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T
here is a method for increas-
ing the precision of fixed-
point coefficients used in 
linear-phase finite impulse 
response (FIR) filters to 

achieve improved filter performance. 
The improved performance is accom-
plished without increasing either the 
number of coefficients or coefficient bit-
widths. At first thought, such a process 
does not seem possible, but this article 
shows exactly how this novel filtering 
process works.

TRADITIONAL FIR FILTERING
To describe our method of increasing 
FIR filter coefficient precision, let’s first 
recall a few characteristics of tradition-
al linear-phase tapped-delay line FIR 
filter operation.

Consider an FIR filter whose impulse 
response is shown in Figure 1(a). For 
computational efficiency reasons (re-
duced number of multipliers), we imple-
ment such filters using the folded 
tapped-delay line structure shown in 
Figure 1(c) [1].

The filter’s bk floating-point coeffi-
cients are listed in the second column of 
Figure 1(b). When quantized to an 8-b 
two’s-complement format, those coeffi-
cients are the decimal integers and binary 

values shown in the third and fourth col-
umns, respectively, in Figure 1(b).

Compared to b4, the other coeffi-
cients are smaller, especially the outer 
coefficients such as b0 and b8. Because 
of the fixed bitwidth quantization, many 
high-order bits of the low-amplitude 
coefficients, the red-font underscored 
bits in the fourth column of Figure 1(b), 
are the same as the sign bit. These bits 
are wasted because they have no effec-
tive (no weight) in the calculations. If 
we can remove those wasted bits (con-
secutive bits adjacent to, and equal to, 
the sign bit), and replace them with 
more significant coefficient bits, we will 
obtain improved numerical precision 
for the low-amplitude beginning and 
ending coefficients.

Replacing a low-amplitude coeffi-
cient’s wasted bits with more significant 
bits is the central point of our FIR filter-
ing trick—of course some filter architec-
ture modification is needed as we shall 
see. So let’s have a look at a generic 
example of what we call a “serial” imple-
mentation of our trick.

SERIAL IMPLEMENTATION
As a simple example of replacing wasted 
bits, we list the Figure 1(b) bk coeffi-
cients as the floating-point numbers in 
the upper left side of Figure 2. Assume 
we quantize the maximum-amplitude 
coefficient, b4, to 8 b. In this FIR filter 
trick we quantize the lower-amplitude 
coefficients to larger bitwidths than the 
maximum coefficient (b4) as shown on 
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[FIG1] Generic linear-phase FIR filter: (a) impulse response, (b) coefficients, and 
(c) structure.
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the upper right side of Figure 2. (The 
algorithm used to determine those vari-
able bitwidths is discussed later in this 
article.) Next, we eliminate the appro-
priate wasted bits, the red-font under-
scored bits in the lower left side of 
Figure 2, to arrive at our final 8-b coef-
ficients shown on the lower right side 
of Figure 2.

Appended to each coefficient is a flag 
bit that indicates whether that coefficient 
used one more quantization bit than the 
previous, next larger, coefficient.

Now, you may say: “Stop! You can’t 
do this. The outer coefficients are left 
shifted, so they are enlarged, and the 
product accumulations are changed. 
Using these modified coefficients, the fil-
ter results will be wrong!” Don’t worry, 
we correct the filter results by modifying 
the way we accumulate products. Let’s 
see how. 

The coefficients and flag bits from 
Figure 2 are used in the serial imple-
mentation shown in Figure 3. The data 
registers in Figure 3 represent the folded 
delay-line elements in Figure 1(c). This 
implementation is called “serial” because 
there is only one multiplier and, when a 
new x 1n 2  input sample is to be pro-
cessed, we perform a series of multiplica-
tions and accumulations (using multiple 
clock cycles) to produce a single y 1n 2  fil-
ter output sample. 

