Hidden Figures: Modern Approaches to Orbit and... http://blog.wolfram.com/2017/02/24/hidden-figur...

WolframAlpha.com | WolframCloud.com

% Products & Services Technologies Solutions Support & Learning Cc

24 \WNI ERDAM RI N

glgpag(l)%usres: Modern Approaches to Orbit and Reentry

February 24, 2017

Jeffrey Bryant, Research Programmer, Wolfram|Alpha Scientific Content
Paco Jain, Research Programmer, Wolfram|Alpha Scientific Content
Michael Trott, Chief Scientist

The movie Hidden Figures was released in theaters recently and has been getting
good reviews. It also deals with an important time in US history, touching on a number
of topics, including civil rights and the Space Race. The movie details the hidden story
of Katherine Johnson and her coworkers (Dorothy Vaughan and Mary Jackson) at
NASA during the Mercury missions and the United States’ early explorations into
manned space flight. The movie focuses heavily on the dramatic civil rights struggle of
African American women in NASA at the time, and these struggles are set against the
number-crunching ability of Johnson and her coworkers. Computers were in their early
days at this time, so Johnson and her team’s ability to perform complicated navigational
orbital mechanics problems without the use of a computer provided an important sanity
check against the early computer results.

Row[{Show[Hidden Figures [image], ImageSize - 191] , "o

Show[Katherine Johnson-like curve [image], Axes » False,

Background - LightBlue, ImageSize - 120] }]

HIDDES

I will touch on two aspects of her scientific work that were mentioned in the film: orbit
calculations and reentry calculations. For the orbit calculation, | will first exactly follow
what Johnson did and then compare with a more modern, direct approach utilizing an
array of tools made available with the Wolfram Language. Where the movie mentions
the solving of differential equations using Euler’s method, | will compare this method
with more modern ones in an important problem of rocketry: computing a reentry
trajectory from the rocket equation and drag terms (derived using atmospheric model
data obtained directly from within the Wolfram Language).

The movie doesn’t focus much on the math details of the types of problems Johnson
and her team dealt with, but for the purposes of this blog, | hope to provide at least a
flavor of the approaches one might have used in Johnson’s day compared to the
present.

Placing a Satellite over a Selected Position
One of the earliest papers that Johnson coauthored, “Determination of Azimuth Angle

at Burnout for Placing a Satellite over a Selected Earth Position,” deals with the
problem of making sure that a satellite can be placed over a specific Earth location

1 0f23 2018-12-17, 10:28 p.m.

Hidden Figures: Modern Approaches to Orbit and...

5

2 of 23

http://blog.wolfram.com/2017/02/24/hidden-figur...

WolframAlpha.com | WolframCloud.com

Products & Services

JMN=)3
38/ 777

TECHNICAL NOTE
D- 233

DETERMINATION OF AZIMUTH ANGLE AT Bt

SATELLUITE OVER A SELECT
By T. H. Skopinski and Kat

Langley Research Center
Langiey Fleld, Va

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON September 1980

Constants and Initial Processin

Technologies Solutions Support & Learning Cc

In the paper, Johnson defines a number of consgnts and input parameters needed to
solve the problem at hand. One detail to explain is the term “burnout,” which refers to
the shutoff of the rocket engine. After burnout, orbital parameters are essentially
“frozen,” and the spacecraft moves solely under the Earth’s gravity (as determined, of
course, through Newton’s laws). In this section, | follow the paper’s unit conventions as

closely as possible.

2018-12-17, 10:28 p.m.

Hidden Figures: Modern Approaches to Orbit and...

5

http://blog.wolfram.com/2017/02/24/hidden-figur...

WolframAlpha.com | WolframCloud.com

Products & Services Technologies

L It L T

a=22081775.57; (» semimajor axis of orbit in feet %)

t61 = 5.842 ;(» t[f1] is the time from perigee for 81 in min,
where 61 is angle in orbit plane between perigee and burnout x)
g0 = 115991.595; (x acceleration due to gravity ft/min’2 x)
R=2.090226 x 10A7; (» Earth radius in feet %)

Solutions

Support & Learning Cc

(* launch coordinates)
@1 =28.50; (* launch latitude =#)
Al =279.45; (x launch longitude %)

@2 = 34.00 ;(x intended pass over latitude %)
A2 =241.00; (x intended pass over longitude)

n = 3; (* number of orbits)

wCapitale = 0.25068 (» angular velocity of Earth in degrees/min #);

For convenience, some functions are defined to deal with angles in degrees instead of
radians. This allows for smoothly handling time in angle calculations:

SinDegree[x_] := Sin[x Degree]
CosDegree[x_] := Cos[x Degree]
TanDegree[x_] := Tan[x Degree]
SecDegree[x_] := Sec[x Degree]

ArcSinDegree[x_] := ArcSin[x]/Degree
ArcCosDegree[x_] := ArcCos[x]/Degree
ArcTanDegree[x_] := ArcTan[x]/Degree

ArcTanDegree[x_, y_] := ArcTan[x, y]/ Degree

Johnson goes on to describe several other derived parameters, though it’s interesting
to note that she sometimes adopted values for these rather than using the values
returned by her formulas. Her adopted values were often close to the values obtained
by the formulas. For simplicity, the values from the formulas are used here.

Semilatus rectum of the orbit ellipse:

p =rlx(vl/vc)*2CosDegree[yl];

Angle in orbit plane between perigee and burnout point:

61 = ArcTanDegree[TanDegree[y1]((p/r1)/(p/r1-1))];

Orbit eccentricity:
e=(1/CosDegree[61])(p/r1-1);
Orbit period:
T = 2Pi Sqrt[R/ g0] Sqrt[(a/R)*3];

Eccentric anomaly:

3 of 23

2018-12-17, 10:28 p.m.

Hidden Figures: Modern Approaches to Orbit and... http://blog.wolfram.com/2017/02/24/hidden-figur...

