dsp TIPS&TRICKS

Efficient Resampling Implementations

“DSP Tips and Tricks" introduces prac-
tical design and implementation signal
processing algorithms that you may
wish to incorporate into your designs.
We welcome readers to submit their
contributions to the Associate Editors
Rick Lyons (R.Lyons@ieee.org) or Britt
Rorabaugh (dspboss@aol.com).

he process of sample rate

conversion (resampling) of

a discrete sequence has

many applications in digital

signal processing, particu-
larly in the field of digital communica-
tions. This article describes efficient
implementations used to change the
sample rate of a discrete signal by an
arbitrary factor.

RESAMPLING USING

POLYPHASE FILTERS

The fundamental process of resampling
a discrete sequence by an integer factor
involves either inserting a sequence of
zero-valued samples between each
input sample followed by low-pass fil-
tering (interpolation) or low-pass filter-
ing an input signal and discarding
some of those filter output samples
(decimation). Polyphase filters were
developed to improve the computation-
al efficiency of the low-pass filtering in
interpolation by eliminating the multi-
ply-by-a-zero-sample operations and
avoiding the computation of the low-
pass filter output samples to be discard-
ed in decimation [1], [2]. With these
thoughts in mind, we assume the read-
er is familiar with the nature of
polyphase resampling filters, and here

Digital Object Identifier 10.1109/MSP.2008.923508

we present practical and efficient
polyphase filter implementations that
the reader should consider for their
next resampling design.

RESAMPLING BY AN

INTEGER FACTOR

To reduce input signal data storage
requirements, it’s smart to implement
resampling filtering using a single
tapped-delay line filter. Our recom-
mended design of a single delay line,
multiple coefficient set, interpolator is
shown in Figure 1(a). In this figure,
for example, L = 16 sets of coefficients
(each set having length R=6) are

Douglas W. Barker

precomputed and stored as the
columns of a two-dimensional matrix,
H, in read-only memory (ROM). The
matrix of coefficients, H, has R rows
and L columns.

We implement interpolation by
integer L=16, with £j, and
f.out = 164 in being the input and out-
put sample rates, respectively, as follows:
the “in” switch closes momentarily and
applies a single x(n) sample to the
tapped-delay line filter. The “out” switch
remains closed. At the £ oyt output data
rate, the ROM address pointer begins
incrementing by one and scans through
the 16 ROM column addresses, causing

(1) U S=WItCh Tapped Delay Line Filter
(fsn rate)
H ROM
hgo h
f,;ZEi ggé Out Switch
48 Ilag 5 m
30 M3z~ ° ?fQ }Flt(t))
16 M7 31 s.out Rate
fo M s * ROM Data
ROM (Column Coefficients)
Column
ROM Address fs,out Output
hiaEliEsE Pointer [Clock
(a)
Apply New x(n)
v v v
w 15} o & K
g
= 10t .0 o° o® o°
< o° o° o° o°
= 5 ..' .o. .o. .o.
8 O“

1 10 20 30

40 50 60

Output Sample Index m

[FIG1] ROM-based interpolation by an integer factor L = 16: (a) structure and (b) ROM

column addresses.

IEEE SIGNAL PROCESSING MAGAZINE [114

JULY 2008

1053-5888/08/$25.0002008IEEE

the ROM to output R coefficients for
each column address. For each set of R
coefficients, we compute an interpolated
y(m) output sample and reset the
tapped-delay line’s ACC accumulator to
zero after each computation.

The ROM column addresses,
repeatedly incrementing from zero
to L—1=15, are shown in
Figure 1(b) for four x(n) input
samples. We view the ROM address
pointer operation as a kind of mod-
ulo-L numerically controlled oscil-
lator (NCO).

Again, each dot in Figure 1(b)
represents the computation of an
interpolated y(m) output sample. Each
time the ROM address pointer is reset to
zero, a time period of 1/ i, indicated by
the down arrows in the figure, the “in”
switch closes, momentarily shifting a
new x(n) input sample into the tapped-
delay line.