For an N-tap FIR filter, where N  is 
odd, due to our folded delay-line struc-
ture only 1N1 1 2 /2 coefficients are 
stored in the coefficient read-only 
memory (ROM). (When N  is even, N/2 
coefficients are stored.) Crucial to this 
FIR filter trick is that when pro-
cessing a new x 1n 2  input sample, 
the largest coefficient, b4, is applied 
to the multiplier prior to the first 
accumulation. Following that is 
the next smaller coefficient, b3, and 
so on. In other words, in this serial 
implementation the coefficient 
sequence applied to the multiplier, 
for each x 1n 2  input sample, is in 
the order of the largest to the 
smallest coefficient. 

Given these properties, when a 
new x 1n 2  sample is to be processed 
we clear the current accumulator 

value and multiply the sum of the appro-
priate data registers by the b4 coefficient. 
That product is then added to the accu-
mulator. On the next clock cycle we 

multiply the sum of the appropriate data 
registers by the b3 coefficient. If the flag 
bit of the b3 coefficient is one, we left 
shift the current accumulator value and 
then the current multiplier’s output is 
added to the shifted accumulator value. 

(If the current coefficient’s flag bit is 
zero the accumulator word is not shifted 
prior to an addition.) We continue these 
multiplications, possible left shifts, and 
accumulations for the remaining b2, b1, 
and b0 coefficients.

The left shifting of an accumulator 
value is the key to this entire FIR filter 
trick. To minimize truncation errors due 
to right shifting a multiplier output 
word, we preserve precision by left shift-
ing the previous accumulator word.

To maintain our original FIR filter’s 
gain, after the final accumulation we 
truncate the final accumulator value by 
discarding its least significant M bits, 
where M is the total number of flag bits 
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[FIG2] Filter coefficients for serial implementation.
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in the ROM memory, to produce a y 1n 2  
output sample. Now let’s have a look at 
an actual FIR filter example.

SERIAL METHOD EXAMPLE
Suppose we want to implement a low-
pass filter whose cutoff frequency is 
0.167fs and whose stopband begins at 

0.292fs, where fs is the input data sample 
rate. If the filter has 29 taps (coeffi-
cients), and is implemented with float-
ing-point coefficients, its frequency 
magnitude response will be that shown 
by the solid curve in Figure 4(a). 
Anticipating a hardware implementation 
using an Altera field-programmable gate 

array (FPGA) having 9-b multipliers, 
when using coefficients that have been 
quantized to 9-b lengths in a traditional 
manner (with no wasted coefficient bits 
removed), the filter’s frequency magni-
tude response is the dotted curve in 
Figure 4(a). 

When we use our FIR filter trick’s 
serial  implementation,  with its 
enhanced-precision 9-b coefficients (not 
counting the flag bit) obtained in the 
manner shown in Figure 2, the filter’s 
frequency magnitude response is the 
dashed curve in Figure 4(a). We see in 
the figure that, relative to the traditional 
fixed point implementation, the serial 
method provides: 

improved stopband attenuation ■

reduced transition region width ■

improved passband ripple perfor- ■

mance.
All of these improvements occur 

without increasing the bitwidths of our 
filter’s multiplier or coefficients, nor the 
number of coefficients. Because it pre-
serves the impulse response symmetry of 
the original floating-point filter, the 
serial implementation filter exhibits 
phase linearity [2].

It is possible to improve upon the 
stopband attenuation of our compressed-
coefficient serial method FIR filter. We 
do so by implementing what we call the 
“parallel method.” 

PARALLEL IMPLEMENTATION
In the above serial method of filter-
ing, adjacent filter coefficients were 
quantized to a precision differing by 
no more that one bit. That’s because 
we use a single flag bit to control the 
1-b shifting of the accumulator word 
prior to a single accumulation. In the 
parallel method, described now, adja-
cent coefficients can be quantized to a 
precision differing by more than 1 b. 
Figure 5 shows an example of our 
parallel method’s coefficient quanti-
zation process.

