
Type Invariants for Haskell

Tom Schrijvers ∗

Katholieke Universiteit Leuven, Belgium
tom.schrijvers@cs.kuleuven.be

Louis-Julien Guillemette
Université de Montréal, Canada

guillelj@iro.umontreal.ca

Stefan Monnier
Université de Montréal, Canada

monnier@iro.umontreal.ca

Abstract
Multi-parameter type classes, functional dependencies, and re-
cently GADTs and open type families open up opportunities to
use complex type-level programming to let GHC’s type checker
verify various properties of your programs. But type-level code is
special in that its correctness is crucial to the safety of the program;
so except in those cases simple enough for the type checker to see
trivially that the code is correct (or harmless), type-level programs
need to come with a specification of their properties together with
their proof.

In this article, we propose an extension to Haskell that allows
the specification of invariants for type classes and open type fam-
ilies, together with accompanying evidence that those invariants
hold. To accommodate the open nature of type classes and type
families, the evidence itself needs to be open and every subcase of
the proof can be provided independently from the others.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Functional Languages; F.3.3
[Logics and Meanings of Programs]: Studies of Program Constructs—
Type Structure

General Terms Algorithms, Languages

Keywords Haskell, type checking, type functions, type families

1. Introduction
Multi-parameter type classes (Wadler and Blott 1989; Peyton
Jones et al. 1997; Duggan and Ophel 2002), functional depen-
dencies (Jones 2000), and recently GADTs (Xi et al. 2003; Cheney
and Hinze 2003; Peyton Jones et al. 2006) and open type fami-
lies (Schrijvers et al. 2008) open up opportunities to use complex
type-level programming to let GHC’s type checker verify various
properties of your programs. But type-level code is special in that
its correctness is crucial to the safety of the program; In surpris-
ingly many cases the type checker’s limited reasoning power is
actually sufficient to verify completely automatically that the type-
level code is correct. But in the general case, the programmer needs
to help the type checker by instructing it to exploit some particular
properties of the types manipulated.

∗ Post-doctoral researcher of the Fund for Scientific Research - Flanders.

[copyright notice will appear here]

As it happens, GHC’s type system is already sufficiently pow-
erful that in most if not all cases, the code can be rewritten in such
a way that the type checker can check the correctness of the type
annotations, even for fairly complex cases such as when proving
that a compiler is type preserving (Guillemette and Monnier 2008).
But such rewrites are unsatisfactory because they tend to either in-
cur substantial run-time cost, or force wide-reaching changes which
break the modularity of the code, or both.

So we basically want our type language to include a proof as-
sistant. One alternative is to retrofit a system such as the Calculus
of Inductive Constructions (Paulin-Mohring 1993) or Twelf (Pfen-
ning and Schürmann 1999) into GHC’s type language, but since
GHC’s type system is already fairly complex and powerful we de-
cided instead to try to limit ourselves to a small extension of its
type language, so as to make good use of the existing machinery.
One of the side benefits is that the system arguably integrates better
with the rest of Haskell and should hopefully be more palatable for
Haskell coders.

Concretely, we propose an extension of GHC’s type system
which allows the programmer to specify on the one hand some type
invariants and on the other the corresponding proof. GHC already
supports some forms of type invariants: a type class declaration
can specify that all instances of this class should also be instances
of some other classes, and for multi-parameter classes it can also
specify functional dependencies between the parameters. Our type
invariants subsume those two particular cases, except for the fact
that they require more annotations: being more general, not only
does the programmer need to provide explicit proofs of those in-
variants, but she additionally needs to explicitly specify when the
invariant is used. To this end, each invariant provides a correspond-
ing coercion function.

Another difference with the functional dependencies and the
class context invariants, is that our type invariants can be specified
separately from any class declaration, and can also apply to a
combination of several classes or type families. This makes it
possible to retroactively specify that all Num instances are also
instances of Additive, without having to change the Num class.

The specific contributions of this paper are:

• We clearly motivate the need for type invariants with examples
(Section 2).

• We present type invariants for Haskell, and explain and illus-
trate the choices made in our approach (Section 3).

• The formalization of our approach (Section 4) respects as much
as possible the open and modular nature of Haskell’s type
classes and type families.

• We provide an external proof language that infers proof steps
and greatly simplifies writing proofs (Section 5.1).

• As experimental evaluation, we have written and checked a
number of invariants and their proofs (Section 5.2).

1 2009/11/14

At the end of this paper, we discuss related work (Section 6) and
conclude (Section 7).

2. Motivation and Examples
There are many examples where type families would be much more
useful if they would support additional invariants beyond the basic
axioms, i.e. the type family instances.

2.1 Indexed List Processing
Parity Indexing Ki Yung Ahn proposed the following list GADT
on the Haskell mailing list, which is parity-indexed, i.e. indexed by
whether the length is odd or even:

data Even
data Odd

data List a l where
Nil :: List a Even
Cons :: a -> List a l -> List a (Flip l)

For instance, Cons True Nil :: List Bool Odd and Cons
False (Cons True Nil) :: List Bool Even. The type fam-
ily Flip expresses what happens to the parity of the list length if
we add an element:

type family Flip l

type instance Flip Even = Odd
type instance Flip Odd = Even

While some functions using these lists are easy to type check, e.g.,

headList :: List a l -> a
headList (Cons x xs) = x

it is unfortunately not possible to consider some other basic func-
tions as well-typed:

tailList :: List a l -> List a (Flip l)
tailList (Cons x xs) = xs

From the GADT pattern match we know that Flip k ~ l, where
k is the parity of xs, and ˜ is the intensional equality predicate.
From the signature, we can also see that Flip l ~ k. Once we
eliminate k from these equations, we end up with the need to prove
the following constraint:

∀l.Flip (Flip l) ~ l. (1)

While we may think that this equation readily holds for any l,
this is not so for 3 reasons: First, the ∀t quantifier really means
any type, even if it is not in the domain of Flip, so the equation
should hold also for Flip (Flip Char) ~ Char. Second, due to
the openness of the type family Flip, one may add at any time an
additional type instance, e.g.,

type instance Flip Char = Even

such that Flip (Flip Char) = Odd and Equation (1) does not
hold for Char. Finally, even if we resolve those problems, Haskell
still provides no way to ask the type checker to verify and use this
property.