WolframAlpha.com | WolframCloud.com

Cc

Solutions Support & Learning

% Products & Services Technologies

of the selected position but with longitude A2 displaced eastward from A2 by an
amount sufficient to compensate for the rotation of the Earth during the n complete

orbits, that is, by the polar hour angle n wge T. The longitude of this equivalent position

is thus given by the relation™

A2e = A2+ n wCapitale T;

Time from perigee for angle 6:
t[#]:=T/(2Pi)(Eanomaly[# Degree] - e Sin[Eanomaly[# Degree]])

Computation o . . _
Part of the final solution is to determine values for intermediate parameters 6A1-2¢ and
6. This can be done in a couple of ways. First, | can use ContourPlot to obtain a

graphical solution via equations 19 and 20 from the paper:

Clear[AA1minus2e, 82e];

ContourPlot[
Evaluate[{AA1minus2e ==A2e-A1+wCapitale (t[62e]-t[61]),

CosDegree[62e - 81] == SinDegree[¢2] SinDegree[¢1] +
CosDegree[¢2] CosDegree[¢1] CosDegree[AA1minus2e]}],

{AAiminus2e, 0,60} , {62e, 0,60},
Prolog = {Red, PointSize[Large], Point[{31.948028324349036", 51.7127788640602 " }]}]

FindRoot can be used to find the solutions numerically:

Clear[AA1minus2e, 82e];

FindRoot[
Evaluate[{AAlminus2e == A2e- Al+ wCapitale (t[62e]-t[01]),

CosDegree[62e - 81] == SinDegree[¢2] SinDegree[¢1] +
CosDegree[¢2] CosDegree[¢1] CosDegree[AAlminus2e]}],
{{AA1minus2e, 30}, {62e, 55}}]

2018-12-17, 10:28 p.m.

4 of 23

Hidden Figures: Modern Approaches to Orbit and... http://blog.wolfram.com/2017/02/24/hidden-figur...

WolframAlpha.com | WolframCloud.com

Products & Services Technologies Solutions Support & Learning Cc

IUTUUY U VUL VUL, JUVUUOU U IV NVUOL UUTHIPULULIVITD UV TV U OMTHTVTIVUT U U UV U ULV D

for oblateness are included in her method:

Aw=0;
Ag2=0;
AQ=0;
AA2=0;
i0=2;

Table[
A2e = A2~ AA2 + n wCapitale T;
AAlminus2e = A2e - A1+ wCapitale »
Ifiter == 1, T/360 (A2e - A1) + t[61], (tOf62e -~ t[61])];
82e = ArcCosDegree[SinDegree[¢2 - A¢2] SinDegree[¢1] +
CosDegree[¢2 -~ A¢2] CosDegree[¢1] CosDegree[AAlminus2e]] + 61;
@1 = ArcSinDegree[(SinDegree[AAlminus2e] CosDegree[¢2 - A@2])/ SinDegree[62e - 61];
i=
ArcCosDegree[
Piecewise[{{CosDegree[¢1] SinDegree[¢1], 0 < g1 < 180},
{~CosDegree[@1] SinDegree[y1], 180 < 1 < 360}}]);
w = ArcSinDegree[SinDegree[@1]/ SinDegree[i]] - 61;
(» after the first iteration,
correct A2 and ¢2 for oblateness and
then keep this correction | page 18, 19 «)
Iffiter == i0, Aw = 3.4722+A-3(R/p)*2(R/a)*(3/2)(5 CosDegree[i]*2~1)(nT + t{2e] - t{A1]));
Iffiter == i0, A@2 = Aw SinDegree[i] CosDegree[w + 62e]/ CosDegree[¢2]];
Iffiter == i0, AQ = - 6.94444A-3 (R/p)*2(R/a)*(3/2) CosDegree[i] (n T + t[62e] - t[61)));
Iffiter == i0, AA2 = Aw CosDegree[i] SecDegree[w + 82e]*2/
(1+ CosDegree[i]*2 TanDegree[w + 82¢]42) + AQ);
AAN1 = ArcTanDegree[SinDegree[¢1] TanDegree[y1]];
ANref = A1~ AAN1;
tof2e = t[62e);
{62¢, tOf62¢), {iter, 1, 8, 1));

Graphing the value of 62e for the various iterations shows a quick convergence:

2= ListPlot[%[[All, 2]], PlotRange - {10, 15}, Filling - Axis,
AxesLabel - {"iteration", "82e"}, ImageSize - 360]

iteration

5 of 23 2018-12-17, 10:28 p.m.

Hidden Figures: Modern Approaches to Orbit and... http://blog.wolfram.com/2017/02/24/hidden-figur...

WolframAlpha.com | WolframCloud.com

% Products & Services Technologies Solutions Support & Learning

w - 34,5578, Aw > 1.96276, AQ - - 1.33792, i - 34.0355, A¢2 - 0.0841712}

| can convert the method in a FindRoot command as follows (this takes the
oblateness effects into account in a fully self-consistent manner and calculates values
for all nine variables involved in the equations):

fr := FindRoot[Evaluate[
{AAlminus2e ==(A2-AA2+nwCapitale T)- A1+ wCapitale = (t[62e] - t[61)]),
CosDegree[82e - 1] == SinDegree[¢2 - A¢2] SinDegree[¢$1] +
CosDegree[¢2 -~ A¢2] CosDegree[¢1] CosDegree[AA1lminus2e],
SinDegree[y1] == (SinDegree[AA1minus2e] CosDegree[¢2 - A¢2])/ SinDegree[62e - 61],
CosDegree[i] == CosDegree[¢1] SinDegree[y1],
SinDegree[w+ 81] == SinDegree[¢1]/ SinDegreel[i],
Aw== 3.4722+"-3(R/p)*2(R/a)*(3/2)(5CosDegree[i]*2~1)(n T + t[62¢] - t[61]),
A¢2 == AwSinDegree[i] CosDegree[w+ 82¢]/ CosDegree[¢p2 - A¢2],
AQ == -6.9444x"-3 (R/p)*2(R/a)*(3/2) CosDegree[i] (n T + t[62e] - t[61]),
AA2 ==
AwCosDegree[i] SecDegree[w+ 82e]*2/(1+ CosDegree[i]*2 TanDegree[w + 62¢]42) + AQ}),
{{AA1minus2e, 31}, {AA2, 1}, {62e, 51}, {y1, 70}, {w, 34}, {Aw, 2}, {AQ, -1.3}, {i, 34}, {A4¢2, 0.1}}]

