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ABSTRACT
We introduce partial interpretation, an approach to program execu-
tion over partial information. Partial interpretation aims to combine
the accuracy of symbolic execution and the termination of abstract
interpretation, through what we call lossless abstraction: discarding
information which is subsequently irrelevant.

We distinguish several notions of partial information: sets, his-
tories, and relations. We identify one lossless abstraction: under
suitable conditions, discarding all history is lossless. We state this
fact precisely and we prove it. In particular, in our object language
(a mini-ML without closures), it is lossless to discard the history of
the arguments to a call. Discarding this history is a step towards
the principled accuracy and termination we seek.

We sketch a termination argument for partial interpretation. To
ensure termination, further information must be discarded, and we
do so in an unprincipled way. We then apply our approach to partial
evaluation, reproducing a classic result without manual adjustment
of the input program. On a separate synthetic example, accuracy
is improved over previous partial evaluators. The performance of
partial interpretation is initially poor, but we remedy this with ad
hoc techniques.

CCS CONCEPTS
• Theory of computation→ Program analysis; Automated rea-
soning; Abstraction; • Software and its engineering → Retar-
getable compilers.
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1 INTRODUCTION
We are used to the following picture of an executing program: an
input is provided, the program runs for a while, and a result comes
out. We tacitly assume complete information about the input, the
result, and any intermediate results in between.
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In this work, we ask what it would mean to execute a program
over partial information, in a principled way. There exist approaches
in this direction. Symbolic execution is accurate, but it has a ter-
mination problem. Abstract interpretation terminates, but it is ap-
proximate.

We combine these approaches through lossless abstraction. Start-
ing from the complete accuracy of symbolic execution, we identify
information which can be discarded because it is subsequently
irrelevant. Discarding irrelevant information enables abstract inter-
pretation techniques for termination, without an arbitrary choice
of abstract domain (i.e. which information to keep). We refer to our
combined approach as partial interpretation.

We distinguish several notions of partial information: sets, his-
tories, and relations. We identify one lossless abstraction which
motivates partial interpretation: discarding the history of the ar-
guments to every call. To ensure termination, further information
must be discarded. We do so in an unprincipled way, but we feel
that our work is a step towards a more principled solution, with
lossless abstraction as a general idea.

The main piece of our presentation is our lossless abstraction,
a demonstration that it is lossless, and a description of partial in-
terpretation. This may be relevant to accurate and terminating
program analysis, in general.

In addition, our work especially relates to partial evaluation: au-
tomatic program specialization. Partial evaluation is reformulated
so that its main sub-problem is computation over partial informa-
tion. We argue that a principled approach is especially relevant
here. We re-use ideas from past work on online partial evaluation,
in the unprincipled part of our approach. Finally, we validate our
approach by applying it to partial evaluation.

We make the following contributions:

• a distinction between several notions of partial information:
sets, histories, and relations

• a sufficient condition under which discarding all history is
lossless, in particular for the arguments to a call

• a relational semantics for the variant of symbolic execution
we use in partial interpretation

• definitions of discarding history, losslessness, and irrelevance
in terms of our relational semantics

• a proof of irrelevance under our sufficient condition, and
sanity checks on our definition of irrelevance

• a description of partial interpretation, and a sketch of its
termination argument

• a formulation of partial evaluation in terms of partial inter-
pretation

• an implementation of such a partial evaluator, with prelimi-
nary experimental results.

We organize the remaining sections as numbered here:

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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(2) we describe our object programs
(3) we discuss symbolic execution over them
(4) we introduce our lossless abstraction, and the architecture

of partial interpretation
(5) we introduce our relational semantics for the symbolic exe-

cution we use in partial interpretation, we state and prove
our main irrelevance theorem, and we check the sanity of
its statement

(6) we study the termination of partial interpretation
(7) we apply our approach to partial evaluation
(8) we discuss related work
(9) we wrap up and discuss future work.

2 OBJECT PROGRAMS
We create our own notion of object programs, to adapt it to the
needs of partial interpretation. Some decisions are relevant to partial
interpretation; other decisions just keep things simple. The result
is similar to a subset of ML.

We focus on pure functional programs, which we view as a well-
understood programming core: a call-return discipline (relevant
in Sec. 4), without mutation or external effects (to simplify). Our
programs have standard static polymorphic types. We are about to
do symbolic execution, we use an SMT solver for this, and it likes
static types for all data.

We represent a (sub-)program as a graph similar to a compiler IR
(intermediate representation), as in Fig. 1. Our graph representation -
a pgraph - is relevant because ourmain irrelevance theorem involves
a graph condition. Nodes are operations or constants, and edges are
data dependencies: 𝐴 → 𝐵 indicates that 𝐴 reads (the result of) 𝐵.
If 𝐴 has several out-edges, they are ordered and implicitly labelled.

We have eight node types, some with an annotation: entry; tuple;
proj i; const val; prim op; prog i; call; if.

entry expresses a program’s single formal parameter. A program
returns a single result, expressed by specially marking a single node
as the “exit” (here, the if ).

tuple packs any number of data, and proj i extracts a component
from a tuple. These account for “multiple” arguments or results. A
nullary tuple is the unit value. A unary tuple is a no-op - intuitively,
there are no one-element tuples.

const val and prim op express constants and primitive operations.
Visually, only the val or op is shown. We use these to introduce
booleans, the mathematical integers Z, and operations over both.
This directly matches SMT primitives.

prog i expresses as data the ith sub-program in an ambient con-
text of closed, top-level programs. We have no closures: all input to a
sub-program goes through its single argument. This is directly rel-
evant to our lossless abstraction. We can imagine that any closures
have already undergone closure conversion or defunctionalization.
call’s first edge is to a program; its second edge is to the single
argument. A single argument simplifies our presentation.

In principle, we should complete this with programmer-defined
algebraic sums, e.g.: constructor i; accessor i; case. To simplify, we
introduce only an if node, and primitives for homogeneously typed
lists: nil, cons, head, tail.

if expresses a conditional. Its first edge is to a boolean condition
𝑐 . Two additional edges (the consequent and alternate branches)
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Figure 1: The pgraph of a factorial program.

indicate which data to select between, based on the value of 𝑐 . if
selects not just between values, but between execution paths: the
condition is computed first, then only one branch is computed.
Everywhere else, execution is strict.

3 SYMBOLIC EXECUTION
In an ordinary interpreter, we would map each pgraph node to an
ordinary value. Symbolic execution is analogous: we map each node
to a symbolic expression in the SMT-LIB language [Barrett et al.
2010]. We define this mapping by structural induction. We describe
the behavior at each node type, and simultaneously we discuss the
example of fact(x): factorial of a completely unknown integer x.

