
[dsp TIPS&TRICKS]

1053-5888/08/$25.00©2008IEEE

Douglas W. Barker

Efficient Resampling Implementations

T
he process of sample rate
conversion (resampling) of
a discrete sequence has
many applications in digital
signal processing, particu-

larly in the field of digital communica-
tions. This article describes efficient
implementations used to change the
sample rate of a discrete signal by an
arbitrary factor.

RESAMPLING USING
POLYPHASE FILTERS
The fundamental process of resampling
a discrete sequence by an integer factor
involves either inserting a sequence of
zero-valued samples between each
input sample followed by low-pass fil-
tering (interpolation) or low-pass filter-
ing an input signal and discarding
some of those filter output samples
(decimation). Polyphase filters were
developed to improve the computation-
al efficiency of the low-pass filtering in
interpolation by eliminating the multi-
ply-by-a-zero-sample operations and
avoiding the computation of the low-
pass filter output samples to be discard-
ed in decimation [1], [2]. With these
thoughts in mind, we assume the read-
er is familiar with the nature of
polyphase resampling filters, and here

we present practical and efficient
polyphase filter implementations that
the reader should consider for their
next resampling design.

RESAMPLING BY AN
INTEGER FACTOR
To reduce input signal data storage
requirements, it’s smart to implement
resampling filtering using a single
tapped-delay line filter. Our recom-
mended design of a single delay line,
multiple coefficient set, interpolator is
shown in Figure 1(a). In this figure,
for example, L = 16 sets of coefficients
(each set having length R = 6) are

precomputed and stored as the
columns of a two-dimensional matrix,
H, in read-only memory (ROM). The
matrix of coefficients, H, has R rows
and L columns.

We implement interpolation by
in t e g e r L = 16 , wi th fs,in and
fs,out = 16 fs,in being the input and out-
put sample rates, respectively, as follows:
the “in” switch closes momentarily and
applies a single x(n) sample to the
tapped-delay line filter. The “out” switch
remains closed. At the fs,out output data
rate, the ROM address pointer begins
incrementing by one and scans through
the 16 ROM column addresses, causing

Digital Object Identifier 10.1109/MSP.2008.923508

“DSP Tips and Tricks” introduces prac-
tical design and implementation signal
processing algorithms that you may
wish to incorporate into your designs.
We welcome readers to submit their
contributions to the Associate Editors
Rick Lyons (R.Lyons@ieee.org) or Britt
Rorabaugh (dspboss@aol.com).

[FIG1] ROM-based interpolation by an integer factor L = 16: (a) structure and (b) ROM
column addresses.

Apply New x(n)

15

10

5

0
1 10 20 30 40 50 60

Output Sample Index m

R
O

M
 A

dd
re

ss

(a)

(b)

In Switch
x(n)

(fs,in rate)

(fs,out Rate)

fs,out Output
Clock

H ROM

Tapped Delay Line Filter

z−1 z−1 z−1

ACC

Out Switch
y(m)

ROM Data
(Column Coefficients)

ROM Address
Pointer

ROM
Column
Address

h80 h81 h95
h64 h65 h79h48 h49 h63
h32 h33 h47
h16 h17 h31
h0 h1 h15

∑

IEEE SIGNAL PROCESSING MAGAZINE [114] JULY 2008

the ROM to output R coefficients for
each column address. For each set of R
coefficients, we compute an interpolated
y(m) output sample and reset the
tapped-delay line’s ACC accumulator to
zero after each computation.

The ROM column addresses,
repeatedly incrementing from zero
to L − 1 = 15, are shown in
Figure 1(b) for four x(n) input
samples. We view the ROM address
pointer operation as a kind of mod-
ulo-L numerically controlled oscil-
lator (NCO).

Again, each dot in Figure 1(b)
represents the computation of an
interpolated y(m) output sample. Each
time the ROM address pointer is reset to
zero, a time period of 1/ fs,in indicated by
the down arrows in the figure, the “in”
switch closes, momentarily shifting a
new x(n) input sample into the tapped-
delay line.