There are various ways to work around the problem, such as
cluttering either the type signature of tailList or the List con-
structors themselves with the required equality. Yet, this defers the
equality to elsewhere in the program. It would be much neater if
Equation (1) could simply be enforced on all instances of the type
family, and that subsequently we could simply use Equation (1)
wherever needed.

In (Ahn and Sheard 2008) Ki Yung Ahn decided to use an
inelegant encoding of the indexing types that avoids type families.

Length Indexing Length-indexed lists are a classical example:

data Z
data S n

data List a l where
Nil :: List a Z
Cons :: a -> List a n -> List a (S n)

where we need a type family Add for expressing the signature of
append:

append :: List a k -> List a l -> List a (Add k l)
append Nil ys = ys
append (Cons x xs) ys = Cons x (append xs ys)

type family Add m n
type instance Add Z n = n
type instance Add (S m) n = S (Add m n)

The same type family would also serve us for the signature of
merge:

merge :: List a k -> List a l -> List a (Add k l)
merge Nil ys = ys
merge (Cons x xs) ys = Cons x (merge ys xs)

In the second clause, the GADT pattern match exposes the equality
k ~ S k’, where k’ is the length of xs. Now the type checker
expects the type Add k’ l for the expression (merge ys xs).
However, it infers, based on the signature of merge, the type Add l
k’. Hence, for this code to type check, commutativity of Add must
hold:

∀k.∀l.Add k l ~ Add l k (2)
So again, we would want to be able to take advantage of invariants
on type families.

Invariants as term-level functions Without support for type in-
variants, it is still possible to implement the invariants at the term
level, so as to make the above code examples type-check. We first
need to reify the equality predicate at the term level using a GADT
which witnesses the equivalence of two types, as well as reify the
types (such as the length annotations) using singleton types:

data Eqv s t where
Eqv :: (s ~ t) => Eqv s t

data Nat n where
Nz :: Nat Z
Ns :: Nat s -> Nat (S s)

An invariant such as the commutativity of addition is then imple-
mented as a function that analyzes the term-level representatives
and constructs the proof:

comm :: Nat i -> Nat j -> Eqv (Add i j) (Add j i)
comm Nz Nz = Eqv
comm Nz (Ns j) = case addZ j of Eqv -> Eqv
comm (Ns i) Nz = case addZ i of Eqv -> Eqv
comm (Ns i) (Ns j) =

case comm i j of
Eqv -> case (comm (Ns i) j, comm i (Ns j)) of

(Eqv, Eqv) -> Eqv

where addZ similarly implements an auxiliary invariant stating
that:

∀n. Add n Z ~ n. (3)
To apply the invariant and have the merge function type-check, the
length of the lists must be computed separately:

2 2009/11/14

merge (Cons x xs) ys =
case comm (length xs) (length ys) of

Eqv -> Cons x (merge ys xs)

length :: List a l -> Nat l
length = ...

Of course, implementing invariants in this way has a cost at run-
time, and since Haskell does not enforce that such a “proof” covers
all the cases and will not loop indefinitely, we would need to rely
on an external verifier to check the totality of that function.

2.2 Type Preserving Compilation
In Guillemette and Monnier’s type preserving compiler (2008), an
abstract syntax tree for System F is type-indexed with the source-
level types. Type functions are used to relate the source-level types
before and after various program transformations, i.e. continuation-
passing-style (CPS) transformation and type. One of the invariants
that comes up in this context is the commutativity of CPS transfor-
mation and type substitution:

∀t,x,s.CPS (Subst t x s) ~ Subst (CPS t) x (CPS s)

where CPS t reflects the type of an expression of source type
t after CPS transformation, and Subst t x s is the type after
substitution of the type variable x with type s.

3. Outline of Our Approach
In this section, we outline our approach, what works and what
doesn’t, and a number of complications that arise.

3.1 Domain Restriction
It is quite clear early on that invariants are not intended to be
instantiated at just any types. For instance, we do not wish the
invariant (2) to be instantiated to Add Z Char ~ Add Char Z, as
there is not even an instance of Add that tells us what to do with
Add Char Z.

An extreme case is a type family EMPTY without any instance at
all. Since there is no instance, we could readily assume that the two
following invariants hold:

∀x. EMPTY x ~ Int
∀x. EMPTY x ~ Bool

(4)

In the absence of any instance, it is vacuously true that all instances
of EMPTY satisfy the above two invariants. Yet, Haskell polymor-
phism is unconstrained, so the above ∀x does not restrict x to be a
valid argument to EMPTY. So things can go very wrong if we do, as
we can then derive Int ~ EMPTY Char ~ Bool. Type soundness
is at stake!