At entry, our caller provides a symbolic input (here, x) accom-
panied by declarations for any variables, and propositions which
constrain these variables (here, x is unconstrained).

const and prog produce simple expressions. We define an SMT
type for programs, with a single constructor which wraps the inte-
ger identifier of the (sub-)program.

prim builds a symbolic expression - here x>1 and x-1, and a
product at * if the call terminates.
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tuple and proj (not used here) are handledwith a single-constructor
SMT type for each tuple arity. We have implemented only pairs,
but general tuples simplify our presentation.

if attempts to decide the condition by querying the SMT solver.
We get amodel (a possible value) for the condition under the current
constraints. Then, the condition is temporarily asserted to be the
opposite of the model, and satisfiability is checked again. We get
either one or two possible conditions.

When the condition is uniquely known, if directly reports the
result of the corresponding branch. Otherwise (as here), if builds
a conditional expression, written (ite 𝑐 𝑎 𝑏) - ite stands for if-
then-else. It is possible to track a path condition here: compute the
consequent branch under the assumption that the condition is true -
and conversely in the alternate branch. We ignore path conditions
in our presentation.

The simplest handling of call invokes symbolic execution recur-
sively (here, with the argument x-1). Any relevant variables and
propositions are passed on.We ignore the general question of which
sub-program to call, which amounts to enumerating models for
the called program. We focus on the case when the called program
is uniquely known; if it is not, we report a completely unknown
result from the call.

As described, symbolic execution does not terminate on recursive
object programs. In our fact(x) example, the if cannot decide the
condition, so it computes both branches before packaging them
in a conditional expression. In the recursive branch, we compute
fact(x-1) by invoking symbolic execution recursively. x-1 is still
completely unknown, and we are in an infinite loop. Tracking path
conditions would change some details, but it would not get us
termination.

This illustrates a fundamental problem: even when a program ter-
minates on all completely known inputs, it does not necessarily ter-
minate on partially known inputs. Partial interpretation addresses
this by handling calls differently.

4 PARTIAL INTERPRETATION
We start from a key observation in the example of fact(x): in
the recursive call, x-1 is still completely unknown. In some sense,
there is repetition between these calls. Intuitively, the successive
arguments are obviously distinct: the second is one less than the
first. But taken as sets, the possible arguments to each call are the
same: the set of all integers.

Our central intuition is that if the arguments are equal as sets,
then the results are equal in some (lossless) sense, and we can
leverage this to achieve termination. Our task now is to clarify in
what sense the results are equal, to explain how we leverage this,
and to prove that all this works.

We first distinguish many notions of (partial) information. In
our introduction we mentioned complete information: a uniquely
known value. We’ve just introduced sets, and complete information
becomes a special case: a singleton set.

Now consider this. If the arguments x and x-1 above are equal
as sets, but they were distinct intuitively, what were they distinct as?
There must be a third notion of partial information. We propose to
think of it as a computational history: a log of how a piece of data
has been produced.

With complete information, we are not used to caring about
computational history. We report the result of 2 + 3 as 5 without
thinking twice. But reporting 5 discards information: the historical
knowledge that 5 was produced as 2 + 3, as opposed to e.g. 1 + 4.
In some sense we lose nothing from this, because the discarded
information is never relevant in the future: anything true about
2 + 3 is also true about 5, and vice-versa. Furthermore, we save
resources by storing 5, which justifies it as “the result”.1

With partial information, history can matter. Suppose that from
a completely unknown integer 𝑥 , we compute both 2𝑥 +1 and 2𝑥−1,
then subtract them. Intuitively we know that the difference is 2.
However, consider what happens if we view 2𝑥 + 1 and 2𝑥 − 1 as
sets, through the lens of mathematical set comprehension. {2𝑥 + 1 |
𝑥 ∈ Z} and {2𝑥 − 1 | 𝑥 ∈ Z} are equal: the set of odd integers. And
the difference of any two odd integers is any even integer; not the
singleton set {2}. Viewing 2𝑥 + 1 and 2𝑥 − 1 as sets discards their
history: intuitively, the knowledge that they were computed from
the same 𝑥 . As a result, we lose accuracy in their difference.

In general, the most assuredly accurate form of partial informa-
tion must be complete computational history, which is captured by
the expressions of symbolic execution.

We now clarify in what sense the results are equal, when the
arguments are equal as sets. Intuitively, we plan to share a single
result across all calls with the same set of arguments. Sharing com-
plete computational history (from the start of the program) would
not do, since these various calls have different histories prior to the
call - that is the whole point. We want a fourth and last notion of
partial information: a history from the start of the call, which we
can combine with any caller’s prior history. Intuitively, we want
an input-output relation. Concretely, we introduce a fresh variable
for the formal parameter, when we begin symbolic execution of a
call. Later, any caller replaces the formal parameter with the actual
argument, in the result.

We re-iterate: if the arguments are equal as sets, then the results
are equal as input-output relations. We now suppose this is correct,
and explain how we leverage it. In the next section, we prove it.

fact(x) uses the result of fact(x-1) to compute its own result.
But by supposition, these results are one and the same. Therefore
that result depends on itself:

𝑅 = 𝐹 (𝑅)

where𝑅 is the result of fact(x), and 𝐹 represents part of the pgraph
of fact: from the recursive call to the result. Restating this equation
in words, 𝑅 is a fixed point of 𝐹 . We plan to compute this fixed point
iteratively.

In general, we have one result for each pair (pgraph, args),
where the args are treated as sets. These results depend on one
another, in a way determined by the object program. We seek a
fixed point over all these results.

We introduce a global cache which maps a pair (pgraph, args)
to a result - we discuss result initialization shortly.We then compute
a fixed point over the entire cache. We re-compute a result by sym-
bolically executing that pgraph for those args (as in Sec. 3), with
one modification: at a call, we do not invoke symbolic execution
recursively; instead, we read a result from the cache.

1However, debugging might be easier if we knew it was 2 + 3.
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We track dependencies between cache entries. When (symbolic
execution for cache entry) 𝐴 reads (the result of) 𝐵, 𝐴 is registered
as a consumer of 𝐵. When symbolic execution finishes and its result
has changed, we place all its consumers on a global worklist. Once
the worklist is empty, we have reached a fixed point. We study
termination in Sec. 6.

We now discuss result initialization, then we give further details
about our cache. We initialize each result in the cache to the empty
relation ⊥. Intuitively, each result then grows towards a fixed point.
We interpret ⊥ as “the result of” non-termination. We justify this
interpretation as follows. The result (an input-output relation) indi-
cates which values the call may return during ordinary execution.
If the relation is empty, the call may not return any value at all.
This is only possible if the call does not return.