Note that the “in” switch in Figure 1(a)
is for descriptive purposes only. In reali-
ty, upon experiencing an overflow condi-
tion, the ROM address pointer outputs
what we will call an NCO overflow con-
trol signal that is applied to an external
system, causing that system to supply a
new x(n) input sample to our interpolator.

RESAMPLING BY AN
ARBITRARY FACTOR
The interpolation and decimation
processes, described earlier, can be
extended to produce output sample rates
that are arbitrary (noninteger) multiples
of the input sample rate. Such interpola-
tion and decimation lead to two slightly
different design methods and structures
and are therefore discussed separately.

INTERPOLATION BY AN
ARBITRARY FACTOR
For the case of interpolation by an arbi-
trary factor, we use the network in
Figure 1(a), but we change the ROM
address pointer mechanism to the
process shown in Figure 2(a), where
the notation �q� means the integer por-
tion of q.

In Figure 2(a), we implement an NCO
that operates as a modulo-C accumula-
tor. In Figure 1(a), the interpolation fac-

tor L was equal to the number of
columns in the ROM memory, but that is
not the case when interpolating by an
arbitrary factor. For this discussion, we’ll
let L continue to represent the number

of columns in the ROM memory. The
value L then determines the desired
interpolation accuracy, where larger L
leads to more accurate interpolation. We
now define Fint as the desired interpola-
tion factor

Fint = fs,out

fs,in
, (1)

where frequency fs,in is our input sig-
nal’s sample rate and fs,out is our desired
upsampled output sample rate in hertz.

To the NCO in Figure 2(a) we apply a
fixed phase increment value φ�,int

defined by

φ�,int = C
Fint

= C · fs,in

fs,out
, (2)

where the subscript “int” means
interpolation. At the fs,out rate, the
value φ�,int is added to the NCO’s
accumulator, producing the value
φaccum . The ratio φaccum /C is a
value between zero and one. In
fixed-point implementations, φ�,int

is rounded to the nearest integer.
This forces Fint in (1) to be a ration-

al number, but we can approach any
desired Fint value arbitrarily closely by
increasing the value of C. Thus, the con-
stant C is made as large as possible in
any given implementation.

The function �L · φaccum /C� pro-
duces the integer part of L · φaccum /C,
selecting the appropriate one out of L
ROM column addresses, causing the ROM
to output R coefficients. For each set of R
coefficients, as before, we compute an
interpolated y(m) output sample and
reset the tapped-delay line’s ACC

[FIG2] Interpolation by an arbitrary factor: (a) ROM address generation and (b) ROM
addresses when L = 16 and F int = 12.6374.

NCO
φΔ,int

φaccum φaccum
z −1 L .

C

ROM
Column
Address

fs,out Output Clock Overflow
Detection

NCO
Overflow
(To In

Switch)

15

10

5

0
1 20 40 60 80 100

NCO Overflow [Input New x(n)]

R
O

M
 A

dd
re

ss

Output Sample Index

(a)

(b)

+

IEEE SIGNAL PROCESSING MAGAZINE [115] JULY 2008

THIS ARTICLE DESCRIBES
EFFICIENT IMPLEMENTATIONS

USED TO CHANGE THE
SAMPLE RATE OF A

DISCRETE SIGNAL BY AN
ARBITRARY FACTOR.

[dsp TIPS&TRICKS] continued

accumulator to zero after each computa-
tion. However, when interpolating by an
arbitrary factor, the ROM column address
no longer increments by one. For exam-
ple, when L = 16 and Fint = 12.6374,
the ROM column addresses are those
shown in Figure 2(b), where we see the
irregular progression of the integer ROM
addresses. When the modulo-C NCO ac-
cumulator overflows, the NCO overflow
control line causes the “in” switch to
momentarily close and shift a new x(n)

input sample into the tapped-delay line.
For practicality, we let L and C be

integer powers of two so that in Figure
2(a) the L · φaccum /C computation is
performed, multiplier-free, as

L · φ accum

C
= φ accum

2log2(C)−log2(L)
. (3)

This means we compute �L · φaccum /C�
by merely shifting φaccum to the right by
[log 2(C) − log 2(L)] bits. This process
gives us an efficient way to extract the
proper L bits of φaccum to select the cor-
rect column of the ROM.

