DERIVATIVES OF THE DELTA FUNCTION
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As the Dirac delta function is essentially an infinitely high spike at a sin-
gle point, it may seem odd that its derivatives can be defined. The deriva-
tives are defined using the delta function’s integral property
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Consider the integral involving the nth derivative ¢ (n) (x) and apply inte-
gration by parts:
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The integrated term is taken to be zero, since the delta function itself is
constant (at zero) for all = #£ 0, so all its derivatives are zero except at x = 0.
Therefore §(" 1) (x) = 0 at the limits —co and oo. We're therefore left with
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Since this is true for all functions f (), the integrands must be equal, so
we get
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A common case is the first derivative, which satisfies
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If f(z) = x, we get the relation
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By iterating [}, we get
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Example 1. Suppose f (z) = 42> — 1. Then
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Example 2. With f (z) = 2" we have, using
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Another use of the derivative of the delta function occurs frequently in
quantum mechanics. In this case, we are faced with the integral
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where the prime in ¢’ refers to a derivative with respect to x, not z’. Thus
the variable in the derivative is not the same as the variable being integrated
over, unlike the preceding cases. In this case, since only z (and not z) is

visible outside the integral, we can move the derivative outside the integral
and get

!/ / / / d / / /
/6 (x—x)f(m)dx = o 5(:p—:13)f(x)d:1: (12)
= (=) (13)

Notice that in this case, there is no minus sign attached to the f’ unlike
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