
IEEE SIGNAL PROCESSING MAGAZINE [120] JULY 2010 1053-5888/10/$26.00©2010IEEE

Zhi Shen
[dsp TIPS&TRICKS]

T
here is a method for increas-
ing the precision of fixed-
point coefficients used in
linear-phase finite impulse
response (FIR) filters to

achieve improved filter performance.
The improved performance is accom-
plished without increasing either the
number of coefficients or coefficient bit-
widths. At first thought, such a process
does not seem possible, but this article
shows exactly how this novel filtering
process works.

TRADITIONAL FIR FILTERING
To describe our method of increasing
FIR filter coefficient precision, let’s first
recall a few characteristics of tradition-
al linear-phase tapped-delay line FIR
filter operation.

Consider an FIR filter whose impulse
response is shown in Figure 1(a). For
computational efficiency reasons (re-
duced number of multipliers), we imple-
ment such filters using the folded
tapped-delay line structure shown in
Figure 1(c) [1].

The filter’s bk floating-point coeffi-
cients are listed in the second column of
Figure 1(b). When quantized to an 8-b
two’s-complement format, those coeffi-
cients are the decimal integers and binary

values shown in the third and fourth col-
umns, respectively, in Figure 1(b).

Compared to b4, the other coeffi-
cients are smaller, especially the outer
coefficients such as b0 and b8. Because
of the fixed bitwidth quantization, many
high-order bits of the low-amplitude
coefficients, the red-font underscored
bits in the fourth column of Figure 1(b),
are the same as the sign bit. These bits
are wasted because they have no effec-
tive (no weight) in the calculations. If
we can remove those wasted bits (con-
secutive bits adjacent to, and equal to,
the sign bit), and replace them with
more significant coefficient bits, we will
obtain improved numerical precision
for the low-amplitude beginning and
ending coefficients.

Replacing a low-amplitude coeffi-
cient’s wasted bits with more significant
bits is the central point of our FIR filter-
ing trick—of course some filter architec-
ture modification is needed as we shall
see. So let’s have a look at a generic
example of what we call a “serial” imple-
mentation of our trick.

SERIAL IMPLEMENTATION
As a simple example of replacing wasted
bits, we list the Figure 1(b) bk coeffi-
cients as the floating-point numbers in
the upper left side of Figure 2. Assume
we quantize the maximum-amplitude
coefficient, b4, to 8 b. In this FIR filter
trick we quantize the lower-amplitude
coefficients to larger bitwidths than the
maximum coefficient (b4) as shown on

“DSP Tips and Tricks” introduces
practical design and implementation
signal processing algorithms that
you may wish to incorporate into
your designs. We welcome readers
to submit their contributions.
Contact Associate Editors Rick Lyons
(R.Lyons@ieee.org) or C. Britton
Rorabaugh (dspboss@aol.com).

k

bk

(a)

b0 = b8 b1 = b7 b2 = b6 b3 = b5 b4

z–1 z–1 z–1 z–1

z–1z–1z–1z–1

x (n – 8)

x (n)

y (n)

x (n – 7) x (n – 6) x (n – 5)

x (n – 1) x (n – 2) x(n – 3)

x(n – 4)

(c)

Accumulator

0 2 4 6 8
–0.4

–0.2

0

0.2

0.4

0.6

0.8

1.0 b0

b1

b2

b3

b4

b5

b6

b7

b8

0.01751 2 00000010

–0.05899 –8 11111000

–0.26156 –33 11011111

0.37687 48 00110000

0.87968 113 01110001

0.37687 48 00110000

–0.26156 –33 11011111

–0.05899 –8 11111000

0.01751 2 00000010

(b)

+ + + +

+

[FIG1] Generic linear-phase FIR filter: (a) impulse response, (b) coefficients, and
(c) structure.

Improving FIR Filter Coefficient Precision

 Digital Object Identifier 10.1109/MSP.2010.936777

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on July 17,2010 at 14:33:49 UTC from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [121] JULY 2010

the upper right side of Figure 2. (The
algorithm used to determine those vari-
able bitwidths is discussed later in this
article.) Next, we eliminate the appro-
priate wasted bits, the red-font under-
scored bits in the lower left side of
Figure 2, to arrive at our final 8-b coef-
ficients shown on the lower right side
of Figure 2.

