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Abstract
There has been a lot of interest of late for programming languages
that incorporate features from dependent type systems and proof
assistants, in order to capture important invariants of the program
in the types. This allows type-based program verification and is
a promising compromise between plain old types and full blown
Hoare logic proofs. The introduction of GADTs in GHC (and more
recently type families) made such dependent typing available in an
industry-quality implementation, making it possible to consider its
use in large scale programs.

We have undertaken the construction of a complete compiler
for System F , whose main property is that the GHC type checker
verifies mechanically that each phase of the compiler properly pre-
serves types. Our particular focus is on “types rather than proofs”:
reasonably few annotations that do not overwhelm the actual code.

We believe it should be possible to write such a type-preserving
compiler with an amount of extra code comparable to what is nec-
essary for typical typed intermediate languages, but with the advan-
tage of static checking. We will show in this paper the remaining
hurdles to reach this goal.

Categories and Subject Descriptors D.3 [Software]: Program-
ming languages; F.3.1 [Specifying and Verifying and Reasoning
about Programs]: Mechanic al verification

General Terms Languages, Verification

Keywords Compilation, Typed assembly language, de Bruijn,
Higher-Order Abstract Syntax

1. Introduction
Formal methods are rapidly improving and gaining ground in soft-
ware, and type systems are arguably the most successful and pop-
ular formal method used to develop software. As the technology of
type systems progresses, new needs and new opportunities appear.
One of those needs is to ensure the faithfulness of the translation
from source code to machine code, so that the properties you prove
about the code you write also apply to the code you run.

Recent work on certified compilation makes successful use of
proof assistants based on dependent types to establish semantic
preservation. Leroy’s compiler (Leroy 2006; Blazy et al. 2006)
proves dynamic semantic preservation for a first-order (C-like) lan-
guage. Chlipala’s compiler (2007) uses other techniques to provide
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similar guaranties for a functional language. Both are developed as
Coq proofs from which a working compiler is obtained by means
of program extraction.

With the introduction of generalized algebraic data types
(GADTs) in the Glasgow Haskell Compiler (GHC), and more re-
cently type families (Schrijvers et al. 2007), a useful (if limited)
form of dependent typing is finally available in an industry-quality
implementation of a general-purpose programming language. Thus
arises the possibility of establishing compiler correctness through
type annotations in Haskell code, without the need to encode elab-
orate proofs as separate artifacts. In this work, we use types to
enforce type preservation: our typed intermediate representation
lets GHC’s type checker manipulate and check our object types.

Other than the CPS conversion over System F of Chlipala
(2008) developed in parallel and presented elsewhere in these
proceedings, previous work invariably restricts the input to sim-
ply typed features. Ours handles the full System F extended with
recursive definitions; we are able to cover a larger set of object
language features by focusing on type preservation rather than
full correctness. Extensions like first-class existential and recursive
types (which seem well within reach at this point) would enable the
encoding of algebraic datatypes, and our compiler could serve as a
back-end for Core ML and similar languages.

By using Haskell rather than a language with full dependent
types, we narrow down the semantic gap between the host and
object language, bringing closer the possibility of a bootstrapping
type-preserving compiler. Our implementation relies essentially on
GADTs and type families – and all these features can be encoded
in a variant of System F with type equality coercions (Sulzmann
et al. 2007).

Typed intermediate languages have been widely used in compil-
ers, often as a manner of sanity check to help catch compiler errors.
Typically object types are represented in the form of data structures
which have to be carefully manipulated to be kept in sync with
the code they annotate as this code is being transformed. In com-
parison, our approach enforces type preservation statically through
type annotations in the compiler’s code, with obvious advantages:
it is exhaustive, unlike the conventional approach which amounts to
testing the compiler; it gives earlier detection of errors in the com-
piler; it also eliminates the overhead of manipulating and checking
type annotations while running the compiler. Last but not least, it
can actually simplify the compiler’s code, as no explicit manipula-
tions of type information are needed.

Our main contributions are the following:

• We show a CPS and closure conversion over System F where
type preservation is enforced by type families and type equality
constraints. This constitutes the first mechanized argument of
type preservation for these transformations over System F .

• We extend the classical toy example of a GADT representation
of an abstract syntax tree, to a full language with term-level and
type-level bindings. We show both a higher-order and a first-



order encoding of System F and address subtle issues about the
interaction of bindings at the levels of types and terms.

• To our knowledge, this is the first worked out example of ex-
tensive use of GHC type families and type equality coercions.
Thereby it feeds the current debate as to which one of type fam-
ilies, associated types, or multiple-parameter type classes with
functional dependencies, should make it to the next Haskell
standard (Peyton-Jones et al. 2007).

• We argue that none of the existing representations of bindings
is suitable in the sense that they either cannot be used, or they
introduce significant extra complexity.

The paper is structured as follows. After a brief overview of the
compiler and the techniques it employs (Sec. 2), we present the en-
coding of System F (Sec. 3) and review the implementation of the
individual compilation phases (Sec. 4 through 7). We finally dis-
cuss our experience in general terms (Sec. 8) and mention related
work (Sec. 9).

2. Overview and background
This section introduces the types and techniques we use to make
the compiler type-preserving, and describes the overall structure of
the compiler.

2.1 Generalized algebraic datatypes
The program representations we use are constructed with Gen-
eralized Algebraic Datatypes, or GADTs (Xi et al. 2003; Cheney
and Hinze 2003). They are a generalization of algebraic datatypes
where the return types of the various data constructors for a given
datatype need not be identical – they can differ in the type argu-
ments given to the type constructor being defined. The type argu-
ments can be used to encode additional information about the value
that is represented. For our purpose, we use these type annotations
to track the object-level type of expressions. For example, consider
some common typing rules:

Γ ` n : int

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2

Using plain algebraic datatypes, we would represent object pro-
grams with a type such as the following:

data Exp where
Enum :: Int → Exp
Eadd :: Exp → Exp → Exp
Eapp :: Exp → Exp → Exp

where source types (that is, the types in the object program) of
e1 and e2 are unconstrained. In contrast, with GADTs, we can
explicitly mention source types as type arguments to Exp to encode
the three typing rules:

data Exp t where
Enum :: Int → Exp Int
Eadd :: Exp Int → Exp Int → Exp Int
Eapp :: Exp (t1 → t2) → Exp t1 → Exp t2

This type guarantees that if we can construct a Haskell term of
type Exp t, then the source expression it represents is well typed:
it has some type τ , the source type for which t stands. Note that
the use of the arrow constructor (t1 → t2) to represent object-level
function types (τ1 → τ2) is purely arbitrary: we could just as well
have used any other type of our liking, say Arw t1 t2, to achieve the
same effect.

2.2 Binders
There are different possible ways to extend the GADT Exp to encode
syntactic constructs that involve binders, depending on whether
variables are represented explicitly or implicitly using the host
language’s variables. Either representations has its advantages and
limitations, and we use each in different parts of the compiler.
Using both representations within one compiler may seem odd
(and it is!), and reflects a course of experimentation more than an
engineering decision.

