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ABSTRACT
In this paper, we present a novel foreground object detection
method based on the sparse model of the spectrum of spa-
tiotemporal DCT domain, which is robust for high dynamic
scenes. First, we adopt the three-dimensional Discrete Co-
sine Transform (DCT) to calculate the spatiotemporal spec-
trum representation of the current frame. Then, identifica-
tion of foreground pixels is formulated as the analysis of the
sparse solution of an optimization problem, where foreground
pixels correspond to an outlier of the sparse model. Finally,
the background updating method is presented to adaptively
update the dictionary of sparse model corresponding to back-
ground representation. The experimental results on four chal-
lenging video sequences show that the proposed method is
more robust to high dynamic changes of scenes compared
with four representative methods.

Index Terms— Spatiotemporal spectrum, Sparse model,
foreground object detection

1. INTRODUCTION

Moving object extraction in complex scenes is widely used in
the automated surveillance, which is the primary technique of
many high-level tasks, such as object tracking, action recog-
nition and understanding. In fixed camera surveillance sys-
tems, background subtraction techniques are popular. In the
real world, the background of most scenes contains complex
dynamic changes, i.e., gradual or sudden illumination varia-
tion or repetitive motion, such as rippling water, moving veg-
etation in the wild, spouting fountain. The traditional pixel-
based method [1, 2] cannot well model these changes. Re-
cently, there is a tendency of using the neighborhood informa-
tion to enhance the power of background model, i.e., spatial
neighborhood[1, 3, 4] or temporal neighborhood[5, 6]. How-
ever, these methods only considering the information of spa-
tial neighborhood or temporal neighborhood may also pro-
duce a lot of false detections due to complex dynamic scenes.

Intuitively, spatial neighborhood information and tem-
poral neighborhood information are complementary to each
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other. Thus, the integration of spatiotemporal information
is a better way to model dynamic scenes. Doretto et al. [7]
exploit the dynamic texture to model a spatiotemporal vol-
ume from a linear dynamic system. Moshe et al. [8] directly
adopt the spatiotemporal volume. Generally, this category of
methods extract the features from the pixels in a volume as
its representation [9, 10]. Its limitation lies in the existence of
obvious block effect and representation complexity.

In the proposed approach, we first compute the local spa-
tiotemporal spectrum of the current frame, and then a low-
dimension compact representation is constructed through se-
lecting the spectral coefficients with intensive energy statis-
tically. Next, foreground pixels are identified through ana-
lyzing the sparse solution of an optimization problem about
the sparse model. Finally, the background model is updated
by updating the atoms of dictionary in the sparse model if
necessary. Compared with the existing approaches of fore-
ground detection, our approach utilizes a more compact and
computationally efficient spatiotemporal spectrum represen-
tation based on DCT instead of local Fourier transform(LFT)
[11], and we presents a novel foreground object detection
scheme based on the sparse model, as well as background
update strategy.

The rest of the paper is organized as follows. Section 2
presents the background model based on the DCT spectrum
of spatiotemporal volumes. The foreground object extraction
approach is detailed in Section 3. The experimental results
are reported in Section 4. Section 5 concludes the paper.

2. BACKGROUND MODEL BASED ON LOCAL
SPATIOTEMPORAL SPECTRUM

For a pixel in a video frame, its spatiotemporal neighboring
pixels determine that it is foreground or background. Let
p = (x, y, t) denote a location in the spatiotemporal volume,
and then its neighboring spatiotemporal cuboid is defined as
Ω(p) = {p′|p′ = (x′, y′, t′), x′ ∈ [x − Nx, x + Nx], y ∈
[y − Ny, y + Ny], t′ ∈ [t − Nt, t + Nt]}. For a gray image
sequence I(p), the local three-dimensional Discrete Cosine
Transform (DCT) centering on pixel p is defined as

S(u, v, τ) = c(u;Nx)c(v;Ny)c(τ ;Nt)S
′(u, v, τ), (1)
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S′(u, v, τ) =

2Nx∑
x=0

2Ny∑
y=0

2Nt∑
t=0

I(x, y, t)φ(u, v, τ, x, y, t), (2)

