
The Sliding DFT

The standard method
for spectrum analysis
in digital signal pro-
cessing (DSP) is the
discrete Fourier

transform (DFT), typically imple-
mented using a fast Fourier transform
(FFT) algorithm. However, there are
applications that require spectrum
analysis only over a subset of the N
center frequencies of an N-point DFT.
A popular, as well as efficient, tech-
nique for computing sparse DFT re-
sults is the Goertzel algorithm that
computes a single complex DFT spec-
tral bin value for every N input time
samples. This article describes a sliding
DFT process whose spectral bin out-
put rate is equal to the input data rate,
on a sample-by-sample basis, with the
advantage that it requires fewer com-
putations than the Goertzel algorithm
for real-time spectral analysis. In appli-
cations where a new DFT output spec-
trum is desired every sample, or every
few samples, the sliding DFT is
computationally simpler than the tra-
ditional radix-2 FFT. We’ll start our
sliding DFT discussion by providing a
brief review of the Goertzel algorithm
and use its behavior as a yardstick to
evaluate the performance of the sliding
DFT technique. Following that, we
will examine stability issues regarding
the sliding DFT implementation as

well as review the process of fre-
quency-domain convolution to ac-
complish time-domain windowing.
Finally, a modified sliding DFT struc-
ture is proposed that provides im-
proved computational efficiency.

Goertzel Algorithm
The Goertzel algorithm, used in
dual-tone multifrequency decoding
and phase-shift keying/frequency-shift
keying modem implementations, is
commonly used to compute DFT
spectra [1]-[4]. The algorithm is im-
plemented in the form of a second-or-
der infinite impulse response (IIR)
filter as shown in Figure 1. This filter
computes a single DFT output (the
kth bin of an N-point DFT) defined
by
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The filter’s y n( ) output is equal to
the DFT output frequency coeffi-
cient, X k( ), at the time index n N= .
For emphasis, we remind the reader
that the filter’s y n( ) output is not
equal to X k( ) at any time index when
n N≠ . The frequency-domain index
k i s an integer in the range
0 1≤ ≤ −k N . The derivation of this

filter’s structure is readily available in
the literature [5]-[7].

The z-domain transfer function of
the Goertzel filter is
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with a single z-domain zero located at
z e j k N= − 2 π / and conjugate poles at
z e j k N= ± 2 π / as shown in Figure 2(a).
The pole/zero pair at z e j k N= − 2 π / can-
cels each other. The frequency magni-
tude response, provided in Figure
2(b), shows resonance centered at a
normalized frequency of 2πk N/ , cor-
responding to a cyclic frequency
k f Ns⋅ / Hz (where f s is the signal
sample rate).

While the Goertzel algorithm is
derived from the standard DFT equa-
tion, it’s important to realize that the
filter’s frequency magnitude response
is not the sin( )/( )x x -like response of a
single-bin DFT. The Goertzel filter is
a complex resonator having an infi-
nite-length unit impulse response,
h n e j nk N( ) /= 2 π , and that’s why its
magnitude response is so narrow.
The time-domain difference equa-
tions for the Goertzel filter are

v n k N v n
v n x n
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− − +
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π

(3a)

y n v n e v nj k N( ) ( ) ( )./= − −− 2 1π (3b)

An advantage of the Goertzel filter
in calculating an N-point X k( ) DFT
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bin is that (3a) is implemented N
times while (3b), the feed forward
path in Figure 1, need only be com-
puted once after the arrival of the Nth
input sample. Thus for real x n( ) the
filter requires N + 2 real multiplies
and 2 1N + real adds to compute an
N-point X k( ). However, when mod-
eling the Goertzel filter if the time in-
dex begins at n = 0, the filter must
process N + 1 time samples with
x N( ) = 0 to compute X k( ). Now let’s
look at the sliding DFT process.