We need a mechanism to restrict the use of invariants to appro-
priate types only. Perhaps the most obvious approach is to use a
richer kinding system than the one Haskell offers where all proper
types are of the same kind *. A richer kind system could allow the
user to classify types into distinct kinds. For instance, analogous
to Haskell data type definitions, we could specify that type-level
natural numbers are of kind Nat:

datakind Nat = Z | S Nat

Then we could restrict the use of type variables in invariants to the
appropriate kind:

∀k:Nat.∀l:Nat.Add k l ~ Add l k (5)

The above datakind has two disadvantages: Firstly, it provides
a closed definition of kinds whereas type classes and type families
are open. Secondly and more importantly, it requires extending
Haskell with another type system feature.

Instead we use a solution that takes advantage of an existing
Haskell feature for classifying types and that is open, namely type
classes. Instead of a datakind Nat, we propose to use a type class
Nat:

class Nat n
instance Nat Z
instance Nat n => Nat (S n)

Note that the type class does not need to have any methods; we
are only interested in its type-level aspects. Using this type class,
we can add the same style of constraint context to the invariant
with which Haskell programmers are already familiar in function
signatures.

∀k.∀l.(Nat k, Nat l) => Add k l ~ Add l k (6)

3.2 Using Invariants
Due to their generality, invariants are unfortunately inappropriate
for automatic use by the type checker algorithm, lest we give up
on decidability of type checking. Firstly, they cannot be treated as
type family instances, also called top-level equations in (Schrijvers
et al. 2008), because the left-hand side is not necessarily in the
proper constructor form to ensure either termination or confluence.
Secondly, they cannot be treated as local equations, as provided in
a function signature, because they contain schema (i.e. universally
quantified) variables. In other words, and unsurprisingly, the com-
pletion algorithm of type families cannot be used to transform the
invariants into a terminating and confluent rewrite system.

Because of the above issues, we propose that the programmer
explicitly indicates when an invariant should be used. For this
purpose the concrete syntax for invariant definitions introduces a
name for the invariant. This then introduces a coercion function
of the same name, which the programmer can use to apply the
invariant where it is needed.
Example 1. The definition of the commutativity invariant in con-
crete syntax is:

type invariant add_comm =
(Nat x, Nat y) => Add x y ~ Add y x

In return for this specification, we get a coercion function which
has the signature:

add_comm :: (Nat x, Nat y)
=> (Add x y ~ Add y x => a)
-> a

It is used as follows in the merge example:

merge (Cons x xs) ys =
Cons x (add_comm (merge ys xs))

�

3.3 Proving Invariants
While type family instances are really the programmer-provided
axioms of type families, invariants should be derivable from those
axioms. An invariant which is not derivable is not a proper invari-
ant, and may introduce unsoundness. Hence, to make sure an in-
variant actually holds, we require a proof.

Because of the proof obligation for invariants, we also call
them lemmas throughout the rest of the paper. However, we must
remember that invariants differ from lemmas on the account of
openness. Whereas lemmas usually prove an existing property, our
invariants also impose a property on future instances.

Case-based proofs Because of the open and modular nature of
type classes and type families, we expect our proofs to be open
and modular as well. Modularity of a proof means that it should be

3 2009/11/14

based on case analysis where each case can be written separately.
Openness means that when new instances are added, then also new
cases of the proof can be added. Of course, in a (closed) program,
the type checker should verify whether all cases are covered.

As we have already introduced type classes to restrict the in-
stantiation of type variables in invariants, we will also use the type
class instances to determine our proof cases.
Example 2. For the commutativity invariant we have the following
four proof cases based on the Cartesian product of the Nat type
class instances:

proofcase add_comm Z Z = ...
proofcase add_comm Z (S m) = ...
proofcase add_comm (S n) Z = ...
proofcase add_comm (S n) (S m) = ...

�

Proof steps Each proof case must provide evidence that a par-
ticular instance of the lemma holds. The consequent of the lemma
being a type equivalence, we need to prove the two types equal. We
can write such proofs as a sequence of steps from one type to the
other where each step is either justified by the use of an invariant,
or by the traditional rules of type equivalence built into Haskell’s
type system.
Example 3. The full first proof case of the commutativity axiom
looks as follows:

proofcase add_comm Z Z = Add Z Z ~ Add Z Z.

This equation trivially holds by the usual type equivalence rules.
The second proof case looks as follows:

proofcase add_comm Z (S m) =
Add Z (S m) ~
S (Add Z m) ~{ind add_comm}
S (Add m Z) ~
Add (S m) Z

The middle step is annotated with the type invariant it uses and
the fact that it is an inductive step, while the first and last are left
without such annotations since they only rely on the built-in type
equivalence rules. �
Example 4. Recall the parity invariant:

type invariant parity p =
Parity p => Flip (Flip p) ~ p

where

class Parity p

instance Parity Odd
instance Parity Even

The proof cases are trivial since they do not require the use of any
type invariant:

proofcase parity Odd = Flip (Flip Odd) ~ Odd
proofcase parity Even = Flip (Flip Even) ~ Even

We could trivially allow such proof cases to be elided altogether, of
course. �

Well-Founded Induction Many proofs over inductively defined
types, such as the natural numbers, require induction themselves.
E.g. in the proof cases of add comm earlier, to show the commu-
tativity invariant for the second case, Z and S m, we rely on the
invariant to hold for m and Z.

