PART 11

(short-term) Modeling

of the speech signal

Families of speech models

e Articulatory models (parameters =
position of tongue, glottis, lip opening, etc.)

e Production models (electical analogy of
vocal tract: combination of electrical
generators and filters; parameters =
switches and coefs. of filters)

e Phenomenological models (pure signal
processing techniques for modeling the
speech signal or its spectrum: FFT,
wavelets, time-domain processing, etc.)

Definitions

Speech processing is based
on speech models

Models have parameters,
like black boxes have
switches and sliders

l

x(n)

Estimation
algorithm

!

Parameters are estimated
via algorithms

Errors : output of model #

input signal

Model

17 Yy

parameters

— Modeling (intrinsic) errors

— Estimation (extrinsic) errors\/\MW\}\\/ —
Algorithms minimize errors X(n)

}

er(nk

Contents

e Production models

— Autoregressive modeling of speech
— Autoregressive modeling of stationary random
signals
< AR model - Estimation algorithms
— Autoregressive estimation of speech
— Extensions of the AR model

e Transform-based models (phenomenological)
— Short-term Fourier transform
e Definition - Interpretation
= Relationship with AR modeling
« Hybrid harmonic+noise model - Estimation
— Homomorphic (or cepstral) transform
= Definition - Properties
= Relationship with AR modeling

e FO estimation
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Autoregressive modeling
of speech (Fant, 50’s)
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G()z=——
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Glottal

M Voiced Unvoicedl volume

L velocity
V(2) = B waveform
[Ta+b,z+b,,27%)
— Volume
I velocity
\} waveform
R(z)=c(l-z1)

Pressure
waveform
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Autoregressive modeling
of speech (rant, 50°s)

G(2)V(2)R(2) ~oc /Ap(2) : « All pole » model

P V/UV c coefficients

] = —

UV {

-

\Y ~<>\©_[>% 1 R

Autoregressive modeling of
stationary random signals

» ARMA (autoregressive- movmg average)

Model P oe(n) | (@.w.n. 4=0,0=1)

AN
parameters A(z)

‘ o S 1XARMA(n) ...............

= Much simpler for estimation : AR model

Model e(n) | (g.w.n. ,u—O,o'ZO'J_

%’ i 0| = 1 E
parameters - Az)

T - m— T xAR(n) ..................
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Autoregressive modeling of
stationary random signals

e(n) 1 x(n)
AR [
> az

x(n) =e(n) +Zp:—aix(n —1)

M= axm-) (=1 °

x(n) A(Z) e(n)

Each sample x(n) is the sum of
a completely (linearly)
predictable component, and an
« innovation » component e(n)
= Autoregressive or linear
prediction (LP) model

e(n) can be computed from a;
(i=1...p) and x(n)

e(n) is the output of the
inverse filter

YULE-WALKER equations
i_lmi—j)a,- —4,(i) (i=1..p)

¢, $,0) .. ¢(p-2)||3|_ |4

¢(p-1) 4(p-2) .. 40 Ja, #,(p)
O 'a=—¢}
e p linear equations with p unknowns = O(p3)?

e Toeplitz matrix = O(p?) : recursively on the
prediction order

/\

LEVINSON SCHUR(-LEROUX-GUEGEN)

YULE-WALKER equations

o? =E[e*(m)]

=E Zp:aix(n—i)zp:ajx(n— i)

p
= Y aaElx(-i)x(n- )]

i,j=0

- Yaag,i-))
i,j=0

2
oo,

=0 (i=1..p)
a.