The representation of binders at the type level falls beyond the
scope of background material, so we describe it later. We show how
we do it in the context of a higher-order term representation when
describing the encoding of the source language (Sec. 3), and in the
context of a first-order one when dealing with closure conversion
(Sec. 6). We discuss further alternatives in Sec. 8.

HOAS. Consider the usual typing rule for let-expressions:

Γ ` e1 : τ1 Γ, x :τ1 ` e2 : τ2

Γ ` let x = e1 in e2 : τ2

With Higher-Order Abstract Syntax, we would encode the typing
rule as follows:

data Exp t where
Elet :: Exp t1 → (Exp t1 → Exp t2) → Exp t2
. . .

that is, binders in source programs would be represented by Haskell
binders – and thus variable occurrences would not require an ex-
plicit introduction form. As long as bindings in the source language
behave the same as bindings in Haskell, the technique amounts
to re-using Haskell’s (implicit) type contexts to impose type con-
straints on source programs.

De Bruijn indices. In contrast to HOAS, a first-order representa-
tion introduces variables explicitly. With de Bruijn indices, as with
HOAS, variables’s names are irrelevant, and variables are instead
represented as indices. The type associated with an index is drawn
from an explicit type argument (ts) to Exp, which represents the
expression’s type context:

data Exp ts t where
Bnum :: Int → Exp ts Int
Badd :: Exp ts Int → Exp ts Int → Exp ts Int
Bapp :: Exp ts (t1 → t2) → Exp ts t1 → Exp ts t2

Bvar :: Index ts t → Exp ts t
Blet :: Exp ts s → Exp (s, ts) t → Exp ts t

A term of type Exp ts t is an expression that may refer to variables
whose types are listed in ts. More precisely, a Haskell term being of
type Exp ts t implies that the source term it represents (e) satisfies
Γ ` e : τ , where the Haskell type t stands for the source type τ ,
and the type ts reflects Γ.

An index of type Index ts t represents a de Bruijn index whose
type is t within the type environment ts. Such indices are repre-
sented with type-annotated Peano numbers:

data Index ts t where
I0 :: Index (t, ts) t
Is :: Index ts t → Index (t0, ts) t

Note that individual indices are polymorphic in ts and t, and assume
a particular type given a particular type context ts. (Specifically, for
an index of the form Isi I0 of type Index ts t, the only relation
between ts and t is that the ith type appearing in ts is t, which is
why t0 appears free in the type of Is, and ts appears free in that of
I0.)



To illustrate the two techniques, the following expression:

let a = 2
b = 3

in a + b

would be represented in HOAS as:

Elet (Enum 2) (λa →
Elet (Enum 3) (λb →

Eadd a b))

and with de Bruijn indices as:

Blet (Bnum 2) (
Blet (Bnum 3) (

Badd (Bvar (Is I0)) (Bvar I0)))

2.3 Type families
Type families (Schrijvers et al. 2007) are a recent addition to GHC
that allows programmers to directly define functions over types by
case analysis, in a way that resembles term-level function defini-
tions with pattern matching.

For example, we can define a type function Add that computes
(statically) the sum of two Peano numbers:

data Z; data S i — natural numbers encoded as types

type family Add n m
type instance Add Z m = m
type instance Add (S n) m = S (Add n m)

We can then use this type family to express the fact that an
append function over length-annotated lists produces a list of the
expected length:

data List elem len where
Cons :: elem → List elem n → List elem (S n)
Nil :: List elem Z

append :: List elem n → List elem m → List elem (Add n m)
append Nil l = l
append (Cons h t) l = Cons h (append t l)

Note that the definition of append follows the structure of the
definition of the type function Add, so that the type checker can
verify that every clause of append satisfies its type signature.

We mention in passing that GHC’s implementation of type
families relies on the calculus of type equality coercions (Sulzmann
et al. 2007), and that these coercions themselves are exposed to
the programmer, a feature that plays an important technical role
here. As it is not essential to understand these at this point, we will
introduce them when needed (cf. Sec. 4.3).

2.4 Compilation phases
The source language we are compiling is a call-by-value functional
language with parametric polymorphism and recursion, similar to
System F . The general compilation strategy follows that of Mor-
risett et al. (1999). The overall structure of our compiler is as fol-
lows:

λ
typecheck−−−−−→ λ→

CPS
convert
−−−−−→ λK

deBruijn
convert
−−−−−−→ λb

K

closure
convert
−−−−−→ λb

C
hoist−−→ λb

H

The source language and each intermediate language (λ→, λK,
etc.) has its own syntax and type system, so each is encoded as
a separate GADT. The first phase infers types for all subterms of
the source program, and all the subsequent ones are then careful
to preserve them. In general, the way a transformation affects the
types is captured by a type function.

In this section we will briefly show the effect of each phase on
the code and sketch its type.

Type checking: AST → ∃t.Exp t

The type checking phase takes a simple abstract data type AST, then
it infers and checks its type t, and returns a generalized algebraic
datatype (GADT) of type Exp t which does not just represent the
syntax any more but a proof that the expression is properly typed,
in the form of a type derivation. In order for the CPS phase to
more closely match the natural presentation, we make it work on a
higher-order abstract syntax (HOAS) representation of the code, so
the type checking phase also converts the first order abstract syntax
(where variables are represented by their names) to a HOAS (where
variables are represented by meta variables) at the same time.

The conversion to HOAS is implemented using Template Haskell
(Sheard and Jones 2002), a compile-time meta-programming facil-
ity bundled with GHC – that is, it allows us to construct a piece
of Haskell code under program control. This piece of code gets
type-checked by GHC, and since the program representation we
construct is strongly typed, we get a source-level type checker
for free. Constructing HOAS terms by meta-programming gives us
an efficient representation, in contrast to a direct implementation
which would lead to residual redexes (i.e. recursive calls to the con-
version function hidden inside closures for functional arguments,
like those for λ or let.)

CPS conversion: Exp t → ExpK (cps t)

Conversion to continuation-passing style (CPS) names all interme-
diate results and makes the control structure of a program explicit.
In CPS, a function does not return a value to the caller, but instead
communicates its result by calling a continuation, which is a func-
tion that represents the “rest of the program”, that is, the context
of the computation that will consume the value produced. Addi-
tionally a special form halt is used to indicate the final “answer”
produced by the program. For example:

let a = 1.8
b = 32
c = 24
c2f = λx . a · x + b

in c2f c

CPS
=⇒

let a = 1.8
b = 32
c = 24
c2f = λ〈x, k〉 .

let v0 = a · x
v1 = v0 + b

in k v1

in c2f 〈c, λv . halt v〉

For an input expression of type Exp t the output type should be
ExpK (cps t) where cps is a type function that describes the way
types are modified by this phase: mostly input types of the form
τ1 → τ2 are mapped to 〈τ ′1, τ ′2 → 0〉 → 0 where 0 is the void type.
The type of the CPS conversion (Exp t → ExpK (cps t)) expresses
and enforces directly that the function preserves types.