The main concern with inductive proofs, using the invariant
directly or indirectly in the proof, is whether the induction is well-
founded. In order for it to be well-founded, the use of an invariant in

a proof case should be strictly smaller than the case itself, according
to some norm.
Example 5. In the previous example, the following norm can be
used to establish the well-foundedness of induction:

|add comm x y| = |x|+ |y|
|Z| = 0
|S x| = 1 + |x|

So we have that:
|add comm (S n) Z| = 1 + |n|

> |add comm Z n| = |n|

i.e., there is a proper decrease. �
We propose to use the same norm for checking well-foundedness

of invariants as is used to enforce termination of type families.
While this choice is restrictive, Haskell programmers are already
familiar with it from type families, and it has not posed any diffi-
culties for the proofs we have constructed so far.

A final issue is how to identify recursive uses of lemmas, and
hence when to enforce the well-foundedness criterion. First, notice
that any invariant used in a proof may potentially refer back to the
invariant being proved, so unless we know which invariants are
mutually recursive and which are not, we have to conservatively
consider that all uses of invariants may be inductive and should
hence use strictly smaller arguments.

It turns out that enforcing in all cases that all invariants are ap-
plied to strictly smaller arguments has proven to be overly restric-
tive. Hence, we require the uses of invariants in proofs to be anno-
tated with whether they are non-recursive or (potentially) recursive
(using the ind annotation). In the latter case, the well-foundedness
criterion is (conservatively) enforced. In the former case, we have
to check instead whether the annotation is justified. This requires
a global inspection of the lemma dependency graph of a program,
i.e. a non-modular whole-program check, to ensure that this use of
a lemma indeed is not part of any cycle.

3.4 Invariants with Class
While all the examples we have shown so far involve invariants
about type families, we also want to be able to state invariants of
type classes. Part of the reason for it being that we sometimes need
them in order to prove type family invariants.
Example 6. The proof of the axiom shown in Sec. 2.2 for the type-
preserving compiler involves among others the following auxiliary
invariant:

∀k.∀t.(Nat k, Type t) => U Z k t ~ t (7)

Here, U is a type family defined such that U i k t increments all
De Bruijn indices no smaller than k by i in type t. The invariant
expresses that if the increment is zero, then the update has no effect
on the type.

This auxiliary invariant is instantiated in another proof to:

∀t.Type t => U Z Z (CPS t) ~ CPS t (8)

The use of this invariant is only justified if we can provide evidence
for its context (Nat Z, Type (CPS t)). While the former com-
ponent is trivial to show, we can only show the latter with the help
of an auxiliary type class invariant of the form:

type invariant type_cps = Type t => Type (CPS t)

�
Type class invariants are also useful on their own: for enforcing

dependencies between type class instances.
Example 7. For instance, we can retroactively specify that all Num
instances are also instances of some new type class Additive,
without having to change the Num class. This invariant is expressed

4 2009/11/14

as:
∀t.Num t => Additive t (9)

�
It turns out that type class invariants are similar to equational

invariants and they require similar proof cases based on the differ-
ent possible instantiations of the context. The proof steps little by
little transform one context into the other, and as before each step
is either justified by the built-in type class rules of Haskell, or by
the use of a type invariant which then needs to be mentioned in an
annotation.
Example 8. The proof cases of the above type cps invariant look
like:

proofcase type_cps Int =
Type Int => Type (CPS Int)

proofcase type_cps (a,b) =
Type (a,b) =>
(Type a, Type b) =>{ind type_cps}
(Type (CPS a), Type (CPS b)) =>
Type (CPS (a,b))

�
There is one notable difference between those two kinds of in-

variants: equality predicates only exist at the level of types and are
completely erased at run-time, whereas type classes are generally
reified as dictionaries at run-time. This implies that for an equa-
tional invariant the value-level coercion function can be trivially
implemented as a no-op; whereas for class invariants the value-
level coercion function needs to build the corresponding run-time
evidence (i.e. dictionary).

4. Formalization of Invariants
In this section, we formalize the type-level fragment of our Haskell
language extension. The proof cases written in the source program
do not easily lend themselves to reasoning about properties such
as soundness proofs. So the the proof cases are here mapped into a
lower-level representation called type equality coercions, which are
taken from System FC (Sulzmann et al. 2007a), the intermediate
language of GHC, with some simple extensions.

4.1 Coercions
Type equality coercions provide a coercion calculus with which we
can build complex type equality proofs. For example, the proof that
Add Z Z is equal to itself is represented by the coercion:

refl (Add Z Z)

The proof that Flip (Flip Odd) = Odd is written as follows:

(refl Flip) flip_odd ◦ flip_even

The two Flip type family instances, denoted respectively
flip odd and flip even, are used here as axioms.
flip odd says that Flip Odd ~ Even;
refl Flip says simply that Flip ~ Flip;
the application (refl Flip) flip odd combines them to prove
that Flip (Flip Odd) ~ Flip Even;
finally ◦ combines it transitively with flip even to conclude that
Flip (Flip Odd) ~ Odd.

We have had to extend the coercion calculus of System FC with
a few more coercions in order to be able to represent all our proofs.

4.1.1 Invariant Coercions
Proof steps that are justified by type invariants, such as inductive
steps, use a new kind of coercion, similar to the axioms that refer
to type family instances, but which instead refer to a type invariant.

This is used for instance, in order to show the commutativity invari-
ant for the second case, Z and S m, where we rely on the invariant
to hold for Z and m. With these so-called lemma coercions we can
build both inductive proofs and proofs involving auxiliary lemmas.
Example 9. The above mentioned second proof case of the com-
mutativity lemma is represented as follows:

proofcase add_comm Z (S m) =
(add_Z (S m)) ◦ ((refl S) (sym (add_Z m)))
◦ ((refl S) (rec add_comm Z m))
◦ (sym (add_S m Z)

Where (add Z m) is the axiom stating that Add Z m = m;
the axiom add S m Z states that Add (S m) Z = S (Add m Z);
and sym applies the commutativity of equality.
The first line corresponds to the first step in the proof which says
that Add Z (S m) ~ S (Add Z m).
The second line instantiates recursively the invariant add comm to
get a proof that Add Z m ~ Add m Z which it then lifts to
S (Add Z m) ~ S (Add m Z).