Again we list the Figure 1(b) bk 
coefficients as the floating-point num-
bers in the upper left side of Figure 5. 
In this parallel method, however, 
notice that the expanded quantized b1 
and b2 words differ by more than one 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

–80

–60

–40

–20

0

Freq × fs
(a)

Freq × fs
(b)

d
B

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

–0.3

–0.2

–0.1

0

d
B

9-b Traditional Fixed Point

Floating Point
9-b Serial Method

9-b Traditional Fixed Point
9-b Serial Method

[FIG4] Low-pass serial method filter frequency responses: (a) full frequency range 
and (b) passband detail.
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[FIG5] Filter coefficients for parallel implementation.
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bit in the upper right side of Figure 5. 
Coefficients b2 and b6 are quantized to 
9 b while the b1 and b7 coefficients are 
quantized to 12 b. While we only 
deleted some of the wasted coefficient 
bits in Figure 2, in our parallel method 
all the wasted coefficient bits are 
deleted. As such, our final 8-b coeffi-
cients are those listed in the lower 
right side of Figure 5.

We are all familiar with the operation 
known as bit extension—the process of 
extending the bit length of a binary word 
without changing its value or sign. With 
that process in mind, we can refer to our 
trick’s operation of removing wasted bits 
as “bit compression.”

Because no flag bits are used in the 
parallel method, this filtering method is 
easiest to implement using FPGAs with 
their flexible multidata bus routing 
capabilities.

For example, consider the filter 
structure shown in Figure 6(a) where 
we perform the three multiplications in 
parallel (in a single clock cycle) and that 
is why we use the phrase “parallel 
method.” Instead of shifting the accu-
mulator word to the left as we did in the 
serial method, here we merely reroute 
the multiplier outputs to the appropri-
ate bit positions as they are added to the 
accumulator word as shown in Figure 
6(b). In our hypothetical Figure 6 exam-
ple, if there were four wasted bits 
deleted from the high-precision b1 coef-
ficient then the Vk product is shifted to 
the right by four bits, relative to the Wk 
product bits, before being added to the 
accumulator word. If there were seven 
wasted bits deleted from the high-preci-
sion b0 coefficient, then the Uk product 
is shifted to the right by 7 b, relative to 
the Wk product bits, before being added 
to the accumulator word.

PARALLEL METHOD EXAMPLE
With the solid curve, Figure 7 shows our 
parallel method’s performance in imple-
menting the desired low-pass filter used 
in the above serial method implementa-
tion example. For comparison, we have 
also included the 9-b traditional fixed 
point (no bit compression) and the serial 
method magnitude responses in Figure 7.

The enhanced precisions of the 
parallel method’s quantized coefficients, 
beyond their serial method precisions, 
yield improved filter performance. The 
parallel method of our FIR filter trick 

achieves a stopband attenuation 
improvement of 21 dB beyond the 
traditional fixed-point implementation—
again, without increasing the bitwidths 

of our filter’s multipliers or coefficients, 
nor the number of coefficients.

COMPUTING 
COEFFICIENT BITWIDTHS
Determining the bitwidths of the quan-
tized filter coefficients in our DSP trick 
depends on whether you are imple-
menting the serial or the parallel filter-
ing method.

SERIAL METHOD 
COEFFICIENT QUANTIZATION
In the serial method, let’s assume we 
want our ROM to store coefficients 
whose bitwidths are integer B  (not 
counting the flag bit). 
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The steps in computing the integer 
ROM coefficients for the serial method 
are as follows:

Step 1 ■ : Set a temporary scale factor 
variable to SCALE5 1 and temporary 
b i twidth integer  var iable  to 
K 5  B2 1. Apply the following 
quantization steps to the largest-
magnitude original bk floating-point 
coefficient (for example, b4 in the 
upper left side of Figure 2).