Conversion to de Bruijn: ExpK t → ExpKB ts t

While HOAS is convenient for the CPS conversion, it is (at least)
impractical in the closure conversion, so we switch representation
mid-course from λK to λb

K where the only difference is the repre-
sentation of variables, which uses de Bruijn indices. Among other
things this forces us to make the type environment explicit in the
type of our terms. So for an input expression of type ExpK t, mean-
ing the represented expression has type t in the current context,
the return value will have type ExpKB ts t, which means it repre-
sent an expression of type t but this time in a type environment ts.
Making the type environment explicit is crucial when we need to
express the fact that a particular expression is closed, which is the
key property guaranteed by the closure conversion and used by the
hoisting phase.



Closure conversion: ExpKB ts t → ExpC (map cc ts) (cc t)

Closure conversion makes the creation of closures explicit. Func-
tions are made to take an additional argument, the environment, that
captures the value of its free variables. A closure consists of the
function itself, which is closed, along with a copy of the free vari-
ables forming its environment. At the call site, the closure must be
taken apart into its function and environment components and the
call is made by passing the environment as an additional argument
to the function. For example, the above CPS example code will be
transformed by the closure conversion into the following code:

let a = 1.8
b = 32
c = 24
c2f = pack (〈int, int〉,

〈λ〈〈x, k〉, env〉 . let v0 = env.0 · x
v1 = v0 + env.1
(β, 〈kf , kenv〉) = unpack k

in kf 〈v1, kenv〉,
〈a, b〉〉)

as τc2f

(β, 〈c2ff , c2fenv〉) = unpack c2f
in c2ff 〈〈c, pack (〈〉, 〈λ〈v, env〉 . halt v, 〈〉〉) as τhalt〉, c2fenv〉

where τhalt = ∃α.〈〈int, α〉 → 0, α〉
τc2f = ∃β.〈〈〈int, τhalt〉, β〉 → 0, β〉

The closure conversion takes and expression of type ExpKB ts t to
and expression of type ExpC (map cc ts) (cc t). Mostly continua-
tions (τ → 0) are mapped to closure types: ∃β.〈〈τ ′, β〉 → 0, β〉
where the existential variable β abstracts the type of the environ-
ment, so that two functions that are of the same type before the
conversion are mapped to closures of the same type, irrespective of
the type of their free variables. The form pack constructs an exis-
tential package of a specified type, and unpack opens up a package,
bringing in scope a type variable that stands for the abstracted type.

Currently, existential types are introduced only at the point of
doing closure conversion, but we intend to add existential types to
our source language in the future.

Hoisting: ExpC ts t → ExpH ts t

After closure conversion, λ-abstractions are closed and can be
moved to the top level. The previous example after hoisting will
look as follows:

let `0 = λ〈〈x, k〉, env〉 . let v0 = env.0 · x
v1 = v0 + env.1
(β, 〈kf , kenv〉) = unpack k

in kf 〈v1, kenv〉
`1 = λ〈v, env〉 . halt v
a = 1.8
b = 32
c = 24
c2f = pack (〈int, int〉, 〈`0, 〈a, b〉〉) as τc2f

(β, 〈c2ff , c2fenv〉) = unpack c2f
in c2ff 〈〈c, pack (〈〉, 〈`1, 〈〉〉) as τhalt〉, c2fenv〉

where τhalt and τc2f are the same as above. This phase re-arranges
the bindings so that all functions appear at the top level, but does
not otherwise affect the types.

3. Encoding System F

This section describes the strongly typed representation of the vari-
ant of System F that constitutes our source language (λ→, whose
syntax1 is shown in Fig. 1.) An important part of the encoding is the

1 We abbreviate fix f x. e as λx . e when f does not appear free in e.

(types) τ ::= τ1 → τ2 | ∀α. τ | α | 〈τ0, ..., τn−1〉 | int

(exps) e ::= fix f x. e | let x = e1 in e2

| x | e1 e2 | Λα. e | e[τ ] | 〈e0, ..., en−1〉 | e.i
| n | e1 p e2 | if0 e1 e2 e3

(primops) p ::= + | − | ·

Figure 1. Syntax of λ→

λ→ type Haskell type
τ1 → τ2 t1 → t2
∀α. τ All t
α Var i
〈τ0, ..., τn−1〉 (t0, (..., (tn−1, ())...))
int Int

Figure 2. Encoding of λ→ types

choice of representation to use for each binding. In a language like
System F there are three distinct classes of binders to consider:

1. at the term level, those that bind values (such as fix and let);

2. at the term level, those that introduce free type variables (Λ);

3. those that bind types at the type level (the ∀ quantifiers).

The two different kinds of type binders can be treated uniformly,
but can also (to a certain extent) be handled separately, as is done
in locally nameless representations.

3.1 Types
Of course, encoding System F in a GADT implies that introduction
and elimination of type variables take place at Haskell’s type level.
While HOAS would be our preferred choice to represent type-
level bindings, GHC does not provide λ-expressions at the level
of types, which constrains our representation of System F types to
be first-order: bound type variables are represented with type-level
de Bruijn indices. The encoding of types we use is summarized in
Fig. 2.

To illustrate, the type of the usual flip function for pairs:

∀α β. 〈α, β〉 → 〈β, α〉
is represented as the Haskell type:

All (All ((Var (S Z), Var Z) → (Var Z, Var (S Z))))

As usual the typing rule for type application eliminates a uni-
versal quantifier by applying a substitution:

∆, α; Γ ` e : τ

∆; Γ ` Λα. e : ∀α. τ

∆; Γ ` e : ∀α. τ1 ∆ ` τ2

∆; Γ ` e[τ2] : τ1[τ2/α]

where ∆ is a component of the type context that tracks the type
variables that are in scope. If we transpose λ→ types in de Bruijn,
and thus eliminate all type variable names, the typing rules become:

∆ + 1; shift Γ ` e : τ

∆; Γ ` Λe : ∀τ
∆; Γ ` e : ∀τ1 ∆ ` τ2

∆; Γ ` e[τ2] : τ1[τ2/0]

Here, ∆ only tracks the number of type variables in scope.
When extending the context (to ∆ + 1), the type of the term vari-
ables (in Γ) must be adjusted: all free variables must be incre-
mented to account for the intervening binder, hence the shift op-
erator.

The form τ [τ ′/i] yields the type τ where the type variable i has
been replaced by the type τ ′; it is defined in Fig. 3. It is a conven-
tional substitution over de Bruijn terms (as in, e.g. Kamareddine



(τ1 → τ2)[τ/i] = τ1[τ/i] → τ2[τ/i]
(∀τ0)[τ/i] = ∀(τ0[τ/i + 1])

j[τ/i] =

8<: j − 1 if j > i;
U i

0(τ) if j = i;
j if j < i.

〈τ0, ..., τn−1〉[τ/i] = 〈τ0[τ/i], ..., τn−1[τ/i]〉
int[τ/i] = int

U i
k(τ1 → τ2) = U i

k(τ1) → U i
k(τ2)

U i
k(∀τ) = ∀(U i

k+1(τ))

U i
k(j) =


j + i if j > k;
j if j ≤ k.

