
Programming type-safe transformations using
higher-order abstract syntax

Olivier Savary-Belanger1, Stefan Monnier2, and Brigitte Pientka1

1 McGill University
2 Université de Montréal

Abstract. Compiling syntax to native code requires complex code trans-
formations which rearrange the abstract syntax tree. This can be partic-
ularly challenging for languages containing binding constructs, and often
leads to subtle, hard to find errors. In this paper, we exploit higher-order
abstract syntax (HOAS) to implement a type-preserving compiler for the
simply-typed lambda-calculus, including transformations such as closure
conversion and hoisting, in the dependently-typed language Beluga. Un-
like previous implementations, which have to abandon HOAS locally in
favor of a first-order binder representation, we are able to take advantage
of HOAS throughout the compiler pipeline, so that we do not have to
include any lemmas about binder manipulation. Scope and type safety
of the code transformations are statically guaranteed, and our imple-
mentation directly mirrors the proofs of type preservation. Our work
demonstrates that HOAS encodings offer substantial benefits to certified
programming.

1 Introduction

Type-based verification methods support building correct-by-construction soft-
ware, and hold the promise of dramatically reducing the costs of quality assur-
ance. Instead of verifying properties post-hoc about software, we rely on rich
type abstractions which can be checked statically during the development.

Compiler implementers have long recognized the power of types to estab-
lish key properties about complex code transformations. However, the standard
approach is to type-check the intermediate representations produced by com-
pilation. This amounts to testing the result of compilation via type-checking.
In this paper, we explore the use of sophisticated type systems to implement a
correct-by-construction compiler for the simply typed lambda-calculus, including
translation to continuation-passing style (CPS), closure conversion and hoisting.
We concentrate here on the last two phases which are particularly challenging
since they rearrange the structure of the abstract syntax tree.

A central question when implementing code transformations is the repre-
sentation of the source and target languages. Shall we represent binders via
first-order abstract syntax using de Bruijn indices or names or higher-order ab-
stract syntax (HOAS) where we map binders in our source and target language to

binders in our meta-language? - Arguably HOAS is the more sophisticated repre-
sentation technique, eliminating the need to deal with common and notoriously
tricky aspects such as renaming, fresh name generation and capture-avoiding
substitution. However, while the power and elegance of HOAS encodings have
been demonstrated in representing proofs, for example in the Twelf system [Pfen-
ning and Schürmann, 1999], it has been challenging to exploit its power in pro-
gram transformations which rearrange abstract syntax trees and move possibly
open code fragments. Previous implementations (for example Chlipala [2008];
Guillemette and Monnier [2008]) have been unable to take advantage of HOAS
throughout the full compiler pipeline and have to abandon HOAS in closure
conversion and hoisting. In this work, we rely on the rich type system and ab-
straction mechanisms of the dependently-typed language Beluga [Pientka and
Dunfield, 2010; Cave and Pientka, 2012] to implement a type and scope pre-
serving compiler for the simply-typed lambda-calculus using HOAS for all the
stages. There are two key ingredients crucial to the success: First, we encode
our source and target languages using HOAS within the logical framework LF
[Harper et al., 1993] reusing the LF function space to model object-level binders.
As a consequence, we inherit support for α-renaming, capture-avoiding substi-
tution, and fresh name generation from LF. Second, we represent and embed
open code fragments using the notions of contextual objects and first-class con-
texts. A contextual object, written as [Ψ.M], characterizes an open LF object M
which may refer to the bound variables listed in the context Ψ [Nanevski et al.,
2008]. We internalize this notion on the level of types using the contextual type
[Ψ.A] which classifies the contextual objects [Ψ.M] where M has type A in the
context Ψ . By embedding contextual objects into computations, users can not
only characterize abstract syntax trees with free variables, but also manipulate
and rearrange open code fragments using pattern matching.

Our implementation of a type-preserving compiler is very compact avoiding
tedious infrastructure for manipulating binders. Our code directly manipulates
intrinsically typed source terms and is an executable version of the proof that
the compiler is type-preserving.

We believe our work shows that programming with contextual objects offers
significant benefits to certified programming. For the full development see: http:
//complogic.cs.mcgill.ca/beluga/cc-code.

2 Source language: Simply typed lambda-calculus

We describe first the source language of our compiler, the simply typed lambda-
calculus (STLC) extended with n-ary tuples, selectors, let-expressions and unit.

(Type) T, S ::= S → T | code S T | S × T | unit
(Source) M,N ::= x | λx.M |M N | fst M | rst M | (M1,M2)

| let x = N inM | ()
(Context) Γ ::= · | Γ, x : T

Each of our type-preserving algorithms transforms the source language to a
separate target language, but uses the same language for types. N-ary products
are constructed using the binary product S×T and unit. In closure conversion, we
will use n-ary tuples to describe the environment. Foreshadowing the subsequent
explanation of closure conversion, we also add a special type code S T ; this type
only arises as a result in closure conversion where it describes closed functions.

We omit the typing rules for our source language, since they are standard.

