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PART II
(short-term) Modeling

of the speech signal

Definitions
• Speech processing is based

on speech models
• Models have parameters,

like black boxes have
switches and sliders

• Parameters are estimated
via algorithms

• Errors : output of model ≠
input signal
– Modeling (intrinsic) errors
– Estimation (extrinsic) errors

• Algorithms minimize errors
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Families of speech models

• Articulatory models (parameters =
position of tongue, glottis, lip opening, etc.)

• Production models (electical analogy of
vocal tract: combination of electrical
generators and filters; parameters =
switches and coefs. of filters)

• Phenomenological models (pure signal
processing techniques for modeling the
speech signal or its spectrum: FFT,
wavelets, time-domain processing, etc.)
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signals
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– Autoregressive estimation of speech
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– Short-term Fourier transform
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Autoregressive modeling
of speech (Fant, 50’s)
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Autoregressive modeling
of speech (Fant, 50’s)

G(z)V(z)R(z) ≈σ /Ap(z) : « All pole » model
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Autoregressive modeling of
stationary random signals

• ARMA (autoregressive-moving average)

≡≡≡≡

• Much simpler for estimation : AR model

≡≡≡≡
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Autoregressive modeling of
stationary random signals

• Each sample x(n) is the sum of
a completely (linearly)
predictable component, and an
« innovation » component e(n)

• ⇒ Autoregressive or linear
prediction (LP) model

• e(n) can be computed from ai
(i=1…p) and x(n)

• e(n) is the output of the
inverse filter

∑

∑

∑

=

=

=

−

=−=

−−+=

=

p

i
i

p

i
i

p

i

i
i

ainxane

inxanenx

za

zEzX

0
0

1

1

)1()()(

)()()(

)()(

)(
1
zA

e(n) x(n)

)(zAx(n) e(n)

YULE-WALKER equations

• Problem : find ai (i=1…p)
from x(n), not knowing e(n)

• Minimize the variance σe² of
e(n)

• YULE-WALKER equations
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• p linear equations with p unknowns ⇒ O(p3)?
• Toeplitz matrix ⇒ O(p2) : recursively on the

prediction order

LEVINSON         SCHUR(-LEROUX-GUEGEN)
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LEVINSON algorithm

Find solution for order m+1
from sol. for m? ?
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LEVINSON algorithm
• Initialization

• Recursion on m=0…p-1
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ki : PARCOR coefficients

• Naturally appear in the LEVINSON recursion
• Can be physically interpreted as area

ratios of acoustic tubes in series
• Equivalent to prediction coefficients (there

is a recursion formula for {ai}→{ki}→{ai}
• Transfer function of 1/A(z) much less

sensitive to ∆ki then to ∆ai

• Good interpolation properties
• Correspond to the lattice filter structure

for 1/A(z)
• 1/A(z) stable if -1<ki<+1

Interpolating PARCORs

Interpolating Prediction Coefficients

dB

Hz

Interpolating PARCOR Coefficients

dB

Hz

How good are the ai ’s or ki ’s ?

)(
1

zAp

e(n)    (g.w.n. µ=0,σ=σe)

xAR(n)

Levinson (or Schur)
algorithm

x(n)

ai , σe

ARxx
?
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How good are the ai ’s or ki ’s ?

pk
kk ARx
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Short-term analysis of speech

• Speech is not stationnary (if it were,
information ≡ 0)

• « Pseudo-stationnary » on 30 ms
• Frame-by-frame (typ.: N=30ms/L=10ms)

• ex: Fs=10kHz, L=100 samples, N=300
samples

N

N

L

n

Yule-Walker equations(again)

• Minimize the energy Ep of
the prediction error e(n)

• Same formalism as in the
stationnary case, applied
here to a signal which takes
non-zero values only for
n=0..N-1

• Same Yule-Walker
equations, except     is
estimated as
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• Toeplitz matrix ⇒ O(p2) using Levinson or
Schur (still slightly faster than Levinson)

• NB : this is actually called the « autocorrelation
approach »; in contrast, the so-called « covariance
approach » is based on a different expression of the energy
of e(n) and leads to a non-Toeplitz matrix...
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p

σe
2

σx
2

σe
2
min

popt

•2 poles for shaping the glottal
velocity volume waveform
•2 poles (1 resonator) per formant
(≈ per kHz of bandpass)
⇒ poptp=2+Fs

In practice
• Sampling frequency

– telephone speech : 8 kHz
– speech recognition: 10 kHz
– speech synthesis : 16 kHz
– multimedia applications 11.25 kHz, 22.5 kHz et

44.1 kHz

• Prediction order p

w n n
N

( ) . . cos( )= +0 54 0 46 2π

In practice
• (Pre-accentuation : filter P(z) = 1 - µ z-1)
• (Hamming) Weighting window

