ASR: What for?

Office/desktop:

PART Iv = voice control of PC/Workstations, of programs,
- dictation systems
Automatic Speech

Manufacturing/Business:

Recognition (ASR) = aid in manufacturing process, quality control, stock

control and management

Medical/Legal:

« creation of medical/legal reports, briefs, diagnostics...

Others:

= games, aid to handicapped, interactive kiosk
information systems

ASR: What for? Challenges

e Telecommunications:

e access to data or services over the telephone (e.g.
AT&T’'s Maxwell personal telephone attendant)

Coarticulation!
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Copyright (c) 2000 Faculté Polytechnique de Mons - T. Dutoit



Challenges Levels of complexity

e Inter-speaker variability
— Vocal tract, gender, dialects

e Language variability
— From isolated words to continuous speech
— Out-of-vocabulary words

e Noise

— Convolutive: recording/transmissionconditions,
reverberation

— Additive: recording environment, transmission
SNR

— Intra-speaker variability: stress, age, humor,
Lombard effect, ...

Isolated Connected Continuous

Speaker small 1 small small
dependent |large large large

Multi small small small

small small
large large

Speaker small
independent |large

4
2

speaker large 4 large large
3
5

Typology of ASR systems ASR flow-chart (60 ’'s)

e Speaker-dependent vs. -independent

S
e Language constraints: p - T
— isolated word recognition +vocabulary : € — Eiff‘;g‘tﬁﬁn—- Pcrllc’:cl);s?;—c > M;/\t/c(:)r::jng —
— connected word recognition fnn;zlilum gggz—,’), . cation t
— keywordspotting large  (50000) h /‘t\
— continuous speech recognition +perplexity : N
e Robustness constraints .ﬁﬁ;’ﬁ;ﬂi’s _
— laboratory (office)conditions: imposed ?7? lexicon
microphone, no ambiant noise Rules??7? . )
— (quiet) telephonesystem (D mic., D noise in a . .
given range) The « analytical » way o_f doings ASR
_ real-life (human-like) ASR... Very poor efficiency
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SToO®DOT W

ASR flow-chart (70 's)

4

Acoustic
features

of words

The instance-based approach (DTW)
OK for small vocabulary, speaker depdt

Today 's ASR flow-chart

Acoustic

models
of
phonemes

Phonetic

models of
words
(lexicon)

Syntactic
-semantic
models of
sentences

Contents

T
2 Feature Instance| e )

e  [Extraction[|Matching x = Introduction
C

h

e Feature extraction

e Instance-based approach (DTW)
» Model-based approach (HMM, HMM/ANN)

— Acoustic model
— Phonetic model
— Language model

Speech models for ASR

] T < ldeal properties of parameters:
E)'iteg‘(;ggn ;T;ﬁmz ] mz\t/;:?ng ” fne;ti?gz __>;°( — Invariant across the speakers for the same sounds
t — Good discrimination between speech sounds
— Robust to noise

e Types of features used in practice:
— LPC-based features : cepstrum coefficients

— Frequency warped spectral features: idem + use a
non-linear frequency axis to mimic the human
auditory system. (e.g. PLP analysis, MEL -
cepstrum).

Phoneme-based approach using statistical
models (HMM or HMM/ANN) for acoustics and
linguistics: Large vocabulary, speaker indepdt

— Auditory features : outputs of auditory models of
the cochlea and auditory nerves

Copyright (c) 2000 Faculté Polytechnique de Mons - T. Dutoit



CMS-LPC coefficients

High-pass
filter :
1/(1-a.z1)

Schur
algorithm
+ Kk, ® a
LPC
coefficients
MFCC - PLP

Speech Signal

Spectral
shaping

(Hamming)
Windowing

Autocorrelationl

recursion

Cepstral
coefficients

Liftering

Gir(N) = €(N) Wi, (N)

Cepstral

substraction

CMS - LPC cepstrum

coefficients
(every 10 ms)

» Mel-Frequency Cepstrum Coefficients

x(n)