Appended to each coefficient is a flag
bit that indicates whether that coefficient
used one more quantization bit than the
previous, next larger, coefficient.

Now, you may say: “Stop! You can’t
do this. The outer coefficients are left
shifted, so they are enlarged, and the
product accumulations are changed.
Using these modified coefficients, the fil-
ter results will be wrong!” Don’t worry,
we correct the filter results by modifying
the way we accumulate products. Let’s
see how.

The coefficients and flag bits from
Figure 2 are used in the serial imple-
mentation shown in Figure 3. The data
registers in Figure 3 represent the folded
delay-line elements in Figure 1(c). This
implementation is called “serial” because
there is only one multiplier and, when a
new x 1n 2 input sample is to be pro-
cessed, we perform a series of multiplica-
tions and accumulations (using multiple
clock cycles) to produce a single y 1n 2 fil-
ter output sample.

For an N-tap FIR filter, where N is
odd, due to our folded delay-line struc-
ture only 1N1 1 2 /2 coefficients are
stored in the coefficient read-only
memory (ROM). (When N is even, N/2
coefficients are stored.) Crucial to this
FIR filter trick is that when pro-
cessing a new x 1n 2 input sample,
the largest coefficient, b4, is applied
to the multiplier prior to the first
accumulation. Following that is
the next smaller coefficient, b3, and
so on. In other words, in this serial
implementation the coefficient
sequence applied to the multiplier,
for each x 1n 2 input sample, is in
the order of the largest to the
smallest coefficient.

Given these properties, when a
new x 1n 2 sample is to be processed
we clear the current accumulator

value and multiply the sum of the appro-
priate data registers by the b4 coefficient.
That product is then added to the accu-
mulator. On the next clock cycle we

multiply the sum of the appropriate data
registers by the b3 coefficient. If the flag
bit of the b3 coefficient is one, we left
shift the current accumulator value and
then the current multiplier’s output is
added to the shifted accumulator value.

(If the current coefficient’s flag bit is
zero the accumulator word is not shifted
prior to an addition.) We continue these
multiplications, possible left shifts, and
accumulations for the remaining b2, b1,
and b0 coefficients.

The left shifting of an accumulator
value is the key to this entire FIR filter
trick. To minimize truncation errors due
to right shifting a multiplier output
word, we preserve precision by left shift-
ing the previous accumulator word.

To maintain our original FIR filter’s
gain, after the final accumulation we
truncate the final accumulator value by
discarding its least significant M bits,
where M is the total number of flag bits

Delete Wasted

(Underscored)

Bits

Final

Coefficients

Quantize

to

Various

Bit Widths

8-b Quantization

b0

b1

b2

b3

b4

b5

b6

b7

b8

0.01751 (2)

–0.05899 (–8)

–0.26156 (–33)

0.37687 (48)

0.87968 (113)

0.37687 (48)

–0.26156 (–33)

–0.05899 (–8)

0.01751 (2)

00000010.010 11 b (2.25)

11111000.10 10 b (–7.5)

11011110.1 9 b (–33.5)

00110000.0 9 b (48)

01110001. 8 b (113)

00110000.0 9 b (48)

11011110.1 9 b (–33.5)

11111000.10 10 b (–7.5)

00000010.010 11 b (2.25)

00000010010

1111100010

110111101

001100000

01110001

001100000

110111101

1111100010

00000010010

00010010 (18) Flag = 1

11100010 (–30) Flag = 1

10111101 (–67) Flag = 0

01100000 (96) Flag = 1

01110001 (113) Flag = 0

01100000 (96) Flag = 1

10111101 (–67) Flag = 0

11100010 (–30) Flag = 1

00010010 (18) Flag = 1

Implied Binary Point

[FIG2] Filter coefficients for serial implementation.

Mux

Coefficients
ROM

(b4, b3, b2, b1, b0)

Data

Registers
Data

Registers
Mux

Left Shift
1 b

Accumulator

Mux

...

x(n)

y(n)8

...

Truncate
Least

Significant

M Bits

Flag1

[FIG3] Serial implementation with 8-b coefficients.

THE LEFT SHIFTING OF AN
ACCUMULATOR VALUE IS

THE KEY TO THIS ENTIRE FIR
FILTER TRICK.

