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| Mesure d’incertitude (15 pts).

I Méthode du point fixe et de Newton-Raphson (20 pts).
1 Meéthode de la sécante (10 pts).

IV o Meéthode de Newton et critére de convergence (15 pts).
Vo Factorisation LU avec élimination Gaussienne (20 pts).

VI o Interpolation de Lagrange et Newton (20 pts).




I. Mesure d’incertitude (15 pts)
Calculer I’erreur absolue et relative commise sur P = U cos ¢ (mesure exprimée en Watts), lorsque,

U = 110 Volts & 0.5 V pres, (i.e., AU = 0.5),
I = 5 Ampéres a 0,01 A prés,
¢ = 0.1 Radian a 102 pres.

Donner P’approximation de P (i.e., P*) et souligner les chiffres significatifs “exacts” (cse) de ce résultat.
Arrondir cette approximation au nombre de cse adéquat.

Réponse
On a pour valeur approchée,

P* =110 x 5 x cos (0.1) ~ 547.252 Watts.
On obtient la différentielle suivante,

AP = |Icosd| AU + |Ucos¢| AI + |-Ulsing|A¢.
soit AP |5cos (0.1)]0.5 + |110cos (0.1)] 0.01 4 |—110 x 5sin (0.1)[ 1073,
2.4875 4 1.0954 + 0.0549,
~ 3.638.

Q

On obtient aussi I’erreur relative,
AP
— ~6.641073.
P

C’est & dire (0.66% d’erreur). On trouve donc (seul les deux premiers chiffres sont significatifs car (AP <
0.5 10")),

P =~ 547 Watts avec AP =~ 3.6 < 0.5 10.

Si on arrondi cette estimation au nombre de cse, on obtient,

P =~ 550 Al 5 Watts.

I1. Méthode du point fixe et de Newton-Raphson (20 pts)
On se propose de trouver des valeurs approchées de la racine r de I’équation,

f(z) = z — exp(—2z) = 0. (1)

1. Méthode du point fixe.
(a) Montrer qu’il existe une racine unique r pour cette équation dans lintervalle J; = [0,1]. En
remarquant que ’équation proposée est équivalente & g1 (x) = = avec g1 (r) = exp(—2z), montrer

que lintervalle J; = [0, 1] est un intervalle sur lequel la convergence vers une solution unique par
la méthode du pont fixe n’est pas assurée.



(b) On se propose maintenant de réécrire 1’équation (1) sous la forme suivante,

_ Az + exp(—2x)

T , avec A>0.

T = g2()
Vérifier que cette Equation est identique & ’Equation (1) pour tout A. Donner les valeurs de A
permettant de faire converger la méthode du point fixe .J; vers une solution unique.

(¢) En prenant A = 1, donner la relation itérative r,41 = g3(r,) permettant d’obtenir la solution par
la méthode du point fixe.

(d) Déterminer analytiquement un majorant de |r,, — r|, ou r,, désigne la valeur approchée, a la niéme
itération, de cette racine par la méthode itérative du point fixe.

(e) En déduire le nombre d’itérations (au pire) que 'on sera obligé de faire pour obtenir une valeur
approchée de 7 & 1072 prés. Donner les 8 premiéres estimations données par la méthode du point
fixe en partant de ro = 0 et arrondir ’estimée finale (rg) au nombre adéquat de cse selon la borne
obtenue en (d).

2. Méthode de Newton.

(

a) Soit g4(z), la fonction intervenant dans la méthode itérative de Newton pour la résolution de cette
équation. Donner g4(z) (i.e., donner la relation itérative r,,11 = ga(ry)).

(b) Nous allons supposer que les conditions sur g4 et sa dérivée sont remplies pour la convergence de
cette méthode vers une solution unique. En déduire une valeur approchée de r aprés 5 itérations.
En supposant que cette estimation nous donne la racine cherchée 3 1072 prés, arrondir au nombre
adéquat de cse.

Réponse

a. L’étude des variations de la fonction f(z) sur [0,1] montre que la fonction est continue et croissante
sur cet intervalle (f'(z) = 1+ 2exp(—2z) et f'(z) > 0 Vz € [0,1]). De plus, on a f(0) = —1 et f(1) =
1 — exp(—2) =~ 0.86. Il existe donc une racine r unique dans cet intervalle. La dérivée premiére de g; (z)
s’écrit,

g1(z) = —2exp(—2z).