The encoding of the source language into the logical framework LF is straight-
forward. In this paper, we are using the dependently typed language Beluga,
which supports writing LF specifications and programs about them. By indexing
source terms by their types, we only represent well-typed terms.

datatype source : tp → type =
| lam : (source S → source T) → source (arr S T)
| app : source (arr S T) → source S → source T
| fst : source (cross S T) → source S
| rst : source (cross S T) → source T
| cons : source S → source T → source (cross S T)
| nil : source unit
| letv : source S → (source S → source T) → source T;

In Beluga’s concrete syntax, the kind type declares an LF type family, as
opposed to a computational data type. Binders in our object languages are rep-
resented via the LF function space. For example, the lam constructor takes as
argument a function source S → source T and constructs an object of type source

(arr S T). As a consequence, we inherit α-renaming from LF and substitution
is modelled via function application. N-ary tuples are represented using the con-
structor cons and () is represented as nil, emphasizing that n-ary tuples are
encoded as lists.

3 Closure conversion

Closure conversion is a code transformation that makes the manipulation of
closure objects explicit and results in a program whose functions are closed so
that they can be hoisted to the top-level.

3.1 Target language

Our target language for closure conversion contains, in addition to functions
(λy. P), function application P Q, tuples (P,Q), selectors (fst and rst), and
let-expressions (let y = P in Q), two new constructs: 1) we can form a closure
〈P,Q〉 of an expression P with its environment Q, represented as an n-ary tuple.
2) we can break apart a closure P using let 〈yf , yenv〉 = P in Q.

(Target) P,Q ::= x | λx. P | P Q | fst P | rst P | let x = P in Q
| (P,Q) | () | 〈P,Q〉 | let 〈yf , yenv〉 = P in Q

(Context) ∆ ::= · | ∆,x : T

The essential idea of closure conversion is to make the evaluation context of
functions explicit; variables bound outside of a function are replaced by projec-
tions from an environment variable. Given a source-level function of type T → S,
we return a closure 〈λyc.P,Q〉 consisting of a closed function λyc.P , where yc
pairs the input argument y and the environment variable yenv, and its environ-
ment Q, containing all its free variables. Such packages are traditionally given
an existential type such as ∃l.(code (T × l) S) × l where l is the type of the
environment. We instead reuse the source type T → S which also hides l and
saves us from having to handle existential types in their full generality. The
rules for t pack and t letpack are modelling implicitly the introduction and elim-
ination rules for existential types. Moreover, we enforce that λx.P is closed. The
remaining typing rules for the target language are mostly straightforward and
summarized next.

∆ ` P : T Target P has type T

∆, x : T ` P : S

∆ ` λx. P : code T S
t lam

∆ ` P : code T S ∆ ` Q : T

∆ ` P Q : S
t app

x : T ∈ ∆
∆ ` x : T

t var
· ` P : code (T × Tenv) S ∆ ` Q : Tenv

∆ ` 〈P,Q〉 : T → S
t pack

∆ ` P : T → S ∆, yf : code (T × l) S, yenv : l ` Q : S

∆ ` let 〈yf , yenv〉 = P in Q : S
t letpackl

∆ ` P : T ∆ ` Q : S

∆ ` (P,Q) : T × S t cons
∆ ` () : unit

t unit

3.2 Closure conversion algorithm

Before describing the algorithm in detail, let us illustrate briefly the idea of
closure conversion using an example. Our algorithm translates the program
(λx.λy.x+ y) 5 2 to

let 〈f1, c1〉 =
let 〈f2, c2〉 =
〈 λe2. let x = fst e2 in let xenv = rst e2 in
〈λe1. let y = fst e1 in let yenv = rst e2 in fst yenv + y, (x, ())〉
, () 〉
in f2 (5 , c2)

in f1 (2, c1)

Closure conversion introduces an explicit representation of the environment,
closing over the free variables of the body of an abstraction. We represent the
environment as a tuple of terms, corresponding to the free variables in the body
of the abstraction.

We define the algorithm for closure conversion using [[M]]ρ, where M is a
source term which is well-typed in the context Γ and ρ a mapping of source

variables in Γ to target terms in the context ∆. Intuitively, ρ maps source vari-
ables to the corresponding projection of the environment. It is defined as follows:

∆ ` ρ : Γ ρ maps variables from source context Γ to target context ∆

∆ ` id : · m id
∆ ` ρ : Γ ∆ ` P : T

∆ ` ρ, x 7→ P : Γ, x : T
m dot

For convenience, we write πi for the i-th projection instead of using the
selectors fst and rst . We give here only the cases for variables, functions and
function applications.

[[x]]ρ = ρ(x)

[[λx.M]]ρ = 〈 λxc. let x = fst xc in let xenv = rst xc in P , Penv 〉
where {x1, . . . , xn} = FV(λx.M)
and ρ′ = x1 7→ π1 xenv, ..., xn 7→ πn xenv, x 7→ y
and Penv = (ρ(x1), . . . , ρ(xn)) and P = [[M]]ρ′

[[M N]]ρ = let 〈xf , xenv〉 = P in xf (Q , xenv) where P = [[M]]ρ and Q = [[N]]ρ

To translate a source variable, we look up its binding in the map ρ. When
translating a lambda-abstraction λx.M , we first compute the set {x1, . . . , xn} of
free variables occurring in λx.M . We then form a closure consisting of two parts:
1) a term P which is obtained by converting M with the new map ρ′ which maps
variables x1, . . . , xn to their corresponding projection of the environment variable
and x to itself, thereby eliminating all free variables in M . 2) an environment
tuple Penv, obtained by applying ρ to each variable in (x1, . . . , xn).