U i
k(〈τ0, ..., τn−1〉) = 〈U i

k(τ0), ..., U
i
k(τn−1)〉

U i
k(int) = int

Figure 3. Substitution over λ→ types in de Bruijn

(2001)). It employs an “update” function U i
k(τ) whose effect is to

adjust all indices greater than k (those are the free variables) by in-
crementing them by i. The form shift Γ denotes the context where
U1

0 (−) has been applied to every type in Γ.

3.2 Terms
Whereas type-level binders are represented with de Bruijn indices,
all term-level binders are represented at first with higher-order
abstract syntax, whether they abstract values (fix or let) or types
(Λ).

data Exp t where
Fix :: (Exp (s → t) → Exp s → Exp t) → Exp (s → t)
App :: Exp (s → t) → Exp s → Exp t

TpAbs :: (∀t. Exp (Subst s t Z)) → Exp (All s)
TpApp :: Exp (All s) → Exp (Subst s t Z)

A Haskell term of type Exp t encodes a λ→ term satisfying a
typing judgement ∆; Γ ` e : τ , where the context ∆; Γ is tracked
implicitly by Haskell’s type context.

A type abstraction Λτ is represented as a polymorphic term
that, when instantiated at a given type τ2, assumes type τ1[τ2/0].
It is higher-order in the sense that the object-level type variable
is represented by a Haskell type variable (bound by an implicit
type abstraction.) The substitution itself is an application of a type
function Subst, defined in the next section.

To illustrate, the flip function:

flip = Λα. Λβ. fix f (x : 〈α, β〉). 〈x.1, x.0〉
is encoded as:

flip :: All (All ((Var (S Z), Var Z) → (Var Z, Var (S Z))))
flip = TpAbs (TpAbs (Fix (λf x →

Pair (Snd x)(Fst x))))

3.3 Substitutions
The substitution and update functions encode directly as Haskell
type families. As their definition involve arithmetic over indices,
we also need to define type functions accordingly. The complete
list of type functions, with their meaning, is as follows:

type family Subst t1 t2 i — τ1[τ2/i]
type family U k i t — U i

k(τ)
type family Pred i — i− 1
type family Add i j — i + j

type family CMP i j t1 t2 t3 —

8<:τ1 if i < j;
τ2 if i = j;
τ3 if i > j.

(types) τ ::= ∀~α. τ → 0 | α | 〈τ0, ..., τn−1〉 | int

(values) v ::= fix f [~α] x. e | x | 〈e0, ..., en−1〉 | n
(exps) e ::= let x = v in e | let x = v1 p v2 in e

| let x = v.i in e | v1[~τ ] v2 | if0 v e1 e2

| halt v

Figure 4. Syntax of λK

Object type Haskell type
∀~α. τ → 0 Cont k t
∃α.τ Exists t (λC and λH only)
α Var i
〈τ0, ..., τn−1〉 (t0, (. . . , (tn−1, ()) . . . ))
int Int

Figure 5. Encoding of the types of λK, λC and λH

Henceforth, the definition of individual type families is straight-
forward:

type instance Subst All s t i = All (Subst s t (S i))
type instance Subst (Var j) t i =

CMP i j (Var (Pred j)) (U Z i t) (Var j)
. . .

type instance U k i (All t) = All (U (S k) i t)
type instance U k i (Var j) = Var (CMP j k j j (Add j i))
. . .

4. CPS conversion
This section presents the salient features of our CPS conversion over
the encoding of λ→ from the last section.

In particular, the amount of type annotations in this implemen-
tation is notably low, especially in the simply-typed fragment. It
is essentially limited to annotating the type of the CPS conversion
function, as the code itself requires no further annotation. Unfortu-
nately, in its current state the treatment of polymorphism requires
that we annotate the constructors of type abstraction and applica-
tion with type representatives, in order to instantiate a lemma that
captures the effect of the translation on type substitutions.

4.1 Target language
The syntax of the CPS language (λK, shown in Fig. 4) is split into
two categories of values and expressions. Accordingly we define
two types:

data ValK t = . . .

data ExpK = . . .

The type ValK t encodes well-typed values of type τ (satisfy-
ing a judgment ∆; Γ K̀ v : τ ), and ExpK encodes well-typed
expressions (satisfying a judgment ∆; Γ K̀ e). The representation
is developed in the same manner as in the previous section, using
a first-order encoding for types and a higher-order one for all term-
level binders. For reference, the encoding of types is summarized
in Fig. 5 (the type encoding is essentially the same for λK and the
subsequent intermediate languages, with the exception of existen-
tial types, which are introduced by closure conversion.)

Whereas on paper it is simpler to have a single fix operator that
abstracts type and term variables and provides recursion, it simpli-
fies subsequent transformations somewhat to have a monomorphic
fix operator and a separate type abstraction (which also abstracts a
term variable, but is not recursive):



KtypeJτ1 → τ2K = 〈KtypeJτ1K,KtypeJτ2K → 0〉 → 0
KtypeJ∀α. τK = ∀α. ((KtypeJτK) → 0) → 0

KtypeJαK = α
KtypeJ〈τ1, ..., τn〉K = 〈KtypeJτ1K, ...,KtypeJτnK〉

KtypeJintK = int

KprogJeK = KJeK (λx . halt x)

KJxK κ = κ x
KJfix f x. eK κ = κ (fix f 〈x, c〉. KJeK c)

KJe1 e2K κ = KJe1K (λx1. KJe2K (λx2. x1 〈x2, κ〉))
KJΛα. eK κ = κ (λ[α] c. KJeK c)
KJe[τ ]K κ = KJeK (λx . x[KtypeJτK] (λy . κ y))

. . .

Figure 6. CPS conversion

Kfix :: (ValK (Cont Z s) → ValK s → ExpK)
→ ValK (Cont Z s)

KtpAbs :: (∀t. ValK (Subst s t Z) → ExpK)
→ ValK (Cont (S Z) s)

where Cont k t is the Haskell type we use for ∀~α. τ → 0, the
parameter k reflecting the number of abstracted type variables.

4.2 Translation
The CPS conversion of types (KtypeJ−K), programs (KprogJ−K), and
open terms (KJ−K −) is shown in Fig.6. The type family that
encodes KtypeJ−K is defined as:

type family Ktype t
type instance Ktype (s → t) =

Cont Z (Ktype s, Cont Z (Ktype t))
type instance Ktype (Var i) = Var i
type instance Ktype (All t) =

Cont (S Z) (Cont Z (Ktype t))
. . .

Type preservation is reflected in the signature of the functions
that implement KprogJ−K and KJ−K −:

cpsProg :: Exp t → ExpK

cps :: Exp t → (ValK (Ktype t) → ExpK) → ExpK

The type of cpsProg encodes the usual type preservation the-
orem, stating that the conversion takes well-typed λ→ programs
(i.e. closed expressions) to well-typed λK programs:

THEOREM 4.1. (CPS type preservation) If •; • ` e : τ then
•; • K̀ KprogJeK.