1l est clair que g} (x) € [-2,—2e~2] pour z € [0, 1]. La fonction g; () n’est donc pas contractante sur J; (i.e.,
lg1(z)| £ 1 Vx € Ji) et donc la convergence n’est pas assurée dans ce cas.

b. La vérification est immédiate, on a,

Az + exp(—2x)
1+ ’

z(1+2X) = Az +exp(—2z),
z —exp(—2z) = 0.
La dérivée premiére de go(z) s’écrit,
A —2exp(—2z
g(x) = 222D

A+1

Vz e [0,1], —2< —2exp(—2z) < —2exp(-2) <0
A—2 < A —2exp (—2z) < A —2exp(—2) < A
A+1 — A+1 - A+1 “A+1

Donc, <1,

A—2 1
On a donc, pour A >0, |gh(z)] <1 dés que TN > —1 soit pour X > 3"



c. En prenant A = 1, on trouve la relation itérative suivante,

i1 = = (rn + exp(=2ry)).

N | =

Vz €[0,1], 1>exp(—2z)>0

1 — 2exp(—2x)
2

Done, -1/2< <1/2

e, —1/2<gh(z) <1/2
e, |gy(a) <1/2

On a donc la majoration suivante de I’erreur commise en prenant la valeur approchée r,, de r (cf. Cours).
|rn — 7| <0.57.
-5
e. En utilisant la précédente majoration, on aura |r, —r| < 107°, si 0.5" < 1075, ou n > %, soit
(au pire) pour n > 17. On obtient,

ro = 0,

rr = 0.5,

re = 0.433940,
rs = 0.426890,
ra = 0.426346,
rs = 0.426306,
re = 0.426303,
re = 0.426302,
re = 0.426302,

On a (0.5)8 = 0.0039 < 0.5 10~2. Donc on a le résultat s’exprimant (de facon trés pessimiste car cette
borne visiblement ’est aussi) avec 2 cse aprés la virgule par r = 0.42.

2.

a. On a,

f(x) g T~ exp(—2z)
fl(z) 1+ 2exp(—2zx)

On a donc la formule itérative suivante,

T — exp(—2ry,)

Tl =T T T exp(—2r)

On suppose que |gj(z)| < 1 pour tout = € [ro,r1,...,r,] ce qui assure la convergence de l'algorithme
comme nous le suppose I’énoncé et on obtient,



T():O,

= 0.333333,
rs = 0.426295,
ry = 0.426294,
ra = 0.426303,
rs = 0.426303.

On suppose que |rg — 7| < 107° < 0.5 x 10~* et donc le résultat s’exprime avec 4 cse aprés la virgule par
r = 0.4263.

III. Méthode de la sécante (10 pts)

1. Rappeler la relation itérative de la méthode de la sécante pour la résolution d’une équation du type
f(z) =0.

2. Montrer que cette relation itérative est équivalente & celle de la méthode itérative de Newton lorsque
les deux points utilisés dans la méthode de la sécante tendent (en position) 'un vers lautre.

Réponse
1. La relation itérative de la méthode de la sécante est,

T2 — T1

f(@2) = f(z1)

x3 = 22 — f(z2)

2. Ecrivons z5 = 21 + € avec € = 0. Sous cette condition, la relation itérative de la méthode de la sécante
permet d’écrire,

T1 +€—1T1
f(z1+€) = f(z1)’

flz1+¢)
flmite)—f(z1)

xr3 = £U1+€—f(ib'1+€)

T3 Ty +€—

Lorsque € — 0, w = f'(z1) et f(x1 +€) = f(z1) on trouve, donc,
f(z1)
f(z1)

x3 est la solution estimé & l’itération courante en utilisant la solution estimée & l’itération précédente, on
retrouve bien la relation itérative de Newton, i.e.,

T3 = T1—

In+l1 = Tp — f’(.’E )
n



IV. Méthode de Newton et critére de convergence (15 pts)

1. Donner la relation itérative de Newton pour la résolution de 1’équation suivante,
1
z)=a——=0.
@) =a--

2. Trouver la valeur & la convergence (r) de cette série itérative.

3. Montrer que les itérations données par cette méthode satisfait I’équation suivante avec a réel et positif,

1 1
(rn+1 — a) = —a(r, — 5)2, k=0,1,...