When translating an application M N , we first translate M and N to target
terms P and Q. Since the source term M denotes a function, the target term
P will denote a closure. We unpack the closure obtaining xf , the part denoting
the function, and xenv, the part denoting the environment. We then apply xf to
the extended environment (Q, xenv).

Our goal is to implement the described algorithm as a recursive program
which manipulates intrinsically well-typed source terms. This is non-trivial. To
understand the general idea behind our program, we discuss how to prove that
given a well-typed source term M we can produce a well-typed target term which
is the result of converting M . The proof relies on several straightforward lemmas
which correspond exactly to auxiliary functions needed in our implementation.

Auxiliary lemmas:

– Strengthening: If Γ ` M : T and Γ ′ = FV (M), then Γ ′ ` M : T and
Γ ′ ⊆ Γ

– Weakening: If Γ ′ `M : T and Γ ′ ⊆ Γ then Γ `M : T .
– Context reification: Given a context Γ = x1 : T1, . . . , xn : Tn, there exists

a type TΓ = (T1×. . .×Tn) and there is a ρ = x1 7→ π1 xenv, . . . , xn 7→ πn xenv
s.t. xenv : TΓ ` ρ : Γ and Γ ` (x1, . . . xn) : TΓ .

– Map extension: If ∆ ` ρ : Γ , then ∆,x : T ` ρ, x 7→ x : Γ, x : T .

– Map lookup: If x : T ∈ Γ and ∆ ` ρ : Γ , then ∆ ` ρ(x) : T .
– Map lookup (tuple):

If Γ ` (x1, . . . , xn) : T and ∆ ` ρ : Γ then ∆ ` (ρ(x1), . . . , ρ(xn)) : T .

We show here the key cases of the proof concentrating on lambda abstractions
and variables.

Theorem 1. If Γ `M : T and ∆ ` ρ : Γ then ∆ ` [[M]]ρ : T

Proof. By induction on the structure of the term M .

Case : M = x.
Γ ` x : T and ∆ ` ρ : Γ by assumption
∆ ` ρ(x) : T by Map lookup
∆ ` [[x]]ρ: T by definition

Case M = λx.M
Γ ` λx.M : T → S and ∆ ` ρ : Γ by assumption
Γ ′ ` λx.M : T → S and Γ ′ ⊆ Γ
where Γ ′ = FV (λx.M) by Term strengthening
Γ ′, x : T `M : S by inversion on t lam
Γ ′ ` (x1, . . . , xn) : TΓ ′ and xenv : TΓ ′ ` ρ′ : Γ ′ by Context reification
Γ ` (x1, . . . , xn) : TΓ ′ by Term Weakening
∆ ` ρ : Γ by assumption
(ρ(x1), . . . , ρ(xn)) = Penv by assumption
∆ ` Penv : TΓ ′ by Map lookup (tuple)
xenv : TΓ ′ , x : T ` ρ′, x 7→ x : Γ ′, x : T By Map extension
xenv : TΓ ′ , x : T ` P : S
where P = [[M]]ρ′,x 7→x by i.h. on M
c : T × TΓ ′ , x : T, xenv : TΓ ′ ` P : S by Term weakening
c : T × TΓ ′ , x : T ` let xenv = rst c in P : S by rule t let
c : T × TΓ ′ ` let x = fst x in let xenv = rst c in P : S by rule t let
· ` λc. let x = fst c in let xenv = rst c in P : code (T × TΓ ′) S by rule t lam
∆ ` 〈λc. let x = fst c in let xenv = rst c in P , Penv〉 : T → S by rule t pack
∆ ` [[λx.M]]ρ : T → S by definition

ut

3.3 Representation of target language in LF

We now describe the implementation of the closure conversion algorithm in
Beluga. We begin by defining the target language, showing the constructs for
lambda-abstraction, application, creating a closure and taking a closure apart.

datatype target: tp → type =
| clam : (target T → target S) → target (code T S)
| capp : target (code T S) → target T → target S
| cpack : target (code (cross T L) S) → target L → target (arr T S)
| cletpack: target (arr T S)

→ ({l:tp} target (code (cross T l)) S)→target l → target S)
→ target S;

The data-type definition directly reflects the typing rules with one exception:
our typing rule t pack enforced that P was closed. This cannot be achieved in
the LF encoding, since the context of assumptions is ambient. As a consequence,
hoisting, which relies on the fact that the closure converted functions are closed,
cannot be implemented as a separate phase after closure conversion. We will
come back to this issue in Section 4.

3.4 Type-preserving closure conversion in Beluga: an overview

The top-level closure conversion function cc translates a closed source term of
type T to a closed target term of type T, which is encoded in Beluga using the
computation-level type [.source T] → [.target T]. We embed closed contextual
LF object of type source T and target T into computation-level types via the
modality []. The . separates the context of assumptions from the conclusion.
Since we are describing closed objects, the context is left empty.