X

Hz® Mel

\ 4

In] |

F1

S

mfccx(ni

e Perceptual Linear Prediction coefficients
— apply frequency warping on the spectrum of

x(n)

— Bark scale : based on auditorycritical bands

— Apply LP model on the result

(non linearlyspaced in Hz; linearlyspaced in
Barks)

Enriching the feature set

* ¢, (n) can be anything for silence frames
P add energy s, of x(n)

- Add F,? tried, without success

» Add delta features for better accounting
for (frame-to-frame) spectral dynamics:
DCXi (n): Cxi(n)_cxi_l(n)
Ds,' (n)=s,/(n)- s "(n)

Contents

e Introduction
e Feature extraction

- Instance-based approach (DTW)

» Model-based approach (HMM, HMM/ANN)
— Acoustic model
— Phonetic model
— Language model
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Instance-based ASR

Unknownutterance X={x,X,,...,Xy}

Known utterances

(with X =[X1, Xz, Xig 1)
Y ={y' .y Yt
Yzz{yll’ylz oY)t

Ye={y1,y%,... Yot

Compute D(X,YX) for k=1..M
Recognize:

x: Ybest
with D(X,Yrest)E D(X,YX) for k=1..M

OK for spkr-dpndt isolated word reco.

Global distance D(X,Yx)?

Local distance: d(x,,y*;) ?

T d
Euclidian gy, yfy=(x, - viY (%)) =w/a (- Y5’
distance: i=1

Mahalanobis

distance: d(x,, Y} =(%, - ¥) SU(%,¥)

Itakura distance (LPC-based)

Global distance D(X, Y«)?

e Linear tim 2
ear time D(X,Yk):ad(xnsyyvarp(n))

warping Y na
Yk
Y
v
Yo
Y1 R
X, X, Xz o .. Xy X

» Not realistic for long words or phrases

Global distance D(X, Y«)?

e Non linear time
warping Y

Yix I ’
AP
Yo
Y1

X; Xy Xg .. Xy

e Best path?
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Dynamic Time Warping (DTW) Contents

e |Introduction

D(n-1, (i) = D(n,j) = )
) A accumulated » Feature extraction
D(n-1,| D(n, distance from (1,1) « Instance-based approach (DTW)
D | D to (n,))
| « D(n.j)=min of e Model-based approach (HMM,
/ ) e d(n,j)+D(n-1,j-1) HMM/AN N)
= d(n,j)+D(n,j-1)
l/ - d(n,j)+D(n-1.j) — Acoustic model
e D(X,Y¥)= D(N,J(K)) — Phonetic model
1 2 ... N — Language model
Dynamic Time Warping (DTW) Model-based ASR
e Possible paths are constrained e Unknownutterance

X={X . X5,.... %}
(with X=[X,1,X5.-» Xig 17)
Models of known utterances:
M M, M,
e BAYESIAN (MAP) CLASSIFICATION:

» Penalties can be added to y — Compute P(M;|X) for j=1..J
steps, so as to avoid too + — Recognize:

much deviation from diagonal +0 K= Mpest
o with P(M, .., |X)? P(M,|X) for j=1...J

— by allowable steps; ex: 7

— by additional global constraints
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Model-based ASR Contents

Introduction

P(M;|X) = « posterior probability of M, »

not easy to compute .
y P Feature extraction

e Bayes rule: P(X|M).P(M,

Y PM,; | X) = (X] P(J))Z) M) e Instance-based approach (DTW)
- P(XIM,)= « likelihood of X » = Model-based approach (HMM, HMM/ANN)
= P(M,)=« prior probability of M; » —Acoustic model
» P(X)= constant — Phonetic model

— Language model
max P(M;|X) = max [P(X|M;) . P(M;)]
Model-based ASR Markov chain

max P(M|X) = max [P(X|M) . P(M)]

e =stochastic finite state automaton
= Mis a sequence of words (W ,W,,..,.W,) —ex: g4 0.2 0.6
; ‘ i cloudy -
- (W, W,,..,W,) may have several phonetic ]
transcriptions P, (I=1...L)
> PX|M) = PX|P)P(P.IM) + P(X|P,)P(P,|M)
.+ P(X|P) P(P.|M)

P(X|P,) € Acoustic model - Defined by its topology (states,
P(P|M) € Phonetic model interconnections), and by transition probs.