�

4.1.2 Context Proofs
A second complication of invariant coercions is posed by the in-
variant context. E.g. the proof above is actually incomplete: the use
of the invariant (rec add comm Z m) is only valid if the invari-
ant’s context can be provided, which in this case means we need to
show both that the predicates Nat Z and Nat m are true. More gen-
erally, the use of an invariant coercion must be justified by a proof
that the context is indeed satisfied. This requires a second coercion
language, not for equality constraints, but for type class constraints.
This coercion language is also used for type class invariants.

This time we do not have any pre-existing adequate represen-
tation available in System FC : type class constraints are tradition-
ally desugared to value-level dictionaries. The proof language is
present only implicitly as value-level functions for dictionary con-
struction and super class dictionary extraction. Hence, we propose
a new coercion language modeled after these value-level functions.
It contains additional functionality, such as instance context selec-
tors which are usually not available for dictionaries (although such
selectors have been proposed (Schrijvers and Sulzmann 2008)) but
do make sense at the type level.1

Example 10. Further extending the above example, we must pro-
vide a proof of the context for the inductive argument add comm Z
m. In particular, we must show that both Nat Z and Nat m hold.

A proof of the former is env (Nat Z), which says the proof
can be found in the proof case’s context. Indeed, Nat Z is a pre-
condition of the proof case.

A proof of the latter is isel 1 (env (Nat (S m))). Here,
we have an instance Nat (S N) from the proof case’s context.
From this we can show that Nat m holds based on the type class
instance instance Nat m => Nat (S m). The proof construc-
tor isel i says to take the ith type class constraint from the con-
text of a particular instance. In this case i = 1, and isel 1 yields
the desired proof for Nat m.

In summary, the complete coercion for the inductive use of
add comm, with the context proofs explicit is:

rec (env Nat Z, isel 1 (env Nat (S m)))
=> add_comm Z m

�

1 Note that it critically relies on the non-overlap of type class instances.

5 2009/11/14

s, t, u, v types
γ coercions
g equational axioms
h equational invariants
p type class invariants
δ type class evidence
θ type variable substitution
ITF type family instance
DTC type class declarations
ITC type class instance
πTF equational invariant proof case
πTC type class invariant proof case

Figure 1. Meta-Variables

γ ::= refl t | g t | sym γ | γ1 ◦ γ2 | F γ | γ1 γ2 | decompTi
γ

| norec δ => h t | rec δ => h t
δ ::= env C t | inst δ (C t) | ssel i δ | isel i δ

| co (C t) γ | norec δ => p t | rec δ => p t

Figure 2. Proof Syntax

4.2 Program Syntax
Figure 1 summarizes our meta-variable naming conventions for the
various syntactical categories. A type-level program, denoted by
prog(DTC, ITF, ITC, h, p, πTF , πTC), consists of:

• type class declarations DTC of the form

class (C1 t1, . . . , Cn tn) => C a

• type class instances ITC of the form

instance (C1 t1, . . . , Cn tn) => C t

• type family instancesITF of the form

g x : s1 ∼ s2

• equational invariants h of the form

h x : (C1 y1, . . . , Cm ym) => s1 ∼ s2
where y ⊆ x, vars(s1) ⊆ x and vars(s2) ⊆ x,

• type class invariants p of the form

p x : (C1 y1, . . . , Cm ym) => C t

where y ⊆ x and vars(t) ⊆ x,
• proof cases πTF for equational invariants of the form

proofcase h t = γ

• proof cases πTC for type class invariants of the form.

proofcase p t = δ

The syntax for proofs is listed in Figure 2. Its meaning is
explained shortly.

For reasons of simplicity we have restricted ourselves to single-
parameter type classes. We believe that it is straightforward to
extend this work to multi-parameter type classes. We have also
omitted type family declarations, because these do not contribute
any useful information.

For the confluence and termination conditions on both type class
and type family instances we refer to respectively (Sulzmann et al.
2007b) and (Schrijvers et al. 2008).

4.3 Well-Typing
The main typing rule for type-level programs is:

DTC ∪ ITF ∪ ITC ∪ h ∪ p ` hi1 : �
DTC ∪ ITF ∪ ITC ∪ h ∪ p ` pi2 : �

DTC ∪ ITF ∪ ITC ∪ h ∪ p ` πTF ,i3 : �
DTC ∪ ITF ∪ ITC ∪ h ∪ p ` πTC ,i4 : �
` prog(DTC, ITF, ITC, h, p, πTF , πTC) : �

It checks the well-typedness of proof cases, and their complete cov-
erage of invariants. The former well-typing rules are covered by
Figures 3 and 4 for equational and type class proof cases respec-
tively. A proof case is well-typed iff its proof term is well-typed
and is a proof for the invariant instance that the proof case claims
to cover. The proof terms for equational proof cases are the co-
ercions of System FC , extended with invariant coercions (INVCO
and RECINVCO). The proof term language for type class invari-
ants is new. Its primitives reflect the common value-level func-
tions for dictionary construction and super class selectors used
in the dictionary-passing implementation of type classes. Non-
standard are the (ISELTC) rule reflects the instance selector func-
tion recently proposed in (Schrijvers and Sulzmann 2008), and the
(COTC) rule for coercing a type class constraint from applying to
one type to another. Finally, the rules (INVTC) and (RECINVTC)
cover the type class counterparts of invariant coercions.