However, when closure converting and traversing source terms, our source
terms do not remain closed. We generalize the closure conversion function to
translate well-typed source terms in a source context Γ to well-typed target
terms in the target context ∆ given a map of the source context Γ to the target
context ∆. ∆ will consists of an environment variable xenv and the variable x

bound by the last abstraction, along with variables introduced by let bindings.

cc’: Map [∆] [Γ] → [Γ. source T] → [∆. target T]

Just as types classify terms, schemas classify contexts in Beluga, similarly
to world declarations in Twelf [Pfenning and Schürmann, 1999]. The schema tctx

defines a context where the type of each declaration is an instance of target T;
similarly the schema sctx defines a context where the type of each declaration is
an instance of source T. While type variables appear in the typing rule t_letpack,
they only occur locally and are always bound before the term is returned by our
functions, such that they do not appear in the context variables indexing them.

schema tctx = target T;
schema sctx = source T;

We use the indexed recursive type Map to relate the target context ∆ and
source context Γ [Cave and Pientka, 2012]. In Beluga’s concrete syntax, the
kind ctype indicates that we are not defining an LF datatype, but a recursive
type on the level of computations. → is overloaded to mean computation-level
strong functions rather than the LF function space. Map is defined recursively on
the source context Γ directly encoding our definition ∆ ` ρ : Γ given earlier.

datatype Map:{∆:tctx}{Γ:sctx} ctype =
| Id :{∆:tctx} Map [∆] []
| Dot: Map [∆] [Γ] → [∆. target S] → Map [∆] [Γ,x:source S];

Beluga reconstructs the type of free variables ∆, Γ , and S and implicitly
abstracts over them. In the constructor Id, we choose to make ∆ an explicit
argument to Id, since we often need to refer to ∆ explicitly in the recursive
programs we are writing about Map. The next section presents the implementation
of the necessary auxiliary functions, followed by cc’.

3.5 Implementation of auxiliary lemmas

Term strengthening and weakening Both operations rely on an inclusion relation
Γ ′ ⊆ Γ where we preserve the order, which is defined using the indexed recursive
computation-level data-type SubCtx.

datatype SubCtx: {Γ ′:sctx} {Γ:sctx} ctype =
| WInit: SubCtx [] []

| WDrop: SubCtx [Γ ′] [Γ] → SubCtx [Γ ′] [Γ,x:source T]

| WKeep: SubCtx [Γ ′] [Γ] → SubCtx [Γ ′,x:source T] [Γ,x:source T];

Given a source term M in Γ the function strengthen computes the strength-
ened version of M which is well-typed in Γ ′ characterizing the free variables in
M together with the proof SubCtx [Γ ′] [Γ]. We represent the result using the
indexed recursive type StrTerm’ encoding the existential in the specification as a
universal quantifier using the constructor STm’. The fact that Γ’ describes exactly
the free variables of M is not captured by the type definition.

datatype StrTerm’: {Γ:sctx} [.tp] → ctype =

| STm’: [Γ ′. source T] → SubCtx [Γ ′] [Γ] → StrTerm’ [Γ] [.T];

rec strengthen: [Γ.source T] → StrTerm’ [Γ] [.T]

Just as in the proof of the term strengthening lemma, we cannot implement
this function directly. This is because, while we would like to perform induction
on the size of Γ , we cannot appeal to the induction hypothesis while maintaining
a well-scoped source term in the case of an occurring variable in front of Γ .
Instead, we implement str, which, intuitively, implements the lemma

If Γ1, Γ2 `M : T and Γ ′
1, Γ2 = FV(M), then Γ ′

1, Γ2 `M : T and Γ ′
1 ⊆ Γ1.

In Beluga, contextual objects can only refer to one context variable - we
cannot simply write [Γ1, Γ2. source T]. To express this, we use a data-type wrap

which abstracts over all the variables in Γ2. wrap is indexed by the type T of the
source term and the size of Γ2. str then recursively analyses Γ1, adding variables
occurring in the input term to Γ2. The type of str asserts, through its index N,
the size of Γ2.

datatype wrap: tp → nat → type =
| ainit: (source T) → wrap T z
| add: (source S → wrap T N) → wrap (arr S T) (suc N);

datatype StrTerm: {Γ:sctx} [.tp] → [.nat] → ctype =

| STm: [Γ ′. wrap T N] → SubCtx [Γ ′] [Γ] → StrTerm [Γ] [.T] [.N];

rec str: [Γ. wrap T N] → StrTerm [Γ] [.T] [.N]

The function str is implemented recursively on the structure of Γ exploits
higher-order pattern matching to test whether a given variable x occurs in a
term M. As a consequence, we can avoid the implementation of a function which
recursively analyzes M and test whether x occurs in it. While one can implement
term weakening following similar ideas, we incorporate it into the variable lookup
function defined next.

Map extension and lookup The lookup function takes a source variable of type
T in the source context Γ and Map [∆] [Γ] and returns the corresponding target
expression of the same type.

rec lookup: {#p:[Γ.source T]} Map [∆] [Γ] → [∆. target T] =
λ2#p ⇒ fn ρ ⇒ let (ρ: Map [∆] [Γ]) = ρ in case [Γ. #p...] of

| [Γ ′,x:source T. x] ⇒ let Dot ρ′ [∆.M...] = ρ in [∆.M...]
| [Γ ′,x:source S. #q...] ⇒ let Dot ρ′ [∆.M...] = ρ in lookup [Γ ′.#q...] ρ′;

We quantify over all variables in a given context by {#p:[Γ.source T]} where
#p denotes a variable of type source T in the context Γ . In the function body, λ2-
abstraction introduces an explicitly quantified contextual object and fn-abstraction
introduces a computation-level function. The function lookup is implemented by
pattern matching on the context Γ and the parameter variable #p.

