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Improving FIR Filter Coefficient Precision
; ) o values shown in the third and fourth col- Replacing a low-amplitude coeffi-
DSP Tips and Tricks® introduces umns, respectively, in Figure 1(b). cient’s wasted bits with more significant

practical design and implementation
signal processing algorithms that
you may wish to incorporate into
your designs. We welcome readers

Compared to b,, the other coeffi- bits is the central point of our FIR filter-
cients are smaller, especially the outer ing trick—of course some filter architec-
coefficients such as b, and bg. Because ture modification is needed as we shall

oo culbmi helr comribuiiens. of the fixed bitwidth quantization, many ~ see. So let’s have a look at a generic
Contact Associate Editors Rick Lyons high-order bits of the low-amplitude example of what we call a “serial” imple-
(R.Lyons@ieee.org) or C. Britton coefficients, the red-font underscored mentation of our trick.
Rorabaugh (dspboss@aol.com). bits in the fourth column of Figure 1(b),
are the same as the sign bit. These bits SERIAL IMPLEMENTATION
are wasted because they have no effec- As a simple example of replacing wasted
here is a method for increas- tive (no weight) in the calculations. If bits, we list the Figure 1(b) b coeffi-
ing the precision of fixed- we can remove those wasted bits (con- cients as the floating-point numbers in
point coefficients used in secutive bits adjacent to, and equal to, the upper left side of Figure 2. Assume

linear-phase finite impulse the sign bit), and replace them with we quantize the maximum-amplitude
response (FIR) filters to more significant coefficient bits, we will coefficient, b,, to 8 b. In this FIR filter

achieve improved filter performance. obtain improved numerical precision trick we quantize the lower-amplitude
The improved performance is accom- for the low-amplitude beginning and coefficients to larger bitwidths than the
plished without increasing either the ending coefficients. maximum coefficient (b,) as shown on

number of coefficients or coefficient bit-
widths. At first thought, such a process
does not seem possible, but this article
shows exactly how this novel filtering
process works.

by 0.01751 2 00000010
b; -0.05899 -8 11111000
b, -0.26156 -33 11011111
b, 0.37687 48 00110000
by 0.87968 113 01110001
bs 0.37687 48 00110000
bs —0.26156 -33 11011111
b, -0.05899 -8 11111000
bg 0.01751 2 00000010

TRADITIONAL FIR FILTERING
To describe our method of increasing
FIR filter coefficient precision, let’s first
recall a few characteristics of tradition-
al linear-phase tapped-delay line FIR
filter operation.

Consider an FIR filter whose impulse
response is shown in Figure 1(a). For

= —7 — — -4
computational efficiency reasons (re- x(n—8) x(n=7) X(n=6) [k x(n=5) X(n )
duced number of multipliers), we imple-

R x(n=1) = N, N

(b)

ment such filters using the folded
tapped-delay line structure shown in
Figure 1(c) [1].

The filter’s b, floating-point coeffi-
cients are listed in the second column of
Figure 1(b). When quantized to an 8—.b i -
two’s-complement format, those coeffi- ©
cients are the decimal integers and binary

[FIG1] Generic linear-phase FIR filter: (a) impulse response, (b) coefficients, and
Digital Object Identifier 10.1109/MSP.2010.936777 (c) structure.
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the upper right side of Figure 2. (The
algorithm used to determine those vari-
able bitwidths is discussed later in this
article.) Next, we eliminate the appro-
priate wasted bits, the red-font under-
scored bits in the lower left side of
Figure 2, to arrive at our final 8-b coef-
ficients shown on the lower right side
of Figure 2.

Appended to each coefficient is a flag
bit that indicates whether that coefficient
used one more quantization bit than the
previous, next larger, coefficient.

Now, you may say: “Stop! You can’t
do this. The outer coefficients are left
shifted, so they are enlarged, and the
product accumulations are changed.
Using these modified coefficients, the fil-
ter results will be wrong!” Don’t worry,
we correct the filter results by modifying
the way we accumulate products. Let’s
see how.

The coefficients and flag bits from
Figure 2 are used in the serial imple-
mentation shown in Figure 3. The data
registers in Figure 3 represent the folded
delay-line elements in Figure 1(c). This
implementation is called “serial” because
there is only one multiplier and, when a
new x(n) input sample is to be pro-
cessed, we perform a series of multiplica-
tions and accumulations (using multiple
clock cycles) to produce a single y(n) fil-
ter output sample.

