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Richard Lyons

Turbocharging Interpolated FIR Filters

I
nterpolated finite impulse response
(IFIR) filters drastically improve the
computational efficiency of low-pass
finite impulse response (FIR) filters
designed using the traditional

Parks-McClellan design method [1]. This
article presents a trick to further
improve the computational efficiency of
traditional IFIR filters.

TRADITIONAL IFIR FILTERS
Recall that a traditional IFIR filter com-
prises a band-edge shaping subfilter fol-
lowed by a low-pass masking subfilter,
where both subfilters are traditionally
implemented as linear-phase tapped-
delay FIR filters. The band-edge shaping
subfilter has a sparse impulse response,
with all but every Mth sample being zero,
that shapes the final IFIR filter’s pass-
band, transition band, and stopband
responses. (Integer M is called the
“expansion” or “stretch” factor of the
band-edge shaping subfilter.) Because
the band-edge shaping subfilter’s fre-
quency response contains M – 1 unwant-
ed periodic passband images, the
masking subfilter is used to attenuate
those images and can be implemented
with few arithmetic operations.

Although design curves are available
for estimating the optimum value for
expansion factor M which minimizes fil-
ter computational workload [1], the fol-

lowing expression enables the optimum
M value to be computed directly [2]

Mopt = 1

fpass + fstop + √
fstop– fpass

.

(1)

The fpass and fstop frequency values are
normalized to the filter input sample
rate, fs, in Hz. For example, fpass = 0.1
is equivalent to a cyclic frequency of
fpass = fs/10 Hz. The value of Mopt ,

computed using (1), is rounded to the
nearest integer.

RECURSIVE IFIR FILTERS
Our IFIR filter optimization trick that
improves the filter’s computational effi-
ciency replaces the traditional single-
stage masking subfilter with a cascade of
subfilters, as shown in Figure 1(a). We
present two detailed structures of the
masking subfilter, a rotated sync (RS)-
masking subfilter and a “modified”
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[FIG1] Recursive IFIR filter: (a) subfilters, (b) RS-masking subfilter structure, (c) MCIC-
masking subfilter.
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cascaded integrator-comb (MCIC)-mask-
ing subfilter, which are shown in Figure
1(b)–(c), respectively.

THE RS-MASKING SUBFILTER
The RS-masking subfilter is called a
“rotated sinc” filter and was originally
proposed for use with sigma-delta ana-
log-to-digital converters [3]. Factor α is
the angular positions (in radians) of the
subfilter’s poles/zeros on the z-plane
near z = 1 and M is the band-edge shap-
ing subfilter’s integer expansion factor.
The z-domain transfer function of the
RS-masking subfilter is given by

HRS(z) = 1 − Az−M + Az−2M − z−3M

1 − Bz−1 + Bz−2 − z−3 ,

(2)

where A = 1 + 2cos (Mα) and B = 1 +
2cos (α). There are multiple ways to
implement (2); however, the structure
in Figure 1(b) is the most computation-
ally efficient.

An RS-masking subfilter has M triplets
of zeros (three closely spaced zeros) even-

ly distributed around the z-plane’s unit
circle. The triplets of zeros create periodic
response stopbands centered exactly at
the frequencies where we require band-
edge shaping subfilter passband image
attenuation. The triplet of zeros near
z = 1 are overlayed with three poles
where pole-zero cancellation makes our
masking subfilter a low-pass filter. The
expansion factor M in (2) determines how
many RS-masking subfilter response stop-
bands (triplets of zeros) are distributed
around the unit circle, and angle a deter-
mines the width of those stopbands. For
proper operation, angle a must be less
than π/M. As it turns out, thankfully, the
RS-masking subfilter’s impulse response
is both finite in duration and symmetrical,
so the subfilter exhibits linear phase.

IMPROVED MASKING
ATTENUATION WITH THE 
RS-MASKING FILTER
Because the RS-masking subfilter may
not provide sufficient stopband attenua-
tion, we can improve that attenuation, at
a minimal computational cost, by apply-
ing the masking subfilter’s v(n) output to

an auxiliary subfilter as shown in Figure
1(a). There are two candidate auxiliary
subfilters that should be considered. 