2) (i~ J)a, =0
j=0

i¢x(i —Ja;=-¢,(i) (i=1..p)

= Problem : find g, (i=1...p)

from x(n), not knowing e(n)

= Minimize the variance c.2 of

e(n)

YULE-WALKER equations

LEVINSON algorithm

#,(0) (1)
(1) #,(0)

- 4m-2)|ay| | 4@

$(m-1) 4m-2) .. ¢(0) Jag $.(m)

Find solution for order m+1 o
from sol. for m? )

¢,(0) 60 .. g(m-1) 4 (m) |a™ 4,0
¢x(l) ¢x(0) - ¢x(m_2) ¢x(m_1) agﬂﬂ ¢x(2)

¢x (m _1) ¢x (m - 2) ¢x (O) ¢x (l) arr:+1 ¢x (m)
g(m)  g(m-1) .. 40 4,0 Jlayy ¢, (m+1)
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4,(0) 60 .. ¢(m-1)
¢x(1) ¢x(0) . ¢x(m_2) ¢x(m_1) a';n

@/ -
M- 4m-2) .. 40

g(m-1) .. 4@

FrERG 8

- pm=-2) 4 (m-1)| a

#,(0) 2.0 | ans
. (1) ¢.0) ]l an

S hm-D) g [
L g (m-2) g(m-1)a]

2.(0) AL A
£ aTX D)

'

#,(0) Q) .. ¢4 (m-1)
¢.@ 9.0 .. 4(m=2) f4(m-1\|a;

@| - e
-1 gm-2) .. 4

g(m-1) .. 4@

¢,(m)

@ .. 4(m-1)
4,0 .. 4(m=-2) 4(m-1)| a7,
2)
gm-0)g(m-2) . ¢(0) (1)
g(m-1) .. 4@ ¢,(0)
4,(0) ) .. g(m-1) (M) [a™
$.(1) $0) .. §(m-2) g(m-1|a]*
©)

g0 | am
$,(0) | ar:

$(m-1) 4(m-2) .. ¢/(0)
¢x(m) ¢x(m_1) ¢x(l)

m+l _ om m m+l
ai - ai + km+lam+1—i am+1 - I(m+1

4,(0) 60 .. ¢(m-1)
¢>< (1) ¢x (O) . ¢x (m - 2) ¢>< (m _l) a?

@) - e e
M- 4(m-2) . 40

¢x(m_l) ¢><(1)
g0 .. $(m-1)
$0) .. 4(m-2) g(m-1) a7,

@ -] - - .
gm-0J) g(m=-2) . ¢(0) 4, (1)
gp(m-9 .. 4@
¢x (O) ¢x (l) ¢x(m _1) ¢x(m) a1m+l
¢x(1) ¢x(0) . ¢x(m_2) ¢x(m_l) ag1+l
© - |"

2@ Jlap”
#,0) Jlag:

¢x(m_1) ¢x(m_2) ¢x(0)
g(m  g(m-1) .. 40

60 1
#.(2)
@ Knea(2)
?
#,(m) '
#,(m+1) |

¢x (m +1) +:um + km+10(m = ¢x (m +1) km+1 =

J‘V
am

LEVINSON algorithm

e |nitialization

a,(0) =1, m=1,2,...,p ay, = ¢,(0) =0,

* Recursion on m=0...p-1
for m=0,1,..., p-1
m-1
km+1 == (l/ am) : Zam—l(i) : ¢x(m_i)
i=0

fori=1,2,...,m-1
am(i) = am—l(i) + km . am—l(m_i)
am+l(m) = km+l

e, =, (1-K’ma)
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ki : PARCOR coefficients

Naturally appear in the LEVINSON recursion

Can be physically interpreted as area
ratios of acoustic tubes in series

Equivalent to prediction coefficients (there
is a recursion formula for {a,}—>{k}—{a}
Transfer function of 1/A(z) much less
sensitive to Ak; then to Aa;

Good interpolation properties

Correspond to the lattice filter structure
for 1/A(2)

1/A(z) stable if -1<k<+1

How good are the a; 's or k; ’s ?

UWWWW

l

Levinson (or Schur)
algorithm

Interpolating PARCORs

Interpolating PARCOR Coefficients

a 1000 000 2000 4000 Qoo 6000 Qoo 2000

How good are the a; 's or k; ’s ?