Since our call node reads the cache, conceptually it can now
report ⊥, and every node needs to handle ⊥. Continuing with the
non-termination interpretation of ⊥, most nodes report ⊥ if any of
their inputs do. Only if deviates from this, because if is non-strict.
if reports ⊥ if the condition is ⊥. Otherwise we proceed as before:
we attempt to decide the condition. If we succeed, we report the
result of the correct branch. If we fail, morally we want to report a
conditional expression (ite 𝑐 𝑎 𝑏), which is equivalent to:

𝑦 such that (𝑐 ∧ 𝑦 = 𝑎) ∨ (¬𝑐 ∧ 𝑦 = 𝑏)

This is not a problem when we have expressions 𝑎 and 𝑏 from the
two branches (consequent and alternate). However when a branch
reports⊥, we do not have an expression for the possible values from
that branch. Suppose for the sake of exposition that the alternate
branch reports ⊥. Then whenever ¬𝑐 , 𝑦 can take no values at all.
Symbolically:

𝑦 such that (𝑐 ∧ 𝑦 = 𝑎) ∨ (¬𝑐 ∧ 𝑓 𝑎𝑙𝑠𝑒)
= 𝑦 such that (𝑐 ∧ 𝑦 = 𝑎) ∨ 𝑓 𝑎𝑙𝑠𝑒

= 𝑦 such that (𝑐 ∧ 𝑦 = 𝑎)

This algebraicmanipulation shows thatwhen the alternate branch
reports ⊥, we should report the result from the consequent branch,
and assert the condition to be true. This assertion may appear strange,
given the non-termination interpretation of ⊥: how can we assert
that the condition is true, “on the grounds” that the alternate branch
does not terminate? However, this intuitive objection misses a sub-
tle point. The result of the if node describes the possible values
coming out of the if node, if the if node terminates - as all our results
do. If the if node terminates, but the alternate branch would not
terminate (i.e. it reports ⊥), then we do know that the condition
was true. This justifies the assertion of the condition in the result -
intuitively, as well as algebraically. In the extreme, if both branches
report ⊥, if reports ⊥.

The possibility of our cache depends on two things. First, we need
something to store in the cache. Our call-return discipline matches
a call to a future return, at which point we store a result. Second,
we need a notion of equivalence of arguments, to decide what
constitutes a cache hit. We use set equality, and we now describe
how to check it.

The first step is to view the actual argument as a set comprehen-
sion. Suppose we have an expression 𝑒 , supported by declarations
𝑑𝑠 and propositions 𝑝𝑠 . These can be viewed as the set {𝑒 | 𝑑𝑠, 𝑝𝑠}.

We then define set operations, building up to set equality. To sim-
plify these definitions, we first introduce a fresh variable for 𝑒 , and
we quantify over 𝑑𝑠 explicitly in a new proposition. For example,

{𝑥 − 1 | 𝑥 ∈ Z, 𝑥 > 1}

becomes
{𝑦 ∈ Z | ∃𝑥 ∈ Z . 𝑦 = 𝑥 − 1 ∧ 𝑥 > 1}

which in general looks like {𝑥 ∈ T | 𝑃 (𝑥)}. Set complement and
intersection are standard (we omit type declarations):

¬{𝑥 | 𝑃 (𝑥)} = {𝑥 | ¬𝑃 (𝑥)}

{𝑥 | 𝑃 (𝑥)} ∩ {𝑦 | 𝑄 (𝑦)} = {𝑥 | 𝑃 (𝑥) ∧𝑄 (𝑥)}
which involves a substitution from 𝑄 (𝑦) to 𝑄 (𝑥).

We check emptiness with an SMT solver. Given {𝑥 | 𝑃 (𝑥)}, we
declare 𝑥 , assert 𝑃 (𝑥), and check satisfiability:

sat → inhabited
unsat → empty
unknown → unknown

We define set inclusion in terms of the emptiness check:

𝑆 ⊆ 𝑇 ⇐⇒ 𝑆 ∩ ¬𝑇 is empty

whose value can be unknown because of the emptiness check. We
define set equality as double inclusion:

𝑆 = 𝑇 ⇐⇒ 𝑆 ⊆ 𝑇 ∧𝑇 ⊆ 𝑆

with a ternary conjunction, since inclusion can be unknown:
𝑎 ∧ 𝑏 =
| 𝑎 or 𝑏 is false → false
| 𝑎 or 𝑏 is unknown → unknown
| otherwise → true

Checking set equality like this is slow in practice, significantly for
overall performance. We have another method which relies less on
the SMT solver, is a thousand times faster, but depends on further
assumptions. We omit it in this paper.

With polymorphic types, there is a complication with argument
equivalence. Consider two inputs to a polymorphic list length pro-
gram: [x y 3] and [x y true]. Ideally, we would want these to fall
into the same cache entry. However, we have no clear formulation
of this. We avoid the question and require equal monomorphic
types for argument equivalence.

We summarize partial interpretation at a high level. To partially
interpret a root call (pgraph, args), we create a cache entry for
it, initialize its result to ⊥, and put it on the worklist. We then
perform symbolic execution of each worklist item, to re-compute
its result. Each of these re-computations may place more items on
the worklist. Once the worklist is empty, we have reached a fixed
point, and we read the result from the original cache entry.

We started with symbolic execution, which computes histories.
We abstracted these histories to sets, at every call. This enabled our
high-level architecture, which resembles abstract interpretation: a
cache, a worklist, and a fixed point computation. We now have two
tasks:

• prove that our abstraction is lossless: that partial interpreta-
tion is as accurate as symbolic execution

• study the termination of partial interpretation.
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Figure 2: A diamond-shaped pgraph fragment.

5 IRRELEVANCE
Suppose we compute some value 𝐵, and later some value 𝐷 which
(transitively) depends on 𝐵. In a pgraph, this manifests as a path
𝐷 →∗ 𝐵. Our main claim is that under suitable conditions, discard-
ing the history of 𝐵 (turning it into a set) loses no accuracy at 𝐷 .
To prove this, we must first state it precisely. It then justifies our
handling of calls.

We have seen that discarding history loses accuracy in general,
for example in the case of 2𝑥 + 1 and 2𝑥 − 1. However, we have
also seen that in the familiar special case of complete information,
discarding history does not lose accuracy. We now elicit another
such special case.

Fig. 2 shows part of the pgraph for the example of 2𝑥 + 1 and
2𝑥 − 1. The nodes correspond to sub-expressions:

A: 2𝑥 B: 2𝑥 + 1 C: 2𝑥 − 1 D: (2𝑥 + 1) − (2𝑥 − 1)
We omit the remaining nodes: 𝑥 and the constants 1 and 2.

In this example, discarding the history of 𝐵 loses accuracy at 𝐷 .
We note these abstract features of the example:

• 𝐵 and 𝐶 share a past at 𝐴
• 𝐵 and 𝐶 share a future at 𝐷
• there is no path between 𝐵 and 𝐶 .

Intuitively, if 𝐵 and 𝐶 have no shared past, we gain nothing by
preserving their histories. And their shared past is only used once
𝐷 later rejoins 𝐵 and 𝐶 . We give an intuition for the third point
shortly. We first state our necessary side path condition for the
relevance of the history of 𝐵 at 𝐷 :

∃𝐴 with 𝐷 →∗ 𝐵 →∗ 𝐴, and also 𝐷 →∗ 𝐴 not through 𝐵.