Sliding DFT
The sliding DFT (SDFT) algorithm
performs an N-point DFT on time
samples within a sliding-window as
shown in Figure 3. In this example
the SDFT initially computes the DFT
of the N = 16 time samples in Figure
3(a). The time window is then ad-
vanced one sample, as in Figure 3(b),
and a new N-point DFT is calculated.
The value of this process is that each
new DFT is efficiently computed di-
rectly from the results of the previous
DFT. The incremental advance of the
time window for each output compu-
tation is what leads to the name slid-
ing DFT or sliding-window DFT.

The principle used for the SDFT is
known as the DFT shifting theorem
or the circular shift property [8]. It
states that if the DFT of a windowed
(finite-length) time-domain se-
quence is X k( ), then the DFT of that
sequence, circularly shifted by one
sample, is X k e j k N( ) /2 π . Thus the spec-
tral components of a shifted time se-
quence are the original (unshifted)
spectral components multiplied by
e j k N2 π / , where k is the DFT bin of in-
terest. We express this process by

S n S n e
x n N x n

k k
j k N( ) ( )

( ) ( )

/= −
− − +

1 2 π

(4)

where S nk ( ) is the new spectral com-
ponent and S nk ( )− 1 is the previous
spectral component. The subscript k
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▲ 1. IIR filter implementation of the Goertzel algorithm.

▲ 2. Goertzel filter: (a) z-domain pole/zero locations and  (b) frequency magnitude re-
sponse.

▲ 3. Signal windowing for two 16-point DFTs: (a) data samples in the first computation
and (b) second computation samples.



reminds us that the spectra are those
associated with the kth DFT bin.

Equation (4), whose derivation is
provided in the Appendix, reveals the
value of this process in computing
real-time spectra. We calculate S nk ( )
by phase shifting the previous
S nk ( )− 1 components, subtract the
x n N( )− sample, and add the current
x n( ) sample. Thus the SDFT requires
only one complex multiply and two
real adds per output sample. The com-
putational complexity of each succes-
sive N-point output is then O( )N for
the sliding DFT compared to O( )N 2

for the DFT and O[ log ( )]N N2 for
the FFT. Unlike the DFT or FFT,
however, due to its recursive nature
the sliding DFT output must be com-
puted for each new input sample. If a
new N-point DFT output is required
only every N inputs, the sliding DFT
requires O( )N 2 computations and is
equivalent to the DFT. When output
computations are required every M in-

put samples, and M is less than
log ( )2 N , the sliding DFT can be
computationally superior to tradi-
tional FFT implementations even
when all N DFT outputs are required.

Equation (4) leads to the sin-
gle-bin SDFT filter structure shown
in Figure 4.

The single-bin SDFT algorithm is
implemented as an IIR filter with a
comb filter followed by a complex
resonator [9]. (If you want to com-
pute all N DFT spectral components,
N resonators with k = 0 to N − 1 will
be needed, all driven by a single comb
filter.) The comb filter delay of N
samples forces the filter’s transient re-
sponse to be N − 1samples in length,
so the output will not reach steady
state until theS Nk ( )sample. In practi-
cal applications the algorithm can be
initialized with zero input and zero
output. The output will not be valid,
or equivalent to (1)’s X k( ), until N in-
put samples have been processed. The

z-domain transfer function for the kth
bin of the sliding DFT filter is
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This complex filter has N zeros
equally spaced around the z-domain’s
unit circle, due to the N-delay comb
filter, as well as a single pole canceling
the zero at z e j k N= 2 π / . The SDFT fil-
ter’s complex unit impulse response
h n( ) and pole/zero locations are
shown in Figure 5 for the example
where k = 2 and N = 20.

Because of the comb subfilter, the
SDFT filter’s complex sinusoidal unit
impulse response is finite in length,
truncated in time to N samples, and
that property makes the frequency
magnitude response of the SDFT fil-
ter identical to the sin( )/sin( )Nx x re-
sponse of a single DFT bin centered
at a normalized frequency of 2πk N/ .