The environment Γ consists of equational axioms and invari-
ants, type class instances and invariants, as well as type class con-
straints available in the current context.

4.4 Completeness Check
The coverage relationv checks whether one set of cases is covered
by another set. It is used in LEMCO and LEMTC to check the
completeness of the invariant proofs, i.e. whether all the required
proof cases are supplied.

DEFINITION 1. We define v as follows:

S1 v S2
def
= ∀t ∈ S1.∃s ∈ S2.∃θ.θ(s) ≡ t

Note that this formulation allows for multiple required proof
cases to be covered by one and the same supplied proof case. In this
way, a combinatorial explosion of proof cases can often be avoided.
Example 11. One of the invariants in the type preserving compiler
of (Guillemette and Monnier 2008), expresses that CPS transfor-
mation before and after type variable substitution yield the same
result:

invariant k_s =
(Tp s, Tp t, Nat i) =>

K (Subst s t i) ~ Subst (K s) (K t) i

There are two instances of Nat and four of Tp, and hence 32 = 4×
4 × 2 required proof cases. Luckily, we can get away with writing
only four proof cases, only instantiating s to a more specialized
type. �

4.5 Well-Foundedness
In order to ensure the well-foundedness of (directly or mutually)
inductive proofs, we require that (potentially) inductive uses of
invariants in proofs are annotated as such, with the keyword rec.
In order to keep the well-foundedness check simple and modular
we require that each such invariant use is strictly smaller than the
covered proof case it appears in according to a well-founded partial
order denoted by ≺ in rules (RECINVCO) and (RECINVTC).

DEFINITION 2. The well-founded partial order ≺ is defined as:

h1 t ≺ h2 s
def
≡ |t| < |s| ∧ vars(t) F vars(s)

6 2009/11/14

(ProofCo)

h x : (C v) => s∼ t ∈ Γ

Γ ∪ {C [u/x]v};h u ` γ : [u/x]s∼ [u/x]t

Γ ` proofcase h u = γ : �

(ReflCo) Γ ` refl t : t∼ t (SymCo)
Γ ` γ : s∼ t

Γ ` sym γ : t∼ s

(TransCo)
Γ ` γ1 : t1 ∼ t2 Γ ` γ2 : t2 ∼ t3

Γ ` γ1 ◦ γ2 : t1 ∼ t3

(TFAppCo)
Γ ` γi : si ∼ ti i = 1, ..., n

Γ ` F γ1...γ2 : F s1...sn ∼ F t1...tn

(AppCo)
Γ ` γ1 : f1 ∼ f2
Γ ` γ2 : s1 ∼ s2

Γ ` γ1 γ2 : f1 s1 ∼ f2 s2

(DecompT)
Γ ` γ : T s1...sn ∼ T t1...tn

Γ ` decompTi
γ : si ∼ ti

(i ∈ 1..n)

(AxCo)
g x : s1 ∼ s2 ∈ Γ

Γ ` g t̄ : [t/x]s1 ∼ [t/x]s2

(InvCo)
h x : (C u) => s∼ t ∈ Γ

Γ ` δi : Ci [t/x]ui

Γ ` norec δ => h t : [t/x]s∼ [t/x]t

(RecInvCo)

h x : (C u) => s∼ t ∈ Γ

Γ ` δi : Ci [t/x]ui

h t ≺ hlhs tlhs

Γ;hlhs tlhs ` rec δ => h t : [t/x]s∼ [t/x]t

Figure 3. Type Equation Proof System

where the term norm | · | is defined as:

|t| =
P

i |ti|
|t1 t2| = |t1|+ |t2|
|T | = 1
|F t| = 1 + |t|
|a| = 1

the function vars returns the multi-set (bag) of type variables:

vars(t) =
U

i vars(ti)
vars(t1 t2) = vars(t1)] vars(t2)

vars(T) = ∅
vars(F t) =

U
i vars(ti)

vars(a) = {a}
where] F are the multi-set union and subset relations, i.e. taking
multiplicity into account.

Observe that this definition of≺ considers induction on the combi-
nation of all invariant arguments.

(ProofTC)

p x : (C v) => C t ∈ Γ

Γ ∪ {C [u/x]v} ` δ : C [u/x]t

Γ ` proofcase p u = δ : �

(EnvTC)
C t ∈ Γ

Γ ` env (C t) : C t

(InstTC)
Γ ` δi : Ci θ(ti)

instance (C1 t1, . . . , Cn tn) => C t ∈ Γ

Γ ` inst δ (C θ(t)) : C θ(t)

(SSelTC)
Γ ` δ : C θ(a)

class (C1 t1, . . . , Cn tn) => C a ∈ Γ

Γ ` ssel i δ : Ci θ(ti)

(ISelTC)
Γ ` δ : C θ(t)

instance (C1 t1, . . . , Cn tn) => C t ∈ Γ

Γ ` isel i δ : Ci θ(ti)

(CoTC)
Γ ` γ : t1 ∼ t2

Γ ` co (C t1) γ : C t2

(InvTC)
p x : (C u) => C v ∈ Γ

Γ ` δi : Ci [t/x]ui

Γ ` norec δ => p t : C [t/x]v

(RecInvTC)

p x : (C u) => C v ∈ Γ

Γ ` δi : Ci [t/x]ui

p t ≺ plhs tlhs
Γ; plhs tlhs ` rec δ => p t : C [t/x]v

Figure 4. Type Class Proof System

(LemCo)