■ Auxiliary subfilter 1 defined by

HAux I(z) = 1 − z−M

1 − z−1 (3)

can achieve an additional 15–25 dB of
stopband attenuation. When two’s com-
plement fixed-point arithmetic is used,
this subfilter is a guaranteed-stable cas-
caded integrator-comb (CIC) low-pass fil-
ter that places a single additional
z-domain zero at the center of each RS-
masking subfilter stopband. 

■ Auxiliary subfilter 2 defined by

HAux II(z) =1−2cos(Mα/2)z−M +z−2M

1−2cos(α/2)z−1+z−2

(4)

can achieve a masking stopband attenua-
tion greater than 90 dB. This low-pass
subfilter places a pair of z-domain zeros
at the center of each RS-masking subfil-
ter stopband.

The RS-masking and auxiliary subfil-
ters have some droop in their passband
magnitude responses. If their cascaded
passband droop is intolerable in your
application, then some sort of passband
droop compensation must be employed
as indicated in Figure 1(a). We suggest
using a

■ Compensation subfilter defined by

HCS(z) = 1 − Cz
−M + z−2M, (5)

which was originally proposed for use
with high-order cascaded integrator
comb (CIC) low-pass filters [4]. That
compensation subfilter has a monotoni-
cally rising magnitude response begin-
ning at 0 Hz—just what we need for
passband droop compensation. The coef-
ficient C in (5) is typically in the range of
4–10 and is determined empirically.

THE MCIC-MASKING SUBFILTER
An alternate structure of the masking
subfilter in Figure 1(a) is the “modified
CIC” (MCIC) subfilter shown in Figure
1(c). The MCIC subfilter was inspired by,
and it is an optimized version of, a CIC
filter proposed in [5].

[FIG2] Recursive IFIR filter performance: (a) band-edge shaping and RS-masking subfilter
responses, (b) response using cascaded auxiliary subfilter 2 and compensation subfilters.
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The MCIC-masking subfilter is a guar-
anteed-stable linear-phase low-pass filter
whose frequency response (like that of the
RS-masking subfilter) has periodic stop-
bands located at the center of each band-
edge shaping subfilter passband image. The
coefficient K controls the width of the
MCIC-masking subfilter stopbands. While
the MCIC-masking subfilter requires one
fewer multiplier and fewer delay elements
than the RS-masking subfilter, sadly the
number of delay elements of an MCIC-
masking subfilter is not reduced in decima-
tion applications as with an RS-masking
subfilter, as we will discuss later.

RECURSIVE IFIR FILTER DESIGN
To summarize, designing a recursive
IFIR filter using an RS-masking subfilter
comprises the following steps:

1) Based on the desired low-pass fil-
ter’s fpass and fstop frequencies, use (1) to
determine a preliminary value for the
band-edge shaping filter’s integer expan-
sion factor M.

2) Choose an initial value for the RS-
masking subfilter’s α using α = 2π fpass.
Adjust a to maximize the attenuation of
the band-edge shaping subfilter’s passband
images.

3) If the RS-masking subfilter does not
provide sufficient passband image attenua-
tion, employ one of the auxiliary filters
defined by (3) and (4).

4) Choose an initial value for C
(starting with 4 < C < 10) for the com-
pensation subfilter. Adjust C to provide
the desired passband flatness.

5) Continue by increasing M by one
(larger values of M yield lower-order band-
edge shaping subfilters) and repeat steps 2
through 4 until either the RS-
masking/auxiliary subfilter combination no
longer supplies sufficient passband image
attenuation or the compensation subfilter
no longer can achieve acceptable passband
flatness.

6) Sit back and enjoy a job well done.

RECURSIVE IFIR FILTER 
DESIGN EXAMPLE
We can further understand the recursive
IFIR filter design by considering the sce-
nario where we desire a narrowband low-
pass IFIR filter with fpass = 0.01 f s, a

peak-peak passband ripple of 0.2 dB, a
transition region bandwidth of
ftrans = 0.005 f s, and 90 dB of stopband
attenuation. A traditional Parks-
McClellan-designed FIR low-pass filter
satisfying these very demanding design
specifications would require a 728-tap fil-
ter. Designing a recursive IFIR filter to
meet our design requirements yields an
M = 14 band-edge shaping subfilter hav-
ing 52 taps and an RS-masking subfilter
with α = π/42 rad. When used in place of
the RS-masking subfilter, a K = 6 MCIC-
masking subfilter also meets the stringent
requirements of this design example.