Clear[AA1minus2e, AA2, 82e, Y1, w, Aw, AQ, i, Ad2];

wlsol = fr

{AA1minus2e - 31.062, AA2 - 1.02664, 62e - 50.9332, w1 - 70.5964,
w - 34.61, Aw - 1.96527, AQ - -1.33778, i > 34.0139, A¢2 > 0.102921}

Interestingly, even the iterative root-finding steps of this more complicated system
converge quite quickly:

(OwnValues|fr] /. HoldPattern[FindRoot[args__]] :» Reap[FindRoot[args, StepMonitor :» Sow[
{AA1minus2e, AA2, B2e, w1, w, Aw, AQ, i, A¢2}TII(1, 2121

7= {{{31.0619,1.02671, 50.9332, 70.5861, 34.6025, 1.96521, - 1.33777, 34.0149, 0.102885},
{31.062, 1.02664, 50.9332, 70.5964, 34.61, 1.96527, - 1.33778, 34.0139, 0.102922},
{31.062, 1.02664, 50.9332, 70.5964, 34.61, 1.96527, - 1.33778, 34.0139, 0.102921},
{31.062, 1.02664, 50.9332, 70.5964, 34.61, 1.96527, - 1.33778, 34.0139, 0.102921}}}

Plottin

With the orbital parameters determined, it is desirable to visualize the solution. First,
some critical parameters from the previous solutions need to be extracted:

{62e, w, i} ={"62e","w","i"} /. ksol;

Next, the latitude and longitude of the satellite as a function of azimuth angle need to
be derived:

AANs[&_] :=ArcTanDegree[CosDegree[w + &], CosDegree[-i] SinDegree[w + &]]

AN[&_] := ANref - wCapitale (t[&]- t[61])+ AANs[&]

@s and As are the latitudes and longitudes as a function of 6s:

6 of 23 2018-12-17, 10:28 p.m.

Hidden Figures: Modern Approaches to Orbit and... http://blog.wolfram.com/2017/02/24/hidden-figur...

WolframAlpha.com | WolframCloud.com

% Products & Services Technologies Solutions Support & Learning Cc

satpts[n_] := Table[{¢s[6s], As[68s, n]}, {6s, 0, 360, .01}];

Johnson’s paper presents a sketch of the orbital solution including markers showing the
burnout, selected and equivalent positions. It's easy to reproduce a similar plain

diagram here:

points = {Table[{As[68s, 0], ¢s[6s]}, {6s, 61, 180, .1}],
Table[{As[6s, 1], ¢s[6s]}, {6s, 0, 360, .1}],
Table[{As[6s, 2], ¢s[6s]}, {6s, 0, 360, .1}],
Table[{As[6s, 3], ¢s[6s]}, {6s, -180, 62e, .1}]};

ListPlot[points,

PlotStyle - Gray, PlotRange - {{0, 360}, {- 60, 60}},

Epilog - {Black, Text[Style[#1, 32, Bold], #2] & @@@

{"o", {A1, @1}}, {"0", {A2, @2}, {"0", {A2e, ¢2}}}}},

Prolog - {Arrow[{{333, 33}, {342, 31}}], Arrow[{{212, 29}, {215, 30}}],
Text[Style["Burnout\n¢,,A; ", 10], {280, 18}],
Text[Style["Selected\nposition\n¢2,A;", 10], {240, 48}],
Text[Style["Equivalent\nposition\n¢,,A; ", 10], {312, 46}]},

GridLines - {Table[A, {A, 0, 360, 40}], Table[¢, {®, - 60, 60, 20}]},

Axes -» False, Frame - True, ImageSize - 600, AspectRatio - 0.7,

Framelabel = {"Longitude, A, deg", "Latitude, ¢, deg"},

FrameTicks - {{Table[{¢, ¢}, {¢, - 60, 60, 20}], None}, {Table[{A, A}, {A, 0, 360, 40}], None}}]

60

Equivaient
DOSiton
PO positon
1 220

40

Latitude, @, deg

-40 |-

-6l L
0 40 80 120 160 200 240

Longitude, A, deg

For comparison, here is her original diagram:

7 of 23 2018-12-17, 10:28 p.m.

Hidden Figures: Modern Approaches to Orbit and... http://blog.wolfram.com/2017/02/24/hidden-figur...

WolframAlpha.com | WolframCloud.com

% Products & Services Technologies Solutions Support & Learning Cc

path = {#1, QuantityMagnitude[GeodesyData["Krassovsky",
{"FromGeocentricLatitude", #2}]]} & @@@ Flatten[points, 1];

A more visually useful version can be constructed using GeoGraphics, taking care to
convert the geocentric coordinates into geodetic coordinates:

path = {#1, QuantityMagnitude[GeodesyData["Krassovsky",
{"FromGeocentricLatitude", #2}]]} & @@@ Flatten[points, 1];

GeoGraphics[{Blue, PointSize[0.015], Point[GeoPosition[{¢1, A1}]], Red,
Point[GeoPosition[{¢2, A2}]],
Black, PointSize[0.002], Point[GeoPosition[Reverse /@ path]]}, GeoRange - "World",
GeoZoomLevel - 3]

//-“

How to Calculate Orbits Today

Today, virtually every one of us has, within imimediate reach, access to computational
resources far more powerful than those available to the entirety of NASA in the 1960s.
Now, using only a desktop computer and the Wolfram Language, you can easily find
direct numerical solutions to problems of orbital mechanics such as those posed to
Katherine Johnson and her team. While perhaps less taxing of our ingenuity than older
metfhods, the results one can get from these explorations are no less interesting or
useful.