φ(u, v, τ, x, y, t) = ψ(u, x;Nx)ψ(v, y;Ny)ψ(τ, t;Nt), (3)

ψ(u′, x′;L) = cos[
π(2x′ + 1)u′

2(2L+ 1)
], (4)

c(u′;L) =


√

1

L
, u′ = 0√

2

L
, u′ = 1, 2, · · · , L− 1

, (5)

where u, v, τ denote the frequency variables corresponding to
x, y, t. Thus, for each pixel (x, y) on frame t, there is a corre-
sponding spatiotemporal spectrum S(u, v, τ) to represent it.
In our system , Nx = Ny = Nt = 2, i.e, the size of the spec-
trum cuboid is 5 × 5 × 5. To explore the energy distribution
on different frequency axes, we sample about 3 × 105 spa-
tiotemporal volumes and calculate the mean energy on each
3D DCT coefficients. Just as shown in Fig.1(b)(c), our ex-
perimental results show that most of the energy concentrates
on the spectrum slice indexed by τ = 0, and further almost
99.8% energy is captured by the first 20 DCT coefficients ac-
cording to the snake order [12]. Thus, we only use the first 20
spectral coefficients Sp(k),k = 0, 1, · · · , 19, to represent the
spatiotemporal feature of point p instead of 125 coefficients,
i.e., v(p)=[Sp(0), Sp(1), · · · , Sp(19)], which can effectively
reduce the complexity of background model.

Given a video sequence, the initial background model
can be established. Concretely, w spatiotemporal points can
be uniformly sampled along the temporal axis at pixel lo-
cation (x, y), and the corresponding spectral representations
v(x, y, ti), i = 1, · · · , w, are computed. Let vi(x, y) denote
v(x, y, ti), and the initial background model of point p in
spatiotemporal DCT domain can be represented as

B0(p) = {vi(x, y)|i = 1, · · · , w} (6)

In order to adapt the dynamic background, it is crucial to se-
lect the appropriate parameter Nt, which is related to the pe-
riod of background repetitive motion. If the period of repe-
tition motion (i.e. fast background motion) is short in an ap-
plication, a small value for Nt is suitable; otherwise, a large
value for Nt is a good choice (i.e. slow background motion).

3. FOREGROUND OBJECT DETECTION AND
BACKGROUND UPDATE

In our approach, the background is represented as the set of
atoms of dictionary in the sparse model, and the foreground
is taken as an outlier with respect to the dictionary. Then,
foreground pixels are identified through analyzing the sparse
solution of an optimization problem about the sparse model.
Further, the atoms of the dictionary as background model are

(a) (b)

(c)

Fig. 1. Graphical representations of the spatiotemporal spec-
trum: (a) snake order; (b) the slicing spectral energy of DCT
coefficients; (c)The percentage of average accumulated spec-
tral energy of 3D DCT coefficients computed on about 3×105

spatiotemporal volumes

updated based on their importance. The concrete technical
details are elaborated in the following subsections.

3.1. Sparse Dictionary Learning

In the sparse dictionary learning problem, given a group of
instances yi, i = 1, 2, · · · , n, a compact dictionary D =
[d1,d2, · · · ,dm] is sought to sparsely represent each in-
stance, i.e., yi =

∑m
j=1 xj,idj = Dxi , and most entries xj,i

of column vector xi are zeros. Formally, it can be expressed
as an optimization problem with the objective function,

min
D,X
||Y −DX||2F s.t. ||xi||0 ≤ k, ∀i (7)

where ||Y −DX||2F =
∑n

i=1 ||yi − Dxi||22, matrix Y =
[y1,y2, · · · ,yn], X = [x1,x2, · · · ,xn] and xi is the coeffi-
cient vector of yi with respect to dictionary D. ||xi||0 denotes
the number of nonzero elements of xi. Since the `0-norm is a
non-convex NP-hard problem, the optimal solution are gener-
ally obtained through solving the following relaxed problem,

min
D,X
||Y −DX||2F + λ||X||1 (8)

where ||X||1 =
∑

i,j |xj,i|. Apparently, the `1-norm replaces
`0-norm.
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3.2. Identification of Foreground Pixels

For a given pixel location q = (x, y), letBt(q) = {bi(x, y)|i =
1, 2, · · · , w} denote the corresponding background model at
time t, and each bi(x, y) is a spectral feature vector com-
puted according to Eq.(1). Then, for a coming frame It, the
problem is how to reliably identify foreground pixels in it
based on the background model.

