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Fast, Accurate Frequency Estimators

he problem of estimating

the frequency of a tone con-

taminated with noise

appears in communications,

audio, medical, instrumen-
tation, and other applications. The fun-
damental tool for resolving this
problem is the discrete Fourier trans-
form (DFT) or its efficient cousin, the
fast Fourier transform (FFT). When
using either of them, a well-known
tradeoff exists between the amount of
time needed to collect data, the number
of data points collected, the type of
time-domain window used, and the res-
olution that can be achieved in the fre-
quency domain. This article presents
computationally simple algorithms that
provide substantial refinement of the
frequency estimation of tones based on
DFT samples without the need for
increasing the DFT size.

THE IDEA

When estimating the frequency of a
tone, the idea is to estimate the fre-
quency of the spectral peak Apea
(shown in Figure 1) based on three DFT
samples: Xj_1, Xg, and Xpyq. If we
selected kpea by making it equal to the
k index of the largest DFT magnitude
sample, then the maximum estimation
error in kpeyx would be equal to half the
width of the DFT bin. However, if we
used the frequency-domain peak sample
Xk, and one or two adjacent samples,
the estimate of the peak location could
be more accurate if we used simple
best- or approximate-fit algorithms. In
this article, we discuss solutions that
provide a fractional correction term § to
be added to the integer peak index & to
determine a fine estimate of the spectral
peak location Ape,x located at the cyclic
frequency fone

kpeak =k +46 and
ftone = kpeak /\;‘/Ns (1)

where £ is the time data sample rate in
Hz and N is the DFT size. Note that §
can be positive or negative, and kpeak
need not be an integer. This §-corrected
refinement of the original bin location
estimate can be surprisingly accurate
even in low signal-to-noise ratio (SNR)
conditions.

SPECTRAL PEAK

LOCATION ESTIMATION

Many spectral peak location estimation
solutions with different computational
complexities have been described
[1]-[7]. Here we focus on three lesser
known, but accurate and computation-
ally simple, estimators. An example of a
computationally simple peak location
estimation that uses three DFT magni-
tude samples [8], [9] makes use of a
correction term given by

(X g1l = 1Xp—1D)
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The expression is simple, but it is statisti-
cally biased and performs poorly in the
presence of noise. Some simple changes
to (2) improve its accuracy dramatically
[4], for instance by using the complex
DFT values rather than the magnitudes
as follows

5 — —Re[ (Xpr1 — Xp—1) ]

X — X1 — Xpt1)
(3)

The accuracy of the spectral peak location
estimation has been improved and the
statistical bias of (2) has been eliminated.
Even more, (3) provides potential for
computation reduction by avoiding the
nontrivial magnitude calculations in (2).
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DFT magnitude samples of a spectral tone.
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continued
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[TABLE 1] CORRECTION SCALING
VALUES FOR COMMON
WINDOW TYPES USED
WITH (4) AND (5).

WINDOW P Q

HAMMING 1.22 0.60
HANNING 1.36 0.55
BLACKMAN 1.75 0.55
BLACKMAN-HARRIS 1.72 0.56

(THREE-TERM)

While the solution in (3) works well
when a rectangular time-domain window
is applied to the DFT’s input samples, it
is often beneficial or necessary to use
nonrectangular windowing. One compu-
tationally simple alternative that is use-
ful when time-domain data windowing
has been used is given by

P Xpp1| — 1 Xp—1D)

= )]
(X%l + [ Xp—1] + 1 X1

where the scaling constant P can be
adjusted for different window functions
[10]. However, (4) requires the computa-
tion of the DFT magnitude samples.
Inspired by (3) and (4), a solution for use
with nonrectangular windowed time
samples has been suggested that does
not require DFT magnitude computa-
tions; it is given by

QXp—1 — Xgy1) ]
§ =R , b
¢ [(2Xk+Xk—1 + Xky1) ©)

where Q is a window-specific scaling
constant [11]. Examples of scaling fac-
tors for (4) and (5) and common win-
dowing functions are included in Table 1.
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Algorithm RMS error performances versus tone SNR.

PERFORMANCE EVALUATION

The performance of the solutions (3)—(5)
for a particular application can be
expressed in terms of accuracy [root
mean square (RMS) error], sensitivity to
bias, and computational complexity, and
depends on the type of windowing used.
Estimators (4) and (5) provide less accu-
racy and have more highly biased out-
puts than (3), but their accuracy is better
than (3) when applied to DFT samples
from nonrectangular-windowed data.
Figure 2 shows estimator RMS error for
(3), (4), and (5) as a function of the tone’s
SNR when a tone at a 9.5-bin location is
contaminated with white Gaussian noise.
The performance of (3) is shown using
unwindowed FFT input data and
Hanning windowed FFT input data. All
other algorithms use a Hanning window.

RMS Error

Bin Number

(@)

Note the significant performance degra-
dation of (3) when the data is windowed.
Figure 3 shows the simulation
results of a tone whose spectral peak
location was varied from bin 9 to bin 10
at small increments for a length-64 sig-
nal. The figure shows the RMS error
and bias as functions of tone peak loca-
tion. It can be seen that the perform-
ance of each algorithm changes
depending on the tone offset within the
bin. Table 2 includes a comparison of
the computational complexities of the
estimators (3), (4), and (5). All of them
use additions or subtractions, but these
are typically trivial to implement in
hardware or software and are not con-
sidered significant for computational
complexity comparison (as opposed to
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the number of multiplications, divi-
sions, and magnitude computations).

CONCLUSIONS

Interbin tone peak location for isolated
peaks can be performed effectively in the
presence or absence of noise and with
rectangular or nonrectangular window-
ing. The most appropriate solution for a
particular application depends on the
accuracy (RMS error), sensitivity to bias,
the type of windowing used, and compu-
tational complexity. Among the estima-
tors discussed, (3) is very accurate and
provides a good complexity/ perform-
ance tradeoff as it requires only a single
divide. Equations (4) and (5) are appro-
priate for use when the DFT input data
has been windowed, although they do
suffer from bias errors. Fortunately, the
bias is predictable and it can often be
removed with an additional operation.
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