To solve for the azimuthal angle y using more modern methods, let’s set up parameters
for a simple circular orbit beginning after burnout over Florida, assuming a spherically
symmetric Earth (I'll not bother trying to match the orbit of the Johnson paper precisely,
and I'll redefine certain quantities from above using the modern Sl system of units).
Starting from the same low-Earth orbit altitude used by Johnson, and using a little
spherical trigonometry, it is straightforward to derive the initial conditions for our orbit:

8 of 23

2018-12-17, 10:28 p.m.

Hidden Figures: Modern Approaches to Orbit and...

5

9 of 23

http://blog.wolfram.com/2017/02/24/hidden-figur...

WolframAlpha.com | WolframCloud.com

Products & Services Technologies Solutions Support & Learning Cc

v0 = Sqrt[G M/ r0] (initial velocity of the circular orbit %);
R = RotationTransform[Al, {0, 0, 1}] (» used to rotate initial conditions #);
{x0, y0, z0} = R[{r0 Cos[¢1], 0, rO Sin[@1]}] (« initial x,y,z at burnout point #);
{vx0, vy0, vz0} = R[v0 {- Cos[¢1] Sin[y] - Cos[y] Cos[g] Sin[¢1],
Cos[y]Sin[y], Cos[y] Cos[¢1] Cos[w] - Sin[y]Sin[@1]}](» initial velocity at the burnout point #)

initCond[¢_, y_]1 = {x[0] == x0, y[0] == y0, 2[0] == 20,
x'[0] == vx0, y'[0] == vy0, z'[0] == vz0};

The relevant physical parameters can be obtained directly from within the Wolfram
Language:

{M, R, G} = QuantityMagnitude[Flatten[{Entity["Planet",
"Earth"][{"Mass", "Radius"}], Quantity[1, "GravitationalConstant"]}], "SIBase"];

Next, | obtain a differential equation for the motion of our spacecraft, given the
gravitational field of the Earth. There are several ways you can model the gravitational
potential near the Earth. Assuming a spherically symmetric planet and utilizing a
Cartesian coordinate system throughout, the potential is merely:

pot[{x_,y_,z }]:=-GM/Sqrt[xA2+ yA2+22];

Alternatively, you can use a more realistic model of Earth’s gravity, where the planet’s
shape is taken to be an oblate ellipsoid of revolution. The exact form of the potential
from such an ellipsoid (assuming constant mass-density over ellipsoidal shells), though

complicated (containing multiple elliptic integrals), is available through EntityValue:

evg= EntityValue[massive triaxial ellipsoid > "GravitationalPotential"];

For a general homogeneous triaxial ellipsoid, the potential contains piecewise
functions:

(pw = Cases[evg, __Piecewise, oo][[1]]) // TraditionalForm /I Style[#, 6] &

Here, k is the largest root of x2/(a2+k)+y2/(b2+k)+2z2/(c2+k)=1. In the case of an oblate
ellipsoid, the previous formula can be simplified to contain only elementary functions...

Limit[pw([[1, -1]], b => a]// FullSimplify

2018-12-17, 10:28 p.m.

Hidden Figures: Modern Approaches to Orbit and... http://blog.wolfram.com/2017/02/24/hidden-figur...

WolframAlpha.com | WolframCloud.com

% Products & Services Technologies Solutions Supp

J\K#-a ’ ‘K+C ’ ll—}\fcblﬂl

VK+a +ya -c —— X -
P P (|

ArcSm[

]\/: a-¢ \/— (a -cz)(x«rc’)]

K+l K+a2 (x+a

zmsan[‘/g]m \[j /(mzy(mz)+(K+c2)yz+(_m1)f]]/
[ee-2F o o)

.. where K:((2 72 (32_(;2+X2+y2)+(_az+02+)(2+y2)2+z4)1/2_32_02+X2+y2+22)/2_

2 ArcSin[

2a

A simpler form that is widely used in the geographic and space science community, and
that | will use here, is given by the so-called International Gravity Formula (IGF). The
IGF takes into account differences from a spherically symmetric potential up to second
order in spherical harmonics, and gives numerically indistinguishable results from the
exact potential referenced previously. In terms of four measured geodetic parameters,
the IGF potential can be defined as follows:

{a, b} = GeodesyData["ITRF00", #] &/@{"SemimajorAxis", "SemiminorAxis"};
gPole = 9.8321849378(» g at Earth's pole in m/s*2«);
gEquator = 9.78903267715(x g at Earth's equator in m/s"2x);
With[{k = bgPole/(agEquator)-1, e = Sqrt[1-bA2/a2]},
potlGF[{x_, y_,z_ }]:=
With[{(» latitude «) ¢ = ArcTan[Sqrt[xA2+ yA2], z]},
~GM/Sqrt[x*2+ yA2+2z72](1+kSin[¢]*2)/Sqrt[1-e*2Sin[¢]*2]]]

| could easily use even better values for the gravitational force through
GeogravityModelData. For the starting position, the IGF potential deviates only
0.06% from a high-order approximation:

{potIGF[{x0, y0, z0}],
GeogravityModelData[GeoPosition [GeoPositionXYZ[{x0, y0, z0}]], ""Potential"] //
QuantityMagnitude[#, "SIBase"] &}

{-6.04963x 10, -6.05363x 10"}

With these functional forms for the potential, finding the orbital path amounts to taking a
gradient of the potential to get the gravitational field vector and then applying Newton’s
third law. Doing so, | obtain the orbital equations of motion for the two gravity models:

grad = - Grad[pot[{x[t], y[t], z[t]}], {x[t], y[t], z[t]}];
gradIGF = - Grad[potIGF[{x[t], y[t], z[t]}], {x[t], y[t], z[t]}];

10 of 23

ort & Learning Cc

2018-12-17, 10:28 p.m.