To see the significance of the side path, suppose 𝐷 only has paths to
𝐴 through 𝐵. Then in any expression for 𝐷 , we can eliminate 𝐴 by
rewriting in terms of 𝐵. Intuitively then, any relational information
about 𝐴 is captured in the relational information about 𝐵. There is
a case of this in our concrete example: the difference (𝐷) depends
on 𝑥 (not shown), but only through 2𝑥 (𝐴). We can therefore set
𝑢 = 2𝑥 and reason about (𝑢 + 1) − (𝑢 − 1), with the same final result.

This clarifies our claim’s premise: if there does not exist 𝐴 with
𝐷 →∗ 𝐵 →∗ 𝐴 and a side path 𝐷 →∗ 𝐴, we claim that discarding

Table 1: A fragment of 𝑅𝐷 , from Fig. 2.

... 𝐴 𝐵 𝐶 𝐷

...
... 0 1 -1 2
... 2 3 1 2
... 4 5 3 2

...

the history of 𝐵 loses no accuracy at 𝐷 . It remains to clarify the con-
clusion: discarding history and losing accuracy. We have managed
this only with the additional formalism we introduce now.

We define a relational semantics for the symbolic execution used
in partial interpretation. Instead of mapping a pgraph node 𝑛 to a
symbolic expression, we map 𝑛 to a relation 𝑅𝑛 . Our relations are
similar to those found in databases and formalized by Benzaken
et al. [2014]. Tab. 1 shows a fragment of 𝑅𝐷 for the 2𝑥 + 1 and 2𝑥 − 1
example from Fig. 2.

A relation is headed by a set of “columns” - its support. For us,
this is the set of nodes reachable from 𝑛, including 𝑛. In Tab. 1, we
show only the part of the support shown in Fig. 2: {𝐴, 𝐵,𝐶, 𝐷}. A
relation contains a set of “rows”. For us, a row is a possible execution
up to 𝑛: an assignment of an ordinary value to each node in the
support.

We define three relational operations. The projection of a row 𝑥

on a set of columns 𝑆 is 𝑥 |𝑆 , and it keeps only the columns from 𝑆

in 𝑥 . We lift projection to a relation 𝑅 by projecting all the rows:

𝑅 |𝑆 = {𝑥 |𝑆
�� 𝑥 ∈ 𝑅}

Projection discards history. In particular, 𝑅𝑛 | {𝑛} keeps only column
𝑛 in 𝑅𝑛 , which is the set of possible values at 𝑛.

𝑄 ⊲⊳ 𝑅 is the relational join of relations 𝑄 and 𝑅, with supports
𝑆𝑄 and 𝑆𝑅 . 𝑄 ⊲⊳ 𝑅 has support 𝑆𝑄 ∪ 𝑆𝑅 and contains the tuples
which agree with both relations:

𝑄 ⊲⊳ 𝑅 = {𝑥
�� 𝑥 |𝑆𝑄 ∈ 𝑄 ∧ 𝑥 |𝑆𝑅 ∈ 𝑅}

We now compute 𝑅𝑛 by structural induction on the pgraph. At
const or prog (or a nullary tuple), we report a constant: a single row
with support {𝑛}. At entry, we report the set of possible arguments,
also with support {𝑛}.

Everywhere else, we compute relations for our successor nodes,
and also a local template relation 𝐿𝑛 . 𝐿𝑛 relates the inputs of 𝑛 to its
outputs. 𝐿𝑛 has neutral column names, which we rename to target
the correct pgraph nodes. We then join all these relations.

Everywhere except if, the successor relations are available di-
rectly by induction. At if, suppose the three inputs are 𝑐, 𝑎, 𝑏. We
first compute 𝑅𝑐 | {𝑐 } , which is the set of possible conditions. We
then compute 𝑅𝑎 (and/or 𝑅𝑏 ) if true (and/or false) is possible. If
a condition is impossible, in that branch we use ⊥ instead, over the
support of that branch.

Everywhere except call, 𝐿𝑛 depends only on 𝑛. We show exam-
ples, where 𝑎 and 𝑏 are arbitrary:

• binary tuple (aka mkPair): 𝐿𝑛 = {(𝑎, 𝑏, (𝑎, 𝑏))}
• proj 0 (aka fst): 𝐿𝑛 = {((𝑎, 𝑏), 𝑎)}
• prim +: 𝐿𝑛 = {(𝑎, 𝑏, 𝑎 + 𝑏)}
• if : 𝐿𝑛 = {(true, 𝑎, 𝑏, 𝑎)} ∪ {(false, 𝑎, 𝑏, 𝑏)}.
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At call, we get 𝐿𝑛 with a little work. Let𝑅𝑝 and𝑅𝑎 be the relations
computed for our program and argument. We project both to sets:
𝑅𝑝 | {𝑝 } and 𝑅𝑎 | {𝑎} . If 𝑅𝑝 | {𝑝 } is not unique, 𝐿𝑛 is the full relation.
If 𝑅𝑝 | {𝑝 } is unique, we look it up in the global cache, with args
= 𝑅𝑎 | {𝑎} . 𝐿𝑛 is then the input-output relation read from the cache.

Our relational semantics is an extensional view of symbolic execu-
tion: conceptually, our relations enumerate infinitely many possible
executions. In contrast, symbolic execution implements relations
in comprehension. For example, the symbolic expression 2𝑥 + 1
naturally corresponds to the relation {(𝑥, 2𝑥 + 1) | 𝑥 ∈ Z}. Compre-
hension is suitable for implementation, but the extensional view
lets us state what we need: discarding history is projection, and
losslessness will be an equality between relations.

We now set the stage for our main theorem: a pgraph containing
a path 𝐷 →∗ 𝐵. We execute this program up to 𝐷 in two ways.
First, we apply our relational semantics to get a baseline result: we
compute 𝑅𝐷 . Second, we define a modified form of our relational
semantics: 𝑀 (𝐵)

𝑛 is computed like 𝑅𝑛 everywhere except 𝐵. At 𝐵,
we intervene: we report 𝑅𝐵 | {𝐵 } , which discards all history from 𝐵.
We then continue executing.

Morally, our theorem’s conclusion is that 𝑅𝐷 =𝑀
(𝐵)
𝐷

. However,
this is technically wrong because the two sides may have different
supports. Intuitively, 𝑀 (𝐵)

𝐷
has been cut off from the part of the

support of 𝐵 to which 𝐷 has no side path. This is because the only
contribution of those columns to 𝑅𝐷 came from 𝐵, but we projected
them out in𝑀

(𝐵)
𝐵

. We note that 𝐵 itself remains in the support of
𝑀

(𝐵)
𝐷

.
We resolve this by projecting 𝑅𝐷 on the support of𝑀 (𝐵)

𝐷
. This

choice intuitively discards minimal information before comparing
the two sides, and it passes the sanity checks we discuss next. We
now state our irrelevance theorem:

Theorem 5.1. Suppose a pgraph contains a path 𝐷 →∗ 𝐵. If there
exists no A with both 𝐷 →∗ 𝐵 →∗ 𝐴 and a side path 𝐷 →∗ 𝐴, then
𝑅𝐷 |𝑆 =𝑀

(𝐵)
𝐷

, where S is the support of𝑀 (𝐵)
𝐷

.