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on July 17,2010 at 14:33:49 UTC from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [122] JULY 2010

[dsp TIPS&TRICKS] continued

in the ROM memory, to produce a y 1n 2
output sample. Now let’s have a look at
an actual FIR filter example.

SERIAL METHOD EXAMPLE
Suppose we want to implement a low-
pass filter whose cutoff frequency is
0.167fs and whose stopband begins at

0.292fs, where fs is the input data sample
rate. If the filter has 29 taps (coeffi-
cients), and is implemented with float-
ing-point coefficients, its frequency
magnitude response will be that shown
by the solid curve in Figure 4(a).
Anticipating a hardware implementation
using an Altera field-programmable gate

array (FPGA) having 9-b multipliers,
when using coefficients that have been
quantized to 9-b lengths in a traditional
manner (with no wasted coefficient bits
removed), the filter’s frequency magni-
tude response is the dotted curve in
Figure 4(a).

When we use our FIR filter trick’s
serial implementation, with its
enhanced-precision 9-b coefficients (not
counting the flag bit) obtained in the
manner shown in Figure 2, the filter’s
frequency magnitude response is the
dashed curve in Figure 4(a). We see in
the figure that, relative to the traditional
fixed point implementation, the serial
method provides:

improved stopband attenuation ■

reduced transition region width ■

improved passband ripple perfor- ■

mance.
All of these improvements occur

without increasing the bitwidths of our
filter’s multiplier or coefficients, nor the
number of coefficients. Because it pre-
serves the impulse response symmetry of
the original floating-point filter, the
serial implementation filter exhibits
phase linearity [2].

It is possible to improve upon the
stopband attenuation of our compressed-
coefficient serial method FIR filter. We
do so by implementing what we call the
“parallel method.”

PARALLEL IMPLEMENTATION
In the above serial method of filter-
ing, adjacent filter coefficients were
quantized to a precision differing by
no more that one bit. That’s because
we use a single flag bit to control the
1-b shifting of the accumulator word
prior to a single accumulation. In the
parallel method, described now, adja-
cent coefficients can be quantized to a
precision differing by more than 1 b.
Figure 5 shows an example of our
parallel method’s coefficient quanti-
zation process.

Again we list the Figure 1(b) bk
coefficients as the floating-point num-
bers in the upper left side of Figure 5.
In this parallel method, however,
notice that the expanded quantized b1
and b2 words differ by more than one

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

–80

–60

–40

–20

0

Freq × fs
(a)

Freq × fs
(b)

d
B

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

–0.3

–0.2

–0.1

0

d
B

9-b Traditional Fixed Point

Floating Point
9-b Serial Method

9-b Traditional Fixed Point
9-b Serial Method

[FIG4] Low-pass serial method filter frequency responses: (a) full frequency range
and (b) passband detail.

Delete Wasted

(Underscored)

Bits

Final

Coefficients

Quantize

to

Various

Bit Widths

8-b Quantization

b0

b1

b2

b3

b4

b5

b6

b7

b8

0.01751 (2)

–0.05899 (–8)

–0.26156 (–33)

0.37687 (48)

0.87968 (113)

0.37687 (48)

–0.26156 (–33)

–0.05899 (–8)

0.01751 (2)

0000001001000

111110000111

110111101

001100000

01110001

001100000

110111101

111110000111

0000001001000

01001000 (72)

10000111 (–121)

10111101 (–67)

01100000 (96)

01110001 (113)

01100000 (96)

10111101 (–67)

10000111 (–121)

01001000 (72)

00000010.01000 13 b (2.25)

11111000.0111 12 b (–7.5625)

11011110.1 9 b (–33.5)

00110000.0 9 b (48)

01110001. 8 b (113)

00110000.0 9 b (48)

11011110.1 9 b (–33.5)

11111000.0111 12 b (–7.5625)

00000010.01000 13 b (2.25)

Implied Binary Point

[FIG5] Filter coefficients for parallel implementation.

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on July 17,2010 at 14:33:49 UTC from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [123] JULY 2010

bit in the upper right side of Figure 5.
Coefficients b2 and b6 are quantized to
9 b while the b1 and b7 coefficients are
quantized to 12 b. While we only
deleted some of the wasted coefficient
bits in Figure 2, in our parallel method
all the wasted coefficient bits are
deleted. As such, our final 8-b coeffi-
cients are those listed in the lower
right side of Figure 5.