To guarantee coverage and termination, it is pertinent that we know that
an n-ary tuple is composed solely of source variables from the context Γ , in
the same order. We therefore define VarTup as a computational datatype for
such variable tuples. Nex v of type VarTup [Γ] [.LΓ], where Γ = x1:T1,. . .,xn:Tn,
is taken to represent the source language tuple (x1,. . .,xn) of type T1 × . . . × Tn

in the context Γ .

datatype VarTup: {Γ:sctx} [.tp] → ctype =
| Emp: VarTup [] [.unit]
| Nex: VarTup [Γ] [.L] → VarTup [Γ,x:source T] [.cross T L];

The function lookupVars applies a map ρ to every variable in a variable tuple.

rec lookupVars: VarTup [Γ ′] [.LΓ ′] → SubCtx [Γ ′] [Γ] → Map [∆] [Γ]
→ [∆. target LΓ ′]

lookupVars allows the application of a Map defined on a more general context
Γ provided that Γ ′ ⊆ Γ . This corresponds, in the theoretical presentation, to
weakening a variable tuple before applying a mapping on it.

extendMap, which implements the Map extension lemma, weakens a mapping
with the identity on a new variable x. It is used to extend the Map with local
variables, for example when we encounter a let binding construct.

rec extendMap: Map [∆] [Γ] → Map [∆,x:target S] [Γ,x:source S]

A Reification of the Context as a Term Tuple The context reification lemma
is proven by induction on Γ ; to enable pattern matching on the context Γ , we
wrap it in the indexed data-type Ctx.

datatype Ctx: {Γ:sctx} ctype =
| Ctx: {Γ:sctx} Ctx [Γ];

datatype CtxAsTup: {Γ:sctx} ctype =
| CTup: VarTup [Γ] [.LΓ] → Map [x:target LΓ] [Γ] → CtxAsTup [Γ];

rec reify: Ctx [Γ] → CtxAsTup [Γ]

The function reify translates the context Γ to a source term. It produces
a tuple containing variables of Γ in order, along with Map [x:target TΓ] [Γ] de-
scribing the mapping between those variables and their corresponding projec-
tions. The type of reify enforces that the returned Map contains, for each of the
variables in Γ , a target term of the same type referring solely to a variable x

rec cc’: Map [∆] [Γ] → [Γ. source T] → [∆. target T] =
fn ρ ⇒ fn m ⇒ case m of

| [Γ. #p...] ⇒ lookup ρ [Γ. #p...]

| [Γ. lam λx.M... x] ⇒
let STm [Γ ′. add (λx. ainit (M’ ... x))] rel = str [Γ. add λx.ainit (M ... x)] in

let CTup [Γ ′. E...] (ρ′′:Map [xenv:target TΓ ′] [Γ ′]) = reify (Ctx [Γ ′]) in

let ρ′ = extendMap ρ′′ in

let [xenv:target TΓ ′,x:target T. (P xenv x)] = cc’ ρ′ [Γ ′,x:source _. M... x] in

let [∆. Penv...] = lookupVars [Γ ′. E...] rel ρ in

[∆. cpack (clam (λc. (clet (cfst c)
(λx.(clet (crst c)

(λxenv. P xenv x))))))
(Penv...)]

Fig. 1. Implementation of closure conversion in Beluga

of type TΓ . This means the tuple of variables of type TΓ also returned by reify

contain enough information to replace occurrences of variables in any term in
context Γ perserving types - it contains either the variables themselves or terms
of the same type.

3.6 Closure conversion: Top-level function

The function cc’ (see Fig. 1) implements our closure conversion algorithm recur-
sively by pattern matching on objects of type [Γ. source T] . It follows closely the
earlier proof (Thm. 1). We describe here on the cases for variables and lambda-
abstractions omitting the case for applications. When we encounter a variable,
we simply lookup its corresponding binding in ρ.

Given a lambda abstraction in context Γ and ρ which represents the map
from Γ to ∆, we begin by strengthening the term to some context Γ ′. We then
reify the context Γ ′ to obtain a tuple E together with the new map ρ′′ of type
Map [xenv:target TΓ ′] [Γ ′]. Next, we extend ρ′′ with the identity on the lambda-
abstraction’s local variable to obtain ρ′, and recursively translate M using ρ′,
obtaining a target term in context xenv,x. Abstracting over xenv and x gives us
the desired closure-converted lambda-abstraction. To obtain the environment
Penv, we apply ρ on each variables in E using lookupVars. Finally, we pack the
converted lambda-abstraction and the environment Penv as a closure, using the
constructor cpack.

Our implementation of closure conversion, including all definitions and aux-
iliary functions, consists of approximately 250 lines of code.

4 Hoisting

Hoisting is a code transformation that lifts the lambda-abstractions, closed by
closure conversion, to the top level of the program. Function declarations in the
program’s body are replaced by references to a global function environment.

As we alluded to earlier, our encoding of the target language of closure con-
version does not guarantee that functions in a closure converted term are indeed
closed. While this information is available during closure conversion, it cannot
easily be captured in our meta-language. We therefore extend our closure con-
version algorithm to perform hoisting at the same time. Hoisting can however
be understood by itself; we highlight here its main ideas.