Similarly the type of cps embodies the theorem which states that
KJ−K − takes well-typed expressions to well-typed expressions,
provided that the supplied continuation has the expected type:2

LEMMA 4.1. (λ→ − λK type correspondence) If Γ ` e : τ and

∆;KtypeJΓK K̀ λx . κ x : (KtypeJτK → 0) → 0

then
∆;KtypeJΓK K̀ KJeK κ.

Note that, since we use HOAS and the context ∆; Γ is implicit
in our encoding, we get preservation of the type environment “for

2 In this lemma the continuation κ lies at the meta level and must be
wrapped into an object-level function so it can be the subject of a typing
judgment.

free”. The situation will be opposite when we turn to closure con-
version in Sec. 6.

4.3 Polymorphism
While the above stated theorems cover the theory of type preserva-
tion for simple types, polymorphism introduces issues of its own.
The technical difficulty is to convince the type checker that we ob-
tain a well-typed term when converting type applications (and ab-
stractions), as it involves reconstructing a term whose type is de-
fined by a substitution. The argument relies on the fact that our
notion of substitution commutes with the conversion of types:

LEMMA 4.2. (KtypeJ−K–subst commute) For any λ→ types τ1, τ2

and index i,

KtypeJτ1[τ2/i]K = (KtypeJτ1K)[KtypeJτ2K/i].

This means that we actually need to make coercion like:

ValK (Ktype (Subst s t Z))
→ ValK (Subst (Ktype s) (Ktype t) Z)

Currently we do not have any way of doing such coercion purely
at the type level, and we need to implement the lemma as a term-
level functions that produces a witness that the coercion is valid
(see (Guillemette and Monnier 2008) for alternative solutions to
this problem). Its type is:

substCpsCommute ::
TypeRep s → TypeRep t

→ Equiv (CPS (Subst s t Z)) (Subst (CPS s) (CPS t) Z)

data Equiv s t where
Equiv :: s ∼ t ⇒ Equiv s t

The type Equiv uses another feature introduced in GHC along
with type families, namely type equality coercions (Sulzmann et al.
2007). The context (s ∼ t) means that the types s and t, although
possibly syntactically different, are equivalent after applying a pro-
cess of normalization (which in particular eliminates applications
of type functions.) The lemma itself (substCpsCommute) can be
defined by case analysis over type representatives. Alternatively, it
can do a dynamic test: it can construct a representation of the two
types to prove equal and perform a comparison over them to supply
evidence that they match.

Of course, in order to be able to apply the lemma in its current
form, we need to annotate the syntax tree with type representatives.
For instance, the data constructor for type application from Sec. 3.2
actually needs to bear representatives of the universal type and the
type argument:

TpApp :: TypeRep s → TypeRep t
→ Exp (All s) → Exp (Subst s t Z)

Then, cps can call the lemma to get the required type assump-
tion as needed:

cps (TpApp s t e) k =
case substCpsCommute s t of

Equiv → cps e (λx → KtpApp (kType s) (kType t) x
(lamK k))

where kType reifies Ktype at the term level:

kType :: TypeRep t → TypeRep (Ktype t)

Type abstraction. A consequence of the higher-order encoding
of type abstraction is that the function KtypeJ−K must be invertible.
We need to convert the functional argument of TpAbs (say f ) to that
of KtpAbs (say f ′). The function f ′ receives a representative of a
type in CPS form, and constructs a representative of the originating



type in direct style so as to be able to apply f , and finally converts
the resulting term back in CPS. To achieve this, we must define the
inverse of KtypeJ−K as a type family (and also reify this function at
the term level to construct the representative):

type family UnKtype t
type instance UnKtype (Cont (S Z) (Cont Z t)) =

All (UnKtype u)
. . .

unKtype :: TypeRep t → TypeRep (UnKtype t)
unKtype = . . .

4.4 Implementation
HOAS. We actually use a concrete representation of λ→ and λK
that differs from what we have shown so far, in a way that rules out
exotic terms, and also makes the traversal of the syntax easier. We
essentially use a type-annotated version of the HOAS encoding of
Washburn and Weirich (2003). The absence of interaction between
this aspect and type preservation allowed us to defer its discussion
to this point.

To illustrate the difference, consider the constructor for let:

data Exp t where
Let :: Exp t1 → (Exp t1 → Exp t2) → Exp t2

In the concrete representation, it takes the form:

data ExpF α t where
Let :: α t1 → (α t1 → α t2) → α t2

type Exp α t = Rec ExpF α t

where Rec plays the role of a fixed-point type operator. A term of
source type t is represented as a Haskell term of type ∀α. Exp α t
(where the parametricity in α rules out exotic terms.) The type Exp
comes equipped with an elimination form (the “catamorphism”),
whose type is:

cata ::
→

(∀t. ExpF (β t) → β t)
(∀t. (∀α. Exp α t) → β t)

Intuitively, the type β stands for “the result of the computation”
over the source term (indexed by source type). Here, we obtain cps
by applying cata with β t instantiated at the type:

type CPS α t = (ValK α (Ktype t) → ExpK α) → ExpK α

The function passed to cata visits a single node in the syntax tree,
and has type:

cpsAux :: ExpF (CPS α t) → CPS α t

Danvy and Filinski’s CPS transform. Our compiler actually
implements the one-pass CPS conversion of Danvy and Filin-
ski (1992), where administrative redexes are reduced on-the-fly. As
shown by Washburn and Weirich (2003), it can be conveniently im-
plemented by adding an extra component to the result of cps, that
expects an object-level continuation (cpsObj) instead of a meta-
level one (cpsMeta):

data CPS α t where
CPS ::

→
→

((V alKα (Ktype t) → ExpK α) → ExpK α)
((V alKα (Ktype t → Z)) → ExpK α)
CPS α t

cpsMeta e = case e of CPS meta → meta
cpsObj e = case e of CPS obj → obj

For example, the code that handles the conversion of fix is imple-
mented as follows:

(types) τ ::= ∀~α. τ → 0 | ∃α. τ | α | 〈τ0, ..., τn−1〉 | int

(values) v ::= fix f [~α] x. e | x | pack (τ1, v) as ∃α. τ2

| v[τ ] | 〈e0, ..., en−1〉 | v.i | n
(exps) e ::= let (α, x) = unpack v in e | let x = v in e

| let x = v1 p v2 in e | v1 v2 | if0 v e1 e2

| halt v

Figure 7. Syntax of λC

cpsAux (Fix f) =
value (FixK (λself x →

KletFst x (λarg →
KletSnd x (λk →

cpsObj (f (value self) (value arg)) k))))

where value is a function that CPS-converts a value:
value :: ValK α (Ktype t) → CPS α t
value v = CPS (λk → k v)

(λc → Kapp c v)
− cpsMeta
− cpsObj

5. Conversion to de Bruijn indices
Before closure conversion takes place, the λK program is converted
to a first-order representation. The types ValK t and ExpK are
mapped to types:

ValKb (i, ts) t

ExpKb (i, ts)

where i encodes ∆ (i.e. it reflects the number of type variables in
scope) and ts encodes Γ (i.e. it lists the types of the term variables
in scope.) Also for instance the data constructors Kfix and KtpAbs
from Sec. 4.1 are translated to these two:

KBfix :: ExpKb (i, (s, (Cont Z s, ts)))
→ ValKb (i, ts)(Cont Z s)

KBtpAbs :: ExpKb (S i, (s, Shift ts))
→ ValKb (i, ts) (Cont (S Z) s)

The type of KBtpAbs makes explicit that the body of the type
abstraction has an extra type variable in scope (and that its term
context is adjusted accordingly.) Note that term-level type variables
are not anymore encoded in HOAS.