The dashed curve in Figure 2(a) shows
the design example band-edge shaping
subfilter’s |Hbe( f)| frequency magnitude
response with its periodically spaced
image passbands which must be removed
by the RS-masking subfilter. Selecting
α = π/42 for the RS-masking subfilter
yields the |Hma( f)| magnitude response
shown by the solid curve. The magnitude

response of our final recursive IFIR filter,
using an auxiliary subfilter 2 and a C = 6
compensation subfilter, is shown in
Figure 2(b). The final filter’s passband
peak-peak ripple is less than 0.2 dB.

For comparison purposes, Table 1 lists
the design example computational work-
load, per filter output sample, for the vari-
ous filter implementation options
discussed above. The “PM FIR” table entry
means a single Parks-McClellan-designed,
tapped-delay line FIR filter. The “two-
stage-masking IFIR” table entry refers to
the implementation of a traditional IFIR
filter’s masking subfilter as a separate
IFIR filter in order to reduce the overall
computations workload, as proposed in
[2]. The “efficiency gain” column indi-
cates the percent reduction in additions
plus multiplications with respect to a
standard IFIR filter. As these results show,
for cutting the computational workload of
traditional IFIR filters, the recursive IFIR
filter is indeed a sharp knife.
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[FIG3] Guaranteeing stability: (a) stable RS-masking subfilter and (b) stable
auxiliary subfilter 2.
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RECURSIVE IFIR FILTER
IMPLEMENTATION 
The gain of a recursive IFIR filter can be
very large (in the hundreds or thou-
sands), particularly for large M and small
α, depending on which auxiliary subfilter
is used. As such, the recursive IFIR filter
scheme is best suited for floating-point
numerical implementations. Two options
exist that may enable a fixed-point recur-
sive IFIR filter implementation: 1) when
filter gain scaling methods are employed
and 2) swapping the internal feedback
and feed-forward sections of a subfilter to
minimize data word growth.

The RS-masking subfilter, and the aux-
iliary subfilter 1, have poles lying on the
z-plane’s unit circle. Such filters run the
risk of being unstable should our finite-
precision filter coefficients cause a pole to
lie just slightly outside the unit circle. If
we find that our quantized-coefficient fil-
ter implementation is unstable, at the
expense of a few additional multiplications
we can use the subfilters shown in Figure
3 to guarantee stability while maintaining
linear phase. The stability factor r is a
constant whose value is as close to, but
less than, one as our number format
allows. The MCIC-masking subfilter is
always stable as long as two’s complement
fixed-point arithmetic is used.

RECURSIVE IFIR FILTERS 
FOR DECIMATION
If our low-pass filtering application
requires the y(n) output to be decimated,
fortunately the RS-masking subfilter
lends itself well to such a sample rate
change process. To decimate y(n) by M,
we merely rearrange the order of the sub-
filters’ elements so that all feed-forward
paths and the band-edge shaping subfilter
follow the downsample-by-M process.
Doing so has two advantages: First, the
zero-valued coefficients in the band-edge
shaping subfilter are eliminated, reduc-
ing that subfilter’s order by a factor of M.

Second, the z−M delay lines in the other
subfilters become z−1 unit-delays, which
reduce signal data storage requirements.

In this decimation scenario, the mul-
tiplies by the 2 cos(α) and 2 cos(α/2)

feedback coefficients must be performed
at the high input sample rate. The
replacement of those coefficients with
2 − 2k to implement a multiply with sim-
ple high-speed binary shifts and a sub-
traction is discussed in [3].
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LOW-PASS FILTER ADDS MULTS EFFICIENCY GAIN
PM FIR [ORDER = 737] 727 728 –
STANDARD IFIR [M = 10] 129 130 –
TWO-STAGE-MASKING IFIR 95 96 26%
RECURSIVE, RS-MASKING IFIR [M = 14] 63 57 54%

[TABLE 1]  RECURSIVE IFIR FILTER DESIGN EXAMPLE COMPUTATIONAL WORKLOAD.
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