– prevent e(n) from naturally taking high values at
the beginning and at the end of the frame

– let each set of prediction coefficients be more
representataive of the 10 central ms

• Computational load

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0
0

0 .5

1

N=300,p=10
Weighting N 300

Autocorrelation (N – p / 2) (p + 1) 3245

Schur p (p + 1) 110

Run
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LP Speech synthesis

• Parameters are changed every 10 ms

• e(n) is replaced by a pulse sequence or by
white noise (µ=0,σ=1), and amplified with
σ=σe

V/UP coefficients

1
pA (z)

σ

s

P

U

V

Problem with pseudo-
stationarity

• means nothing for plosives ⇒ meaning

of {ai} ?

• Explosions of plosives last 1-2 ms; they

are synthesized on 10 ms at best

• In practice, the ear is much less sensitive

to the spectrum of highly transient sounds

xr

Problem with anti-formants

ARMA would be better for nasal sounds

nasal antiformant

wrong modelization of
formants
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Problem with mixed voicing

Voiced fricatives:partly voiced, partly unvoiced

partie voisée BF

non voisée
Resonance HF

Decreasing modeling errors

• If the prediction error e(n)
was used as input for
1/A(z): er(n) ≡≡≡≡0

• In practice, the excitation
waveforms used are a very
rough approximation of
e(n)

• Find more realistic
excitation waveforms?

MP-LPC    CELP

Model

parameters

Estimation
algorithm

+
+

-

e
r
r
o
r

x(n)

x(n)^

er(n)

Multipulse Linear Prediction

MP-LPC=LP model excited with small number
of pulses, whose positions and amplitudes
have to be adjusted

x(n)

coefficients

1

p
A (z)σ

σ

Pi Ai

(P ,A )i    i

Code-Excited Linear Prediction

CELP=LP model excited with a real excitation
signal, taken from a list (=codebook) of typ.
1024 or 2018

x(n)

coefficients

1
p

A (z)σ

σ

index dans le
dictionnaire

N

1

..
2

1

2

N

...
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Short-term Fourier Transform

• Continuous:

• Discrete:

• Short-term spectral density function:

• Weighting window w(n)
– if too long, averaging occurs (+stationnarity?)
– if too short, frequency resolution falls down
– shape?
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Short-term Fourier Transform
From wide-band to narrow-band



Copyright (c)2002 Faculté Polytechnique de Mons  - T. Dutoit

Narrow-band: voiced

[a], Hamming(30ms)

dB

frequency (Hz)

time (ms)

Narrow-band: unvoiced

[S], Hamming(30ms)

dB

frequency (Hz)

time (ms)
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STFT ↔↔↔↔ AR model?

NB: this is also appliable to short term estimations
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STFT ↔↔↔↔ AR model?

can be easily computed from the {ai}
2

)( φ

σ
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{ } )(0,...,0,0,0,,...,,,1
2

21
N

jkFFT
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Hybrid harmonic/noise model

• Harmonic component defined by the amplitudes
and phases of harmonics : {ampi}, {phasei}

• Noise component defined by the s.d.f. of xn(t)

Harmonic
signal

generator

Colored
Noise

generator

+

x  (t)h

x  (t)n

x(t)

ω
0

S  (  )n ω
ampi
phase i

Hybrid H/N estimation
• Rough F0 estimation (comb-filter-like)
• Estimate the parameters of the harmonic part

with

• Typical least squares minimization problem :

• Solution :
– trivial if R is diagonal
– Levinson if R is Toeplitz
– Cholesky otherwise (R is allways symetric)
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Hybrid H/N estimation

• Repeat on a grid of F0 values around initial F0

– Precision on Nth harmonic is N x precision on F0!
• F0=100 Hz; T0=Fs /100 samples

if error = 1 sample on T0

= 100 - Fs /(Fs /(100+1)) Hz on F0

= 10000/(Fs +10000) Hz on F0

Nharm = Fs/2 /100
error on Nth harm. = Nharm x error on F0 ≈ 25 to 50Hz!!!

