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1. INTRODUCTION

Static type systems have proved to be tremendously effective formal systems, making spec-
ification and verification sufficiently lightweight and intuitive that most programmers use
them without even realizing it. Not only that, but they have shown to adapt very well to
most modern language features. The downside is that the properties one can express and
verify with garden variety type systems is fairly limited, especially concerning properties
which depend on side-effects and tracking the state of objects. Such properties usually
require the use of other formal methods, such as some kind of Hoare logic [Hoare 1969;
Reynolds 2002], which are targeted specifically at reasoning about imperative programs.
And it so happens that those alternative formal methods do not always integrate well with
modern language features such as higher-order functions, and polymorphism. The work
presented here presents a new type system which has an expressive power comparable to
that of a Hoare logic, thus hopefully combining the best of both worlds.

As the technology of certifying compilation and proof carrying code [Necula 1997; Ap-
pel 2001; Hamid et al. 2002] progresses, the need to ensure the correctness of the runtime
system increases: the carefully designed proof system risks breaking down completely if
one of the primitives of the runtime system does not behave exactly as intended. The best
way to approach this problem is to trim down the trusted part of the runtime system, start-
ing with the garbage collector. For this reason, it is important to be able to write a verifiably
type-safe GC, which may come bundled with the application code, rather than hard-coded
in the trusted runtime system. but the state of the art in this matter is still very much im-
practical. So one of this paper’s main goal is to present a type system that is sufficiently
flexible and powerful to type-check low-level code such as stack manipulation, pointer re-
versal, or the various parts of a generational garbage collector. This type system provides
a form of assignment that can change the type of a location (i.e. a strong update [Chase
et al. 1990]) even if the set of aliases to this location is not statically known, and it allows
the programmer to choose any mix of linear or intuitionistic typing of references and to
seamlessly change this choice over time to adapt it to the current needs.

Traditional type systems are not well-suited to reason about type safety of low-level
memory management such as explicit memory allocation, initialization, deallocation, or
reuse. Existing solutions to these problems either have a very limited applicability or rely
on some form of linearity constraint. Such constraints tend to be inconvenient and a lot
of work has gone into relaxing them. For example, the alias types system [Walker and
Morrisett 2000] is able to cleanly handle several of the points above, even in the presence
of arbitrary aliasing, as long as the aliases can be statically tracked by the type system.

Traditional type systems mostly ensure memory safety. But of course, when typing
low-level memory management code, proving that the code does not break the memory
safety invariants often amounts to the same as proving that the code is correct. For this
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reason the distinction between mere type safety and full correctness becomes blurred in
such circumstances. For example, type safety of a generational GC depends on the correct
processing of the remembered-set (a data-structure holding the set of pointers from the old
generation to the new).

The present work is thus an attempt to provide a middle ground between Hoare logic and
traditional type systems. Additionally to the above stated goals, we make the following
contributions:

—A language that combines traditional region calculi with alias-types calculi to simulta-
neously offer the benefits of traditional intuitionistic references and linear references.

—We introduce type cast on memory locations and strong update operations that work in
the absence of any static aliasing information.

—We present the first type-preserving generational collector that allows the mutator to
perform destructive assignment.

—We show how to use the calculus of inductive constructions (CiC) to track properties of
state. This extends the work of Shao et al. [Shao et al. 2002] where they used CiC as
their type language to track arbitrary properties of values.

—We show an encoding of the focus operator [Fähndrich and DeLine 2002]. Contrary to
the original focus operator, our encoding does not impose any scoping constraint and it
can be applied to multiple objects in the same region at the same time.

By intuitionistic references we mean references that can be freely copied, as opposed
to linear references which either cannot be copied or whose copies are constrained by the
requirement that the type system be able to track them, as with alias types.

Section 2 gives a quick preview of the basic idea developed in this paper. Section 3
introduces the problem of cyclic data-structures as well as two type systems on which our
work is built. Section 4 describes the new language. Section 5 shows some examples of
what the language can do. We then discuss related work and conclude.

2. OVERVIEW

The system of typed regions presented in this paper is a hybrid between traditional region
systems and alias types systems. In a traditional region system, the type of a pointer com-
pletely determines the type of the object to which it points. In alias types systems on the
other hand, the type of a pointer does not carry any information about the type of the object
to which it points. Instead, the type of the pointer indicates just the location to which it
points, and a separate environment is used to look up the type of that location. The system
of typed regions combines those two such that the type of a location is partly determined
by the type of the pointers and partly by a separate environment.

