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I. Mesure d’incertitude (15 pts)

Calculer ’erreur absolue et relative sur la durée des oscillations d’un pendule simple de longueur 1. La
période est donnée par la formule
l
T =2my/|—,
g

si 7= 3.141 & 1072 prés (i.e., A7 = 1073), 1 = 1 m & 1073 prés, et g = 9.81 ms~2 & 10~2 prés. Donner
I’approximation de T et arrondir au nombre de cse adéquat.

I1. Méthode du point fixe et de Newton-Raphson (25 pts)

On se propose de trouver des valeurs approchées de la racine r de I’équation
flxy=a>4+z—-1=0.

1. Méthode du point fixe.

(a) En remarquant que I’équation proposée est équivalente & ¢1(z) = x avec ¢1(z) = Hl?, montrer
que intervalle J; = [0, 1] est un intervalle sur lequel la convergence vers une solution unique est
assurée.

(b) Déterminer analytiquement un majorant de |r,, — r|, ou r,, désigne la valeur approchée, a la niéme
itération, de cette racine par la méthode itérative du point fixe.

(c) En déduire une valeur approchée de r 4 1073 prés en partant de ro = 1 et arrondir au nombre
adéquat de cse.

2. Méthode de Newton-Raphson.

(a) Soit go(x), la fonction intervenant dans la méthode itérative de Newton pour la résolution de cette
équation. Donner go(x).

(b) Montrer que pour x > 0, on a l'inégalité suivante
|g5(2)] < 1.125|f ()| .

(¢) Montrer que I'on a une solution unique sur lintervalle J; = [0.5,0.75] et que le choix de cet
intervalle permet d’assurer la convergence de la méthode de Newton.

(d) Trouver analytiquement une majoration du type
"1 — 7| < K |11 — 7.

(e) En déduire une valeur approchée de 7 & 1075 prés en partant de ro = 1 et arrondir au nombre
adéquat de cse.



ITI. Convergence linéaire et quadratique (15 pts)

Soit deux méthodes itératives dont la constante asymptotique est C' = 0.75 et convergeant linéairement
pour la premiére et quadratiquement pour la seconde. Calculer le nombre d’itération minimal pour que
lerreur d’approximation n’excéde pas 1078 dans les deux cas sachant que l’erreur i la premiére itération
n’excéde pas 0.5 (i.e., eg = 0.5).

IV. Norme de Matrice (5 pts)

Montrer que pour une matrice symétrique A, on a 1’égalité suivante

cond(A); = cond(A)

[eon

V. Factorisation P'LU avec élimination Gaussienne (20 pts)

1. Décomposer la matrice A en produit P!LU ou P est la matrice de permutation par la méthode d’éli-
mination de Gauss et pivotage partiel.

2. Calculer le déterminant de A.

3. Résoudre le systéme Az = b pour b = (1,2,3)%.

2 -1 0
A=14 -1 2
-6 2 0

VI. Interpolation de lagrange et Newton (20 pts)

Soit les points suivants

xk0146
yr |1 -1 1 -1

1. Appliquez la formule de Lagrange pour trouver un polynome de degré trois qui passe par ces points.
Evaluez ensuite ce polynome pour z = 2,3, 5.

2. Appliquez la formule de Newton pour trouver un polynome de degré trois qui passe par ces points.
Evaluez ensuite ce polynome pour z = 2,3, 5.