Note that the “in” switch in Figure 1(a)
is for descriptive purposes only. In reali-
ty, upon experiencing an overflow condi-
tion, the ROM address pointer outputs
what we will call an NCO overflow con-
trol signal that is applied to an external
system, causing that system to supply a
new x(n) input sample to our interpolator.

RESAMPLING BY AN

ARBITRARY FACTOR

The interpolation and decimation
processes, described earlier, can be
extended to produce output sample rates
that are arbitrary (noninteger) multiples
of the input sample rate. Such interpola-
tion and decimation lead to two slightly
different design methods and structures
and are therefore discussed separately.

INTERPOLATION BY AN
ARBITRARY FACTOR
For the case of interpolation by an arbi-
trary factor, we use the network in
Figure 1(a), but we change the ROM
address pointer mechanism to the
process shown in Figure 2(a), where
the notation | ¢] means the integer por-
tion of g.

In Figure 2(a), we implement an NCO
that operates as a modulo-C accumula-
tor. In Figure 1(a), the interpolation fac-

tor L was equal to the number of
columns in the ROM memory, but that is
not the case when interpolating by an
arbitrary factor. For this discussion, we’ll
let L continue to represent the number

THIS ARTICLE DESCRIBES
EFFICIENT IMPLEMENTATIONS
USED TO CHANGE THE
SAMPLE RATE OF A
DISCRETE SIGNAL BY AN
ARBITRARY FACTOR.

of columns in the ROM memory. The
value L then determines the desired
interpolation accuracy, where larger L
leads to more accurate interpolation. We
now define Fiyt as the desired interpola-
tion factor

Fint: £ (1)
s,in

)

where frequency f i, is our input sig-
nal’s sample rate and % oyt is our desired
upsampled output sample rate in hertz.

To the NCO in Figure 2(a) we apply a
fixed phase increment value ¢n int
defined by

C £
Pt = 57— =C-)

s
int f;,out

where the subscript “int” means
interpolation. At the £ oyt rate, the
value ¢a int is added to the NCO’s
accumulator, producing the value
$accum- The ratio ¢accum /C is a
value between zero and one. In
fixed-point implementations, ¢a int
is rounded to the nearest integer.
This forces Fint in (1) to be a ration-
al number, but we can approach any
desired Fint value arbitrarily closely by
increasing the value of C. Thus, the con-
stant C is made as large as possible in
any given implementation.

The function |L - ¢accum /C| pro-
duces the integer part of L - ¢accum /C,
selecting the appropriate one out of L
ROM column addresses, causing the ROM
to output R coefficients. For each set of R
coefficients, as before, we compute an
interpolated y(m) output sample and
reset the tapped-delay line’s ACC

N ROM
‘7 Column
Paint ONE dacoum I_L _q’accumJ Address
z C
f NCO
s our Output Clock Overflow |Overflow
Detection | (To In
Switch)
(a)
NCO Overflow [Input New x(n)]
v v v v v
o 15 » & ® 4
o S S & ¢
3 10 g o N 4
< |8 &0 ¥
=S A~ i@ 5 ; i@
o) 5@ e ; o
> e ; o
e 0 A ;)
1 40 100

Output Sample Index

(b)

[FIG2] Interpolation by an arbitrary factor: (a) ROM address generation and (b) ROM

addresses when L =16 and F,; = 12.6374.

IEEE SIGNAL PROCESSING MAGAZINE [115

JULY 2008

accumulator to zero after each computa-
tion. However, when interpolating by an
arbitrary factor, the ROM column address
no longer increments by one. For exam-
ple, when L =16 and Fj,; = 12.6374,
the ROM column addresses are those
shown in Figure 2(b), where we see the
irregular progression of the integer ROM
addresses. When the modulo-C NCO ac-
cumulator overflows, the NCO overflow
control line causes the “in” switch to
momentarily close and shift a new x(n)
input sample into the tapped-delay line.

For practicality, we let L and C be
integer powers of two so that in Figure
2(a) the L - ¢accum /C computation is
performed, multiplier-free, as

Paccum _ ¢ accum
L C — 2log(O-log L) @)

This means we compute | L - ¢accum /Cl
by merely shifting ¢accum to the right by
[logo(C) —logo(L)] bits. This process
gives us an efficient way to extract the
proper L bits of ¢accum to select the cor-
rect column of the ROM.