Performing hoisting on the closure-converted program presented in Sec. 3

let 〈f1, c1〉 =
let 〈f2, c2〉 =
〈 λe2. let x = fst e2 in let xenv = rst e2 in
〈λe1. let y = fst e1 in let yenv = rst e2 in fst yenv + y, (x, ())〉
, () 〉
in f2 (5 , c2)

in f1 (2, c1)

will return

let l = (λl2.λe2.let x = fst e2 in let xenv = rst e2 in 〈 (fst l2) (rst l2) , (x, ()) 〉,
λl1.λe1.let y = fst e1 in let yenv = rst e2 in fst yenv + y, ())

in let 〈f1, c1〉 =
let 〈f2, c2〉 = 〈(fst l) (rst l), (·)〉
in f2 (5, c2)

in f1 (2, c1)

4.1 Source and target languages - revisited

We define hoisting on the target language of closure conversion and keep the
same typing rules (see Fig. 3.1) with one exception: the typing rule for t pack is
replaced by the one below.

l : Tf ` P : code (T × Tx) S ∆, l : Tf ` Q : Tx

∆, l : Tf ` 〈P,Q〉 : T → S
t pack’

When hoisting is performed at the same time as closure conversion, P is not
completely closed anymore, as it refers to the function environment l. Only at
top-level, where we bind the collected tuple as l, will we recover a closed term.
The distinction between t pack and t pack’ is irrelevant in our implementation,
as in our representation of the typing rules in LF the context is ambient.

We now define the hoisting algorithm as [[P]]l = Q ./ E . Hoisting takes
as input a target term P and returns a hoisted target term Q together with its
function environment E, represented as a n-ary of product type L. We write
E1 ◦ E2 for appending tuple E2 to E1 and L1 ◦ L2 for appending the product
type L2 to L1. We concentrate here on the cases for variables and closures.

[[x]]l = x ./ ()

[[〈P1, P2〉]]l = 〈(fst l) (rst l), Q2〉 ./ E where Q1 ./ E1 = [[P1]]l
and Q2 ./ E2 = [[P2]]l
and E = (λl.Q1, E1 ◦ E2)

While the presented hoisting algorithm is simple to implement in an untyped
setting, its extension to a typed language demands more care with respect to
the form and type of the functions environment. As ◦ is only defined on n-ary
tuples and product types and not on general terms and types, we enforce that
the returned E and its type L are of the right form. We take ∆ `l E : L to mean
∆ ` E : L for a n-ary tuple E of product type L.

Auxiliary lemmas:
– Append function environments

If ∆ `l E1 : L1 and ∆ `l E2 : L2, then ∆ `l E1 ◦ E2 : L1 ◦ L2.
– Function environment weakening (1)

If ∆, l : Lf1 ` P : T and Lf1 ◦ Lf2 = Lf , then ∆, l : Lf ` P : T .
– Function environment weakening (2)

If ∆, l : Lf2 ` P : T and Lf1 ◦ Lf2 = Lf , then ∆, l : Lf ` P : T .

Theorem 2. If ∆ ` P : T then · `l E : Lf and ∆, l : Lf ` Q : T for some Lf
where [[P]]l = Q ./ E .

Proof. By induction on the term P .

4.2 Auxiliary functions

Defining environments Our hoisting algorithm uses operations such as ◦, which
are only defined on n-ary tuples and on product types. To guarantee coverage, we
define an indexed datatype encoding the judgement ∆ `l E : Lf , which asserts
that environment E and its type Lf are of the right form.

datatype Env: {Lf:[.tp]} [.target Lf] → ctype =
| EnvNil: Env [.unit] [.cnil]
| EnvCons: {P:[.target T]}

Env [.L] [.E] → Env [.cross T L] [.ccons P E];

Appending function environments When hoisting terms with more than one
subterm, each recursive call on those subterms results in a different function
environment; they need to be merged before combining the subterms again.
This is accomplished by the function append which takes in Env [.L1] [.E1] and
Env [.L2] [.E2], and constructs the function environment Env [.L1 ◦ L2] [.E1 ◦
E2]. As Beluga does not support functions in types, we return some function

environment E of type L, and a proof that E and L are the results of concatenating
respectively E1 and E2, and L1 and L2.

datatype App: {T:[.tp]}{S:[.tp]}{TS:[.tp]} [.target T] → [.target S]
→ [.target TS] → ctype =

| AStart: Env [.S] [.Q] → App [.unit] [.S] [.S] [.cnil] [.Q] [.Q]
| ACons: App [.T] [.S] [.TS] [.P] [.Q] [.PQ]

→ App [.(cross T’ T)] [.S] [.(cross T’ TS)]
[.(ccons P’ P)] [.Q] [.(ccons P’ PQ)];

datatype ExApp: {T:[.tp]}{S:[.tp]} [.target T] → [.target S] → ctype =
| AP: App [.L1] [.L2] [.L] [.E1] [.E2] [.E] → Env [.L] [.E]
→ ExApp [.L1] [.L2] [.E1] [.E2];

rec append: Env [.L1] [.E1]→ Env [.L2] [.E2]→ ExApp [.L1] [.L2] [.E1] [.E2]

App [.L1] [.L2] [.L] [.E1] [.E2] [.E] can be read as E1 and E2 being tuples
of type L1 and L2, and concatening them yields the tuple E of type L.