P(M) € Language model
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Markov chain Hidden Markov Model (HMM)

! s?n!g':‘

P(r,b,r[Model)= P(r,b,r|B1,B1,B1) P(B1,B1,B1)
+ P(r,b,r|B1,B1,B2) P(B1,B1,B2)
+ P(r,b,r|B1,B1,B3) P(B1,B1,B3)

e Use?

— P(S-S-S-R-R-S-C-S) ?
P(S-S-S-R-R-S-C-S)

=P(S).P(S]S).P(S]|S).P(R]S).P(R|R)... + P(r,b,r|B1,B2,B1) P(B1,B2,B1)
=(1.0)(0.8)(0.8)(0.1)(0.4)... + P(r,b,r|B1,82,82) P(B1,82,82)

e Istate « 1 observation + P(r,b,r|B3,B3,B3) P(B3,B3,B3)
Try state=phoneme and observation=x_? with  P(r,b,r|Bi,Bj,Bk)= P(r|Bi) P(b| Bj) P(r| BK)

X,, IS observable with several phonemes P(BI.BJ.BK)=P(BI) P(B]|BI) P(BKIB))

Hidden Markov Model (HMM) Hidden Markov Model (HMM)

e Estimation problem : P(X|M)?
O(NstatesNobs) computations???
Dynamic programming

P(r|B1) P(r|B3) P(r|B3)

Emissi
P(b|B1) P(OIB3)  P(IB3) Porobabilities
P(alB1) P(aIB3) P(aIB3) . Baum-Welch Viterbi
P(B1|B1), P(B2|B1), P(B3IBL) ) .. (all paths) (best path only)
P(B1]|B2), P(B2|B2), P(B3|B2) orobabilities  © 1raining problem: best emission and
P(B1|B3), P(B2|B3), P(B3|B3) L transition probs, given model topology and
Double, embedded stochastic process: data ]
~choose box using transition probs. - Dec?dlng. proplem: best sequence of states
-choose ball using emission probs. = Viterbi again
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Training HMMs HMM/ANN hybrids for ASR

States:| 1 2 3 ... K

. A Ty = ttu

e Data:« brbrrbgbrbbgbggbrbgbrggbrbgg... »

e Emission and transition probabilities?
If states were known: counting

» EM (expectation-maximization) algorithm
— Initialize Probs. (firstguess if possible): M°

— Decode the data with M° = states until
— Re-estimate Probs. by counting: M1 Mi » Mi+1 ,
Frames: | X, 4 X .3 .-« X, «o. X1043 Xpaa
HMMs for ASR (The perceptron)
e Observation= x, = P(x,|state)=continuous 90

Cannot be estimated by counting
Estimated via the p.d.f. of a distribution

— ex: Gaussian Multi-Gaussian
P(x_|statej)

e In practice, each phoneme is modeled as 3

states (Bakis model) f f E
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HMM/ANN hybrids for ASR

e Multi-Layer F1
Perceptrons |
(MLP) canbe ¢
used for ;[
estimating g
P(x_ |state)

C
[Bourlard & ?
Wellekens 90] r
e
C
t

ofF

o

Output probability 1

HMM/ANN hybrids for ASR

- P(x_|state) is estimated without any
hypothesis on its p.d.f. (as opposed to
even multi-gaussians)

e MLPs are discriminant : at training time,
not only the correct output (state) is
maximally selected, but also the other
outputs are maximally rejected

e Less parameters to train (the same MLP is
used for prediction all states)

Contents

Introduction
Feature extraction

Instance-based approach (DTW)
Model-based approach (HMM, HMM/ANN)

— Acoustic model

—Phonetic model
— Language model

Phonetic model

- P(X|M) = PX|P,)P(P.|M)
+P(X|P)P(P,|M)