One of the attributes of the SDFT
is that once an S nk ( )− 1 is obtained,
the number of computations to calcu-
late S nk ( ) is fixed and independent of
N. A computational workload com-
parison between the Goertzel and
SDFT filters is provided later in this
article. Unlike the radix-2 FFT, the
SDFT’s N can be any positive integer
giving us greater flexibility to tune the
SDFT’s center frequency by defining
integer k such that k N f fi s= ⋅ / ,
when f i is a frequency of interest in
hertz. In addition, the SDFT does not
require bit-reversal processing as does
the FFT. Like Goertzel, the SDFT is
especially efficient for narrowband
spectrum analysis.

For completeness, we mention
that a radix-2 sliding FFT technique
exists for computing all N bins of X k( )
in (1) [10], [11]. This method is
computationally attractive because it
requires only N complex multiplies to
update the N-point FFT for all N
bins; however, it requires 3N mem-
ory locations (2N for data and N for
twiddle coefficients). Unlike the
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▲ 4. Single-bin sliding DFT filter structure.
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▲ 5. Sliding DFT characteristics for k = 2 and N = 20: (a) impulse response and (b)
pole/zero locations.



SDFT, the radix-2 sliding FFT
scheme requires address bit-reversal
processing and restricts N to be an in-
teger power of two.

SDFT Stability
The SDFT filter is only marginally
stable because its pole resides on the
z-domain’s unit circle. If filter coeffi-
cient numerical rounding error is not
severe, the SDFT is bounded-input,
bounded-output stable. Filter insta-
bility can be a problem, however, if
numerical coefficient rounding
causes the filter’s pole to move out-
side the unit circle. We can use a
damping factor r to force the pole to
be at a radius of r inside the unit circle
and guarantee stability using a trans-
fer function of

H z
r z

re zgs

N N

j k NSDFT, ( )
( )

/
=

−
−

−

−

1
1 2 1π (6)

with the subscript gs meaning guaran-
teed-stable. The stabilized feed-for-
ward and feedback coefficients
become −r N and re j k N2 π / , respec-
tively. The difference equation for the
stable SDFT filter becomes

S n S n re

x n N r x n
k gs k gs

j k N

N
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( ) ( )

= −

− − +

1 2 π
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with the stabilized-filter structure
shown in Figure 6.

Using a damping factor as in Fig-
ure 6 guarantees stability, but the
S nk ( ) output, defined by

X k x n rer
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is no longer exactly equal to the kth bin
of an N-point DFT in (1). While the
error is reduced by making r very close
to (but less than) unity, a scheme does
exist for eliminating that error com-
pletely once every N output samples at
the expense of additional conditional

logic operations [12]. Determining if
the damping factor r is necessary for a
particular SDFT application requires
careful empirical investigation.

Another stabilization method
worth consideration is decrementing
the largest component (either real or
imaginary) of the filter’s e j k N2 π / feed-
back coefficient by one least significant
bit. This technique can be applied se-
lectively to problematic output bins
and is effective in combating instabil-
ity due to rounding errors which result
in finite-precision e j k N2 π / coefficients
having magnitudes greater than unity.

Like the DFT, the SDFT’s output
is proportional to N, so in fixed-point
binary implementations the designer
must allocate sufficiently wide regis-
ters to hold the computed results.

Time-Domain Windowing
in the Frequency Domain
The spectral leakage of the SDFT can
be reduced by the standard concept of
windowing the x n( ) input time sam-

ples. However, windowing by time-
domain multiplication would compro-
mise the computational simplicity of
the SDFT. Alternatively, we can imple-
ment a time-domain window by means
of frequency-domain convolution.