In the proposed approach, the sparse dictionary model is
exploited to model the current frame It as the linear combina-
tion of the atoms of dictionary Dt and foreground image ft,
i.e.,

It = Dtxt + ft (9)

where xt ∈ Rm (||xt||0 � m) is a sparse vector, and It, ft
are column vectors. Specifically, in our system, for pixel lo-
cation q = (x, y) at time t, the corresponding spatiotemporal
spectrum St(q) can be written as

St(q) = Dt(q)xt(q) + Sf
t (q), (10)

where Dt(q) = [b1(q), · · · ,bw(q)], Sf
t (q) denotes the

spatiotemporal spectrum for foreground, and xt(q) ∈ Rw

(||xt(q)||0 � w). Ideally, if the pixel q corresponds to fore-
ground, it cannot sparsely be represented by the atoms of
background dictionary, so xt(q) = 0 according to Eq.(10);
otherwise, we have Sf

t (q) = 0 instead. In practice, although
we cannot obtain the ideal solution generally, it is true that
the spectrum feature of foreground pixels is incoherent with
that of background pixels, and can be regarded as an outlier
of the collection of background pixels. Now, the problem of
identifying foreground pixels is converted into that of judg-
ing whether the current pixel is the outlier of background
dictionary.

Inspired by EIhamifar et al.’s work [13], we combine the
current background model Dt(q) and the spectrum of cur-
rent pixel St(q) together to construct a new matrix Y =
[b1(q), · · · ,bw(q),St(q)]. Further, we formulate an opti-
mal problem through modifying Eq.(8) to judge whether the
spectrum St(q) of current pixel is an outlier with respect to
the background model Dt(q), i.e.,

min
X
||Y −YX||2F + λ||X||1,2 (11)

where ||X||1,2 =
∑w+1

j=1 ||xj ||2, and here xj denotes the j-th
row vector of coefficient matrix X, which can minimize the
number of non-zeros rows of X. To make the data invari-
ant with respect to the global translation, an affine constraint
1TX = 1T is append on the Eq. (11) as [13]. Compared
with Eq.(8), we use Y to replace dictionary D. If pixel q
corresponds to a foreground pixel, it prefers to write itself as
itself; otherwise, it is represented by an affine combination of
some atoms of background dictionary D. In other words, if
the pixel q belongs to the foreground, the corresponding row
of X should have very few nonzero entries. Thus, we define

a row-sparsity metric for the atom corresponding to current
pixel, i.e.,

η =
(w + 1)||xw+1||∞ − ||xw+1||1

w||xw+1||1
∈ [0, 1], (12)

to compute the probability of pixel q as a foreground pixel.
For a foreground pixel, the η value is close to 1, and for a
background pixel, the η value is close to 0. Hence, if the η
value of pixel q is larger than a predefining threshold ε, it is
classified as foreground.

Our experiments show that a fixed threshold cannot ob-
tain the good adaptation to the variance of scenes. Thus, an
adaptive threshold is used in our system and computed by
ε = µ + κσ, where µ, σ are the average and the standard
variance of η values of all the pixels in the current frame, and
parameter κ in our system is 1.8.

3.3. Update of Background model

Since the scenes often change slowly over time, it is neces-
sary to adaptively update background models. For pixel q
in the current frame, if it is marked as foreground, its back-
ground model Dt(q) keeps unchanged; Otherwise, if it is
consecutively marked as background during Nt frames, the
background model needs to be updated through replacing the
atom with the lowest efficacy by the spatiotemporal spectrum
St(q) of current frame. Concretely, the efficacy of each atom
in the current model is evaluated according to

ρ(j) =

w+1∑
i=1

|xj,i| − |xj,j | j = 1, 2, · · · , w (13)

where xj,i denotes the entry of matrix X at the j-th row and
the i-th column. Then, the index k of the atom with the lowest
efficacy is determined by k = arg minj ρ(j), and the corre-
sponding atom bk(q) is replaced.