{(C1 u1, . . . , Cn un) |
(instance . . . => Ci ui) ∈ Γ (1 ≤ i ≤ n)}

v
{[v/x](C1 y1, . . . , Cn yn) |
(proofcase h v = γ) ∈ Γ}

Γ ` h x : (C y) => s∼ t : �

(LemTC)

{(C1 u1, . . . , Cn un) |
(instance . . . => Ci ui) ∈ Γ (1 ≤ i ≤ n)}

v
{[v/x](C1 y1, . . . , Cn yn) |
(proofcase p v = γ) ∈ Γ}

Γ ` p x : (C1 y1, . . . , Cn yn) => C t : �

Figure 5. Complete Proofs

7 2009/11/14

Example 12. Example 9, perhaps more clearly in the higher-level
notation of Example 3, involves an inductive use add comm Z n in
the proof for add comm (S n) Z.

We have:
|Z n| = 2 vars(Z n) = {n}

|(S n) Z| = 3 vars((S n) Z) = {n}

Hence, the induction is well-founded as 2 < 3 ∧ {n} F {n} , i.e.
add comm Z n ≺ add comm (S n) Z. �

The above condition is not imposed on invariant uses that are
not annotated as potentially inductive. To do so would be overly
restrictive and rule out proofs for many useful properties. This is
safe only if the invariant uses is truly not inductive, and the annota-
tion is not inadvertently or maliciously omitted by the programmer.
Hence, we collect all edges in the invariant “call graph”, and glob-
ally check whether no annotations have been omitted.

4.6 Type Soundness
The constructs we added to System FC preserve its soundness.
More specifically, the progress lemma still holds thanks to the com-
pleteness check: whenever we need to evaluate a call to a coercion
function, the completeness check guarantees that the correspond-
ing lemma does provide an applicable case. The type preservation
lemma also still holds trivially. And the termination check is used
to show that the coercion functions can indeed be implemented as
no-ops.

5. Implementation and Evaluation
We have implemented a prototype well-typing checker in GHC-
Haskell. This checker implements the rules formalized in Section
4. It is also able to reconstruct such proofs from the more compact
and natural notation discussed used in the source language. We call
the former the internal proof language, and the latter the external
proof language.

5.1 The External Proof Language
A proof in the external proof language consists of a sequence of
types τ1 ∼ . . . ∼ τn, and denotes a proof for the equation τ1∼ τn.
Our checker contains an inferencer that reconstructs the internal
language proof from this external language proof. Essentially, it
reconstructs the internal proof for two subsequent types τi ∼ τi+1

as a base case, and composes subsequent proofs γj and γj+1 with
the transitivity constructor (TRANSCO).

For the base case, a single external proof step τi ∼ τi+1, the
reconstruction currently proceeds top-down and only considers a
finite number of possibilities:

• If τi and τi+1 are identical, use the (REFLCO) rule.
• Otherwise:

repeatedly decompose the type equality into multiple proof
obligations using the (APPCO) and (TFAPPCO) rules,

until the remaining proof obligations can be discharged with
a single application of a rule from the set

{(REFLCO), (SYMCO), (AXCO), (INVCO), (RECINVCO)}

whose (possible) subproofs all use the (REFLCO) rule only.

When using the (INVCO) or (RECINVCO) rule, also the context
proof is reconstructed. For that purpose, all possible proofs with
no more than three type class proof constructors are tried, with the
exception of proofs involving the (COTC) rule.

This search is only done for prototyping purposes. We are plan-
ning a full implementation which integrates with GHC, where we
will be able to reuse the typing machinery which already computes

such coercions for type families and computes comparable coer-
cions for type classes, so we will not need to resort to such arbitrary
search depth limits.

5.2 Evaluation
As preliminary evaluation of the expressivity of our invariant lan-
guage we have encoded all the invariants of Section 2 and their
proof cases. Some statistics of these invariants are recorded in the
table below:

main invariant aux. invariants cases proof size steps
parity 0 + 0 2 + 0 10 4
commutativity 0 + 0 4 + 0 60 19
CPS 5 + 1 21 + 3 327 101∗

For each row the table lists the number of auxiliary invariants
(equational + type class) the number of proof cases (equational +
type class), and total proof size. As measure for proof size we use
the number of coercion and type class proof constructors used. The
last column denotes the number of proof steps written in the high-
level notation, as a comparison to the low-level proof constructors.

There are 18 proof constructors not covered in (∗) because
of current limitations of our naive proof search prototype. These
comprise 11 constructors for the one type class invariant, and 7
constructors for the use of this type class invariant in the proof of
an equational invariant.

The results indicate that our high-level notation is about three
times more compact than the low-level one, which is a significant
reduction in programmer effort. In addition to their compactness,
we believe that high-level proofs can be written more quickly be-
cause the linear proof-style is much easier to grasp for the program-
mer.

The prototype implementation in Haskell is available at http:
//www.cs.kuleuven.be/~toms/Haskell/.

6. Related Work
The Chameleon system allows programmers to extend the type
checker with additional Constraint Handling Rules (CHRs) (Stuckey
and Sulzmann 2005). These are useful for encoding additional
properties, but have a more operational flavor, being left-to-right
rewrite rules. The CHRs are more expressive than our invariants in
that they allow existentially quantified type variables in the right-
hand side. Yet, Chameleon treats the CHRs as axioms, and leaves
the responsibility for soundness, completeness and termination to
the programmer.