We are all familiar with the operation
known as bit extension—the process of
extending the bit length of a binary word
without changing its value or sign. With
that process in mind, we can refer to our
trick’s operation of removing wasted bits
as “bit compression.”

Because no flag bits are used in the
parallel method, this filtering method is
easiest to implement using FPGAs with
their flexible multidata bus routing
capabilities.

For example, consider the filter
structure shown in Figure 6(a) where
we perform the three multiplications in
parallel (in a single clock cycle) and that
is why we use the phrase “parallel
method.” Instead of shifting the accu-
mulator word to the left as we did in the
serial method, here we merely reroute
the multiplier outputs to the appropri-
ate bit positions as they are added to the
accumulator word as shown in Figure
6(b). In our hypothetical Figure 6 exam-
ple, if there were four wasted bits
deleted from the high-precision b1 coef-
ficient then the Vk product is shifted to
the right by four bits, relative to the Wk
product bits, before being added to the
accumulator word. If there were seven
wasted bits deleted from the high-preci-
sion b0 coefficient, then the Uk product
is shifted to the right by 7 b, relative to
the Wk product bits, before being added
to the accumulator word.

PARALLEL METHOD EXAMPLE
With the solid curve, Figure 7 shows our
parallel method’s performance in imple-
menting the desired low-pass filter used
in the above serial method implementa-
tion example. For comparison, we have
also included the 9-b traditional fixed
point (no bit compression) and the serial
method magnitude responses in Figure 7.

The enhanced precisions of the
parallel method’s quantized coefficients,
beyond their serial method precisions,
yield improved filter performance. The
parallel method of our FIR filter trick

achieves a stopband attenuation
improvement of 21 dB beyond the
traditional fixed-point implementation—
again, without increasing the bitwidths

of our filter’s multipliers or coefficients,
nor the number of coefficients.

COMPUTING
COEFFICIENT BITWIDTHS
Determining the bitwidths of the quan-
tized filter coefficients in our DSP trick
depends on whether you are imple-
menting the serial or the parallel filter-
ing method.

SERIAL METHOD
COEFFICIENT QUANTIZATION
In the serial method, let’s assume we
want our ROM to store coefficients
whose bitwidths are integer B (not
counting the flag bit).

Freq × fs

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
–80

–60

–40

–20

0

d
B

9-b Traditional Fixed Point

9-b Parallel Method
9-b Serial Method

[FIG7] Traditional fixed-point, serial method, and parallel method filter
frequency responses.

(a)

y(n)

x(n)

Accumulator

Uk Vk Wk

All

Multiplications

Occur in One

Clock Cycle

b0 = b4 b1 = b3 b2

z–1 z–1

z–1z–1

x (n – 4) x (n – 3)

x (n – 2)

x (n – 1)

+ +

(b)

W2

V2 V1 V0

U2 U1 U0W1 W0

Accumulator

26 25 24 23 22 21 20 2–1 2–2 2–3 2–4 2–5 2–6 2–7

.

. . .

[FIG6] Parallel method implementation: (a) filter structure; (b) accumulator
organization.

IT IS POSSIBLE TO IMPROVE
UPON THE STOPBAND
ATTENUATION OF OUR

COMPRESSED-COEFFICIENT
SERIAL METHOD FIR FILTER.

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on July 17,2010 at 14:33:49 UTC from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [124] JULY 2010

[dsp TIPS&TRICKS] continued

The steps in computing the integer
ROM coefficients for the serial method
are as follows:

Step 1 ■ : Set a temporary scale factor
variable to SCALE5 1 and temporary
b i twidth integer var iable to
K 5 B2 1. Apply the following
quantization steps to the largest-
magnitude original bk floating-point
coefficient (for example, b4 in the
upper left side of Figure 2).

Step 2 ■ : If the bk floating-point
coefficient being quantized and all
the remaining unquantized coeffi-
cients are less than the value
SCALE/2, set SCALE 5 SCALE/2,
set K5K1 1, and set the current
 coefficient’s flag bit to Flag 5 1. If
the bk floating-point coefficient
being quantized or any of the
remaining unquantized coeffi-
cients are equal to or greater than
SCALE/2, variables SCALE and K
remain unchanged, and set the
current coef f ic ient ’s f lag b i t
to Flag 5 0.