Next, we show the type of the two lemmas about function environment weak-
ening. They are a direct encoding of their specifications.

rec weakenEnv1: (∆:tctx) App [.L1] [.L2] [.L] [.E1] [.E2] [.E]
→ [∆, l:target L1. target T] → [∆, l:target L. target T]

rec weakenEnv2: (∆:tctx) App [.L1] [.L2] [.L] [.E1] [.E2] [.E]
→ [∆, l:target L2. target T] → [∆, l:target L. target T]

4.3 The main function

The top-level function hcc generalizes cc such that it performs hoisting at the
same time as closure conversion. Again we only concentrate on the case for vari-
ables and lambda-abstraction to illustrate that only small changes are required.
We generalize hcc and implement hcc’ to closure convert and hoist open terms
when given a map between the source and target context.

datatype HCCRet:{∆:tctx} [.tp] → ctype =
| HRet: [∆,l:target Lf. target T] → Env [.Lf] [.E] → HCCRet [∆] [.T];

rec hcc’: Map [∆] [Γ] → [Γ. source T] → HCCRet [∆] [.T] =
fn ρ ⇒ fn m ⇒ case m of

| [Γ. #p...] ⇒
let [∆. Q...] = lookup [Γ] [Γ. #p...] ρ in

HRet [∆,l:target (prod unit). Q...] EnvNil

| [Γ. lam λx.M... x] ⇒
let STm [Γ ′.add λx.ainit (M’... x)] rel = str [Γ.add λx. ainit (M ... x)] in

let CTup vt (ρ′′:Map [xenv:target TΓ ′] [Γ ′]) = reify (Ctx [Γ ′]) in
let [∆. Penv...] = lookupTup vt rel ρ in

let HRet r e = hcc’ (extendMap ρ′′) [Γ ′,x:source _. M’... x] in
let [xenv:target TΓ ′, x:target T, l:target Tf. (Q xenv x l)] = r in

let e’ = EnvCons [.clam λl. clam λc.
clet (cfst c) (λx.clet (crst c) (λxenv. Q xenv x l))]

e in
let [.T’] = [.cross (code Tf (code (cross T TΓ ′) S)) Tf]

in HRet [∆,l:target T’. cpack (capp (cfst l) (crst l)) (Penv...)] e’
;

rec hcc: [.source T] → [.target T] =
fn m ⇒ let HRet r (e: Env [._] [.E]) = hcc’ (IdMap []) m in

let [l:target S. Q l] = r in
[.clet E (λl. Q l)];

hcc calls hcc’ with the initial map and the source term m of type T. It then
binds, with clet, the function environment as l in the hoisted term, resulting in
a closed target term of the same type.

hcc’ converts a source term in the context Γ given a map between the source
context Γ and the target context ∆ following the algorithm described in Sec. 4.
It returns a target term of type T which depends on a function environment l of
some product type Lf together with a concrete function environment of type Lf .
The result of hcc’ is described by the datatype HCCRet which is indexed by the
target context ∆ and the type T of the target term.

hcc’ follows closely the structure of cc’. When we encounter a variable, we
look it up in ρ and return the corresponding target term with an empty well-
formed function environment EnvNil. When reaching a lambda-abstraction of

type arr S T, we again strengthen the body lam λx.M ... x to some context Γ ′. We
then reify Γ ′ to obtain a variable tuple (x1, . . . , xn) and convert the strength-
ened M recursively using the map ρ extended with the identity. As a result, we
obtain a closed target term Q together with a well-formed function environment
e containing the functions collected so far. We then build the variable environ-
ment (ρ(x1), . . . , ρ(xn)), extend the function environment with the converted
result of M which is known to be closed, and return capp (cfst l) (crst l) where
l abstracts over the current function environment.

Our implementation of hoisting adds in the order of 100 lines to the devel-
opment of closure conversion and retains its main structure.

An alternative to the presented algorithm would be to thread through the
function environment as an additional argument to hcc. This avoids the need
to append function environments and obviates the need for weakenEvn1. Other
properties around concat would however still have to be proven, some of which
require multiple nested inductions; therefore, the complexity and length of the
resulting implementation is similar or even larger.

5 Related Work

While HOAS holds the promise of dramatically reducing the overhead related
to manipulating abstract syntax trees with binders, the implementation of a
certified compiler, in particular the phases of closure conversion and hoisting,
using HOAS has been elusive.

One of the earliest studies of using HOAS in implementing compilers was
presented in Hannan [1995], where the author describes the implementation of
a type-directed closure conversion in Elf [Pfenning, 1989], leaving open several
implementation details, such as how to reason about variables equality.

Abella [Gacek, 2008] is an interactive theorem prover which supports HOAS,
but not dependent types at the specification level. The standard approach would
be to specify source terms, typing judgments, and the closure conversion algo-
rithm, and then prove that it is type-preserving. However, one cannot obtain an
executable program from the proof. Moreover, it is not obvious how to specify
closure conversion algorithm since one of its arguments is the mapping ρ which
itself inductively defined

Closely related to our work is Guillemette and Monnier [2007]’s implemen-
tation of a type-preserving closure conversion algorithm over STLC in Haskell.
While HOAS is used in the CPS translation, the languages from closure conver-
sion onwards use de Bruijn indices. Since the language targeted by their closure
conversion syntactically enforces that functions are closed, it is possible for them
to perform hoisting in a separate phase. In Guillemette and Monnier [2008], the
authors extend the closure conversion implementation to System F.