5.1 Translation
The conversion to de Bruijn indices constructs a representation
whose type reflects the term’s context (∆; Γ) and replaces all vari-
ables occurrences with indices. The conversion passes around a
representation of the context, which gets constructed as the con-
version proceeds:

toBv :: ValK t → NatRep i → EnvRep ts → ValKb (i, ts) t

toBe :: ExpK → NatRep i → EnvRep ts → ExpKb (i, ts)

When converting a variable occurrence, the term variable con-
text where the variable occurs (Γ) is compared to the context where
it was bound (Γ0); the difference in length between these two in-
dicates which index to substitute for the variable. As the type of a
variable is not related to the type variable context (∆), the intro-
duction of polymorphism did not influence this phase significantly.
The original implementation (restricted to the simply typed case) is
discussed in more detail in (Guillemette and Monnier 2007).

6. Closure conversion
The target language of closure conversion (λC , shown in Fig. 7)
forces fix values to be closed and introduces existential types; it also



moves type applications to the syntactic class of values, and allows
tuple projections to appear as values as well, which simplifies the
conversion slightly.

De Bruijn indices are used for all binders in this representation,
defined by the two types:

dataValC (i, ts) t

data ExpC (i, ts)

The fix operator of λC binds a number of type variables (in
addition to the function’s argument and the binder for the recursive
call.) The typing rule for fix forces the function to be closed, i.e.
exempt of free term or type variables:

α1, ..., αn; x : τ, f : ∀α1, ..., αn. τ → 0 C̀ e

∆; Γ C̀ fix f [α1, ..., αn] x. e : ∀α1, ..., αn. τ → 0

This time the actual representation includes a single constructor
that directly encodes the typing rule for fix:

Cfix ::
→

ExpC (k, (t, (Cont k t, ())))
ValC (i, ts) (Cont k t)

This type reflects the closedness conditions: the body’s term
variable context finishes with (), meaning that it cannot have free
term variables, and since t appears in a context where k variables
are in scope, t cannot involve type variables other than those bound
by the fix.

Existentials. The language introduces existential types, which
are used to abstract the type of the environment when forming
closures.

Cpack ::
→

ValC (i, ts) (Subst s t Z)
ValC (i, ts) (Exists s)

Cunpack ::
→
→

ValC (i, ts) (Exists s)
ExpC (S i, (s, Shift ts))
ExpC (i, ts)

In much the same way that we did for universal types, the type
of these constructors encode the usual typing rules for existential
types:

∆; Γ C̀ v : τ2[τ1/α]

∆; Γ C̀ pack (τ1, v) as ∃α. τ2 : ∃α. τ2

∆; Γ C̀ v : ∃α. τ α, ∆; x : τ, Γ C̀ e

∆; Γ C̀ let (α, x) = unpack v in e

6.1 Translation
The closure conversion of types (CtypeJ−K), values (CvalJ−Km), and
expressions (CexpJ−Km) is shown in Fig. 8.

The type translation for continuations introduces an existential
variable β that abstracts the type of the closure environment and
pairs up the function (which is made to receive the environment as
an extra argument) with the environment.

type family Ctype t
type instance Ctype (Cont i t) =

Exists (Cont i (U (S Z) i (Ctype t), Var i), Var Z)

Note that the update function must be applied in order to prevent
free type variables from being captured by the existential quantifier.

The translation of values and expressions receives an extra pa-
rameter m, which maps every variable in scope to the expression
used to access it3. In general, this expression is either a local vari-
able or a projection of the environment.

3 This map is necessary as a consequence of using de Bruijn indices; a
formulation with variable names can manage without it.

CtypeJ∀~α. τ → 0K = ∃β. 〈∀~α. 〈CtypeJτK, β〉 → 0, β〉
CtypeJαK = α

CtypeJ〈τ0, ..., τn−1〉K = 〈CtypeJτ0K, ..., CtypeJτn−1K〉
CtypeJintK = int

CvalJxKm = lookup m x

CvalJ(fix f [~α] x. e)τ Km = pack (τenv, 〈vcode[~β], venv〉)
as CtypeJτK

where ~β = ftvs (fix f [~α] x. e)
yτ0
0 , ..., y

τn−1
n−1 = fvs (fix f [~α] x. e)

τenv = 〈CtypeJτ0K, ..., CtypeJτn−1K〉
vcode = fix f [~β, ~α] x.

let x′ = x.0
env = x.1
f ′ = pack (τenv, 〈f, env〉) as CtypeJτK

in CexpJeK(x ⇒ x′, f ⇒ f ′,
y0 ⇒ env.0, ...,
yn−1 ⇒ env.(n− 1))

venv = 〈lookup m y0, ..., lookup m yn−1〉

CexpJv1[τ1, ..., τn] v2Km = let (α, x) = unpack CvalJv1Km
xf = x.0
xenv = x.1

in xf [CtypeJτ1K, ..., CtypeJτnK]
〈CvalJv2Km, xenv〉

Figure 8. Closure conversion

ccV :: ValKb (i, ts) t
→ (∀ts′. MapT (Cenv ts) (ValC (i, ts′) )
→ ValC (i, ts′) (Ctype t))

ccE :: ExpKb (i, ts)
→ (∀ts′. MapT (Cenv ts) (ExpC (i, ts′)))
→ ExpC (i, ts′)

Informally, these types mean that the conversion takes a λK
value (or expression) in context ∆; Γ, to a λC value of the converted
type (or an expression) in any context ∆; Γ′, provided that the
supplied map takes every term variable in Γ to a value of the
converted type in ∆; Γ′. Formally:

LEMMA 6.1. (CC type correspondence) If ∆; Γ K̀ v : τ and

∀x ∈ dom(Γ). ∆; Γ′ C̀ lookup m x : CtypeJΓ xK

then
∆; Γ′ C̀ CvalJvKm : CtypeJτK.

The details of how the map is represented and how it is con-
structed when closures are formed (in the simply typed case) are
spelled out in (Guillemette and Monnier 2007), and are not repeated
here, as they are not much affected by polymorphism.

6.2 Polymorphism
Forming closures. By the definition of CvalJ−Km, the function
stored inside a closure is closed w.r.t type variables: it is made to
take an extra set of type variables ~β that are the original function’s
free type variables. When forming the closure, the closed function
is passed the free type variables, so as to get a closure of the ex-
pected type. The way this “forwarding” of type variables preserves
types is captured by this simple lemma:

LEMMA 6.2. (forwarding) If ~β ⊆ ∆ and

∆; Γ C̀ v : ∀~β, ~α. τ → 0



then

∆; Γ C̀ v[~β] : ∀~α. τ → 0.