The equality 𝑅𝐷 |𝑆 =𝑀
(𝐵)
𝐷

is a double inclusion. This gives us a
proof method, but also two sanity checks:

(1) 𝑀 (𝐵)
𝐷

should never bemore accurate, so 𝑅𝐷 |𝑆 ⊆𝑀
(𝐵)
𝐷

should
be true regardless of any graph condition

(2) we should exhibit an example where 𝑀 (𝐵)
𝐷
⊈ 𝑅𝐷 |𝑆 , when

we allow a side path.

We then prove 𝑀 (𝐵)
𝐷

⊆ 𝑅𝐷 |𝑆 when there is no side path. Finally,
we use Theorem 5.1 to justify our approach.

The main intuition in these proofs is that each row of our rela-
tions is a concrete execution. To construct one row (in 𝑅𝑛), at each
node we select a concrete value compatible with the values selected
so far. In𝑀

(𝐵)
𝑛 however, we have a “free choice” at 𝐵: we can select

a value compatible with any execution; not just the execution in
progress.

We prove sanity check (1) with this intuition. Suppose we have
an execution 𝑟 ∈ 𝑅𝐷 . We execute the same way in 𝑀 (𝐵) . With
our free choice at 𝐵, in particular we select the value selected in 𝑟 .
Therefore 𝑟 |𝑆 ∈ 𝑀

(𝐵)
𝐷

.

In the other direction (2), consider again the example of 2𝑥 + 1
and 2𝑥 − 1 (see Fig. 2). Here (0, 3,−1, 4) ∈ 𝑀

(𝐵)
𝐷

, for the support [𝐴,
𝐵, 𝐶 , 𝐷]. The free choice 𝐵 = 3 is justified because there exists an
execution which would produce it: (2, 3, 1, 2). But (0, 3,−1, 4) ∉ 𝑅𝐷
(here 𝑅𝐷 = 𝑅𝐷 |𝑆 ).

We now prove𝑀 (𝐵)
𝐷

⊆ 𝑅𝐷 |𝑆 when there is no side path. Suppose
𝑚 ∈𝑀

(𝐵)
𝐷

. We must exhibit 𝑟 ∈ 𝑅𝐷 with 𝑟 |𝑆 =𝑚. In𝑚, a free choice
has been made at 𝐵. But we know there exists a pre-execution (up to
𝐵) which would justify that free choice. We replace the support of 𝐵
in𝑚 with that pre-execution, to get 𝑟 . Because there is no side path
from 𝐷 to the support of 𝐵, this replacement does not invalidate
the rest of the execution, and 𝑟 ∈ 𝑅𝐷 .

Theorem 5.1 justifies our approach as follows. Suppose 𝐵 repre-
sents the argument to a call.𝐴 is any node in the caller’s scope, and
𝐷 is anything computed within the call. There cannot be a side path
𝐷 →∗ 𝐴, because we have funnelled all the information going into
a call through its argument. We have no closures, and intuitively it
makes no sense for the call to read from the caller’s scope, since
the identity of the calling program is not even known.

Therefore, discarding the history of the arguments does not
change the relation over the entire support of 𝑀 (𝐵)

𝐷
: the scope of the

call. Projecting further on {𝐵, 𝐷}, the input-output relation is not
changed. This exactly justifies our approach: indexing input-output
relations by sets of arguments.

We note that Theorem 5.1 is stronger than what we use. We use
only equality over the support {𝐵, 𝐷}, but we have equality over
the entire support of𝑀 (𝐵)

𝐷
. We do not know what to think of the

gap between the two.

6 TERMINATION
We have shown that partial interpretation is as accurate as symbolic
execution. We now sketch a termination argument, and we see that
it fails in three places. We then address these failures in a mostly
unprincipled way.

Partial interpretation creates cache entries and re-computes their
results. Intuitively, if we create finitely many cache entries, and re-
compute each of their results finitely many times, thenwe terminate
in finite time. We argue each.

As it stands, infinitely many cache entries can be created. Con-
sider fact(x, d), where d (dead) is incremented in the recursive
call but never used. Starting with x completely unknown and d =
{0}, we create entries for fact(Z, {0}), fact(Z, {1}), etc. We
discuss this problem in Sec. 6.2.

We argue in three parts that each result (an input-output relation)
is re-computed finitely many times:

• directionality: as it is re-computed, the result becomes mono-
tonically larger

• an endpoint in that direction: the full relation
• finitely many steps from any result to the endpoint.

To argue result directionality, we introduce a strong induction
on the global (chronological) order of result re-computations. We
invoke this only once, to justify that a previous re-computation
respected directionality.
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In a first computation, result directionality is respected because
the previous result was ⊥. In subsequent re-computations, we com-
pare the previous and current executions of the pgraph, and we
argue a node directionality: the result at each node has grown mono-
tonically. We then observe in particular that it has grown at the
exit node.

We state node directionality in terms of our relational semantics
from Sec. 5:

Lemma 6.1. (Node directionality) For some cache entry, if 𝑅𝑛 was
computed previously at node 𝑛, and 𝑅′

𝑛 is computed now, then 𝑅𝑛 ⊆
𝑅′
𝑛 .

Proof. We proceed by structural induction. At const or prog (or
a nullary tuple), 𝑅𝑛 = 𝑅′

𝑛 . Everywhere else, we assume by induction
that the relations at our successors have grown. It remains to show
that 𝐿𝑛 ⊆ 𝐿′𝑛 . We state without proof that the relational join of
larger relations is also larger.

Everywhere except call, 𝐿𝑛 = 𝐿′𝑛 . At call, we compute the set of
arguments 𝐴 = 𝑅𝑎 | {𝑎} and there are two cases. If 𝐴 = 𝐴′, we read
𝐿′𝑛 from the same cache entry 𝐸 as 𝐿𝑛 :

• if 𝐸 has not been re-computed, 𝐿𝑛 = 𝐿′𝑛
• if 𝐸 has been re-computed, we invoke our strong induction
hypothesis: 𝐿𝑛 ⊆ 𝐿′𝑛 .

If 𝐴 ≠ 𝐴′, we are reading from a new cache entry 𝐸 ′, and we have
no guarantee that the result there is larger than 𝐿𝑛 . In the extreme
case, 𝐸 ′ might be freshly created with ⊥ as a result. We discuss this
problem in Sec. 6.3. □

As it stands, there can be infinitely many steps from a result
to the full relation. An example is fact(x), where x is completely
unknown. We compute a first result:

if 𝑥 ≤ 1 then 1 else ⊥

where we abuse notation by writing ⊥ inside a conditional expres-
sion. Then:

if 𝑥 ≤ 1 then 1 else
if 𝑥 = 2 then 2 else ⊥

etc. We are progressively unrolling factorial into conditional ex-
pressions, and this never reaches the full relation. We discuss this
problem in Sec. 6.1.

This completes our sketch of a termination argument. We now
address the three places where it failed, remaining principled as
far as we are able. In the next section, we take the last steps in an
unprincipled way.