Invariants on type-level functions is something that can be done
naturally in Coq (Paulin-Mohring 1993), although its type func-
tions are closed. To go open world, one possibility may be to use the
type class library of (Sozeau and Oury 2008), but this will not work
for invariants that link two type classes (like our type-preservation
invariant links the two type families CPS and Subst), since the in-
variant and its cases belong in neither type class.

The Twelf theorem prover (Pfenning and Schürmann 1999) has
type families defined under an open world assumption, but these
type families define relations rather than functions. Being depen-
dently typed, it can be used to prove arbitrary invariants involving
type families. The proofs take a logic programming flavor, unlike
the equational proof syntax proposed here. Twelf provides cover-
age and termination checking, and support for proof search.

Omega (Sheard 2004) provide type-level functions similar to
type families except that they are closed. One can reason about
types at the term level using GADTs, but there are no user-defined
type classes, type invariants, or other support for type-level pro-
grams.

8 2009/11/14

7. Conclusion & Future Work
We have shown the limitations of Haskell’s current type language,
comprising type classes and type families. To extend the expres-
sivity, we have proposed type invariants, which respect the open
nature of the aforementioned type system features. Our formaliza-
tion takes care of soundness, completeness and well-foundedness
for type invariants and their proofs.

There are many ways in which to improve our external proof
language and the reconstruction of the internal proof, e.g. covering
more substantial internal proofs, more efficient search, and inter-
active proving to name just a few. We plan to investigate which
extensions are the most likely to alleviate the programmer’s bur-
den.

Acknowledgments
We are grateful to Brigitte Pientka, Martin Sulzmann and the
anonymous reviewers for their helpful comments. Part of this work
was conducted while the first author was a visitor at Université de
Montréal.

References
Ki Yung Ahn and Tim Sheard. Shared subtypes: subtyping recur-

sive parametrized algebraic data types. In Haskell ’08: Proceed-
ings of the 1st ACM SIGPLAN Haskell symposium, pages 75–86,
New York, NY, USA, 2008. ACM.

James Cheney and Ralf Hinze. First-class phantom types. Techni-
cal Report CUCIS TR2003-1901, Cornell University, 2003.

Dominic Duggan and John Ophel. Type-checking multi-parameter
type classes. J. Funct. Program., 12(2):133–158, 2002.

Louis-Julien Guillemette and Stefan Monnier. A type-preserving
compiler in Haskell. In ICFP ’08: Proceeding of the 13th
ACM SIGPLAN international conference on Functional pro-
gramming, pages 75–86, New York, NY, USA, 2008. ACM.

Mark P. Jones. Type classes with functional dependencies. In
Proc. of ESOP 2000, number 1782 in Lecture Notes in Computer
Science. Springer-Verlag, 2000.

Christine Paulin-Mohring. Inductive definitions in the system
Coq—rules and properties. In M. Bezem and J. Groote, editors,
International conference on Typed Lambda Calculi and Appli-
cations. LNCS 664, Springer-Verlag, 1993.

Simon Peyton Jones, Mark P. Jones, and Erik Meijer. Type classes:
exploring the design space. In Haskell Workshop, Amsterdam,
June 1997.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and
Geoffrey Washburn. Simple unification-based type inference for
gadts. In International Conference on Functional Programming,
Portland, Oregon, September 2006.

Frank Pfenning and Carsten Schürmann. System description: Twelf
- a meta-logical framework for deductive systems. In Inter-
national Conference on Automated Deduction, volume 1632 of
Lecture Notes in Artificial Intelligence, pages 202–206, July
1999.

Tom Schrijvers and Martin Sulzmann. Unified Type Checking for
Type Classes and Type Functions, 2008. Poster at the Interna-
tional Conference on Functional Programming (ICFP’08).

Tom Schrijvers, Simon Peyton Jones, Manuel Chakravarty, and
Martin Sulzmann. Type checking with open type functions.
In ICFP ’08: Proceeding of the 13th ACM SIGPLAN interna-
tional conference on Functional programming, pages 51–62,
New York, NY, USA, 2008. ACM.

Tim Sheard. Languages of the future. In OOPSLA ’04: Compan-
ion to the 19th annual ACM SIGPLAN conference on Object-
oriented programming systems, languages, and applications,
pages 116–119, New York, NY, USA, 2004. ACM Press. ISBN
1-58113-833-4.

Matthieu Sozeau and Nicolas Oury. First-class type classes. In 21th
International Conference on Theorem Proving in Higher Order
Logics, pages 278–293. LNCS 5170, Springer-Verlag, 2008.

Peter J. Stuckey and Martin Sulzmann. A theory of overloading.
ACM Transactions on Programming Languages and Systems
(TOPLAS), 27(6):1–54, 2005.

Martin Sulzmann, Manuel Chakravarty, Simon Peyton Jones, and
Kevin Donnelly. System F with type equality coercions. In ACM
SIGPLAN International Workshop on Types in Language Design
and Implementation (TLDI’07). ACM, 2007a.

Martin Sulzmann, Gregory J. Duck, Simon Peyton-Jones, and Pe-
ter J. Stuckey. Understanding functional dependencies via Con-
straint Handling Rules. J. Funct. Program., 17(1):83–129,
2007b.

Philip Wadler and Stephen Blott. How to make ad-hoc polymor-
phism less ad hoc. In Symposium on Principles of Programming
Languages, Austin, TX, January 1989.

Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded recursive
datatype constructors. In Symposium on Principles of Program-
ming Languages, pages 224–235, New Orleans, LA, January
2003.

9 2009/11/14