For an N-tap FIR filter, where N is
odd, due to our folded delay-line struc-
ture only (N +1)/2 coefficients are
stored in the coefficient read-only
memory (ROM). (When N is even, N/2
coefficients are stored.) Crucial to this
FIR filter trick is that when pro-
cessing a new x(n) input sample,
the largest coefficient, b,, is applied
to the multiplier prior to the first
accumulation. Following that is
the next smaller coefficient, b5, and
so on. In other words, in this serial
implementation the coefficient
sequence applied to the multiplier,
for each x(n) input sample, is in
the order of the largest to the
smallest coefficient.

Given these properties, when a
new x(n) sample is to be processed
we clear the current accumulator

8-b Quantization

Implied Binary Point

N\
by 001751 (2) 00000010.010 11b  (2.25)
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b, 0.37687 (48) o 00110000.0  9b  (48)
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by —0.26156 (-33) 110111101 9b  (-33.5)
b, -0.05899 (-8) 11111000.10 10b  (-7.5)
by 001751 (2) 00000010.010 11b  (2.25)
<
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Final
Coefficients

[FIG2] Filter coefficients for serial implementation.

value and multiply the sum of the appro-
priate data registers by the b, coefficient.
That product is then added to the accu-
mulator. On the next clock cycle we

THE LEFT SHIFTING OF AN
ACCUMULATOR VALUE IS
THE KEY TO THIS ENTIRE FIR
FILTER TRICK.

multiply the sum of the appropriate data
registers by the b coefficient. If the flag
bit of the b5 coefficient is one, we left
shift the current accumulator value and
then the current multiplier’s output is
added to the shifted accumulator value.

(If the current coefficient’s flag bit is
zero the accumulator word is not shifted
prior to an addition.) We continue these
multiplications, possible left shifts, and
accumulations for the remaining b,, b;,
and b, coefficients.

The left shifting of an accumulator
value is the key to this entire FIR filter
trick. To minimize truncation errors due
to right shifting a multiplier output
word, we preserve precision by left shift-
ing the previous accumulator word.

To maintain our original FIR filter’s
gain, after the final accumulation we
truncate the final accumulator value by
discarding its least significant M bits,
where M is the total number of flag bits

x(n) Data
Registers
Data
Registers
Left Shift
1b
Flag
[ Truncate
Coefficients Least ()
ROM E Significant
(b, b, by, by, by) N Accumulator - M Bits >

[FIG3] Serial implementation with 8-b coefficients.
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[FIG4] Low-pass serial method filter frequency responses: (a) full frequency range

and (b) passband detail.

in the ROM memory, to produce a y(n)
output sample. Now let’s have a look at
an actual FIR filter example.

SERIAL METHOD EXAMPLE

Suppose we want to implement a low-
pass filter whose cutoff frequency is
0.167f, and whose stopband begins at

8-b Quantization

0.292f,, where £ is the input data sample
rate. If the filter has 29 taps (coeffi-
cients), and is implemented with float-
ing-point coefficients, its frequency
magnitude response will be that shown
by the solid curve in Figure 4(a).
Anticipating a hardware implementation
using an Altera field-programmable gate

Implied Binary Point

by 0.01751 (2) 00000010.01000 13b  (2.25)
b; -0.05899 (-8) 11111000.0111  12b  (-7.5625)
b, -0.26156 (-33) : 11011110.1 9b (-33.5)
by 0.37687 (48) Q”"’t‘"“ze 00110000.0 9b (48)
by 0.87968 (113) | s —p 01110001. 8b (113) —p
bs 0.37687 (48) Bitﬁ,’\;?d‘if] 00110000.0 9b (48)
bs -0.26156 (-33) = 11011110.1 9b (-33.5)
b, —0.05899 (-8) 11111000.0111  12b  (-7.5625)
bg 0.01751 (2) 00000010.01000 13b  (2.25)
<
0000001001000 01001000 (72)
111110000111 10000111 (-121)
110111101 10111101 (-67)
001100000  [REECANERIES 01100000 (96)

—p» 01110001 (CUREISEIEON ). 01110001 (113)
001100000 Bits 01100000 (96)
110111101 10111101 (-67)
111110000111 10000111 (=121)
0000001001000 01001000 (72)

Final
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[FIG5] Filter coefficients for parallel implementation.

array (FPGA) having 9-b multipliers,
when using coefficients that have been
quantized to 9-b lengths in a traditional
manner (with no wasted coefficient bits
removed), the filter’s frequency magni-
tude response is the dotted curve in
Figure 4(a).