3 (k) = Dar (k)
for k=0...p
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Yule-Walker equations(again)
E,= iez(n)

“i: i .  Minimize the energy Ep of
=YY ax(n-i)> ax(n-j)| the prediction error e(n)
n=—oo| i=0 1=0  Same formalism as in the

= Zp:aiaj Z[X(n—i)x(n— j)] stationnary case, applied

ij=0 = here to a signal which takes
_ Zp:aa f(i-j) non-zero values only for
= n=0..N-1
OE, =0 (i=1...p) e Same Yule-Walker
08, equations, except P, is
Zzp: [ (i-j)a, =0 estimated as I,
1-0 +00
B, : r.(k)= > [x(n)x(n—k
Y ri-Da=-10 (=1.p) (0= 2lmx(n=k)]
j=1

Short-term analysis of speech

* Speech is not stationnary (if it were,
information = 0)

* « Pseudo-stationnary » on 30 ms
e Frame-by-frame (typ.: N=30ms/L=10ms)

e ex: Fs=10kHz, L=100 samples, N=300
samples

Yule-Walker equations(again)

irx(i—J')as—rx(O) (i=1..p)

r.(0) @ .. np-Y|a r.@)

rx (1) rx (O) e rx ( p - 2) a'Z _ rx (2)

r(p-1) r(p-2) .. 10 Ja r.(p)
R 'a=-r?

e Toeplitz matrix = O(p?) using Levinson or
Schur (still slightly faster than Levinson)

= NB : this is actually called the « autocorrelation
approach »; in contrast, the so-called « covariance
approach » is based on a different expression of the energy
of e(n) and leads to a non-Toeplitz matrix...
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In practice

= Sampling frequency
— telephone speech : 8 kHz
— speech recognition: 10 kHz
— speech synthesis : 16 kHz
— multimedia applications 11.25 kHz, 22.5 kHz et
44.1 kHz

= Prediction order p =2 poles for shaping the glottal
velocity volume waveform

Dircei il Vo | o B el i e

/”*\
L

i

-] | ]

TRV

e «2 poles (1 resonator) per formant
0,2 (» per kHz of bandpass) ‘I ,|'
= PoptP=2+F, 'L ¥ AR
Ge minfp—— " r r .]I\ I.‘I'lll'llllll-III I.‘I.Jhrll'];‘l" lll]
I -
| : > [emcrarngions o T U ppaiand S | Copighy 99 PP BT Labosgiory | W 1D - g 91
Popt P

EREGOH § 1 @ 0 4% & FED Fawe 1
In practice i = S e
e (Pre-accentuation : filter P(z) = 1 - n z'1) ‘E_ ' = 'HH:-_'_'.?;;.-_‘{:

- (Hamming) Weighting window i E:f_' — vt

— prevent e(n) from naturally taking high values at
the beginning and at the end of the frame

— let each set of prediction coefficients be more
representataive of the 10 central ms

w(n) =0.54+0.46cos(2 71'%) s

0

e Computational load

N=300,p=10
Weighting

Autocorrelation (N—p Z2) (p + 1) 3245

aa "‘_‘—‘-'\-..l ':-_""\I-\.ﬁ.,.-'-""afl'r
A

aa
am
am
am
am

A gy A

L . §

Lmm ~ \

I I L

1mm ) Ty, —
L i Ty e il ——

am = ———= el g

160 8

i @ g

0 8

L

un. et —_
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Contents Problem with pseudo-

* Production models stationarity
— Autoregressive modeling of speech ) ) ]
— Autoregressive modeling of stationary random = I, means nothing for plosives = meaning

signals
< AR model - Estimation algorithms
— Autoregressive estimation of speech

— Extensions of the AR model _
Transform-based models (phenomenological) are synthesized on 10 ms at best

— Short-term Fourier transform - In practice, the ear is much less sensitive
= Definition - Interpretation

= Relationship with AR modeling o to the spectrum of highly transient sounds
« Hybrid harmonic+noise model - Estimation

— Homomorphic (or cepstral) transform
= Definition - Properties
= Relationship with AR modeling

FO estimation

of {a} ?