6.1 Limiting growth steps
The first failure is that we can compute a sequence of growing
results 𝑅0 ⊂ 𝑅1 ⊂ ... which never reaches the full relation. This
is a feature of our lattice of possible relations: it contains infinite
ascending chains.

We introduce an approximation lattice, which is included in our
original lattice but has no infinite ascending chains. Whenever a
result grows, we “round it up” to the nearest approximation which
includes the result. This rounding is similar to the abstract inter-
pretation notion of widening - we adopt this terminology.

The choice of approximation lattice determines what information
is kept and discarded. This choice could conceivably be different
for each call, adapting to the information needs of the caller. We
speculate that this is an opportunity for further lossless abstraction,
but we have not explored it. In the next section, we use a fixed
approximation lattice.

6.2 Limiting cache entry creation
The second failure is that we can create cache entries indefinitely.
Cache entries are created for distinct arguments to calls. Calls
occur only at execution points: either the root call, or a call during
symbolic execution for some cache entry. Every execution point
is the endpoint of a sequence of calls beginning with the root call.
Intuitively, this sequence is a path in the program’s unrolled call
graph. This unrolling can be infinite for a recursive program.

Additionally, several distinct arguments can occur at a single
execution point. This happens if arguments grow, such as in the
case 𝐴 ≠ 𝐴′ in the proof of Lemma 6.1. We limit this by widening
arguments when they grow.

It remains to limit the unrolling of the program’s call graph.
Whenever there is a cache miss, we first make a termination as-
sessment. If we judge that we may be in an infinite unrolling, we
intervene with a termination resolution: we adjust the arguments to
limit their proliferation.

We have not explored these much. We make one principled
observation: if we have not called the same pgraph twice on the way
to an execution point, there is no risk of infinite unrolling yet. We
identify this by tracking a call stack during partial interpretation. In
the next section, we supplement this with ideas from online partial
evaluation [Weise et al. 1991]. In Sec. 8, we mention possibilities
based on other work.

6.3 Handling congruence
The third failure is that when arguments grow at an execution
point (𝐴 ⊂ 𝐴′), we read 𝑅′ from a new cache entry, but we have
no guarantee that 𝑅′ includes the result 𝑅 from the old cache entry.
Intuitively, it seems that 𝑅 ⊆ 𝑅′ should be true: more possible
arguments should imply more possible results. We refer to this as
congruence (of arguments and results):

𝐴 ⊆ 𝐴′ → 𝑅 ⊆ 𝑅′.

Note that this generalizes our caching principle, which was:

𝐴 = 𝐴′ → 𝑅 = 𝑅′.

We do not know if congruence follows from our development, or if
it is a separate principle.

In practice, we are not aware of an object program where termi-
nation is broken by argument growth at an execution point. Ruf
[1993, Sec. 4.4.2] describes features of programs where what we call
node directionality is broken. We do not know what is additionally
needed to break termination.

Nevertheless, we have explored five methods of ensuring termi-
nation when arguments grow. This exploration is complicated by
the lack of an example object program. We omit one method which
appears to fail, and two which are ad hoc. We describe two methods
based on congruence.
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The first method propagates some congruence information. When
an execution point previously read 𝑅 but now reads 𝑅′ (from a new
cache entry) with 𝑅 ⊈ 𝑅′, we intervene: we first set 𝑅′ to 𝑅 ∪𝑅′. In-
tuitively, we “initialize” 𝑅′ with 𝑅. This intervention respects result
directionality, so our overall termination argument is maintained.
This method propagates exactly enough congruence information
to ensure node directionality.

The second method takes this further and propagates all congru-
ence information. When we create a new cache entry 𝐸, we initialize
its result to the union over all cache entries 𝐸 ′ with 𝐸 ′ ⊆ 𝐸. When
we re-compute a result for 𝐸, we union it into all cache entries 𝐸 ′
with 𝐸 ⊆ 𝐸 ′. The intuition is that congruence is not just an obstacle
in the termination argument; it is an opportunity to reach a fixed
point faster.

These methods imply that results no longer change only by re-
computation; they also change by virtue of congruence. We do not
know how this affects what we are computing. In particular, we do
not know if the same result is computed by propagating some or
all congruence information.

7 PARTIAL EVALUATION
We apply our approach to partial evaluation (automatic program
specialization), which was the original motivation for this work.
We explain this motivation.

In the best conditions, partial evaluation has been shown to
specialize programs with great effect [Andersen 1996; Berlin 1989;
Mossin 1993]. However, partial evaluation folklore says that these
best conditions require manual adjustment of input programs, be-
cause a given partial evaluator is not uniformly accurate over all
input programs. We ask what would happen if a partial evaluator
was uniformly accurate, and readily available to programmers (e.g.
as part of a compiler).

Routinely, ordinary programmers specialize general libraries by
hand, for specific use. This specialization could be automated by
partial evaluation, saving costs and errors. Flipping this around,
we could write more general programs in the first place: we would
not be so concerned about a later penalty in performance, or the
cost of specialization. Partial evaluation could be a mainstream
programming tool.

We therefore propose a principled approach to partial evaluation,
aimed at complete accuracy. In this sense, we continue past work
on online partial evaluation [Berlin 1989; Katz and Weise 1992; Katz
1998; Ruf 1993; Weise et al. 1991]. Online methods use all available
information, and are more accurate than offline methods.2 We take
this further by incorporating modern symbolic execution, abstract
interpretation, and automatic deduction (e.g. SMT solvers).

Program specialization has a strikingly simple formulation in
terms of partial interpretation. The classic dichotomy of known vs
unknown inputs is a special case of a set of possible inputs args.
Then, the main question during specialization is whether we know
the result of an operation, so we can strip out that operation. To
decide this, first perform partial interpretation for (pgraph, args),
reaching a fixed point. We then have 𝑅𝑛 for every node 𝑛 within
the call. Now check if 𝑅𝑛 | {𝑛} - the set of possible values for 𝑛 - is a
singleton.

2Ruf [1993, Chap. 2] argues this convincingly.

We specialize a pgraph by “copying” it, starting at the exit node,
with three special rules. If a result is unique, we write a const (or
prog). At if, if the condition is unique, we skip the if and write only
one branch. At call, if the called program is unique, we write a call
to the recursively specialized program. Any termination difficulties
have already been resolved during partial interpretation.

This formulation places partial evaluation in a broader context:
if we can compute accurately over partial information (in theory),
we have the best chance of delivering uniformly accurate partial
evaluation (in practice). Separating specialization from partial in-
terpretation also improves specialization accuracy, as we illustrate
in Sec. 7.3.

In Sec. 6, we saw that partial interpretation needs additional
pieces to ensure termination:

• widening of results (Sec. 6.1)
• widening of arguments (Sec. 6.2)
• termination assessment and resolution (Sec. 6.2)
• handling of congruence (Sec. 6.3).