When we use our FIR filter trick’s
serial implementation, with its
enhanced-precision 9-b coefficients (not
counting the flag bit) obtained in the
manner shown in Figure 2, the filter’s
frequency magnitude response is the
dashed curve in Figure 4(a). We see in
the figure that, relative to the traditional
fixed point implementation, the serial
method provides:

improved stopband attenuation

reduced transition region width

improved passband ripple perfor-
mance.

All of these improvements occur
without increasing the bitwidths of our
filter’s multiplier or coefficients, nor the
number of coefficients. Because it pre-
serves the impulse response symmetry of
the original floating-point filter, the
serial implementation filter exhibits
phase linearity [2].

It is possible to improve upon the
stopband attenuation of our compressed-
coefficient serial method FIR filter. We
do so by implementing what we call the
“parallel method.”

PARALLEL IMPLEMENTATION

In the above serial method of filter-
ing, adjacent filter coefficients were
quantized to a precision differing by
no more that one bit. That’s because
we use a single flag bit to control the
1-b shifting of the accumulator word
prior to a single accumulation. In the
parallel method, described now, adja-
cent coefficients can be quantized to a
precision differing by more than 1 b.
Figure 5 shows an example of our
parallel method’s coefficient quanti-
zation process.

Again we list the Figure 1(b) b,
coefficients as the floating-point num-
bers in the upper left side of Figure 5.
In this parallel method, however,
notice that the expanded quantized b,
and b, words differ by more than one
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bit in the upper right side of Figure 5.
Coefficients b, and by are quantized to
9 b while the b, and b; coefficients are
quantized to 12 b. While we only
deleted some of the wasted coefficient
bits in Figure 2, in our parallel method
all the wasted coefficient bits are
deleted. As such, our final 8-b coeffi-
cients are those listed in the lower
right side of Figure 5.

We are all familiar with the operation
known as bit extension—the process of
extending the bit length of a binary word
without changing its value or sign. With
that process in mind, we can refer to our
trick’s operation of removing wasted bits
as “bit compression.”

Because no flag bits are used in the
parallel method, this filtering method is
easiest to implement using FPGAs with
their flexible multidata bus routing
capabilities.

For example, consider the filter
structure shown in Figure 6(a) where
we perform the three multiplications in
parallel (in a single clock cycle) and that
is why we use the phrase “parallel
method.” Instead of shifting the accu-
mulator word to the left as we did in the
serial method, here we merely reroute
the multiplier outputs to the appropri-
ate bit positions as they are added to the
accumulator word as shown in Figure
6(b). In our hypothetical Figure 6 exam-
ple, if there were four wasted bits
deleted from the high-precision b, coef-
ficient then the V, product is shifted to
the right by four bits, relative to the W
product bits, before being added to the
accumulator word. If there were seven
wasted bits deleted from the high-preci-
sion b, coefficient, then the U, product
is shifted to the right by 7 b, relative to
the W, product bits, before being added
to the accumulator word.

PARALLEL METHOD EXAMPLE

With the solid curve, Figure 7 shows our
parallel method’s performance in imple-
menting the desired low-pass filter used
in the above serial method implementa-
tion example. For comparison, we have
also included the 9-b traditional fixed
point (no bit compression) and the serial
method magnitude responses in Figure 7.

W, W,

26| 25| 24| 28| 22| of

20 | o1

All
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y(n)

U Uy Uy

22 93 o4 o5 o6 o7
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(b)

[FIG6] Parallel method implementation: (a) filter structure; (b) accumulator

organization.

The enhanced precisions of the
parallel method’s quantized coefficients,
beyond their serial method precisions,
yield improved filter performance. The
parallel method of our FIR filter trick

IT IS POSSIBLE TO IMPROVE
UPON THE STOPBAND
ATTENUATION OF OUR

COMPRESSED-COEFFICIENT

SERIAL METHOD FIR FILTER.

achieves a stopband attenuation
improvement of 21 dB beyond the
traditional fixed-point implementation—
again, without increasing the bitwidths

of our filter's multipliers or coefficients,
nor the number of coefficients.

COMPUTING

COEFFICIENT BITWIDTHS
Determining the bitwidths of the quan-
tized filter coefficients in our DSP trick
depends on whether you are imple-
menting the serial or the parallel filter-
ing method.