By shifting ¢accum to the right,the
fractional portion of the quotient in (3) is
truncated, causing a small error in the
resulting interpolation. To keep the
interpolation error less than the quanti-
zation error of the x(n) input signal, rep-
resented by b-bit samples, the number of
L columns in the coefficient matrix H
should be chosen so that

20-1) . B
L>>" =

'g,in

, 4)

where B is the two-sided bandwidth (cen-
tered at 0 Hz) of the low-pass x(n) input
signal measured in hertz [3].

COMPUTATION OF THE
INTERPOLATION COEFFICIENTS

Each column of the # ROM in Figure
1(a) contains the R coefficients of a
subfilter, where each subfilter is
obtained by standard polyphase decom-
position of a prototype filter designed
using commercial filter design soft-
ware. The prototype filter is a linear-
phase tapped-delay line filter having

TO REDUCE INPUT SIGNAL
DATA STORAGE
REQUIREMENTS,

IT'S SMART TO IMPLEMENT
RESAMPLING FILTERING
USING A SINGLE TAPPED-
DELAY LINE FILTER.

L - R coefficients, and it is designed to
eliminate all its input spectral compo-
nents whose frequencies are above
f5,in/2. The prototype filter design is
based entirely upon the factors L and
R. This has a very practical implica-
tion; a single filter design specification
(the pass-band width is always £ in/2
Hz) can be used to design any filter
needed to interpolate any signal of less-
er sample rate than £ oyt to an £ oyt
rate with at least 1/(L - £ in) accuracy
in interpolation timing.

DECIMATION BY AN

ARBITRARY FACTOR

The complementary operation to interpo-

lation is decimation, the ROM address

generation of which is shown in Figure 3.
Our resampling network effectively

interpolates x(n) by L’ and decimates by

M, where M > L’ and L’ is defined as

ROM

¢accum

¢A,dec

Column

I_M %C%J Address

NCO

— 71 P
fsin INput Clock L

Overflow

Overflow
. f——————
Detection

(Compute

[FIG3] Decimation ROM address generation.

Filter Output and
Close Out Switch)

_ (M fs,out)

L/
fs,in

5)
Decimation is implemented as fol-

lows: the fixed integer phase increment
value @A gec, given by

f
¢A,dec = \\C' SYOUtJ (6)

in Figure 3, is added to the NCO’s accu-
mulator at the £ j, rate and, again, the
ratio ¢accum /C is a value between zero
and one. As before, the NCO operates as
a modulo-C accumulator and L repre-
sents the number of columns in the
ROM memory. For decimation, the
integer value M determines the resam-
pling accuracy, and M is chosen to be
an integer power of two (for the same
reason that we chose L to be an integer
power of two in the above interpolation
case). As such, M is determined using (4)
with the L replaced by M.

The value L’ in (5) then is deter-
mined by M and our desired overall deci-
mation resampling rate, and we use this
value L’ to compute the coefficients of
the H ROM in Figure 1(a).

At the £ i, rate, we apply a new x(n)
input sample to the tapped-delay line and
increment the NCO by ¢ gec. When the
NCO overflows, we compute the function
LM - ¢accum /C| defining the appropriate
one out of L ROM column addresses,
causing the ROM to output R coefficients.
[The integer value | M - ¢accum /C] is
computed, multiplier free, as before in
(3).] The R coefficients are then used to
compute a y(m) output sample, the
“out” switch in Figure 1(a) is momentar-
ily closed, and the tapped-delay line’s
ACC accumulator is reset to zero. With
this operation in mind, we see that the
NCO is driven with a phase increment
that causes an overflow at the desired
f;.out output sample rate.

Once the value of M is chosen based
on the interpolation accuracy require-
ments for the output signal, we then
compute the value L’ using (5). Next we
compute the number of columns in the
H coefficient ROM matrix, L, using

L=1L", ™

IEEE SIGNAL PROCESSING MAGAZINE [116

JULY 2008

where [L’] means take the next integer
larger than L/, if L’ is not an integer.

