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I. Courbes splines (25 points)

1. (20 points) Spline Naturelle.
On donne les points A(1,1), B(2,1), C(3,3) ainsi que la fonction Q(z) définie par les deux cubiques
suivantes,

Qi(z) = 05(x—-1324+b(z—12+c(z—-1)+1, si 1<z<2
Qa(z) = as(z =22 +by(x -2+ ca(x—2)+1, si 2<z<3.

Déterminer les valeurs de by, ¢1, ag, bs et c2 pour que Q(z) soit une spline naturelle de Type 1. Justifier.

2. (5 points) Spline de Bézier.
Soit les 2 splines de Bézier cubiques suivantes,
— By construite & partir des points, A(0,0), B(1,2), C(3,3) et D(z,y).
— B, construite & partir des points, D(z,y), E(3,—1), F(2,-2), et G(0,0).
Donner I’ensemble des positions pour le point D, afin que By |J B2 soit continue et que la dérivée de
B | B> soit aussi continue.

Réponse

1.
Spline naturelle donc s; = s3 = 0 par définition (cf. chap. 4, p. 46). De plus, on a ici h = 1. On a donc
les relations suivantes (cf. chap. 4 p. 45),

S3 — So S92
a = _— —_
2 6 6
s
b2 = ?25
252 + S3 S92
= ) - 22T o 2
C2 (Y3 — y2) 6 3
Et aussi,
S9 — 81 S92
a = _—— -
' 6 6
s
b = 51 =0,
(92— 3) — (28 4 52) = 2
1 = —y1) — =(281 + 83) = ——.
1 Y2 — Y1 6 1 2 6
Ici, on a posé a; = % donc sy = 3 et az, ba, 2, by, c1 se trouvent imédiatement, ie., by = 0, c1 = —1,
a2:_%5b2:%362:1-
2.
11 faut que les points C(3,3), D(x,y) et E(3,—1) soient alignés et que D(z,y) soit compris entre C(3, 3)
et F(3,—1). L’ensemble des positions du point D est donc le segment de droite délimité par les points C'(3, 3)

et F(3,—1), i.e., ’ensemble des points satisfaisant les 2 relations, x = 3, et y € [—1, 3.



I1. Intégration numérique (25 points)

Soit ’intégrale suivante,

T s da
1_/0 f(9>d9—/0 7T oosd"

(5 points) Méthode des trapézes.

Donner une approximation du calcul de cette intégrale en appliquant la méthode des trapézes et en
utilisant 4 intervalles, (i.e., pour les points de subdivision de lintervalle [0, 7], autres que les bornes,
en /4, w/2 et 3m/4).

(5 points) Indiquer le terme d’erreur global que 'on fait par cette méthode numérique d’intégration.
Théoriquement, de combien devrait on diminuer le pas d’intégration (i.e., la largeur des intervalles)
pour faire une erreur d’approximation 4 fois moins grande ? Justifier votre réponse.

(5 points) Intégration de Romberg.

Donner une aproximation du calcul de cette intégrale en appliquant la méthode des trapézes et en
utilisant 2 fois moins d’intervalles. Utiliser ’extrapolation de Richardson et I’approximation obtenue &
la question 1. pour obtenir (théoriquement) une estimée plus précise de cette intégration.

. (3 points) La méthode de la quadrature gaussienne avec deux termes donnerait elle la valeur exacte de

cette intégrale ? Justifier votre réponse.

(7 points) Utiliser la méthode de la quadrature gaussienne avec 2 termes pour calculer une valeur
approchée de 1.

Réponse

1.

On obtient, par la méthode des trapézes,

2

~

iy

'S
Il

(e/8) (£(0) + 27 (r/4) + 2f (x/2) + 2/ (3x/4) + (),

Lo = (r/8)([1/3)+ 212/ (4 + V2) +2[1/2] + 2[2/(4 - V)] + 1)),
Iy ~ 1.813896.

Terme d’erreur global O(h?). Pour diminuer théoriquement 1’erreur d’approximation par 4, il faudrait

diminuer le pas d’intégration par 2 (car 22 = 4).

3.

ha = (&/4)(£0)+2f(n/2) + f(m),
Lo = (r/9)([1/3]+201/2]+[1]),
I =~ 1.832595.

Par extrapolation de Richardson, on a,

1
I —(1a—1
1,4 + 55 1( 1,4 — I12),

1.813896 + (1/3)(1.813896 — 1.832595),
L, ~ 1.807663.
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4.
Non car f(0) n’est pas un polyndome de degré inférieur ou égale & 3. Le résultat obtenu sera donc une
approximation.

5.
En faisant le changement de variable § = T5-=

] = /i7
o 2+ cosf

/2 | N

—1 2+ cos(THT)’

I = Wz)/1 dt

_12—sin(%)’

~
Il

~
2

1 1
(m/2) = + — |,
2 — sin(iﬁ(f\fﬂ)’)) 2 — sin(”(ﬂ/j))
1.85974.

~
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ITI. Résolution d’équation différentielle (25 points)

1. (5 points) Montrer que la méthode d’Euler modifiée est un cas particulier de la méthode de Runge
Kutta.

2. (15 points) Résoudre ’équation différentielle suivante,

y'(t) = y(t) — ty* (1), 1)

avec la condition initale y(0) = 1. Utiliser la méthode d’Euler modifiée avec un pas de h = 0.2. Calculer
seulement y(0.2), y(0.4) et y(0.6).

3. (5 points) Faites le changement de variable z(t) = (1/y(t)) et montrer que l’on trouve la relation
Z'(t) + z(t) = t. La solution générale de cette équation différentielle est z(¢t)=t — 1 + K exp(—t), avec
K une constante. Utiliser cette information et la condition initiale pour déterminer la solution exacte
de l’équation différentielle (1).