4. EXPERIMENTAL RESULTS

To evaluate the performance of our method, the experiments
are performed on four challenging sequences from three
datasets publicly available, i.e., I2R, Wallflower, and Mon-
net’s dataset. All of the video sequences contain complex
scene changes. The frame size of the video sequences are all
normalized into 120×180. All the experiments run on the PC
with a 3.1GHz CPU in the Matlab environment. Since some
of the datasets have no ground truth of foreground objects in
the frame, we label some ground- truths manually using the
PhotoShop in order to compare the performance of the pro-
posed method with other representative algorithms, including
GMM[2, 14], Ali’method[11], Cui’method[15], kernel den-
sity estimation(KDE)[16]. For the GMM and KDE methods,
we adopt the default parameters in OpenCV2.2 and the pa-
rameter setting in the paper[17] respectively. Ali’s method
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Methods Campus Waving Trees Curtain Water Surface Average
R P F R P F R P F R P F R P F

MOG .324 .930 .481 .925 .488 .639 .770 .414 .538 .070 .441 .121 .522 .568 .544
KDE .693 .961 .805 .845 .895 .869 .899 .885 .892 .920 .986 .952 .839 .932 .883

Ali’s method .235 .558 .331 .662 .793 .722 .818 .663 .732 .716 .720 .718 .608 .684 .644
FMSD .623 .625 .624 .158 .630 .253 .198 .682 .307 .958 .346 .508 .484 .571 .524

Our method .973 .753 .849 .866 .983 .921 .830 .961 .891 .885 .972 .926 .889 .917 .903

Table 1. Quantitative comparison of several algorithms on the four datasets

and ours both use the 5 × 5 × 5 spatiotemporal volume to
extract spatiotemporal spectrum features.

4.1. Qualitative Comparison

First, we qualitatively compare the performance of the four
methods mentioned above with ours on the four challeng-
ing sequences containing dynamic scenes, as shown in Fig.2.
We can see that the GMM method can adapt to illumination

Fig. 2. Qualitative comparison of several algorithms on the
four datasets

changes to some extent, but the heavy missing detections ex-
ist for high dynamic scenes (e.g.,Campus, Water surface). We
implemented Cui’s method(FMSD), but the experimental re-
sults are not as good as those given by the authors, since
lots of severe missing detections and false detections exist.
Ali’s method can handle the dynamic background at a certain
degree, but it needs to adjust the scale size of spatiotempo-

ral volumes according to the motion period of background.
Otherwise, it can induce some false detections (e.g., Wav-
ing tree, Curtain). Thus, it affects the practical application
of the method. Overall, the proposed method achieves the
best performance, and it can adapt to high dynamic scenes
and illumination variance. Although no postprocessing like
morphological operations is used, the least noisy pixels exist
with respect to the other four method.

4.2. Quantitative Comparison

We perform the quantitative comparison between the men-
tioned four methods and ours based on precision (P ), recall(R),
and F -score (F ), F = 2·R·P

R+P . The recall is the ratio of the
number of foreground pixels correctly segmented to the num-
ber of the ground truth, and the precision is the ratio of the
number of foreground pixels correctly segmented to the num-
ber of foreground pixels outputted by the system. The final
experimental results are summarized in Table 1. As shown
in the Table 1, the best F -scores of MoG and FMSD have
only about 63% on the four video sequences. Additionally,
Ali’s method has the poor performance for Campus sequence
where the illumination varied much, since their method does
not update the background model over time. But, for other se-
quences with no large illumination changes, the performance
improves significantly, which is attributed to the adoption of
spatiotemporal information. Both our method and KDE have
very good performance, and the average F -Score of ours is
0.903 which is a little better than that of KDE (0.883) on the
four sequences.

5. CONCLUSIONS

In this paper, we present a novel approach to extract fore-
ground objects in surveillance videos. The proposed method
exploits the spatiotemporal spectrum in 3D DCT domain to
represent background, and then identify foreground pixels
through solving an optimal problem. The experimental re-
sults show that our approach is robust to dramatic change
of scenes, and it can obtain more complete and accurate
foreground objects. But, our method has the high computa-
tion complexity compared with FMSD and GMM, because
it involves lots of computation on solving the optimization
problem.
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