P(P,|M)? |

+ P(X|P)) P(P_|M)

e Using Markov chains: « of », « the »
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Phonetic model Language model

e Each phoneme is itself an HMM:

e P(M) is actually P(M]|some language model)
e 3 problems (cf. acoustic models)

— Training of the language model

— Estimation of P(M]language model)

— Decoding: how to integrate P(M) in the
recognition process?

e Notice that:
P(M) = P(W,,W,,,...., W, )

» Phonetic transition probabilities can be

£
trained simultaeously with acoustic probs =OPW,|W_,W_,,.. W)
e P(X|M) can be estimated in one shot <
Contents word-pair model
e Introduction » A sentence is admitted only if all word

pairs have been encountered at least one

Feature extraction In a very large text corpus:

Instance-based approach (DTW)
Model-based approach (HMM, HMM/ANN)

— Acoustic model

PM)=1 if $W,W,_,) forallk
=0 otherwise

— Phonetic model

— Language model

Estimation and training are trivial
Decoding: see n-grams

e Much too simple; banishes lots of well-
formed sentences
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n-gram models

e Hyp: the probability of having a word in a

sentence does not depend more on all the
words of the sentence than on the n

previous words: S
POM)=Q P(W, IW_,W,_,,.., W)
k=1

L
= O P(W, IW _.W_,...W_)
k=1

— ex: estimation with a trigram (n=2):
P(the weather is nice)= P(the|_, )
P(weather|the, ) P(is|weather,the)
P(nice|is,weather)

n-gram training

P(W IW,_,..W,_)?

Count frequency of occurrence in a very,
very, very large corpus

If vocabulary>> or n>1, use smoothing

techniques:

— Back-off: if P(W, |W,__,,..,W,_,) cannot be
estimated, try to use a combination of n-i-grams
(i=1..n)

— Use part-of-speech instead of words for context :
P(W\IW,_1,.., W _n)» P(W [pos(W,_,),..,pos(W,._,, )

In practice : n<=2 : trigrams

Seeing words as pos
Dogd i td

n-gram decoding

- max P(M;|X) = max [P(X|M;) . P(M,)]
e |t has been assumed that Mj was known,
while M; should obviously depend on X

itslef! (try to recognize the most probable
sentence first)

e Depth-first search:

— at each frame i, the decoder stores on a stack
the list of most likely word sequences up to
frame i

— these word sequences are tested first for the
estimation of the acoustic score for frame i+1
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n-gram results

“That this simple approach is so successful is
a source of considerable irritation to me and
to some of my colleagues. We have evidence
that better language models are obtainable,
we think we know many weaknesses of the
trigram model, and yet, when we devise
more or less subtle methods of
improvement, we come up short.”

F. Jelinek, « Up from trigrams », 1993

Conclusion

LEE]S Mode
Equiprobable words Sp. Depdt
Sp. Indepdt
Sp. Indepdt

Vocabulary errorrate
10 digits 0%

39 ascii 4.5%
1109 basic 4.3%
English

10 digits

39 ascii
1218 names
10 digits

11 digits
129 words
991 words

Type
Isolated words

Sp. Indepdt
Sp. Indepdt
Sp. Indepdt
Connected words | Sequence of digits Sp. Depdt
id. Sp. Indepdt
Flight reservation Sp. Depdt
Ressource Sp. Indepdt
management
perplexity 60
Airline travel Sp. Indepdt
information system
perplexity 25

0.1%
7.0%
4.7%
0.1%
0.2%
0.1%
Continuous 3.0%
speech

1800 words

20000 words 12.0%

Wall street journal Sp. Indepdt
(perplexity 145)

Today ’'s error rates

e Importance of the language model:

— Ressource Management:
without LM: 85% words; with LM: 97%

P The last 3% might still be a language problem
e These are laboratory systems, working on
read speech!
Real life systems, spontaneous speech: -30%
=(
e Current issues :
|Robustness Spkr adaptation Language models|

Recognition is not
understanding
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