershgörin et déterminer par 
ette méthode les intervalles où doivent se trouverles valeurs propres de 
ette matri
e.3Cf. Notes de Cours, Chapitre 6, page 36.



2. En supposant qu'il n'existe pas de valeurs propres 
omplexes, donner l'intervalle où doivent se trouver
es valeurs propres.3. En utilisant 
es disques de Gershgörin, donner une borne supérieure pour la plus grande valeur proprede 
ette matri
e. En utilisant le 
orollaire 3 4 , essayer de trouver une borne supérieure plus intéressante.4. Déterminer en partant du ve
teur x[0] = (1 2 3)t, la plus grande valeur propre de la matri
e par laméthode des puissan
es (faites seulement 
inq itérations).Réponse1. On trouve un disque C1 de 
entre (5 0)t et de rayon r = 4, un disque C2 de 
entre (2 0)t et de rayon
r = 3 et �nalement un disque C3 de 
entre (2 0)t et de rayon r = 3. Puisque la matri
e est symétrique, lesdisques de Gershgorin 
onstruit à partir de la matri
e transposée At sont identiques.Les valeurs propres de 
ette matri
e sont, puisque C2 = C3, éléments de l'union des disques C1

⋃

C2.2. Dans l'hypothèse ou il n'y a pas de valeurs propres 
omplexes, 
e qui est n'est pas une hypothèse maisune réalité puisque la matri
e est symétrique, 
elles-
i sont 
omprises dans l'intervalle [−1, 9].3. En utilisant les disques de Gershgörin, la borne supérieure pour la plus grande valeur propre de 
ettematri
e est don
 9. En utilisant le 
orollaire 3. 
ette borne supérieure est donnée parmin
{

max(9, 5, 5), max(9, 5, 5)
}

=
9. On obtient don
 le même résultat 
ar la matri
e A est symétrique.4. On a su

essivement

x =





1
2
3





Ax = A





1
2
3



 =





3
3
2



 y[1] =





1
1

2/3



 ave
 µ[1] = 3Les 
omposantes des ve
teurs y[n] et les valeurs de µ[n] (la plus grande valeur propre de A) pour 
haqueitération sont données dans le tableau 
i dessous. La valeur de µ[n] à l'itération n = 5 semble être une bonneestimée de la valeur propre dominante.n Composantes de y[n] µ[n]1 1.00 1.00 0.667 3.002 1.00 0.587 -0.295 5.673 1.00 0.513 -0.470 6.764 1.00 0.502 -0.495 6.975 1.00 0.501 -0.499 6.99Par 
ette méthode, on trouve que la plus grande valeur propre de 
ette matri
e est égale à 6.99 et que leve
teur propre asso
ié est égale à (1.00 0.501 − 0.499)t.Les valeurs propres exa
tes sont 1, 1, 7 et le ve
teur propre asso
ié à λ = 7 à pour 
omposantes (1.00 0.5 −0.5)t.4Cf. Notes de Cours, Chapitre 7, page 8.