COMPUTATION OF THE

DECIMATION COEFFICIENTS
Calculating the filter coefficients for the
decimation case is somewhat tricky
because the rows and columns of the H
coefficient matrix are not spaced regular-
ly in time. We cannot simply use a com-
mercial filter design routine because
such software only produces prototype
filter impulse response samples at regu-
larly spaced time points. The method we
chose to compute the coefficients is to
evaluate the continuous-time impulse
response of the desired prototype FIR fil-
ter at the time points of A using a time-
point matrix 7. Matrix 7T has the same
rows and columns of A and is computed
first. The time points in T are specified in
units based on the interpolated sample
rate of L' fin =M - fout. The ele-
ments of T are then given by

T(r,c)=rL"+c, 8)

where row index r ranges from zero to
R -1 and column index ¢ ranges from
zero to L — 1. The filter coefficients are
calculated by evaluating the prototype
filter’s impulse response at the time
points in 7. Notice that the spacing
between the columns (phases) is equal to
unity, while the spacing between the
rows is L', which is equal to the time
spacing of the input data.

For example, if L' =2.666, L =3,
and R = 5, the T'matrix would be

T(rc) =
0 1.000 2.000
2.666 3.666 4.666
5.333 6.333 7.333
8.000 9.000 10.000
10.666 11.666 12.666.

If the prototype filter’s impulse
response is the dashed curve in Figure 4,
the H decimation coefficients in this
example are the dots. The tick marks at
the bottom of Figure 4 show the values
of time matrix 7. The irregular spacing
of the coefficients in time is due to the
fractional nature of L’.

0.15 oFirst Column of H
&%, mSecond Column of H|
5 01 . “5#Third Column of H -
= "
T 0.05 o P
7 . . L.
. - Time, 1./(L 'fs,ir])_’ Qe ff
0 2 4 6 8 10 12 14
[I I A [I
7(0,0) 7(0,2) T(1,1) T(2,1) T(4,0) T(4,2)

[FIG4] H matrix coefficients when L' = 2.666, L =3, and R =5.

It is important to note that the value
of the NCO that occurs after rollover,
M - accum / C, represents the interval of
time between the current state of the
NCO and the point in time that must be
interpolated. The larger the rollover
value, the further back in time we must
interpolate. For this reason, the columns
of H must be reversed so that larger NCO
overflow values produce interpolations
that are further back in time.

CONCLUSIONS
This article has presented methods for
efficiently resampling a discrete time sig-
nal. We described techniques to compute
the coefficients for both interpolation
and decimation filters, and provided
information with regard to minimizing
the resamplers’ timing jitter errors.
MATLAB code illustrating the operation
of our efficient resampling techniques, and
design guidance on using field-program-
mable gate array (FPGA) implementations,
are available on the IEEE Signal Pro-
cessing Magazine Web site at www.ee.
columbia.edu.spm.MATLAB code, and
FPGA implementation guidance, available
at http://apollo.ee.columbia.edu/spm/
?i=external/tipsandtricks.

ACKNOWLEDGMENTS

Many thanks to Rick Lyons for his efforts
in analyzing the details of these resam-
pling designs and his assistance with the
text of this article.

AUTHOR

Douglas W. Barker (doug.barker@itt.com)
is a senior principal engineer with ITT
Corporation, Advanced Engineering
and Sciences. His interests are in com-

munications systems design and digital
signal processing. He is a Member of
the IEEE.

REFERENCES

[1] A. Oppenheim, R. Schafer, and J. Buck, Discrete-
Time Signal Processing, 2/E. Upper Saddle River, NJ:
Prentice-Hall, 1989, pp. 179-184.

[2] R. Crochiere and L.R. Rabiner, Multirate Digital
Signal Processing. Englewood Cliffs, NJ: Prentice-
Hall, 1983, ch. 2-3.

[3] F. Harris, Multirate Signal Processing for
Communications Systems. Upper Saddle River, NJ:
Prentice Hall, 2004, pp. 172-175. Sp

IEEE SIGNAL PROCESSING MAGAZINE [117

JULY 2008

EPaolini
Rectangle