In our implementation, all type variables in scope are captured
when forming a closure, rather that just those that actually appear
free in the function (that is, we take ~β = ∆.) It would require
additional data structures and type families to perform free type
variable analysis, and afterward selectively abstract and apply those
variables (and it’s far from obvious that it could be done in a
convincing way.) In contrast, capturing all the type variables can
be done directly. Then, their application (v[~β]) is constructed by a
function that implements the forwarding lemma:

tpAppMulti :: ValC (j, ts) (Cont (Add i k) t)
→ ValC (j, ts) (Cont k t)

It is a simple recursive function that applies the topmost index
as many times as needed, using the obvious fact that τ [0/0] = τ .

Type application. When translating the application of a polymor-
phic function, it takes a few manipulations to show that the function
is of a type compatible with its supplied argument. Expectedly, we
need again that substitution commute with the type translation:

LEMMA 6.3. (CtypeJ−K–subst commute) For any λK types τ1, τ2

and index i,

CtypeJτ1[τ2/i]K = (CtypeJτ1K)[CtypeJτ2K/i].

As the type translation explicitly shifts indices, we also need
similar lemmas showing that CtypeJ−K, U i

k(−), and substitution
commute pairwise.

7. Hoisting
The hoisting phase moves functions, which are closed as a result
of closure conversion, to a top-level letrec construct. It proceeds
by collecting every function into a bundle (whose type reflects the
type of every function in it) and then assembles the program. As
the collect phase encounters an individual function, an index (to be
bound by the letrec) is substituted in place of it, and the bundle
of collected functions is extended with the new one (in which
functions have already been collected and replaced with indices.)
The indices that are previously assigned are “weakened” so as to
make sense in the context of the extended bundle.

The target language of hoisting has an separate context (Γ′, the
type parameter fs) for the variables bound by the letrec, in addition
to the usual one (∆; Γ):

ValH (i, ts, fs) t

ExpH (i, ts, fs)

The introduction of polymorphism has the consequence that the
type of individual functions in the bundle reflect the number of uni-
versal quantifier in each function’s type. Adding recursion actually
had a stronger impact: as a function may refer to itself, we have
to arrange for such references to be turned into the corresponding
index bound by the letrec. For this purpose we use a map argument
(analogous to the one used for closure conversion.) It maps each
term variable in scope to a variable in the target program, which is
bound by the letrec in the case of recursive occurrence and locally
bound for other variables. The functions that collects fix expres-
sions has type:

collectV :: ValC (i, ts) t
→ MapT ts (ValH (i, ts, hs0))
→ ∃hs. (ValH (i, ts, Cat hs0 hs) t,

TupleH (Cat hs0 hs) hs)

collectE :: ExpC (i, ts)
→ MapT ts (ValH (i, ts, hs0))
→ ∃hs. (ExpH (i, ts, Cat hs0 hs),

TupleH (Cat hs0 hs) hs)

The type variable hs0 reflects the type of the bundle prior to the
call, and hs that of the segment of the bundle to be appended as
a result of visiting the current term. Here, Cat is a type family to
handle concatenation of lists of types:

type family Cat ts0 ts
type instance Cat () ts′ = ts′

type instance Cat (s, ts) ts′ = (s, Cat ts ts′)

which must be accompanied with an associativity lemma.
Compared to CPS or closure conversion, the hoisting phase is by

far the most conceptually simple, yet its implementation is the least
succint of the three, due to its existentially quantified return type.

8. Experience and Future work
Identifying the right program representations is perhaps the most
delicate part of this work. In this section we make some remarks
concerning the choices we have made, and some alternatives that
we did consider which turned out to be inadequate. Of course,
identifying the right types to use is also of deep consequence, so
we comment on our use of GADTs and type families, as well as
other features that we used or considered using in past versions of
the compiler.

8.1 Representing variables
When working on System F we considered many options for rep-
resenting variables, both at the level of types (∀, ∃, etc.) and terms
(λ, let, Λ, unpack, etc.)

Type-level type variables. For type-level type variables, given the
fact that we do not need to analyze those types, the best choice
would assuredly by HOAS. But since GHC does not support type-
level λ expressions, this is not an option.

From our experience, a de Bruijn encoding of types combined
with type families for type-level operations (such as substitution)
provides a fairly reasonable representation. It is also a fairly com-
mon choice in compilers using a typed intermediate language.

Using names would not be a good solution because it would
be at least as complex as de Bruijn, with the added problem that
α-equivalence is needed.

Term variables. For term variables, we started using HOAS,
which is rather uncommon and is poorly supported in most lan-
guages, but served us well for the CPS transform. It is arguably
more elegant than de Bruijn indices, and requires fewer type an-
notations as the typing environment is treated implicitly. When put
in context though, it is hard to justify the choice of HOAS from
an engineering standpoint, as it forces us to convert to and from
first-order representations.

For the closure conversion and hoisting, on the other hand,
HOAS cannot be used because of its inability to express that a term
is closed.

The more common representation of term variables in compilers
is as names, usually represented as small integers or as pointers, so
that would be our favorite choice, but reifying small integers as
singleton types to reason about them is rarely supported and GHC
is no exception. Even using less efficient representations of names,



which lend themselves to singleton types, still suffers from the extra
complexity of having to reason about freshness.

So we ended up using de Bruijn indices. As demonstrated,
they do work, but they require delicate index updates at various
places and accompanying lemmas, for example when moving code
into or out of a scope, which phases like closure conversion and
hoisting do all the time. The complexity we have in our current
code is bearable, but we had to fine-tune it to get there: e.g., some
apparently minor changes to the definition of KBtpAbs or Cfix can
lead to a very significant increase of complexity. Another problem
with de Bruijn indices is that most people find them mind-boggling
to debug, although this is more true in untyped settings.

The representation of term-level variables for a compiler like
ours is still a problem in search of a satisfactory solution. The most
promising development on the horizon is probably (Pientka 2008;
Pientka and Dunfield 2008).

Term-level type variables. If the term encoding is in HOAS, then
the best option for type variables is to use HOAS as well, so that is
what we have done. Using de Bruijn for type variables would not
work: in de Bruijn the representation of a given (open) type depends
on where that type appears in the term (i.e. how many Λ’s have been
traversed) – doing type instantiation by merely replicating the type
using an application in the host language will not account for that.

If the term encoding is first-order, then HOAS may be a very
good choice, (if the host language’s monomorphism restriction
does not get in the way), but in our case, for the same reason we
could not use HOAS for term variables, we could not use HOAS
for term-level type variables during closure conversion: we need to
express the fact that the functions we output are also closed with
respect to types.

Compilers tend to avoid de Bruijn indices in favor of names for
term-level type variables, again in order to avoid the issues linked
with shifting indices when moving code into or out of a scope. But
we again decided to use de Bruijn indices for the same reason as
for term variables: names are difficult to reify efficiently as types
in GHC, and reasoning about freshness would introduce a lot of
complexity and force us to restructure the code significantly.