» Explosions of plosives last 1-2 ms; they

LP Speech synthesis Problem with anti-formants

ARMA would be better for nasal sounds

100

Parameters are changed every 10 ms
$P V/U S coefficients nasal antiformant
90+

P S
1HL] = wrong modelization of

80 formants
v *\@‘@e : >

An(z) 70

J'LIT'L‘TL‘TL'Tl]’lI = — 60

il A

= e(n) is replaced by a pulse sequence or by - o, o, B2 o
white noise (#=0,0=1), and amplified with A1(2)+ A, (z) B A(z) ” A(2) ﬂM
o=og, 0 ‘ R

e 0 1000 2000 3000 4000 5000 6000 7000 8000
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Problem with mixed voicing

Voiced frlcatlves partly v0|ced partly unv0|ced

110

l partie voisée BF
100

9

0
|

60

[]
T
S~
S
=
———

Resonance HF
non voisée

50+

40

0 1000 2000 3000 4000 5000 6000 7000 8000

Multipulse Linear Prediction

(P A ) c coefficients
Pi 1 x(n)
—— E A [

MP-LPC=LP model excited with small number
of pulses, whose positions and amplitudes
have to be adjusted

Decreasing modeling errors

x(n)
= If the prediction error e(n)
was used as input for
1/A(z2): er(n) =0 Estimation &
= In practice, the excitation algorithm
waveforms used are a very
rough approximation of

Model

e(n)
e Find more realistic %?% B
excitation waveforms?

parameters
/\ |
MP-LPC CELP \/WMW\W —
x(n)

= 0= =0

Code-Excited Linear Prediction

index dans le

dictionnaire c coefficients

s ——

1o 1 x(n)

E %W%

CELP=LP model excited with a real excitation
signal, taken from a list (=codebook) of typ.
1024 or 2018
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Short-term Fourier Transform

Convolutive

X() > X (@) W(t) W (o)

effect X(OW(t =) <> X () *W (o)
2 500
0 0
20 50 100 10 %% 100 200 300
1 50
0.5 L0
% 50 100 10 % 100 200 300
2 100
0 2 0
20 50 00 1m0 %% 100 200 300

Short-term Fourier Transform

Continuous: X(t)« X(t,0) = J-X(T)W(t_z.)e—jwrdz_
Discrete: x(n) <> X (n,k) = > x(i)w(n —i)e

i=0

Short-term spectral density function:

S, () =|X(nk)|*  with ¢= k%

Weighting window w(n)

— if too long, averaging occurs (+stationnarity?)
— if too short, frequency resolution falls down

— shape?

Short-term Fourier Transform

From wide-band to narrow-band

L = B8 T0

100

L =470

80

50

60

40

20

]

0 2000 4000 6000

8000 o] 2000

4000 6000 BOOQ

100 L=3T0

80 L= ? TO

60
4ol

20

[o] 2000 4000 6000

8000 0 2000

4000 6000 800

Copyright (c)2002 Faculté Polytechnique de Mons - T. Dutoit




Narrow-band: voiced

T T
a 1Baa 2868 fetalc] 4808 SEEE 20 To0a

[a], Hamming(30ms)

Contents

e Production models
— Autoregressive modeling of speech

— Autoregressive modeling of stationary random
signals

< AR model - Estimation algorithms
— Autoregressive estimation of speech
— Extensions of the AR model

e Transform-based models (phenomenological)

— Short-term Fourier transform
e Definition - Interpretation
« Relationship with AR modeling
« Hybrid harmonic+noise model - Estimation
— Homomorphic (or cepstral) transform
= Definition - Properties
= Relationship with AR modeling
= FO estimation

Narrow-band: unvoiced

45 frequency (Hzi

T
a 1888 2888 fee) 4a88 Sana 5888 Taee

‘I‘ gt
time (ms

[f], Hamming(30ms)
X (n, k)] —=225,(g)

STFT & AR model?
3, (K)«—=>S,(#) =D 4, (K)e’

¢><AR (k) (;) S><AR (¢)

? by definition

Syar (9)= S, (¢)|A( 9 | | J¢)|

b (K)=4,(k) fork=01...,p

approximates the envelope of S (¢#)

A(ei¢)

NB: this is also appliable to short term estimations
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STFT & AR model?

can be easily computed from the {a;}

.2

,ai,az,...,ap,O,O,O,...9}<L> A’ M)

g

N samples

frequency Hz

T
ToeE

Hybrid harmonic/noise model

o0t 5,0
Harmonic xh(t)
signal

generato{r} | x(t)
Colored T
Noise

generator | x,(t)