Since we do not have principled solutions, we fill in these blanks
as simply as we can for partial evaluation. We reduce the widening
of results to the widening of arguments, by first projecting a result
to a set. As an exception, we do not widen a result at all when it is
first computed (i.e. the previous result was ⊥). This preserves the
input-output relation for many results in practice. We ignore the
problems with congruence, since they have not arisen in practice.
We adapt an approximation lattice from Katz and Weise [1992]
for our widening, and we re-use the termination assessment and
resolution from Weise et al. [1991].

7.1 Widening
Our approximation lattice for widening intuitively:

• preserves uniquely known “scalars” (booleans, integers, and
programs)

• discards all information about non-unique scalars
• preserves the known shape of data structures.

Another intuition is that a widened set is a value expression possibly
containing the special any token anywhere. For example, the set of
lists headed by 1 is written:

cons(1, any)

The set of lists of length 2 is written:

cons(any, cons(any, nil))

An ordinary value is a special case without any, which reflects the
embedding of complete information as a singleton set. The pair
(any, any) is written any. We omit the details of computing the
right widened set.

This approximation lattice has no infinite ascending chains. In-
tuitively, when we grow from one widened set to another, either
we turn one of finitely many unique scalars into any, or we shorten
a list of finite length.

7.2 Termination assessment/resolution
We start from the idea in Sec. 6.2: there is only cause to adjust
arguments if we have called the same pgraph twice on the way to
an execution point. We refine this condition. We adjust arguments
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only if there has been an undecided branch between the current call
and the last call to the same pgraph.

This criterion is known as guarded recursion: the recursion is
guarded by the undecided branch. Guarded recursion allows un-
rolling loops controlled by known values, which is critical for partial
evaluation. However, it only ensures termination when the program
would terminate at run-time. To identify guarded recursion, we place
an if marker on the call stack every time we pass an undecided
branch.

In the case of guarded recursion, we ensure that sufficiently
long paths (through the unrolled call graph) produce a cache hit.
Observe that any infinite path contains a cycle through some point
𝑝 . Consider the sequence of arguments each time we go through 𝑝 .
We ensure that this sequence is growing directionally towards the
full set, by taking the union of the current arguments and those from
the most recent call on the stack. We then widen the arguments,
which ensures this reaches the full set in finitely many steps.

7.3 Uniqueness at a distance
We show a small synthetic example which illustrates the special-
ization accuracy we have gained.

Previous partial evaluators focused on the uniqueness of values,
locally: if all the inputs to an operation are unique, then its result
is unique - but this was the only time the result was considered
unique. This is sufficient accuracy in some cases, but not all.

Instead, our approach propagates the partial information about
values, “far” across the program. This enables us to find that a result
is unique, remotely. For example, it is a mathematical identity that:

(𝑥 + 1)2 = 𝑥2 + 2𝑥 + 1

Consider the program:

𝑝 (𝑥,𝑦) = (𝑥 + 1)2 − 𝑥2 − 𝑥𝑦

Suppose 𝑦 = 2 and 𝑥 is completely unknown. 𝑝 (𝑥, 2) = 1, even
though none of its immediate sub-expressions have a unique value.
Our approach finds this specialization.

7.4 First Futamura projection
We report on an experiment to validate our approach, then we com-
ment on performance: the execution time of partial interpretation
and specialization.

We perform the first Futamura projection [Futamura 1971]: we
specialize an interpreter for a small language 𝑄 of arithmetic cal-
culations. Our 𝑄 language is a restriction of pgraphs, expressed as
pgraph data. Our 𝑄-interpreter spans some 200 lines in a surface
language for pgraphs, including many comments. We write our 𝑄-
interpreter in good faith, without trying to manipulate the results
of the specializer: we use polymorphic map, we memoize the result
at each node, etc.

We achieve a perfect first Futamura projection: given a known
𝑄-program, all the internal logic and data structures of the inter-
preter disappear, and we effectively translate from 𝑄 to a pgraph.
This reproduces a classic partial evaluation result, without manual
adjustment of the input program.

7.5 Performance
Our initial implementation performed poorly: we could not fin-
ish specializing our 𝑄-interpreter for a 1-op 𝑄-program. We have
improved performance enough to specialize for 120 ops in about
two minutes. We cannot fit our entire study of performance in this
paper. We mention some important points.

Execution time is dominated by waiting for answers from the
SMT solver. Our most significant performance improvements re-
duce the SMT workload, ideally avoiding SMT queries completely.

SMT queries occur mainly during cache lookup at a call, where
we check if sets of arguments are equal. Initially, one set of symbolic
arguments could occupy several megabytes, which overwhelms the
SMT solver: it fills 8 gigabytes of RAM then pages to disk. Although
a set conceptually has no history, set comprehension contains a
select history (an expression) which could have produced the set’s
elements. This history grows large if it extends to the start of the
program.

We address this by widening arguments at every call, even when
not required for termination. This sacrifices cross-call accuracy in
principle, but results are not affected for these examples. Argument
size is reduced, and we specialize for 1 op in 15s; for 2 ops, in 45s.

Once all arguments are widened, we can compare them syntacti-
cally to avoid SMT queries. The bottleneck then becomes widening
itself, which queries the SMT solver to identify the known heads of
expressions.

We address this by adopting a discipline which keeps known
heads readily available in our expressions. Intuitively, we never
write “𝑦 such that 𝑦 = 1”; we write 1 instead. This discipline lets
us avoid SMT queries for many widening steps, at no loss in accu-
racy. Maintaining this discipline requires several changes to our
algorithms, which we omit here.

We achieve a roughly thousandfold speedup, at which point we
specialize for 120 ops in about two minutes. Peak memory usage is
about 1.2 gigabyte. Execution time is empirically quadratic in the
number of operations in the 𝑄-program.

Our implementation is written in Gambit Scheme [Feeley 2019],
which compiles to C. We measure on an Intel i5-66003 running
Linux 5.12. We use the SMT solver CVC4 [Barrett et al. 2011], set
to timeout with unknown after 20ms for each query.

80% of execution time is spent in partial interpretation, and 20% in
the subsequent specialization phase. Half of the overall time is spent
waiting for answers from SMT. A quarter is spent in the Gambit
Scheme garbage collector. The remaining quarter is spent in our
own algorithms: mostly widening, and some syntactic comparisons.

We believe performance can be improved further, by avoiding
more SMT queries and by re-implementing in a language with
manual memory management (such as C or C++).

8 RELATEDWORK
8.1 Online partial evaluation
Our work is influenced by the early 1990s work on online partial
evaluation at MIT and Stanford, starting with Berlin [1989]. Berlin
performs partial evaluation of a functional subset of Scheme, but
does not handle recursion. He applies his system to numerical

33.3GHz quad core. We use only one core.
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programs, which he reports as very successful, especially targeting
supercomputers. His system performs a kind of symbolic execution
which constructs and accesses into symbolic data structures of
known shape.

Weise et al. [1991] perform automatic online partial evaluation
of recursive programs, for the first time. They introduce the termi-
nation assessment and resolution we use in Sec. 7.2, and the idea of
tolerating non-termination of the partial evaluator, when the object
program might not terminate at run-time.