Spectral leakage reduction per-
formed in the frequency domain is ac-
complished by convolving adjacent
S nk ( ) values with the DFT of a
window function. For example, the
DFT of a Hanning window com-
prises only three nonzero values,
−0.25, 0.5, and −0.25. As such we can
compute a Hanning-windowedS nk ( ),
the kth DFT bin, with a three-point
convolution using

Hanning-windowed
S n S n S n

S n
k k k

k

( ) . ( ) . ( )

. ( ).

= − ⋅ + ⋅

− ⋅
−

+

025 05

025
1

1 (9)

Figure 7 shows this process where
the comb filter stage need only be im-
plemented once. Thus a Hanning
window can be implemented by bi-
nary right shifts (assuming integer
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▲ 6. Guaranteed-stable sliding DFT filter structure.
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volution.



arithmetic) and two complex adds for
each SDFT bin, making the Hanning
window attractive in ASIC and
FPGA implementations where sin-
gle-cycle hardware multiplies are
costly. If a gain of four is acceptable,
then only one left shift two complex
adds are required using

Hanning-windowed
S n S n S n S nk k k k( ) ( ) ( ) ( ).= − + ⋅ −− +1 12

(10)

The Hanning window is a member
of a category called cos ( )α x window
functions [13], [14]. These functions
are also known as generalized cosine
windows because their N-point
time-domain samples are defined as

w n a mn Nm
m

m

( ) ( ) cos( / )= −
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−

∑ 1 2
0

1

π
α

(11)

where n N= −0 1 2 1, , , ... , , and the
integer α specifies the number of
terms in the window’s time function.
These window functions are attrac-
tive for frequency domain convolu-
tion because their DFTs contain only
a few nonzero samples. The fre-
quency domain vectors of various
cos ( )α x window functions follow the
form ( / ) ( , , , , )1 2 22 1 0 1 2⋅ − −a a a a a ,
with a few examples presented in Ta-
ble 1. Additional cos ( )α x window
functions are described in the litera-
ture [14].

Sliding Goertzel DFT
We can reduce the number of multi-
plications required in the SDFT by
creating a new pole/zero pair in its
H zDFT ( ) system function [7]. This is
done by multiplying the numerator

and denominator of H zSDFT ( ) in (5)
by the factor( )/1 2 1− − −e zj k Nπ yielding
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where the subscript SG means sliding
Goertzel. The filter block diagram for
H zSG ( ) is shown in Figure 8 where
this new filter is recognized as the
standard Goertzel filter preceded by a
comb filter. The sliding Goertzel
DFT filter, unlike the standard
Goertzel filter, has a finite-duration
impulse response identical to that
shown in Figure 5(a), for k = 2 and
N = 20.

Of course, unlike the traditional
Goertzel filter in Figure 1, the sliding
Goertzel DFT filter’s complex
feedforward computations must be
performed for each input time sam-
ple. The sliding Goertzel filter’s
sin( )/sin( )Nx x frequency magnitude
response, for k = 2 and N = 20, is
provided in Figure 9(a). The asym-
metrical frequency response is de-
fined by the filter’s N zeros equally
spaced around the z-domain’s unit
circle in Figure 9(b) due to the N-de-
lay comb filter, as well as an addi-
tional (uncanceled) zero located at
z e j k N= − 2 π / on account of the
( )/1 2 1− − −e zj k Nπ factor in the H zSG ( )
transfer function’s numerator. In ad-
dition, the filter has conjugate poles
canceling zeros at z e j k N= ± 2 π / .

The sliding Goertzel DFT filter is
of interest because its computational
workload is less than that of the
SDFT. This is because the v n( ) sam-
ples in Figure 8 are real-only due to
the real-only feedback coefficients. A
single-bin DFT computational com-
parison, for real-only inputs, is pro-
vided in Table 2. For real-time
processing requiring spectral updates
on a sample by sample basis the slid-
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Table 1. cos x) windows, frequency domain coefficients.