– Precision required : at least 1/8th sample

• Get the s.d.f of the « noise » part with:

)()()( txtxtx hn −≈

H/N modeling errors
• Harmonics are found

in noise (no
orthogonality)

• F0 is not constant on
the analysis frame ⇒

broadening of
harmonic lobes at high
frequencies 30

40

50

60

0 2000 4000 6000 8000
20

Freq (Hz)

dB

• In real speech, noise is correlated with harmonics in
the time domain

Hybrid H/N synthesis

• Harmonics:
– Σ of cosines
– Σ of outputs of digital

oscillators whose
frequencies are set to that
of harmonics

– Σ of main lobes in the
freq. domain + IFFT

• Noise:
– Σ of narrow band noises, obtained by (amplitude)

modulating a low frequency noise with harmonics
– frequency-domain noise matching the required

s.d.f. + IFFT

Harmonic
signal

generator

Colored
Noise

generator

+

x  (t)h

x  (t)n

x(t)

ω
0

S  (  )n ω
ampi
phase i

Hybrid H/N synthesis

Overlap-Add (OLA) of successive frames

Synthetic speech

Windowing

Synthesis Frames

s    (t)k-1~
s    (t)
s    (t)k+1

k~
~

t   k-1 t   k t   k+1 t   k+2

k+1(t   - )/2t   k-1
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Homomorphic transform

• Complex cepstrum x(n)

• Convolution becomes summation:
x(n)=u(n)*h(n) → X(z)=U(z)H(z) → x(n)=u(n)+h(n)

• If X(z) rational, then x(n) falls faster than 1/n
•

x(n)
lnZ

X(z)
Z-1

x(n)ln(X(z))

x(n)
H x(n)

x(n) H x(n)T0 T0

Real cepstrum

• cx(n) is the -1 of the amplitude spectrum
of x(n) in neper (≈ in dB)

• cx(n) can be computed with FFT-1, provided
NFFT is big enough (to avoid undersampling
of X(ω))

• NB: cepstrum, quefrency, liftering :-) 

x(n)
ln| |

X(ω)
-1

cx(n)ln|X(ω)|

Applications to speech

• If x(n)=                *  

cx(n)=                +

=

Use? 
– Measure T0 :easier on cx(n) than on x(n)
– Measure the spectral envelope of x(n):

Isolate ch(n) → h(n)

T0

T0

h(n) (vocal tract)

ch(n)

T0
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Applications to speech

Cepstral Mean Substraction

If x(n)=                *

cx(n)     = cspeech(n)  + cline(n)
E[cx(n)]= E[cspeech(n)]  + E[cline(n)]

= E[cline(n)]+k (estimator of cline(n))
cCMS

x(n)= cx(n)- E[cx(n)]
cCMS

x(n) is independent from the channel
Used in spech recogniton

h(n) (tel. line)

Relationship with AR model

The first values of the cepstrum are
characteristic of the transfer function of the
vocal tract ⇒ must be related to {ai}

x(n)
lnZ

X(z)
=

1/A(z)
Z-1

x(n)

ln(1/A(z))

X(z)
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F0 estimation

• Short-term estimation of F0 on an
analysis frame (at least 2 times the local
pitch period); produces candidates for F0,
with score

• Long-term post-processing, making the
ultimate choice among candidates (on a 3
frames-basis, usually), as a function of
their score and taking into account
constraints and correcting estimation
biases
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Autocorrelation-based F0
estimation

• Periodicity of x implies a max in        for
kTs ≈ T0

• Computational load >>>
• F0 doubling for females, because of F1≈H2

⇒ use threshold(k)

)(krx

maxmin ,...,)()()( KKkforknxnxkr
n

=+=∑
∞

−∞=

x(n)

100 200 300
n

0

0

r n (k)

100 200
k

Low F0’s  High F0’s

x(n)
Low-Pass
1000 Hz Decimate/4

1- zµ -1 Windowing LPC (p=4)(Hamming)

A  (z)

PARCOR

p

Parabolic
Interpolation

Estimation
of Maximum AutocorrThreshold

V/NV
T0

Simplified Inverse Filtering
Technique (SIFT)

• Finds the max of the autocorrelation of the
error signal (⇒ F1≠H2 : flat envelope!)

• Decimation-interpolation for lower
computational cost

SIFT : an example

max1

max2

Cepstrum-based F0 estimation

• Cepstrum is FFT-1(logSpectrum)
• Log spectrum is flatter than Spectrum
• Cepstrum is more pulse-like than signal

0 5 10 15 (ms)

0

Accepted area
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Estimating F0 with a comb filter

• Idea : filter signal with comb filter whose F0
varies from 70 to 500 Hz, and measure the
energy of the output: F0=F(max(energy))

• Usually performed in the frequency domain
direclty : F0=F(max(<FFT(x)²,H²(filter)>))
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Post-processing
• Based on Dynamic Programming :

From the possible F0 values for successive
frames, find the sequence which minimizes
a cost function

• Logical filtering
– ex: one V frame in an island of UV frames ⇒ UV

F0 cost

F0

Conclusion

• LP model is good at modeling the short-
term spectral envelope (id. for cepstrum)

• MP-LPC, CELP, Hybrid H/N add a better
modeling of the contribution of the
excitation component (the fine spectral
structure)

• NB : these were models of the acoustic
component of speech only...