Réponse
1.
Les relations de Runge Kutta sont les suivantes,
kl = hf(tna yn)a
ko = hf(tn + ah, y, + ﬁkl),
Yn+1 = Yn + akl + bkg

Pour a=b=1%eta=F=1,0na Ypt1=yn + %(f(tn,yn) + f(tn + hyyn + hf(tn,yn))). En posant

Un+1=Yn + hf(tn, yn), qui correspond & une prédiction donnée par la méthode d’Euler, on trouve finalement



les relations d’Euler modifiée,

Unt1 = Yo+ hf(tn,yn),
Ynt1 = Yn Tt g(f(tmyn) + [(tnt1, In1))-
2.
On a les relations suivantes,
Gne1 = Yn+0.2(yn — tay?),
Ynil = Yn+ %((yn —tny2) + (n+1 — tns1do1))-
Et le tableau suivant,
Ltn | Un | Onri | Y1 |
0.0 1.0 1.2 1.1912

0.2 | 1.1912 | 1.3727 | 1.3443
0.4 | 1.3443 | 1.4686 | 1.4239
0.6 | 1.4239

3.
On a y(t) = -, et donc y2(t) = z%(t) et y'(t) = ;Z(g). En remplacant dans 1’équation différentielle,

on trouve la relation 2'(t) + z(t) = ¢, dont la solution générale est z(t) =t — 1 + K exp(—t), avec K une
constante. On a donc y(t) = =7z emr—p- En utilisant la condition initiale y(0) = 1, on trouve finalement

la solution générale exacte,

1
Ct—1+2exp(—t)

y(t)

IV. Calcul de valeurs et vecteurs propres (25 points)

Soit A la matrice suivante,

4 0 1
A=|-2 1 0],
-2 0 1

1. (5 points) Tracer les disques de Gershgorin et déterminer par cette méthode les intervalles ou doivent
se trouver les valeurs propres de cette matrice. En supposant qu’il n’existe pas de valeurs propres
complexes, donner l'intervalle ol doivent se trouver ces valeurs propres.

2. (5 points) Ecriver I’équation caractéristique de A et calculer analytiquement les valeurs propres de A.
Donner le vecteur propre associé & la plus grande valeur propre.

3. (15 points) La plus petite valeur propre de A est 1. Calculer les autres valeurs propres de A par la
méthode des puissances et déflation (faites seulement 3 itérations). Pour la plus grande valeur propre
de A, utiliser la méthode des puissances et le vecteur initial suivant : z[% = (1.1, —1.2, —0.8)".

Pour celle du milieu, utiliser la méthode de déflation et le vecteur initial suivant 2% = (1,1,1) et la
valeur analytique de la plus grande valeur propre trouvée & la question 2.



Réponse

1. En utilisant les valeurs de chaque ligne de la matrice A, on trouve 3 disques, i.e., C1(centre = 4,r = 1),
Cao(centre = 1,7 = 2), Cs(centre = 1,7 = 2). Les valeurs propres de cette matrice sont, puisque Cy = Cs,
éléments de 'union des disques S = C; | Cs.

En utilisant les valeurs de chaque ligne de la matrice A?, on trouve 3 disques, i.e., C|(centre = 4,r = 4),
Ch(centre = 1,7 = 0), Ci(centre = 1,7 = 1). Puisque Cj et C} sont contenus dans Cf, Les valeurs propres de
cette matrice sont aussi élément de S* = C].

Finalement, Les valeurs propres de cette matrice sont éléments de S N St. Dans ’hypothése ou il n’y a
pas de valeurs propres complexes, celles-ci sont donc comprises dans lintervalle J = [0; 5].

2. Equation caractéristique : det (A — AI)=0. On trouve donc les égalités suivantes,
A=A -2)*+21-)) = 0,
1= -N1-M)+2) = 0,

1-MNA-3)A-2) = 0.

Donc trois valeurs propres, A1 = 1, Ay = 2, A3 = 3 On vérifie que (A1, A2, A\3) € J. Le vecteur propre associé
a la plus grande valeur propre se trouve facilement et on trouve vy, = (1, -1, —1)%

3. Les composantes des vecteurs z[P! et la plus grande valeur propre de A, Amaz, sont données par la
méthode de la puissance, dans le tableau ci dessous.

| Composantes de y!”! | Amaz |

p

1| 1.00 -0.94 -0.83 3.6
2 | 1.00 | -0.93178 | -0.89557 | 3.16
3| 1.00 | -0.9457 -0.934 3.10

Aprés trois itérations, on trouve A, = 3.1, (la procédure semble converger vers A3 = Aoz = 3.0 et le
vecteur propre associé & cette valeur maximale semble converger vers vy v, = (1, -1, —1)%

max

On doit considérer la nouvelle matrice,

ot 4 0 1 1 4 0 1 1 -1 -1
B = A dpe——=|(-2 1 0] -313)|-1]0 -1 -1)=(-2 1 0]—-|-1 1 1
171 -2 0 1 -1 -2 0 1 -1 1 1

3 1 2

B = |-1 0 -1

-1 -1 0

Les composantes des vecteurs z!? et la valeur propre que l'on cherche, A, sont données par la méthode
de la puissance, dans le tableau ci dessous.

P | Composantes de y? | Ao |
1(1.00|-(1/3)|-(1/3)| 6
21 1.00 | -(1/3) | -(1/3) | 2
3| 1.00|-(1/3) | -(1/3) | 2

La convergence est vite assurée et on trouve Ay = 2.