Window function α 0 α 1 α 2

Rectangular 1.0 − −

Hanning (α = 2) 0.5 0.25 −

Hamming (α = 2) 0.54 0.46 −

Blackman (α = 3) 0.42 0.5 0.08

Exact Blackman (α = 3)
7938

18608
9240

18608
1430

18608

x n( )

z −N

+

−1

+

−1

z −1
2cos(2 / )πk N −e− πj k N2 /

y n( )v n( )

z −1

+

▲ 8. Structure of the sliding Goertzel DFT filter.



ing Goertzel method requires fewer
multiplies than either the SDFT or
the traditional Goertzel algorithm.

Summary
The sliding DFT process for spectrum
analysis was presented and shown to be
more efficient than the popular
Goertzel algorithm for sample-by-sam-
ple DFT bin computations. The sliding
DFT provides computational advan-
tages over the traditional DFT or FFT
for many applications requiring succes-
sive output calculations, especially
when only a subset of the DFT output
bins are required. Methods for output
stabilization as well as time-domain
data windowing by means of fre-
quency- domain convolution were also
discussed. A modified sliding DFT al-
gorithm, called the sliding Goertzel
DFT, was proposed to further reduce
computational workload.
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Appendix
The derivation of the SDFT time-do-
main expression is straightforward by
example. We start by using the princi-
ples of the z-transform and write a
generalized z-domain spectrum of a
four-point time-domain sequence
x n( ), where n = 0 1 3, , ... , , evaluated at
z zo= as

S x x z

x z x z
z o

o o

o
( ) ( ) ( )

( ) ( ) .

0 3 2

1 02 3

= +

+ + (A1)

Likewise we could compute a
spectrum of the four x n( )+ 1 time
samples as

S x x z

x z x z
z o

o o

o
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( ) ( ) .

1 4 3

2 12 3
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If we multiply Sz o
( )0 by zo we have

S z x z x z

x z x z
z o o o
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o
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0 3 2

1 0

2

3 4
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Comparing (A2) and (A3) we can
rewrite (A2) as

S S z x z xz z o oo o
( ) ( ) ( ) ( )1 0 0 44= − + .

(A4)

Thus we can use Sz o
( )0 to com-

puteSz o
( )1 . Moreover we can express

the spectrum of the four x n( )+ 2
samples as

S S z x z xz z o oo o
( ) ( ) ( ) ( )2 1 1 54= − + .

(A5)

In the general case, the qth N-point
spectrum can be expressed as

S q S q z x q z
x q N

z z o o
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1 1
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Here’s the payoff for our efforts. If
we let z eo

j k N= 2 π / , a point on the unit
circle, the (A6) z-transform expression
becomes the desired time-domain ex-
pression for the sliding DFT as
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Because the angle of e j k N2 π / is an
integer multiple of2π/N, (A7) is seen
merely as the qth single-bin DFT,
X k( ), of x n( ) for the normalized fre-
quency of 2πk N/ radians, where
k N= −0 1 2 1, , , ... , . We now have an
expression for the sliding DFT. How-
ever, to turn that expression into a fil-
ter dif ference equation we’re
compelled to modify the indices of

(A7) to make them compatible with
causal filters. With no loss in general-
ity, using the following substitutions

S n S q

S n S q

x n x q N

k e

k e

j k N

j k N

( ) ( ),

( ) ( ),

( ) (

/

/

=

− = −

= +

2

21 1
π

π

−
− = −

1
1

),
( ) ( ),x n N x q (A8)

we can rewrite (A7) in a time-domain
form for the causal recursive filter

S n S n e
x n N x n

k k
j k N( ) ( )

( ) ( ).

/= −
− − +

1 2 π

(A9)

The subscript k reminds us that the
filter output is associated with the
kth DFT bin. The z-domain transfer
function for the kth bin of the sliding
DFT filter is

H z
z

e z

N

j k NSDFT ( )
( )

/
=

−
−

−

−

1
1 2 1π

.
(A10)
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