Hidden Figures: Modern Approaches to Orbit and... http://blog.wolfram.com/2017/02/24/hidden-figur...

WolframAlpha.com | WolframCloud.com

% Products & Services Technologies Solutions Support & Learning Cc

aimensional space. 10 give tnese curves context, 1 wiil piot tinem over a exwure map or
the Earth’s surface, projected onto a sphere. Here | construct the desired graphics
objects:

(xdefine orbit burnoutDot and burnoutArrow graphicsx)
burnoutCoords = {x0, y0, z0};
burnoutDirection = {vx0, vy0, vz0}/v0;
burnoutDot = {Red, Sphere[burnoutCoords, R/ 30]};
burnoutArrow = {Red, Arrow[{burnoutCoords,

burnoutCoords + (R/3) burnoutDirection}]};
burnoutLabels[¢_, y_]= Graphics3D[{burnoutDot, burnoutArrow}];

(»define globe texture and markings=)
earthTexture = Lighter[#, 0.75] &@ ImageReflect[PlanetData["Earth",
"CylindricalEquidistantTexture"], Bottom];
globe = ParametricPlot3D[R {-Cos[p] Sin[t], - Sin[p] Sin[t], Cos[t]}, {p, 0, 2Pi}, {t, O, Pi},
Mesh -> None, PlotStyle -> Texture[earthTexture],
TextureCoordinateFunction -> Automatic)

pole = Graphics3D[{Thick, Red, Line[{{0, 0, -1.3R}, {0, 0, 1.3R}}]}};
equator = ParametricPlot3D[R{Cos[t], Sin[t], 0}, {t, 0, 2 Pi}, PlotStyle - Yellow];
globeMarkings = {pole, equator};

While the orbital path computed in an inertial frame forms a periodic closed curve,
when you account for the rotation of the Earth, it will cause the spacecraft to pass over
different points on the Earth’s surface during each subsequent revolution. | can
visualize this effect by adding an additional rotation term to the solutions | obtain from
NDSolve. Taking the number of orbital periods to be three (similar to John Glenn’s
flight) for visualization purposes, | construct the following Manipulate to see how the
orbital path is affected by the azimuthal launch angle y, similar to the study in
Johnson’s paper. I'll plot both a path assuming a spherical Earth (in white) and another
path using the IGF (in green) to get a sense of the size of the oblateness effect (note
that the divergence of the two paths increases with each orbit):

11 of 23 2018-12-17, 10:28 p.m.

Hidden Figures: Modern Approaches to Orbit and... http://blog.wolfram.com/2017/02/24/hidden-figur...

WolframAlpha.com | WolframCloud.com

% Products & Services Technologies Solutions Support & Learning Cc

sol = NDSolve[Join[Fma, initCond[ys, y]], {x, y, z}, {t,0, T T});
solIGF = NDSolve[Join[FmalGF, initCond[ys, y]], {x,y, 2}, {t, 0, T T});
Show[ParametricPlot3D[Evaluate[{p Cos[¢ - wt], pSin[¢ - wt],
Z[t]} /. {sol[[1]], soUIGF[[1]]}], {t, O, T T}, PlotStyle - {White, Darker[Green]}] /.
[_Line = Tube[l, 35000],
globe, globeMarkings, burnoutLabels[ys, y],
Frame - None, Ticks - None, PlotRange - {All, All, {-1.2R, 1.2R}},
RotationAction - "Clip", ViewPoint - {0, -2, 0.4}]],
{{ws, 70 Degree, "start angle"}, - Pi, Pi},
{{r, 1.025, "flight time"}, 0.001, 3}, SaveDefinitions = True]]

start angle

flight time

In the notebook attached to this blog, you can see this Manipulate in action, and
note the speed at which each new solution is obtained. You would hope that Katherine
Johnson and her colleagues at NASA would be impressed!

Now, varying the angle y at burnout time, it is straightforward to calculate the position
of the spacecraft after, say, three revolutions:

posis = Block[{y = 0.5 Degree, w = wCapitale / (360/(2Pi) x 60), T = 3.05 x 2 Pi r0/ v0},
Table[Map[(Most[#] - {0, wT 360/ (2 Pi)}) &, GeoPosition[GeoPositionXYZ[{x[T], y[T], z[T]} /.
NDSolve[Join[FmalGF, initCond[y, y1], {x, y, 2}, {t, 0, THI[1]111],
{w, 50 Degree, 90 Degree, 1 Degree}]];

12 of 23 2018-12-17, 10:28 p.m.

Hidden Figures: Modern Approaches to Orbit and... http://blog.wolfram.com/2017/02/24/hidden-figur...

WolframAlpha.com | WolframCloud.com

% Products & Services Technologies Solutions Support & Learning Cc

Modeling the Reentry of a Satellite

The movie alSo0 mentions Euler’'smethod in connection with the reentry phase. After the
initial problem of finding the azimuthal angle has been solved, as done in the previous
sections, it's time to come back to Earth. Rockets are fired to slow down the orbiting
body, and a complex set of events happens as the craft transitions from the vacuum of
space to an atmospheric environment. Changing atmospheric density, rapid
deceleration and frictional heating all become important factors that must be taken into
account in order to safely return the astronaut to Earth. Height, speed and acceleration
as a function of time are all problems that need to be solved. This set of problems can
be solved with Euler’s method, as done by Katherine Johnson, or by using the
differential equation-solving functionality in the Wolfram Language.