In other words, essentially the same arguments that led us to
choose de Bruijn indices for the term variables, led us to use
de Bruijn for term-level type variables. And again, although we
believe this choice to be the best there is, it is not satisfactory.

8.2 Type families
Before type families were made available in GHC, we used GADTs
to encode witnesses of type preservation (Guillemette and Monnier
2006, 2007). Essentially, every time a term was produced, it was
accompanied by a witness that the term was of the expected type.
The drawbacks of this scheme are run-time overhead, a substantial
amount of code bloat (for manipulating the existential packages),
and the fact that our “proofs” were encoded in an unsound logic.
Type families essentially solved these problems. We further com-
pare the schemes that use only GADTs or GADTs plus type families
in (Guillemette and Monnier 2008).

The representation of System F also benefited from type fam-
ilies. In the past we actually worked on a representation which re-
lied on GADTs to encode witnesses of type applications (essentially
encoding the type families from Sec. 3 as GADTs). Type families
obviously make this representation much more direct.

8.3 Lemmas over type families
As seen in Sec. 4.3, we need to prove properties of the type fam-
ilies we define for the CPS and closure conversion of System F
to type-check. Our current implementation implements such lem-
mas as term-level functions that produce a proof witness that the

lemma holds at particular types. This is unsatisfactory in a num-
ber of ways: it incurs run-time overhead, it forces us to carry type-
representatives as part of the syntax trees, and it encodes the lemma
in an unsound logic (due to non-termination at the term level).

An alternative approach is to annotate the syntax tree with
equality constraints that state the lemma holds at the given types.

TpApp :: CPS (Subst s t Z) ∼ Subst (CPS s) (CPS t) Z ⇒
Exp (All s) → Exp (Subst s t Z)

This is a purely static solution – it does not suffer from the unsound-
ness issue, and has no run-time overhead. The drawback is that, as
such constraints annotate the syntax tree of the source language, it
must be constructed in the compiler front-end and propagated to the
point where it is use, thereby limiting modularity in the compiler.

To address this limitation, we are investigating a language ex-
tension to directly support lemmas over type families: to have the
type-checker verify that all known instances satisfy the lemmas de-
clared by the programmer (Guillemette and Monnier 2008). This
way we could get the type equality coercion we need without hav-
ing to encode it explicitly in the syntax tree.

8.4 Type Classes
Having started this work from an existing untyped compiler using
algebraic data types for its term representation, it was only natural
to use GADTs. This said, there is no indication that the same could
not be done with multi-parameter type classes, but GADTs are
probably a more natural representation for abstract syntax trees in
a functional language.

Early on, we tried to use type classes to encode type-level func-
tions as well as various proof objects. This was meant to help us
by letting the type checker infer more of the type annotations and
hence leave us with a cleaner code more focused on the actual al-
gorithm than on the type preservation proof. Sadly we bumped into
serious difficulties due to the fact that the then current version of
GHC was not yet able to properly handle tight interactions been
GADTs and type classes. More specifically the internal language of
GHC had limitations that prevented some “exotic” uses of func-
tional dependencies. Those limitations can appear without GADTs,
but in our use of GADTs, we bumped into them all the time. In the
mean time, type families appeared and provided an alternative way
to let the type system and type inference do more of the work.

The shift to FC (Sulzmann et al. 2007) as the internal language
in GHC potentially improves the interaction between GADTs and
type classes. Yet, as we discussed elsewhere (Guillemette and Mon-
nier 2008), using type classes to prove type preservation necessi-
tates extra annotations (in the form of class constraints) on the syn-
tax tree, which must be propagated from phase to phase and would
compromise modularity.

8.5 Future work
Our compiler is still in development. It lacks register allocation,
instruction selection, and optimization phases. Also the source lan-
guage still needs to be expanded with recursive types and existen-
tial types, as well as some encoding of algebraic data types. The
intention being to accept as input a language comparable to GHC’s
internal System F -like language, so as to be able to bootstrap.

Regarding the part of the compiler already implemented, we
hope to find some clean way to move the unsound term-level
proofs (such as the implementation of our commutativity lemmas
as functions) to the sound (and cheaper) type-level.

In the longer run, we may want to investigate how to generate
PCC-style proofs. Since the types are not really propagated any
more during compilation, constructing a PCC-style proof would
probably need to use a technique reminiscent of (Hamid et al.
2002): build them separately by combining the source-level proof



of type-correctness with the verified proof of type preservation
somehow extracted from the compiler’s source code.

9. Related work
There has been a lot of work on typed intermediate languages,
beginning with TIL (Tarditi et al. 1996) and FLINT (Shao and
Appel 1995; Shao 1997), originally motivated by the optimizations
opportunities offered by the extra type information. The idea of
Proof-Carrying Code (Necula 1997) made it desirable to propagate
type information even further than the early optimization stages, as
is done in the setting of typed assembly language (Morrisett et al.
1999).

Shao et al. (2002) show a low-level typed intermediate language
for use in the later stages of a compiler, and more importantly
for us, they show how to write a CPS translation whose type-
preservation property is statically and mechanically verified, like
ours.

Pašalić (2004) constructed a statically verified type-safe inter-
preter with staging for a language with binding structures that in-
clude pattern matching. The representation he uses is based on de
Bruijn indices and relies on type equality proofs in Haskell.

Chiyan Chen et al. (2003) also show a CPS transformation where
the type preservation property is encoded in the meta language’s
type system. They use GADTs in similar ways, including to ex-
plicitly manipulate proofs, but they have made other design trade-
offs: their term representation is first order using de Bruijn indices,
and their implementation language is more experimental. In a sim-
ilar vein, Linger and Sheard (2004) show a CPS transform over
a GADT-based representation with de Bruijn indices; but in con-
trast to Chen’s work and ours, they avoid explicit manipulation of
proof terms by expressing type preservation using type-level func-
tions. We showed the CPS phase of our compiler in an earlier ar-
ticle (Guillemette and Monnier 2006), where the distinguishing
feature is the use of a term representation based on HOAS.

Chlipala’s compiler (2007) developed in the Coq proof assistant
and ran as an extracted OCaml program, has a completely formal-
ized correctness proof. Like ours, it compiles a higher-order, sim-
ply typed functional language (with similar code transformations)
and uses de Bruijn representations throughout all phases. He uses a
language whose type system is much more powerful than ours, but
whose computational language is more restrictive.

Similarly, Leroy’s compiler (Leroy 2006) for a first-order (C-
like) language, written in the Coq proof assistant, has a completely
formalized correctness proof.

A detailed proof of type preservation for an earlier formulation
of closure conversion over System F was formulated by Minamide
et al. (1996). Defunctionalization over a superset of System F in
shown to be type-preserving by Pottier and Gauthier (2004).

Fegaras and Sheard (1996) showed how to handle higher-order
abstract syntax, and Washburn and Weirich (2003) showed how to
use this technique in a language such as Haskell. We use this latter
technique and extend it to GADTs and to monadic catamorphisms.
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