SERIAL METHOD

COEFFICIENT QUANTIZATION

In the serial method, let’s assume we
want our ROM to store coefficients
whose bitwidths are integer B (not
counting the flag bit).

0 T T T T T T T
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[FIG7] Traditional fixed-point, serial method, and parallel method filter

frequency responses.
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dsp TIPS&TRICKS  continued

[TABLE 1] SERIAL METHOD QUANTIZATION EXAMPLE.

ALL UNQUANTIZED ROM EQUIVALENT
COEFFICIENT BEING CURRENT COEFFICIENTS LESS COEFFICIENT LEFT SHIFT
QUANTIZED SCALE THAN SCALE/2? NEW SCALE K  BITWIDTH FLAG BIT AND ROUND
NO
by =0.87968 ! lbsl > 172 1 7 8 0 B, = ROUND [b, x 2] =113
by = 0.37687 1 YES 0.5 8 9 1 By = ROUND [b; x 28] =96
5=0. Ibsl, s, Iyl ool < 172 % s = [b x 2] =
_ NO 8
b, = —0.26156 05 by > 0.5/2 0.5 8 9 0 B, = ROUND [b, x 28] = —67
.| > 0.
b, = —0.05899 0.5 YES 0.25 9 10 1 B, = ROUND [b; x 29]= —-30
! : ’ |byl, 1ol < 0.5/2 ’ 1 1
_ YES 0.125 10 11 1 B, = ROUND [by X 2'°] =18
by = 0.01751 0.25 by < 0252
The steps in computing the integer PARALLEL METHOD CONCLUSIONS
ROM coefficients for the serial method COEFFICIENT QUANTIZATION We introduced two novel methods for

are as follows:

Step 1: Set a temporary scale factor
variable to SCALE = 1 and temporary
bitwidth integer variable to
K = B—1. Apply the following
quantization steps to the largest-
magnitude original b, floating-point
coefficient (for example, b, in the
upper left side of Figure 2).

Step 2: 1f the b, floating-point
coefficient being quantized and all
the remaining unquantized coeffi-
cients are less than the value
SCALE/2, set SCALE = SCALE/2,
set K=K+ 1, and set the current
coefficient’s flag bit to Flag = 1. If
the b, floating-point coefficient
being quantized or any of the
remaining unquantized coeffi-
cients are equal to or greater than
SCALE/2, variables SCALE and K
remain unchanged, and set the
current coefficient’s flag bit
to Flag = 0.

Step 3: Multiply the b, floating-
point coefficient being quantized by
2% and round the result to the nearest
integer. That integer is our final value
saved in ROM.

Step 4: Repeat Steps 2 and 3 for
all the remaining original unquan-
tized b, floating-point coefficients,
in sequence from the remaining
largest-magnitude to the remaining
smallest-magnitude coefficient.
Table 1 illustrates the serial method

quantization steps for the floating-point
coefficients in Figure 2.

In the parallel method, let’s assume we
want our ROM to store coefficients
whose bitwidths are integer B. (For
example, in the lower right side of
Figure 5, B = 8.) Next, let’s define an
optimum magnitude range, R, as

05=R<1. 1)

THE SO-CALLED SERIAL
METHOD OF FILTERING
IS COMPATIBLE
WITH TRADITIONAL
PROGRAMMABLE DSP CHIP
AND FPGA PROCESSING.

The steps in computing the integer
ROM coefficients for the parallel method
are as follows:

Step 1: Repeatedly multiply an
original b, floating-point coefficient
(the upper left side of Figure 5) by
two until the magnitude of the
result resides in the optimum mag-
nitude range R. Denote the number
of necessary multiply-by-two opera-
tions as Q.

Step 2: Multiply the original b
floating-point coefficient by 2591
(the minus one in the exponent
accounts for the final coefficient’s sign
bit) and round the result to the near-
est integer. That integer is our final
value saved in ROM.

Step 3: Repeat Steps 1 and 2 for all
the remaining original b floating-
point coefficients.

improving the precision of the fixed-
point coefficients of FIR filters. Using
the modified (compressed) coefficients,
we achieved enhanced filter perfor-
mance while maintaining phase linear-
ity, without increasing the bitwidths of
our filter multiplier or coefficients,
nor the number of coefficients. The
so-called serial method of filtering
is compatible with traditional pro-
grammable DSP chip and FPGA
processing, while the parallel method
is most appropriate with an FPGA
implementation.
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