For simple differential equations, one can get a detailed step-by-step solution with a
specified quadrature method. An equivalent of Newton’s famous F = m a for a time-
dependent mass m(t) is the so-called ideal rocket equation (in one dimension)...

m(e)V' (0) == -ve my(t),

... where m(t) is the rocket mass, ve the engine exhaust velocity and m’(t) the time

‘

derivative of the propellant mass. Assuming a constant m's(f), the structure of the
equation is relatively simple and easily solvable in closed Form:

DSolve[{(m0-Bt)v'[t] == vex B, Vv[0] == vi}, V[t], t]
{v[t] = vi+ Log[mO] ve, — Log[mO0 -t B]ve}}

With initial and final conditions for the mass, | get the celebrated rocket equation
(Tsiolkovsky 1903):

FormulaLookup["rocket equation"]
{RocketEquation}

FormulaData["RocketEquation"]

13 of 23 2018-12-17, 10:28 p.m.

Hidden Figures: Modern Approaches to Orbit and... http://blog.wolfram.com/2017/02/24/hidden-figur...

WolframAlpha.com | WolframCloud.com

% Products & Services Technologies Solutions Support & Learning Cc

StV | weSur LT P OILG YUGI Iy SIS SIS

Vi final speed Speed {{LengthUnit, 1}, {TimeUnit, -1}}
m¢ final mass Mass {MassUnit, 1}
m; initial mass Mass {MassuUnit, 1}
Ve effective exhaust velocity Speed {{LengthuUnit, 1}, {TimeUnit, -1}}
v initial speed Speed {{LengthUnit, 1}, {TimeUnit, -1}}

FormulaData@ FormulaLookup["rocket equation"][[1]]
m;
vi == Log| —|ve + Vi
f g[m{] e

The details of solving this equation with concrete parameter values and e.g. with the
classical Euler method | can get from Wolfram|Alpha. Here are those details together
with a detailed comparison with the exact solution, as well as with other numerical
integration methods:

WolframAlpha["use Euler method (2-t)v'(t)=4, v(0)=0, from t=0 to 0.95"]

14 of 23 2018-12-17, 10:28 p.m.

Hidden Figures: Modern Approaches to Orbit and... http://blog.wolfram.com/2017/02/24/hidden-figur...

WolframAlpha.com | WolframCloud.com

Products & Services Technologies Solutions Support & Learning Cc

Error plot

o008

0.06

global error
o
b3

002

000" | o)
00 02 04 06 os

Stepwise results
step ' v local error global error

0 0. 0. 0 0

10 095 249345 -00335421 00839779

Butcher tableau
1
1

Symbolic iteration code:
V)= ft,v) =4, W0) =0
Vaat =vy +hk
hat =ty +h
ky = ftn, va)
ky=flt, +h,va + hky)

v =0

to =0

h = 0095
n=0,..,10

Stability region in complex stepsize plane

10} p—

ol /7
"\

20 <15 <10 -05 00 05 10

z+1

15 of 23 2018-12-17, 10:28 p.m.

Hidden Figures: Modern Approaches to Orbit and...

5

16 of 23

http://blog.wolfram.com/2017/02/24/hidden-figur...

WolframAlpha.com | WolframCloud.com

Products & Services Technologies Solutions Support & Learning Cc

"SIBase"];(- mass of Mercury Atlas 6 »)
@0 = 34.00; A0 = 241.00 Degree; (» initial latitude and longitude «)
h= QuantityMagnitude[Mercury Atlas 6 [average altitude], "Meters"];

X0 = (R + h){Cos[A0] Cos[¢0], Sin[A0] Cos[¢0], Sin[@0]}; (= position at start of reentry)
VO = Sqrt[G M/ (R+ h)]{-Sin[A0], Cos[AO0], 0};

(» velocity at start of reentry =)

| assume that the braking process uses 1% of the thrust of the stage-one engine and
runs, say, for 60 seconds. The equation of motion is:

Mcaps V' (t) == Frau(X(£)) + Fexhaust (£) + Frriction (X(£), v(£))

Here, Fgray is the gravitational force, Fexhaust(f) the explicitly time-dependent engine
force and Firiction(X(f), v(t)) the friction force. The latter depends via the air density
explicitly on the position x(f) and via the friction law on v(t).

For the height-dependent air density, | can conveniently use the
StandardAtmosphereData function. | also account for a height-dependent area
because of the parachute that opened about 8.5 km above ground:

Cd = 1(» drag coefficient #);
airDensity[X:{ Real, __}]:=
QuantityMagnitude[StandardAtmosphereData[Quantity[Norm[X] - R, "Meters"], "Density"],
"S|Base"]
airFriction[X_List, V_List] := -=1/2area[Norm[X - R]] V.V Cd airDensity[X] V/ Sqrt[V.V]
brake[V_List, t_,{a_, T_)) := =If[t < T, @ Normalize[V], 0]

This gives the following set of coupled nonlinear differential equations to be solved. The
last WhenEvent [...] specifies to end the integration when the capsule reaches the
surface of the Earth. | use vector-valued position and velocity variables X and V:

arealheight_] :=If[h > 8500, 10, (x parachute %)2000];

With these definitions for the weight, exhaust and air friction force terms...

Fgrav[X_, V_,t_] := ~GmCapsule M X/Sqrt[X.X]*3
Fexhaust[X_, V_, t_] := brake[V, t, {3000, 60}]
Fairfraction[X_, V_, t_] := airFriction[X, V]

... total force can be found via:

Ftotal[X_, V_, t_] := Fgrav[X, V, t]+ Fexhaust[X, V, t]+ Fairfraction[X, V, t]

odeSystem = {X'[t] == V[t],
mCapsule V'[t] == Ftotal[X[t], V[t], t],
WhenEvent[Norm[X[t]] - R == 0, "StopIntegration"]};

In this simple model, | neglected the Earth’s rotation, intrinsic rotations of the capsule,
active flight angle changes, supersonic effects on the friction force and more. The
explicit form of the differential equations in coordinate components is the following. The
equations that Katherine Johnson solved would have been quite similar to these:

2018-12-17, 10:28 p.m.

