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I. Méthodes du Point Fixe et Accélération d’Aitken

Le principal intérét de la loi de distribution de Weibull réside dans sa flexibilité. Ainsi, pour certaines
valeurs d’un de ses paramétres (le paramétre de forme c¢), on retrouve la loi exponentielle (¢ = 1) et la loi
de Rayleigh (¢ = 2). Cette propriété explique 'utilisation qu’en font les statisticiens pour modéliser des
échantillons de variables aléatoires exponentielles dont les critéres de dépendances ne sont pas pleinement
veérifiés.

En traitement d’images, cette flexibilité est aussi

particuliérement intéressante pour modéliser la dis- Lois de Weibull

tribution du bruit de speckle dans une image SO- 1.4 T o —— ]
NAR [1], ou des niveaux de gris d’une image RA- 12 . Exponentiglle  : S
DAR de la surface de la mer, ou encore pour modé- 1 o _Rayleigh €2 "

liser la norme du gradient des niveaux de gris associé
aux contours d’une image [2]. La loi de distribution
de Weibull est définie par :
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avecy > 0, a>0et ¢c>0. a et ¢ sont respectivement
un parameétre d’échelle et de forme strictement posi-

tifs. Nous avons représenté en Fig. 1 le tracé de cette Fig. 1 - Lois de Weibull pour différentes valeurs du
loi pour différentes valeurs du facteur de forme c. facteur de forme ¢ (dans cet exemple, o = 1)

La méthode du Maximum de Vraisemblance
(MV) permet d’obtenir une estimation du vecteur de paramétres ¢, = («,c¢) pour un échantillon y donné
(c’est-a-~dire pour un ensemble de N valeurs aléatoires y; suivant la distribution de Weibull). Si on suppose
I’indépendance des différentes variables aléatoires y; de I’échantillon y, la fonction de vraisemblance £ s’écrit

L(D,) = P(y/,) = (ai)N ﬁ {%(61) P <_Z_>]

i=1

Pour déterminer d,. et ¢y (valeurs qui maximisent la fonction de vraisemblance), on doit résoudre
simultanément les deux équations suivantes dln L(®,)/da =0 et IInL(P,)/dc=10,
conduisant au systéme d’équations



N

1 e
—N+§;yi =0
N < N Yive, Vi
€+;1nyi—N1nd—;(51) (=) = 0

R . . . .. N 1
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peut pas obtenir de forme explicite pour l'estimateur c,,,. En effet ¢, est solution de I’équation

Zj.\il (y.CMV In yi) 1 1
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qui n’a pas de solution analytique explicite et qui ne peut se résoudre que numériquement, (par approxi-
mations successives) par 'une des méthodes numériques vues en cours [1,2].

TAB. 1 — Valeurs des N = 10 points de données y;

Y1 Y2 Y3 Ya Ys Yo Y7 Ys Y9 Y10
0.11 ] 0.24 | 027 | 052 | 1.13 | 1.54 | 1.71 | 1.84 | 1.92 | 2.01

1- Puisque l'estimateur du MV est unique, nous savons donc que I’Equation (1) admet forcément une
solution unique ¢y,y. Trouver expérimentalement! une forme adéquate transformant f(cyy;y;) = 0 en une

relation du type ¢y = g(cyv; ¥i) puis en une suite itérative de la forme cgfjl] = g(cl[\?\],; ¥i) qui converge vers

la solution lorsque l'estimée initiale (premier terme de la suite) est cl[\gl, =0.1.

Implémenter cette suite en rLoar avec comme critére d’arrét, une tolérance sur ¢y et une tolérance sur f
de 1076,

2— Implémenter la méthode itérative suivante (en utilisant toujours des FLOAT (en FLOAT avec une

tolérance sur éyy et sur f de 1076 et cLE]V = 0.1) qui demande a chaque itération, deux étapes de la méthode

du point fixe :

Point Fixe Accéléré Par Aitken

Initialisation : ¢l% = 0.1

while critére d’arrét non rempli do
1. Calculer : cltl = g(C[O];yi)
2. Calculer : 2 = g(C[l];yi)

(M —cl0hy2
(6[2] —2 cl1] +c[0] )

3. Calculer : cf3 = [0 —

4. 9 — B

3— Remplacer dans la méthode de la question précédente l'expression de la troisiéme étape de ’algo-
. N s s . . (1] _cl01y2 . P
rithme (correspondant a 'accélération d’Aitken), soit BBl = ¢l0 — m par son expression équiva-
1] 1
1

_ . .
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lente mathématiquement : ¢3! = ¢l

'En toute rigueur (i.e., théoriquement et non plus expérimentalement comme dans ce TP), on rappelle que I’on devrait
montrer (cf. cours) que la fonction g(z) choisie dans la relation itérative c[*t1 = g(cl?]) est telle que |¢g/(z)] < 1, Vo € J, un
intervalle comprenant la racine et le premier élément de la suite clol,



II. Fractales de Mandelbrot

Une figure fractale ou fractale (néologisme créé par Benoit Mandelbrot en 1974 & partir de la racine latine
fractus, qui signifie brisé, irrégulier), est une courbe ou surface de forme irréguliére ou morcelée qui se crée
en suivant des régles déterministes ou stochastiques impliquant une homothétie interne. Dans la “théorie de
la rugosité” développée par Mandelbrot, une fractale désigne des objets dont la structure est invariante par
changement d’échelle.