4. Montrer alors que si la série itérative converge vers 1/a, la convergence de cette méthode est quadratique
(i.e., d’ordre 2) avec une constante asymptotique égale a |a].

Réponse

1. La relation itérative de Newton est,

Tn+1 =T"—f(Tn)/fl(T"), k=0a17

L nous obtenons,

z?

Sachant que f(z) =a —

a—1/r,
Tnt1r = Tp— W;
n

= 71— (ar? —rp) = 1,(2 — ary).

2. A la convergence, on a rpy; = r, = r. En remplacant dans la relation itérative précédente, on trouve,

r = r(2-ar),
= (2-&7’),
r = 1/a.

3. On vérifie que I'on a bien la relation donnée en remplacant 7,1 par r,(2 — ary), i.e.,
q +

1 2r 1
n -1 =n2_ n)— - = - 2~z o)
(o1 /a) = (2 — ary) . a(rs o +a2)
Lo
= —a(rn—a).

4. On trouve,

1
[Pn1 — E' _
112 |a’|

Irn — 5l
qui par définition montre que si la série converge vers 1/a (et c’est le cas), la convergence est quadratique
(i.e., d’ordre 2) avec une constante asymptotique de |a].



V. Factorisation LU avec élimination Gaussienne (20 pts)

1. Décomposer la matrice A en produit LU par la méthode d’élimination de Gauss (sans pivotage partiel

ou total).
2. Calculer le déterminant de A.

3. Résoudre le systéme Az = b pour b= (3,0, —5)*.
2 -1 3
A= 1 1 -1].
-1 -2 1

Réponse
1. L’opération ligne, = ligne, — (1/2) ligne,; et ligne; = ligne; — (—1/2) ligne; donne,

2 -1 3

(o (3/2) (—5/2)).

0 (=5/2) (5/2)
(=52

L’opération ligne; = ligne; — Wﬂ)) ligne,, i.e., ligne; = ligne; — (—5/3) ligne, donne,

(

On a donc la décomposition suivante,

2 -1 3 1 0 0\ /2 -1 3
A= (1 1 —1> = ((1/2) 1 0) (0 (3/2) (—5/2)) .
-1 -2 1 (-1/2) (=5/3) 1/ \o 0 (=5/3)

SO N

-1 3
(3/2) (—5/2)> :
0 (=5/3)

~

L U
2.
det(A) = det(L) x det(U),
= 1x(2x(3/2) x (=5/3),
= -5
3.

On doit résoudre le systéme suivant,

1 0 0\ /2 -1 3 3
( (1/2) 1 0) (0 (3/2) (—5/2)) = (0 ) .
(-1/2) (=5/3) 0 0 (=5/3) -5

—

Par substitution avant puis arriére on trouve, Ly = b avec y = (3, (—3/2), —6)?, puis Uz = y avec

finalement z = ((—14/10), 5, (18/5))".



VI. Interpolation de Lagrange et Newton (20 pts)

Soit les points suivants,

s 10 1 4 7
e | 1 2 1 2

1. Appliquez la formule de Lagrange pour trouver un polyndéme de degré trois qui passe par ces points.
Evaluez ensuite ce polynéme pour z = 2,3, 5.

2. Appliquez la formule de Newton pour trouver un polynéme de degré trois qui passe par ces points.
Evaluez ensuite ce polynéme pour z = 2,3, 5.

3. Ces évaluations (par la méthode de Lagrange et Newton) sont elles identiques ? Justifier pourquoi.

Réponse

1.

On trouve par Lagrange,

(z—1)(z—4)(z—7) + z(x —4)(z —7) n z(x —1)(z —7) + z(x — 1)(z — 4)_
—28 -9 —36 63

Pour l'interpolation on trouve,

Py(z) =

P(2) = -—2.365,
P(3) = —1.047,
P(5) = 2.825.

2-3.

Le tableau des différences divisées s’écrit,

lzly [ Ay [A% ] A%y |

0] 1
-3
1|-2 1
1 (-10/63)
41 -1/9
(1/3)
712

On obtient le polynéme suivant,
Py(z)=1—-3z+2z(z — 1) — (10/63)z(z — 1)(z — 4).

Pour l'interpolation on trouve la méme chose que pour Lagrange car le polynéme de collocation de degré
trois est unique.

P(2) = -—2.365,
—1.047,
P(5) = 2.825.

|
w
I