Hidden Figures: Modern Approaches to Orbit and... http://blog.wolfram.com/2017/02/24/hidden-figur...

WolframAlpha.com | WolframCloud.com

% Products & Services Technologies Solutions Support & Learning Cc

{—If[t < 60, 3000 Normalize[{wx[t], vy[t], vz[t]}], 0] - 5 airDensity[{x{t], y[t], z[t]}] vx[t]
Wt + vyt +valtf? - S e < 60, 3000 Normalizef{wt], vyt v2{t], O] -

T

; : 2 2 2 _ _S3e10'"yiy
SairDensityft) y(t, At it V(e + Wit + val? - 23,
- If[t < 60, 3000 Normalize[{vx[t], vyt], vz{t]}], 0] -

w1087 20
5 airDensity{{x[t], y[t], z[t]}) va[t]) y vx[t])? + vy[t)? + vz[t])? - S=t2x0T =t }
(eu? eyt eag??

WhenEvent| - 6.3710088 x 10° + \ Abs[x(t]}? + Abs[y[t]}? + Abs{z{t]}? ==0, Stopintegration|

Supplemented by the initial position and velocity, it is straightforward to solve this
system of equations numerically. Today, this is just a simple call to NDSolve. | don’t
have to worry about the method to use, step size control, error control and more
because the Wolfram Language automatically chooses values that guarantee
meaningful results:

tMax = 5000;
inits = {X[0] == X0, V[0] == VO};
nds = NDSolve[Join[odeSystem, inits], {X, V}, {t, 0, 60, tMax}]

Out(116]= {{X—)InterpolatingFunction[N Domain: 0., 1440.}],

Output dimensions: {3}

V- InterpolatingFu nction[N e bl]}}

Output dimensions: {3}

Here is a plot of the height, speed and acceleration as a function of time:

plotXVAT[nds_] :=
With[{T = nds|[[1, 1, 2, 1, 1, 2]]/ 60, opts = Sequence[ImageSize - 220, PlotRange - All]},
GraphicsRow[{

Plot[(Norm[X[60 t]] - R)/ 1000 /. nds[[1]], {t, 0, T}, opts,
AxesLabel - {"time (min)", "height (km)"}],

Plot[Norm[V[60t]]/ 1000 /. nds[[1]], {t, O, T}, opts,
AxesLabel - {"time (min)", "speed (km/s)"}],

Plot[Norm[Ftotal[X[60t], V[60t], 60t]]/(9.81 mCapsule) /. nds[[1]], {t, O, T}, opts,
AxesLabel - {"time (min)", "acceleration (g)"}]},

Spacings - 0]]

2= plotXVAT[nds]

oight (km, 8p0ed (unw's

Plotting as a function of height instead of time shows that the exponential increase of
air density is responsible for the high deceleration. This is not due to the parachute,

17 of 23

2018-12-17, 10:28 p.m.

Hidden Figures: Modern Approaches to Orbit and... http://blog.wolfram.com/2017/02/24/hidden-figur...

WolframAlpha.com | WolframCloud.com

% Products & Services Technologies Solutions Support & Learning Cc

Evaluate[{(Norm[X[60t]]) - R)/ 1000, Norm[Ftotal[X[60 t], V[60], 60t])/ (9.81 mCapsule)} /. nds{[1]]),
{t, 0, T}, opts, AxesLabel - {"height (km)", "acceleration (g)"}, AspectRatio - 0.6]]

acceleration (g)
8

6
4
2

1 height (km)
50 100 150 200

And here is a plot of the vertical and tangential speed of the capsule in the reentry
process:

With[{T = nds[[1, 1, 2, 1, 1, 2]], opts = Sequence[ImageSize - 300, PlotRange - All]},
{Plot[V[t].Normalize[X[t]]/ 1000 /. nds[[1]], {t, O, T}, opts,
AxesLabel - {"time (s)", "vertical speed (km/s)"}],
Plot[(Norm[V[t] - V[t].Normalize[X[t]] Normalize[V[t]]])/ 1000 /. nds[[1]], {t, O, T}, opts,
AxesLabel - {"time (s)", "tangential speed (km/s)"}]}]

vertical speed (km/s)

time (s)
—0.05 00 400 600 800 1000 1200 1400
-0.10
V= -0.15 s
-0.20
-0.25
-0.30
-0.35

tangential speed (km/s)

time (s)
200 400 600 800 1000 1200 1400

Now | repeat the numerical solution with a fixed-step Euler method:

ni21)= ndsEuler = NDSolve[Join[odeSystem, inits], {X, V}, {t, 0, tMax},
Method - {"FixedStep", Method - "ExplicitEuler"}, StartingStepSize - 0.05]

Out[121)= { X—)lnterpolatingFunction[N pomain: {{0., 1.44x10%}}],

Output dimensions: {3}

V- InterpolatingFu nction[N pomain: {{0., 1.44x103}}]}}

Output dimensions: {3}

Qualitatively, the solution looks the same as the previous one:

18 of 23 2018-12-17, 10:28 p.m.

Hidden Figures: Modern Approaches to Orbit and... http://blog.wolfram.com/2017/02/24/hidden-figur...