Ruf [1993] introduces the general architecture we use: a cache,
a worklist, and a fixed point computation. He does this to com-
pute more accurate results from sub-calls, rather than consider
them completely unknown as previous partial evaluators did. We
consider this a first trace of what we call partial interpretation.
However, Ruf does not separate partial interpretation and special-
ization, algorithmically or conceptually. In a single phase, a fixed
point is found over both results and specializations.

Ruf’s work is complicated by the perceived necessity of handling
closures, which reflects the lineage of his work back to Berlin:
the partial evaluation of Scheme. Instead, we allow programming
language design to proceed cooperatively with the design of partial
interpretation and specialization.

Ruf provides some pieces of our termination argument, and in
particular he identifies the problems with what we call congruence
in Sec. 6.3. He suggests a solution which appears logically equiv-
alent to our suggested approach of propagating all congruence
information. However, Ruf’s solution does not leverage congruence
to reach a fixed point faster.

Ruf also studies a notion of argument equivalence broader than
exact equality, based on tracking the information used by special-
ization. This allows more calls to fall into the same cache entry,
which improves the performance of his algorithms. It should be
possible to adapt this to our work.

Katz [1998] suggests many ideas, but we are not sure what their
proper place is. For us, his main idea is tracking the information
used not just by specialization as Ruf does, but also by what we call
partial interpretation. Katz suggests that we can determine what
information is relevant at every call and return, which is exactly
what we would need for adaptive widening (see Sec. 6.1).

Katz then suggests (this is arguably his main thesis) that we can
assess termination based on information use. We suspect this is
backwards: intuitively, it seems we only know what information is
relevant after we have taken a stand on termination, and possibly
intervened to ensure it.

8.2 Other work
We do not have the expertise to give a deep comparison to sym-
bolic execution and abstract interpretation. Our idea of adaptive
widening (see Sec. 6.1) appears related to the notion of a posteriori
soundness [Might and Manolios 2009] in abstract interpretation.
Separately from this, Nguyen [2019] uses an SMT solver for sym-
bolic execution. Most significantly for us, Nguyen uses size-change
graphs [Ben-Amram and Lee 2007] to assess termination of exe-
cution paths. This appears to be a more principled approach to
termination assessment than guarded recursion.

We view offline partial evaluation as complementary to our work.
We focus on accuracy, whereas offline methods [Jones et al. 1993]
pre-compute part of their work to achieve faster specialization
and self-specialization. In principle, the two approaches could be
reconciled: pre-compute all you can, without sacrificing accuracy.

We understand our program representation as a culmination
of static single assignment (SSA [Rosen et al. 1988]) representa-
tions. Starting from a control flow graph (CFG) which totally orders
execution, the SSA transformation manifests data dependencies
(“use-def” connections). These data dependencies completely char-
acterize many values, but not those which depend on a branch
in the original CFG. Part of the original control flow is therefore
preserved in SSA, and the Φ node selects between values based on
which control path is taken.

Instead, our if node is connected to an explicit boolean condition.
This is simpler to analyze, which is our main goal. Additionally,
it makes the remaining control flow in SSA unnecessary, so we
discard it. In a pgraph, execution is partially and minimally ordered
by data dependencies.

In this sense, pgraphs are similar to value dependence graphs [Weise
et al. 1994] - but we have no closures and we inject different primi-
tives; and to program expression graphs [Tate et al. 2009] - but we
have no imperative looping constructs.

We have focused on SMT solvers as examples of modern auto-
matic deduction. Automated theorem proving [Kovács andVoronkov
2013] is an alternative. By extension, we also mention modern pro-
gram optimization [Tate et al. 2009] and computer algebra, which
manipulate symbolic expressions towards certain goals.

9 CONCLUSION
We have taken a step towards principled computation over partial
information. We have distinguished several notions of partial infor-
mation. We have shown that (for our object programs) history can
be discarded from the arguments to a call, at no loss in accuracy.
This is not enough to ensure termination, but it brings us closer to
the principled accuracy and termination we seek.

We have separated partial evaluation into partial interpretation
and specialization. We have reproduced a classic result from partial
evaluation, without manual adjustment of the input program. On
a synthetic example, accuracy is improved over previous partial
evaluators. Performance is a challenge, but we have improved it a
thousandfold, and we believe more is possible.

Our experiments are rudimentary, but we achieve good results
despite the many limitations in our work. We inventory these limi-
tations in the next subsection, and they suggest the following plan.
Addressing limitations on object programs enables more realistic
experiments. Every time one experiment succeeds, we are one step
closer to bringing these methods to the mainstream - in particular,
uniformly accurate partial evaluation. Every time one experiment
fails, we can diagnose the failure in terms of known limitations,
which directs our principled work.

9.1 Limitations and future work
Our object programs lack algebraic data types and some primitive
types: machine words, and strings. We anticipate no difficulty with
these additions. Our object programs also lack external effects,
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mutation, and non-local exits (e.g. continuations). These require
fundamental changes to pgraphs, and the challenge is to integrate
them with partial interpretation.

The study of congruence (see Sec. 6.3) is not finished. We should
exhibit a concrete example of non-termination due to argument
growth. We should also compare the results of different ways of
ensuring termination in this context.

We have limited the accuracy of partial interpretation in several
ways. First, we widen arguments at every call. This is theoretically
necessary in some places, for termination; and practically desirable
everywhere, for performance. Our widening is unprincipled. Prin-
cipled, adaptive widening should determine what information is
relevant or not, at each call and return. This may build on [Katz
1998].

Second, our termination assessment (guarded recursion - see
Sec. 6.2) is unprincipled. A more principled alternative should be
possible with size-change graphs [Ben-Amram and Lee 2007], as in
[Nguyen 2019]. We also mention the linear algebra techniques of
[Tiwari 2004].

Third, our language of propositions avoids recursion, to match
what we perceive to be the requirement of current automatic de-
duction, e.g. an SMT solver. We do not have the expertise to judge
the flexibility of this requirement.

Fourth, we do not track path conditions; and fifth, we do not
analyze calls when the called program is not uniquely known (see
Sec. 3). We anticipate no serious difficulty with either.

We have limited the performance of partial interpretation in
several ways, but we omit most of that discussion in this paper.
We re-iterate the need to reduce reliance on the SMT solver, and
the idea of broader equivalence of arguments (see Sec. 4 and [Ruf
1993]). Broader argument equivalence would reduce the number of
cache entries, which is central to performance.

Finding unique results does not account for all of program spe-
cialization. Our methods should be supplemented by principled
program optimization, as in e.g. [Tate et al. 2009].

We have applied partial interpretation to partial evaluation. We
end with another possible application: automatic program verifica-
tion. Program verification deals in assertions, pre-conditions, post-
conditions, and invariants. All these can be seen as sets/relations
within which actual data must stay confined. Partial interpretation
computes sets/relations which encompass actual data. If these are
included in the asserted sets/relations, then those assertions have
been verified. This places program verification in the same broader
context as partial evaluation: computation over partial information.
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