Harmonic component defined by the amplitudes
and phases of harmonics : {amp,}, {phase}

Noise component defined by the s.d.f. of x (t)

Contents

= Production models
— Autoregressive modeling of speech

— Autoregressive modeling of stationary random
signals

< AR model - Estimation algorithms
— Autoregressive estimation of speech
— Extensions of the AR model

e Transform-based models (phenomenological)

— Short-term Fourier transform
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= Relationship with AR modeling
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= Definition - Properties
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Hybrid H/N estimation

Rough FO estimation (comb-filter-like)
Estimate the parameters of the harmonic part

e,(t) = jwz(t-r)|x(f)-xh(r)|2df=% ﬂSx(t,a})—th(t,a})rda)

N
with X, (t) = Zgieji%t with g, =§-_i*

i=—N

Typical least squares minimization problem :
Aa=b

Solution : A"Aa=A"D = Ra
— trivial if R is diagonal
— Levinson if R is Toeplitz

— Cholesky otherwise (R is allways symetric)

=r
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Hybrid H/N estimation

» Repeat on a grid of F, values around initial F,
— Precision on Nth harmonic is N x precision on F,!
* F;=100 Hz; T,=F,/100 samples

if error = 1 sample on T,
=100 - F,/(F,/(100+1)) Hz on F,
= 10000/ (F, +10000) Hz on F,

Nparm = Fs/2 /100

error on Nth harm. = N, X error on Fy~ 25 to 50Hz!!!

— Precision required : at least 1/8th sample
e Get the s.d.f of the « noise » part with:

X, () = X(t) X, t)

Hybrid H/N synthesis

amp;
Q, phasel. Sn ©)

i  Harmonics:

l ﬂ H — ¥ of cosines

Harmonic |x,(t) — X Of outputs of digital
oscillators whose

Colored — ¥ of main lobes in the
Noise freq. domain + IFFT
generator | x(t) )
e Noise:

signal |
generator X(®) frequencies are set to that
{} of harmonics

— X of narrow band noises, obtained by (amplitude)
modulating a low frequency noise with harmonics

— frequency-domain noise matching the required
s.d.f. + IFFT

H/N modeling errors

e Harmonics are found *

in noise (no 80‘“‘-‘ " TR PN TEN TN J I T [T
orthogonality) . “H‘ }l H ‘H’ '
50

a 1000 2000 3000 4000 5000 6000 7000 8000

@60

= F,is not constant on [
the analysis frame = s l
broadening of
harmonic lobes at high
frequencies %0

2 h
To 2000 4000 6000 ’_sﬂm_‘
Freq Hz)

= In real speech, noise is correlated with harmonics in
the time domain

40

Hybrid H/N synthesis
ikiiiimw ;
%

i

Windowing

A
@’Ww ——
Synthetic speech

Wv\w/{fg]fD u;;w;u‘ﬁﬁli
W W V’\N{ W v u

k

e i>§

-1 t +1 '!«2

=
(it o

Overlap-Add (OLA) of successive frames
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— Autoregressive modeling of stationary random
signals
< AR model - Estimation algorithms
— Autoregressive estimation of speech

— Extensions of the AR model

e Transform-based models (phenomenological)
— Short-term Fourier transform
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Real cepstrum

s = In|| = ga [

x(n) X(®) InIX ()| 6, (n)

e ¢, (n) is the 7 -1 of the amplitude spectrum
of x(n) in neper (= in dB)

e ¢, (n) can be computed with FFT-1, provided
Neer IS big enough (to avoid undersampling
of X(w))

* NB: cepstrum, quefrency, liftering :-)

Homomorphic transform

e Complex cepstrum x(n)

o H —L
x(n) x(n)

= i —T>— In B Z-1 ——
x(n) X(2) In(X(2)) x(n)

e Convolution becomes summation:
| x(m)=u(n)*h(n) > X(@)=U@)H(z) - x(n)=u(n)+h(n) |
» If X(2) rational, then x(n) falls faster than 1/n

ittt -ttt

T, x(n) x(n) T,

Applications to speech

e If x(n)= j_f_f_t

¢, (n)= LT_T_t k—c*‘(”)
Use?