Step 3 ■ : Multiply the bk floating-
point coefficient being quantized by
2K and round the result to the nearest
integer. That integer is our final value
saved in ROM.

Step 4 ■ : Repeat Steps 2 and 3 for
all the remaining original unquan-
tized bk floating-point coefficients,
in sequence from the remaining
largest-magnitude to the remaining
smallest-magnitude coefficient.
Table 1 illustrates the serial method

quantization steps for the floating-point
coefficients in Figure 2.

PARALLEL METHOD
COEFFICIENT QUANTIZATION
In the parallel method, let’s assume we
want our ROM to store coefficients
whose bitwidths are integer B. (For
example, in the lower right side of
Figure 5, B 5 8.) Next, let’s define an
optimum magnitude range, R, as

 0.5 # R , 1. (1)

The steps in computing the integer
ROM coefficients for the parallel method
are as follows:

Step 1 ■ : Repeatedly multiply an
original bk floating-point coefficient
(the upper left side of Figure 5) by
two until the magnitude of the
result resides in the optimum mag-
nitude range R. Denote the number
of necessary multiply-by-two opera-
tions as Q.

Step 2 ■ : Multiply the original bk
floating-point coefficient by 2B1Q21
(the minus one in the exponent
accounts for the final coefficient’s sign
bit) and round the result to the near-
est integer. That integer is our final
value saved in ROM.

Step 3 ■ : Repeat Steps 1 and 2 for all
the remaining original bk floating-
point coefficients.

CONCLUSIONS
We introduced two novel methods for
improving the precision of the fixed-
point coefficients of FIR filters. Using
the modified (compressed) coefficients,
we achieved enhanced filter perfor-
mance while maintaining phase linear-
ity, without increasing the bitwidths of
our filter multiplier or co efficients,
nor the number of coefficients. The
 so-called serial method of filtering
is compatible with traditional pro-
grammable DSP chip and FPGA
process ing, while the parallel method
is most appropriate with an FPGA
 implementation.

ACKNOWLEDGMENTS
Many thanks to Rick Lyons for his careful
analysis of these filtering methods and
his patient assistance with the text of this
article.

AUTHOR
Zhi Shen (zhi.m.shen@gmail.com) is
pursuing the Ph.D degree with the
Department o f Electronics and
Information Engineering, Huazhong
University of Science and Technology,
Wuhan, China. As the project leader of
the Digital TV Lab, he designed the
multicarrier DVB modulator.

REFERENCES
[1] R. Lyons, Understanding Digital Signal
Processing, 2nd ed. Englewood Cliffs, NJ: Prentice-
Hall, 2004, pp. 503–504.

[2] J. Proakis and D. Manolakis, Digital Signal
Processing— Principles , A lgor ithms, and
Applications, 3rd ed. Englewood Clif fs, NJ:
Prentice-Hall, 1996, pp. 620–621.

 [SP]

[TABLE 1] SERIAL METHOD QUANTIZATION EXAMPLE.

COEFFICIENT BEING
QUANTIZED

CURRENT
SCALE

ALL UNQUANTIZED
COEFFICIENTS LESS
THAN SCALE/2? NEW SCALE K

ROM EQUIVALENT
COEFFICIENT
BITWIDTH FLAG BIT

LEFT SHIFT
AND ROUND

b45 0.87968 1 NO
0b4 0 . 1/2 1 7 8 0 B4 5 ROUND 3b4 3 27 4 5 113

b35 0.37687 1 YES
0b3 0 , 0b2 0 , 0b1 0 , 0b0 0 , 1/2 0.5 8 9 1 B3 5 ROUND 3b3 3 28 4 5 96

b2520.26156 0.5 NO
0b2 0 . 0.5/2 0.5 8 9 0 B2 5 ROUND 3b2 3 28 4 5267

b1520.05899 0.5 YES
0b1 0 , 0b0 0 , 0.5/2 0.25 9 10 1 B1 5 ROUND 3b1 3 29 4 5230

b05 0.01751 0.25 YES
0b0 0 , 0.25/2

0.125 10 11 1 B0 5 ROUND 3b0 3 210 4 5 18

THE SO-CALLED SERIAL
METHOD OF FILTERING

IS COMPATIBLE
WITH TRADITIONAL

PROGRAMMABLE DSP CHIP
AND FPGA PROCESSING.

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on July 17,2010 at 14:33:49 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