L’ensemble de Mandelbrot est un ensemble de points dont la frontiére définie dans le plan complexe une
forme fractale facilement reconnaissable et crée (entre autres) par 'application de la méthode itérative du
point fixe (2[,11) = f(2},))), vue en cours, sur une fonction de variable complexe z du type f(z) = 22—z+4c
(avec ¢ un nombre complexe) et conduisant & la célébre suite itérative de point fixe :

Znt1] = 2[271] +c (1)

Plus précisément, L’ensemble de Mandelbrot est une fractale définie comme ’ensemble des points du plan
complexe ¢ = x; + jy; (x; et y; désignant un point du plan complexe ou de 'image située sur la colonne x; et
la ligne ;) pour lesquels la suite itérative de point fixe 2, = Z[Qn] + ¢ ne tend pas vers I'infini (en module)
et pour une valeur de départ de zjg = 0.

Par exemple, le point du plan complexe (ou de I'image) ¢ =1 o
(r; = 1, = 0) conduit, pour zjg) = 0 & la séquence 0, 1,2,5,26,...
qui tend vers l'infinie et ne fait pas partie de I’ensemble de Man-
delbrot. Au contraire, le point du plan complexe ¢ = —1 ou (x; =
—1,y; = 0) donne (toujours pour z[ = 0) la séquence (de période 2)
0,—1,0,—1,0,... qui ne converge pas vers l'infinie et qui fait donc
partie de I’ensemble de Mandelbrot.

La fractale de Mandelbrot présente (comme toute fractale) une
apparence complexe, malgré une description simple et des autosi-
milarités visibles & toutes échelles®. Elle suggére également que la
méthode du point fixe peut converger trés difféeremment pour deux
équations de départ pourtant trés similaires. Le ler mars 1980, au
centre de recherche IBM Thomas J. Watson (dans ’'Etat de New
York), Benoit Mandelbrot obtient pour la premiére fois, une visuali-
sation par ordinateur de cet ensemble. Dans le numéro d’aott 1985
du magazine SCIENTIFIC AMERICAN ’ensemble de Mandelbrot est pré- FiG. 2 — Image fractale de Mandel-
senté au grand public comme [’objet mathématique le plus complexe brot. Un point dans I'image représen-
jamais découvert et présente ’algorithme qui permet de le tracer tant le plan complexe est en noir si
soi-méme. il appartient & I’ensemble de Mandel-

brot et en blanc dans le cas contraire.
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Cette question vous demande de dessiner ’ensemble de Mandel-
brot et de retrouver le graphe de la Fig. 2 en exprimant tout d’abord la suite itérative donnée par l’équation
(1) comme deux suites itératives ; 'une associée a sa partie réelle ([, = ...) et Pautre a sa partie imagi-
naire (Y41 = ---)-

On considérera que ¢ = zy + jy; (x et y; désignant un point du plan complexe ou de 'image de taille
(longueur xlargeur) 512 x 512 (zj et y; désignant respectivement les colonnes et les lignes), représenté par

?L’ensemble de Mandelbrot fait apparaitre nombre de structures en forme de bourgeons entourant une structure principale
en forme de cardioide. La cardioide est I’ensemble des points ¢ qui convergent vers un point fixe. Le bourgeon principal, & gauche
de la cardioide, lui est attaché au point ¢ = —3/4. Il s’agit d’un disque centré en ¢ = —1 et de rayon 1/4. Il s’agit de ’ensemble
des points paramétres qui, a la limite, convergent vers un cycle de période 2 (cf. 'exemple de convergence donnée plus haut). Les
autres bourgeons tangents a la cardioide sont les points admettant d’autres périodicités. Enfin, chaque bourgeon porte lui-méme
des bourgeons, représentatifs d’une périodicité différente, selon le méme schéma. Les bourgeons sont également surmontés de
filaments en forme d’antenne. Le nombre d’antennes est directement lié a la périodicité du bourgeon. Ainsi, compter le nombre
d’antennes permet de déterminer la périodicité du bourgeon.