— Measure T, :easier on c,(n) than on x(n)

— Measure the spectral envelope of x(n):
Isolate c,(n) - h(n)

h(n) (vocal tract)
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Applications to speech

Cepstral Mean Substraction

If x(n)= qu * %h(n) (tel. line)

Cx(n) = Cspeech(n) + Cline(n)
E[Cx(n)]= E[Cspeech(n)] + E[Cline(n)]
= E[c,,.(n)]+k (estimator of ¢, .(n))
cMS, (M)= ¢, (n)- E[c,(M)]
cMS_(n) is independent from the channel
Used in spech recogniton

Contents

Production models
— Autoregressive modeling of speech

— Autoregressive modeling of stationary random
signals
< AR model - Estimation algorithms
— Autoregressive estimation of speech

— Extensions of the AR model

Transform-based models (phenomenological)
— Short-term Fourier transform

= Definition - Interpretation

= Relationship with AR modeling

« Hybrid harmonic+noise model - Estimation
— Homomorphic (or cepstral) transform

= Definition - Properties

= Relationship with AR modeling

FO estimation

Relationship with AR model

The first values of the cepstrum are
characteristic of the transfer function of the
vocal tract = must be related to {a;}

X

0 b X o e

In(1/A(2))

X(2)
—> z =
x(n) 1/A(2)

1 N n
|n(ﬁ) = nZzi,l(n) z

~R(2)/A@Z) = nx(n) 27

—Zp:iai A :{ a, z“}[ing(n) z‘(”“)}

p
j=0

FO estimation

Short-term estimation of FO on an
analysis frame (at least 2 times the local
pitch period); produces candidates for FO,
with score

Long-term post-processing, making the
ultimate choice among candidates (on a 3
frames-basis, usually), as a function of
their score and taking into account
constraints and correcting estimation
biases
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e Computational load >>>

Autocorrelation-based FO

estimation
= Periodicity of x implies a max in r, (k) for

kT, = T,

r(k)=Y"_x(nx(n+k) fork=K

K

min ?*** T ¥ max

(Y]

100 200 * %300 0

n —s i
ofi

Low Fo’'s High Fy's

e FO doubling for females, because of F1~H2

= use threshold(k)

#ﬁ;ﬂ:ﬂ ] o 7 i I.Eﬂﬁf i
= Lot _fan pliE B AN AN fan g
=R LA | i v \ , ,
ETE St LY ; i H-Ii : 5 A ¥ Bispl "'I
- H N ll_“'.:.rn = 1M ‘ - H ..- = [ -
1 -
o ALA S b Bl i [l "
am L] S s E | pial N T |
.:-: A% o ; o & = ¥ bl = :Elir ¥
- Tafocorrelation - / FRNCOT Do . .
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Simplified Inverse Filtering
Technique (SIFT)
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e Finds the max of the autocorrelation of the
error signal (= F1zH2 : flat envelope!)

» Decimation-interpolation for lower

computational cost

Cepstrum-based FO estimation

e Cepstrum is FFT-1(logSpectrum)
* Log spectrum is flatter than Spectrum
e Cepstrum is more pulse-like than signal
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Estimating FO with a comb filter

» ldea : filter signal with comb filter whose FO
varies from 70 to 500 Hz, and measure the
energy of the output: F,=F(max(energy))

1_2—80

10

0

10 fee e ]

-20

) F/2 |

e Usually performed in the frequency domain
direclty : FO=F(max(<FFT(x)2,H2(filter)>))

Conclusion

e LP model is good at modeling the short-
term spectral envelope (id. for cepstrum)

e MP-LPC, CELP, Hybrid H/N add a better
modeling of the contribution of the
excitation component (the fine spectral
structure)

» NB : these were models of the acoustic
component of speech only...

Post-processing

 Based on Dynamic Programming :
From the possible FO values for successive
frames, find the sequence which minimizes
a cost function 5 o
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= Logical filtering
— ex: one V frame in an island of UV frames = UV

FO
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