Step 2 ■ : If the bk  floating-point 
coefficient being quantized and all 
the remaining unquantized coeffi-
cients are less than the value 
SCALE/2, set SCALE 5 SCALE/2, 
set K5K1 1, and set the current 
 coefficient’s flag bit to Flag 5 1. If 
the bk floating-point coefficient 
being quantized or any of the 
remaining unquantized coeffi-
cients are equal to or greater than 
SCALE/2, variables SCALE and K 
remain unchanged, and set the 
current  coef f ic ient ’s  f lag  b i t 
to Flag 5 0. 

Step 3 ■ : Multiply the bk floating-
point coefficient being quantized by 
2K  and round the result to the nearest 
integer. That integer is our final value 
saved in ROM. 

Step 4 ■ : Repeat Steps 2 and 3 for 
all the remaining original unquan-
tized bk floating-point coefficients, 
in sequence from the remaining 
largest-magnitude to the remaining 
smallest-magnitude coefficient.
Table 1 illustrates the serial method 

quantization steps for the floating-point 
coefficients in Figure 2.

PARALLEL METHOD 
COEFFICIENT QUANTIZATION
In the parallel method, let’s assume we 
want our ROM to store coefficients 
whose bitwidths are integer B. (For 
example, in the lower right side of 
Figure 5, B 5  8.) Next, let’s define an 
optimum magnitude range, R, as

 0.5 # R , 1. (1) 

The steps in computing the integer 
ROM coefficients for the parallel method 
are as follows:

Step 1 ■ : Repeatedly multiply an 
original bk floating-point coefficient 
(the upper left side of Figure 5) by 
two until the magnitude of the 
result resides in the optimum mag-
nitude range R. Denote the number 
of necessary multiply-by-two opera-
tions as Q.

Step 2 ■ : Multiply the original bk 
floating-point coefficient by 2B1Q21 
(the minus one in the exponent 
accounts for the final coefficient’s sign 
bit) and round the result to the near-
est integer. That integer is our final 
value saved in ROM. 

Step 3 ■ : Repeat Steps 1 and 2 for all 
the remaining original bk floating-
point coefficients.

CONCLUSIONS
We introduced two novel methods for 
improving the precision of the fixed-
point coefficients of FIR filters. Using 
the modified (compressed) coefficients, 
we achieved enhanced filter perfor-
mance while maintaining phase linear-
ity, without increasing the bitwidths of 
our filter multiplier or co efficients, 
nor the number of coefficients. The 
 so-called serial method of filtering 
is compatible with traditional pro-
grammable DSP chip and FPGA 
process  ing, while the parallel method 
is most appropriate with an FPGA 
 implementation.
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[TABLE 1] SERIAL METHOD QUANTIZATION EXAMPLE.

COEFFICIENT BEING 
QUANTIZED

CURRENT 
SCALE

ALL UNQUANTIZED 
COEFFICIENTS LESS 
THAN SCALE/2? NEW SCALE K

ROM EQUIVALENT 
COEFFICIENT 
BITWIDTH FLAG BIT

LEFT SHIFT 
AND ROUND

b45 0.87968 1 NO 
0b4 0 . 1/2 1 7 8 0 B4 5  ROUND 3b4 3 27 4 5 113 

b35 0.37687 1 YES 
0b3 0 , 0b2 0 , 0b1 0 , 0b0 0 , 1/2 0.5 8 9 1 B3 5  ROUND 3b3 3 28 4 5 96

b2520.26156 0.5 NO
0b2 0 . 0.5/2 0.5 8 9 0 B2 5  ROUND 3b2 3 28 4 5267

b1520.05899 0.5 YES
0b1 0 , 0b0 0 ,  0.5/2 0.25 9 10 1 B1 5  ROUND 3b1 3 29 4 5230

b05 0.01751 0.25 YES
0b0 0 ,  0.25/2

0.125 10 11 1 B0 5  ROUND 3b0 3 210 4 5 18

THE SO-CALLED SERIAL 
METHOD OF FILTERING 

IS COMPATIBLE 
WITH TRADITIONAL 

PROGRAMMABLE DSP CHIP 
AND FPGA PROCESSING.
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