By shifting φaccum to the right,the
fractional portion of the quotient in (3) is
truncated, causing a small error in the
resulting interpolation. To keep the
interpolation error less than the quanti-
zation error of the x(n) input signal, rep-
resented by b-bit samples, the number of
L columns in the coefficient matrix H
should be chosen so that

L >
2(b−1) · B

fs,in
, (4)

where B is the two-sided bandwidth (cen-
tered at 0 Hz) of the low-pass x(n) input
signal measured in hertz [3].

COMPUTATION OF THE
INTERPOLATION COEFFICIENTS
Each column of the H ROM in Figure
1(a) contains the R coefficients of a
subfilter, where each subfilter is
obtained by standard polyphase decom-
position of a prototype filter designed
using commercial filter design soft-
ware. The prototype filter is a linear-
phase tapped-delay line filter having

L · R coefficients, and it is designed to
eliminate all its input spectral compo-
nents whose frequencies are above
fs,in /2. The prototype filter design is
based entirely upon the factors L and
R. This has a very practical implica-
tion; a single filter design specification
(the pass-band width is always fs,in /2
Hz) can be used to design any filter
needed to interpolate any signal of less-
er sample rate than fs,out to an fs,out

rate with at least 1/(L · fs,in) accuracy
in interpolation timing.

DECIMATION BY AN
ARBITRARY FACTOR
The complementary operation to interpo-
lation is decimation, the ROM address
generation of which is shown in Figure 3.

Our resampling network effectively
interpolates x(n) by L ′ and decimates by
M, where M > L ′ and L ′ is defined as

L ′ = (M · fs,out)

fs,in
. (5)

Decimation is implemented as fol-
lows: the fixed integer phase increment
value φ�,dec, given by

φ�,dec =
⌊

C · fs,out

fs,in

⌋
(6)

in Figure 3, is added to the NCO’s accu-
mulator at the fs,in rate and, again, the
ratio φaccum /C is a value between zero
and one. As before, the NCO operates as
a modulo-C accumulator and L repre-
sents the number of columns in the
ROM memory. For decimation, the
integer value M determines the resam-
pling accuracy, and M is chosen to be
an integer power of two (for the same
reason that we chose L to be an integer

power of two in the above interpolation
case). As such, M is determined using (4)
with the L replaced by M.

The value L ′ in (5) then is deter-
mined by M and our desired overall deci-
mation resampling rate, and we use this
value L ′ to compute the coefficients of
the H ROM in Figure 1(a).

At the fs,in rate, we apply a new x(n)

input sample to the tapped-delay line and
increment the NCO by φ�,dec. When the
NCO overflows, we compute the function
�M · φaccum /C� defining the appropriate
one out of L ROM column addresses,
causing the ROM to output R coefficients.
[The integer value �M · φaccum /C� is
computed, multiplier free, as before in
(3).] The R coefficients are then used to
compute a y(m) output sample, the
“out” switch in Figure 1(a) is momentar-
ily closed, and the tapped-delay line’s
ACC accumulator is reset to zero. With
this operation in mind, we see that the
NCO is driven with a phase increment
that causes an overflow at the desired
fs,out output sample rate.

Once the value of M is chosen based
on the interpolation accuracy require-
ments for the output signal, we then
compute the value L ′ using (5). Next we
compute the number of columns in the
H coefficient ROM matrix, L, using

L = �L ′� , (7)[FIG3] Decimation ROM address generation.

NCO
φΔ,dec

φaccum φaccum
z −1 M .

C

ROM
Column
Address

fs,in Input Clock Overflow
Detection

NCO
Overflow

(Compute
Filter Output and
Close Out Switch)

TO REDUCE INPUT SIGNAL
DATA STORAGE
REQUIREMENTS,

IT’S SMART TO IMPLEMENT
RESAMPLING FILTERING

USING A SINGLE TAPPED-
DELAY LINE FILTER.