un tableau 2D. On fera en sorte que x; € [—1.5,0.5] et y; € [—1,1]. A cette fin, toutes les cellules [k][l] du
tableau 2D de taille 512 x 512 représentant I'image représentera une valeur de ¢ = xj, + jy; avec

xp = 2.0 x (k — largeur/1.35)/(largeur — 1) (2)
y = 2.0 x (I —longueur/2.0)/(longueur — 1) (3)

On peut démontrer que dés que le module de z(,,) est strictement plus grand® que 2, la suite 2[n) diverge vers
Iinfini, et donc ¢ est en dehors de ’ensemble de Mandelbrot. Cela nous permet d’arréter le calcul pour les
points ayant un module strictement supérieur & 2 et qui sont donc en dehors de ’ensemble de Mandelbrot.
Pour quelques valeurs de ¢, la divergence (|zp,)| > 2) arrivera donc trés rapidement aprés un petit nombre
d’itérations mais pour certaines valeurs de ¢ qui sont trés proches mais pas dans ’ensemble de Mandelbrot,
cela peut prendre des centaines voire des milliers d’itérations pour diverger et pour les valeurs de ¢ dans
I’ensemble de Mandelbrot, la divergence n’aura jamais lieu. Le programmeur doit donc choisir & partir de
combien d’itérations NblterMax ou de profondeur il prend la décision de classer le pixel (ou la cellule du
tableau) [k][l] (pour ¢ = xp + jy; comme étant dans ensemble de Mandelbrot ou non. Il en résulte que
I'image affichée n’est qu’une approximation du vrai ensemble et que plus Nblter Max est grand, plus I'image
est précise mais plus elle prend du temps de calcul.

Tracer cet ensemble de Mandelbrot pour NblterMax = 1000 itérations. Remplir finalement ce tableau
2D dans la cellule de coordonné [k][l] de respectivement 0 et 255 (correspondant respectivement & la couleur
noire et blanche) si le pixel de coordonné [k][l] appartient ou non & l’ensemble de Mandelbrot. Afficher et
sauver le résultat de ce tableau 2D sous forme d’image* (qui s’affichera ensuite & I’écran).
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Représenter cet ensemble de Mandelbrot en mettant la valeur 255 — ((1 + log(nbit 4+ 1)) % 30) dans
le tableau 2D représentant I'image, dans la cellule de coordonné [k][l] avec nbit représentant le nombre
d’itérations (< NblterMazx) faites pour chaque valeur de ¢ = x + jy; avant que |z, > 2 (cf. Fig. 3).
En fait cette image représentera une valeur de niveaux de gris pour chaque pixel de 'image, ou valeur de ¢
en une valeur d’autant plus claire que le nombre d’itérations au bout desquelles la suite correspondante est
déclarée divergente vers l'infini (par exemple quand |z,)| > 2. Cela donne plusieurs zones concentriques, qui
entourent ’ensemble de Mandelbrot. Les plus éloignées sont constituées de points ¢ pour lesquels la suite
{2[n)} tend plus rapidement vers l'infini. Ces différentes zones délimitent d’une maniére plus ou moins précise
I’ensemble de Mandelbrot.

zsi 2[n] = Z[n] + JY[n]), on rappelle que le module de z[,,) est |z[,)| = , /x[Qn] + y[Qn]

Conseils Pratiques

Utiliser le programme que je vous donne sur ma page web en initialisant la variable FLaG GrarpH=1 et remplisser le
tableau 2D nommé Graph2D dans le programme (initialement remplie d’un dégradé de niveaux de gris (du blanc au
noir)) comme une feuille de papier dessin ou vous tracerez la Figure dans l'intervalle considéré. En utilisant la variable
FLAG _GRAPH=1, le programme que je vous donne sauvera cette image au format PGM. Vous pourrez ensuite la lire
avec les logiciels pispLAY, XV ou GIMP disponible sur Linux.

Remise & Rapport

Vous devez rendre électroniquement le(s) programme(s) fait en C avant la date de remise spécifiée dans le fichier baréme
situé sur la page web du cours. Pour la remise électronique, utilisez le programme remise (man remise pour plus de
détails) pour remettre votre code dans le répertoire TP<Numéro du Tp>. N’oubliez pas d’inscrire vos noms, courrier
électronique en commentaire en haut du fichier .c remis. Les noms des programmes a remettre devront avoir le format
suivant Tp<Numero du T'p>-1F12/25-<Numéro de la question>.c. Les programmes devront se compiler et s’executer
sur Linux tel qu’indiqué dans le baréme.



FiG. 3 — Ensemble de Mandelbrot représenté par une image ou la valeur du niveau de gris de chaque pixel
est d’autant plus claire que le nombre d’itérations au bout desquelles la suite correspondante est déclarée
divergente vers l'infini, est important.
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