Chlipala [2008] presents a certified compiler for STLC in Coq using paramet-
ric higher-order abstract syntax (PHOAS), a variant of weak HOAS. He however
annotates his binders with de Bruijn level before the closure conversion pass, thus

degenerating to a first-order representation. His closure conversion is hence sim-
ilar to the one of Guillemette and Monnier [2007]. As in our work, hoisting is
done at the same time as closure conversion, because his target language does
not capture that functions are closed.

In both implementations, infrastructural lemmas dealing with binders con-
stitute a large part of the development. Moreover, additional information in
types is necessary to ensure the program type-checks, but is irrelevant at a com-
putational level. In contrast, we rely on the rich type system and abstraction
mechanisms of Beluga to avoid all infrastructural lemmas.

The closure conversion algorithm has also served as a key benchmark for
systems supporting first-class nominal abstraction such as FreshML [Pottier,
2007] and αProlog [Cheney and Urban, 2004]. Both languages provide facilities
for generating names and reasoning about their freshness, which proves to be
useful when computing the free variables in a term. However, capture-avoiding
substitution still needs to be implemented separately. Since these languages lack
dependent types, implementing a certified compiler is out of their reach.

6 Conclusion

In addition to closure conversion and hoisting, we also have implemented the
translation to continuation-passing style. Our compiler not only type checks,
but also coverage checks. Termination can be verified straightforwardly by the
programmer, as every recursive call is made on a structurally smaller argument,
such that all our functions are total. The fact that we are not only preserv-
ing types but also the scope of terms guarantees that our implementation is
essentially correct by construction.

Although HOAS is one of the most sophisticated encoding techniques for
structures with binders and offers significant benefits, problems such as closure
conversion, where reasoning about the identity of free variables is needed, have
been difficult to implement using an HOAS encoding. In Beluga, contexts are
first-class; we can manipulate them, and indeed recover the identity of free vari-
ables by observing the context of the term. This is unlike other system supporting
HOAS such as Twelf [Pfenning and Schürmann, 1999] or Delphin [Poswolsky and
Schürmann, 2008]; in Abella [Gacek, 2008], we can test variables for identity, but
users need to represent and reason about contexts explicitly. More importantly,
we cannot obtain an executable program from the proof.

In addition, Beluga’s computation-level recursive datatypes provide us with
an elegant tool to encode properties about contexts and contextual object. Our
case study clearly demonstrates the elegance of developing certified programs in
Beluga. We rely on built-in substitutions to replace bound variables with their
corresponding projections in the environment; we rely on the first-class context
and recursive datatypes to define a mapping of source and target variables as well
as computing a strengthened context only containing the relevant free variables
in a given term.

In the future, we plan to extend our compiler to System F. While the algo-
rithms seldom change from STLC to System F, open types pose a significant
challenge. This will provide further insights into what tools and abstractions are
needed to make certified programming accessible to the every day programmer.

Acknowledgements. We thank Mathieu Boespflug for his feedback and work on
the implementation of Beluga, and anonymous referees for helpful suggestions
and comments on an earlier version of this paper.

7 Bibliography

A. Cave and B. Pientka. Programming with binders and indexed data-types. In
Symposium on Principles of Programming Languages, pages 413–424. ACM,
2012.

J. Cheney and C. Urban. Alpha-Prolog: A logic programming language with
names, binding and alpha-equivalence. In International Conference on Logic
Programming, pages 269–283, 2004.

A. J. Chlipala. Parametric higher-order abstract syntax for mechanized seman-
tics. In International Conference on Functional Programming, pages 143–156.
ACM, 2008.

A. Gacek. The Abella interactive theorem prover (system description). In Inter-
national Joint Conference on Automated Reasoning, pages 154–161. Springer,
2008.

L.-J. Guillemette and S. Monnier. A type-preserving closure conversion in
Haskell. In Workshop on Haskell, pages 83–92. ACM, 2007.

L.-J. Guillemette and S. Monnier. A type-preserving compiler in Haskell. In
International Conference on Functional Programming, pages 75–86. ACM,
2008.

J. Hannan. Type systems for closure conversions. In Workshop on Types for
Program Analysis, pages 48–62, 1995.

R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal
of the ACM, 40(1):143–184, January 1993. doi: 10.1145/138027.138060.

A. Nanevski, F. Pfenning, and B. Pientka. Contextual modal type theory. Trans-
actions on Computational Logic, 9(3):1–49, 2008.

F. Pfenning. Elf: A language for logic definition and verified meta-programming.
In Symposium on Logic in Computer Science, pages 313–322. IEEE, 1989.

F. Pfenning and C. Schürmann. System description: Twelf — a meta-logical
framework for deductive systems. In Conference on Automated Deduction,
pages 202–206. Springer, 1999.

B. Pientka and J. Dunfield. Beluga: a framework for programming and rea-
soning with deductive systems (System Description). In International Joint
Conference on Automated Reasoning, pages 15–21. Springer, 2010.

A. B. Poswolsky and C. Schürmann. Practical programming with higher-order
encodings and dependent types. In European Symposium on Programming,
pages 93–107. Springer, 2008.

F. Pottier. Static name control for FreshML. In Symposium on Logic in Com-
puter Science, pages 356–365. IEEE, July 2007.