IEEE SIGNAL PROCESSING MAGAZINE [116] JULY 2008

IEEE SIGNAL PROCESSING MAGAZINE [117] JULY 2008

where �L ′� means take the next integer
larger than L ′, if L ′ is not an integer.

COMPUTATION OF THE
DECIMATION COEFFICIENTS
Calculating the filter coefficients for the
decimation case is somewhat tricky
because the rows and columns of the H
coefficient matrix are not spaced regular-
ly in time. We cannot simply use a com-
mercial filter design routine because
such software only produces prototype
filter impulse response samples at regu-
larly spaced time points. The method we
chose to compute the coefficients is to
evaluate the continuous-time impulse
response of the desired prototype FIR fil-
ter at the time points of H using a time-
point matrix T. Matrix T has the same
rows and columns of H and is computed
first. The time points in T are specified in
units based on the interpolated sample
rate of L ′ · fs,in = M · fs,out . The ele-
ments of T are then given by

T(r, c) = rL ′ + c , (8)

where row index r ranges from zero to
R – 1 and column index c ranges from
zero to L – 1. The filter coefficients are
calculated by evaluating the prototype
filter’s impulse response at the time
points in T. Notice that the spacing
between the columns (phases) is equal to
unity, while the spacing between the
rows is L ′ , which is equal to the time
spacing of the input data.

For example, if L ′ = 2.666, L = 3,
and R = 5, the T matrix would be

T(r, c) =
0 1.000 2.000
2.666 3.666 4.666
5.333 6.333 7.333
8.000 9.000 10.000

10.666 11.666 12.666.

If the prototype filter’s impulse
response is the dashed curve in Figure 4,
the H decimation coefficients in this
example are the dots. The tick marks at
the bottom of Figure 4 show the values
of time matrix T. The irregular spacing
of the coefficients in time is due to the
fractional nature of L ′.

It is important to note that the value
of the NCO that occurs after rollover,
M · φaccum /C, represents the interval of
time between the current state of the
NCO and the point in time that must be
interpolated. The larger the rollover
value, the further back in time we must
interpolate. For this reason, the columns
of H must be reversed so that larger NCO
overflow values produce interpolations
that are further back in time.

CONCLUSIONS
This article has presented methods for
efficiently resampling a discrete time sig-
nal. We described techniques to compute
the coefficients for both interpolation
and decimation filters, and provided
information with regard to minimizing
the resamplers’ timing jitter errors.

MATLAB code illustrating the operation
of our efficient resampling techniques, and
design guidance on using field-program-
mable gate array (FPGA) implementations,
are available on the IEEE Signal Pro-
cessing Magazine Web site at www.ee.
columbia.edu.spm.MATLAB code, and
FPGA implementation guidance, available
at http://apollo.ee.columbia.edu/spm/
?i=external/tipsandtricks.

ACKNOWLEDGMENTS
Many thanks to Rick Lyons for his efforts
in analyzing the details of these resam-
pling designs and his assistance with the
text of this article.

AUTHOR
Douglas W. Barker (doug.barker@itt.com)
is a senior principal engineer with ITT
Corporation, Advanced Engineering
and Sciences. His interests are in com-

munications systems design and digital
signal processing. He is a Member of
the IEEE.

REFERENCES
[1] A. Oppenheim, R. Schafer, and J. Buck, Discrete-
Time Signal Processing, 2/E. Upper Saddle River, NJ:
Prentice-Hall, 1989, pp. 179–184.

[2] R. Crochiere and L.R. Rabiner, Multirate Digital
Signal Processing. Englewood Cliffs, NJ: Prentice-
Hall, 1983, ch. 2–3.

[3] F. Harris, Multirate Signal Processing for
Communications Systems. Upper Saddle River, NJ:
Prentice Hall, 2004, pp. 172–175.

[FIG4] H matrix coefficients when L′ = 2.666, L = 3, and R = 5.

0.15

0.1

0.05

0
0 2 4

Time, 1/(L��fs,in)

6 8 10 12 14

T(0,0) T(0,2) T(1,1) T(2,1) T(4,0) T(4,2)

First Column of H
Second Column of H
Third Column of H

H
 (

r,c
)

[SP]

EPaolini
Rectangle