WolframAlpha.com | WolframCloud.com

% Products & Services Technologies Solutions Support & Learning Cc

For the used step size of the time integration, the accumulated error is on the order of a
few percent. Smaller step sizes would reduce the error (see the previous
Wolfram|Alpha output):

With[{T = nds[[1, 1, 2, 1, 1, 2]]},
Plot[100 ((Norm[X[t]]- R /. nds[[1]])/
(Norm[X[t]]- R /. ndsEuler[[1]]) - 1), {t, 0, T},
AxesLabel - {"time (s)", "height error (%)"}]]

height error (%)

s L L L s L L time (s)
200 4 1000 1200 1400 ’

-35F

Note that the landing time predicted by the Euler method deviates only 0.11% from the
previous time. (For comparison, if | were to solve the equation with two modern
methods, say "BDF" vs. "Adams", the error would be smaller by a few orders of
magnitude.)

Now, the reentry process generates a lot of heat. This is where the heat shield is
needed. At which height is the most heat per area q generated? Without a detailed

derivation, | can, from purely dimensional grounds, conjecture g~pv’.
DimensionalCombinations[{"Speed", "MassDensity"}, "HeatFlux"]
{MassDensity Speed®}

With[{T = nds[[1, 1,2, 1, 1, 2]]},
ParametricPlot[Evaluate[{(Norm[X[t]] - R)/ 1000, airDensity [X[t]] Norm[V[t]]* 3} /. nds[[1]]],
{t, 0, T}, PlotRange - All, Ticks = {True, False},
AxesLabel - {"height (km)", "heat generated (a.u.)"}, AspectRatio - 0.6])

19 of 23 2018-12-17, 10:28 p.m.

Hidden Figures: Modern Approaches to Orbit and... http://blog.wolfram.com/2017/02/24/hidden-figur...

WolframAlpha.com | WolframCloud.com

% Products & Services Technologies Solutions Support & Learning Cc

+ height (km)
50 100 150 20

[=]

Many more interesting things could be calculated (Hicks 2009), but just like the movie
had to fit everything into two hours and seven minutes, | will now end my blog for the
sake of time. | hope | can be pardoned for the statement that, with the Wolfram
Language, the sky’s the limit.

To download this post as a Computable Document Format (CDF) file, click here. New to
CDEF? Get your copy for free with this one-time download.

Posted in: * Best of Blog *, History, Mathematics

<dNewer

How to Use Your Smartphone for Vibration Analysis, Part 1: The Wolfram Language
Older»

How Many Animals and Arp-imals Can One Find in a Random 3D Image?
RELATED POSTS

Interning at Wolfram: My Regeneration as a Theoretical Scientist

November 29, 2018

As of Today, the Fundamental Constants of Physics (c, h, e, k, Na) Are Finally... Constant!
November 16, 2018

Revisiting the Disputed Federalist Papers: Historical Forensics with the Chaos Game Representation and Al
October 11, 2018

6 Comments

*

The cdf link is broken!

Posted by Andrew Jaffe February 24, 2017 at 5:24 pm
Reply

*

Sorry about that Andrew! It should be back working just fine now.

Posted by Wolfram Blog February 27, 2017 at 11:03 am
Reply

20 of 23 2018-12-17, 10:28 p.m.

Hidden Figures: Modern Approaches to Orbit and... http://blog.wolfram.com/2017/02/24/hidden-figur...

WolframAlpha.com | WolframCloud.com

% Products & Services Technologies Solutions Support & Learning Cc

The download link seems not working.

Posted by Aidong Chen February 25, 2017 at 12:04 am
Reply

3

Thanks Jeffrey, Paco, and Michael for a most appropriate blog. | saw this film in Australia several weeks ago, and fou
Most mathematical scientists would agree that there are only a few good films in which mathematics and mathematici
role. This is one such, and | have to say the title is a clever one. Perhaps you guys could respond with a (short?) list ¢
“mathematics” films, not counting the TV series “Numbers”, of course. :-) Would you include, for example, “Travelling

Cheers

Barrie

T

osted by Barrie Stokes February 26, 2017 at 6:13 pm
I

Py

El:

Whew! I'm sure glad this was “straightforward” and not complicated like | feared.

Posted by dj February 27, 2017 at 12:41 pm
Reply

*

I’'m excited to uncover this site. | need to thank you for some time for this fantastic read !! | definitely loved every part «
saved as a favorite to see new stuff in your blog.

Posted by Career Convey November 11, 2018 at 9:42 am
Reply

Leave a comment

Login with Facebook Sign in with Twitter Sign in with Linkedin

Or continue as a guest (your comment will be held for moderation):

Name

21 of 23 2018-12-17, 10:28 p.m.

Hidden Figures: Modern Approaches to Orbit and...

% Products & Services

http://blog.wolfram.com/2017/02/24/hidden-figur...

WolframAlpha.com | WolframCloud.com

Post Comment

Wolfram

e
) FRYin
Wolfram|Alpha

Bo
ot Tube

BROWSE BY TOPIC

22 of 23

* Best of Blog * (38)
Astronomy (20)

Books (7)

Computational Thinking (18)
Current Events (7)

Data Analysis and Visualization (92)
Data Repository (7)

Design (23)

Developer Insights (34)
Digital Humanities (2)
Education (104)

Events (17)

Finance (16)

Geosciences (11)
High-Performance Computing (11)
History (7

Image Processing (41)

Machine Learning (7)
Mathematica News (54)
Mathematica Q&A (13)
Mathematics (93)

New Technology (6)

Other Application Areas (52)
Raspberry Pi (16)

Recreational Computation (109)
Software Development (24)
SystemModeler (38)

Wolfram Cloud (19)

Wolfram Community (7)
Wolfram Demonstrations Project (31)
Wolfram Lanquage (141)
Wolfram News (209)
Wolfram|Alpha (26)
Wolfram|One (4)

Search the blog

Technologies

Solutions

Support & Learning Cc

2018-12-17, 10:28 p.m.

Hidden Figures: Modern Approaches to Orbit and... http://blog.wolfram.com/2017/02/24/hidden-figur...

WolframAlpha.com | WolframCloud.com

% Products & Services Technologies Solutions Support & Learning Cc

23 of 23 2018-12-17, 10:28 p.m.