The key idea is to introduce the concept of the intended type of a memory location,
which stays constant throughout the lifetime of that location and thus corresponds to a
traditional (intuitionistic) type, supplemented with a non-constant map that translates the
intended type of each location to its actual type. The intended type of a location is typically
a high-level view of the type of objects that it can hold, that abstracts away time-varying
details such as the fact that some fields might be temporarily uninitialized, or that a pointer
is currently reversed, or that the object has been replaced by a forwarding pointer.
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Let’s say we have a pointer of type τ at ρ.n: 1 that means that it points to an object of
intended type τ at location n in region ρ. Each region has a type ϕ. This type is a function
that takes two arguments, the location n of an object and its intended type τ , such that the
type-level application ϕ n τ returns the actual type σ of the object.

Because the intended types are reflected in the types of pointers, they are kept im-
mutable, since changing the intended type of a location would require updating the type of
all the pointers to that location. On the other hand, the actual type of a location is mutable
since we can change it by modifying the region’s type ϕ.

If ϕ is a simple identity function that ignores n, then intended types and actual types are
the same and we have the equivalent of a traditional region system. On the other hand, if
ϕ ignores τ and only uses n to determine the actual type of a location, we have a system
reminiscent of alias types.

The main contribution of this type system is to allow mixing those two modes by using
for ϕ a function that mixes those two modes, typically by giving a few specific types to
some memory locations, à la alias types, while using traditional types for the remaining
locations. Additionally, the mix between those two modes can be changed dynamically;
for example, in a pointer-reversal traversal algorithm, we may start with a ϕ that ignores n,
and as we go down the structure, we change ϕ to adjust the type of those locations whose
pointers are currently reversed, and as we go back up the structure, we adjust ϕ again to
note that the object has a “normal” type again, so that in the end we recover a ϕ that ignores
n.

The system also allows us to dynamically recover aliasing information that could not
be tracked statically. E.g. in the pointer-reversal case, given an arbitrary pointer into the
region, we do not know at first whether this pointer points to an object whose pointers have
been reversed or not, but we can look at the object’s tag to find out. Once the tag has been
checked, the type of the pointer can be refined to indicate whether it points to one of the
pointer-reversed objects or not, thus lifting this dynamic aliasing information back into the
types.

The difference in power between typed regions and alias types is similar to the difference
between destructive update and a simulation of it using functional update: when function-
ally updating an element shared by several data-structures, one needs to rebuild the spine
that leads to this element for each data-structure where it is used, which requires one to
keep track of those spines, whereas with destructive updates, the operation can be done
without any knowledge of where this object is currently referenced.

Typed regions can be used to attack problems traditionally solved using Hoare logic:
regions’s types are somewhat equivalent to assertions in Hoare logic, and intended types
are basically used as invariants on specific memory locations.

3. BACKGROUND

Before formally presenting the language of typed regions, we present here some of the
anecdotal motivation for this work, as well as a quick refresher course on regions and alias
types which intends to give a better and more insightful understanding of our language by
highlighting the similarities and differences between those systems.

1By convention, type-level expressions will use the meta-variable ρ for regions, τ for intended types, σ for actual
types, and ϕ for other kinds of types such as region types.
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(* Copy heap depth-first from region T to region F. *)
gc copy : ∀α.αF → αT

gc copy x =
if is immediate value x then return x
else if x.visited then return x.fwd
else let x′ = alloc[T] x.size

(* Set forwarding pointer before recursing, to break cycles. *)
set x.fwd = x′; set x.visited = true
for i = 0 . . . x.size do set x′[i] = gc copy x[i]

return x′

Fig. 1. The core of GC’s copy function

3.1 Cyclic structures

In the course of writing the gc copy routine of a type-preserving garbage collector, we dis-
covered that although current type systems can handle the case where the graph is acyclic,
generalizing the code to properly handle cycles can prove difficult. After experimenting
with various algorithms, it became clear that the problem is more fundamental: current
type systems are unable to type-check some generic code that can build arbitrary cyclic
data-structures. By generic, we mean that it can apply to objects of any type. In other
contexts, it could be called polytypic [Hinze 1999], or intensionally polymorphic [Harper
and Morrisett 1995]. The most obvious examples are gc copy, shown below, and unpickle,
also known as unmarshall.

To see this, let us look at a classic example, a datatype for doubly-linked lists:

datatype α dlist = Node of α ∗ α dlist ref ∗ α dlist ref

The SML type system allows us to declare this datatype and write functions to manipulate
it, but does not offer us any way to create such an object because there is no base case to
start from. There are several ways to work around this problem:

—Work in a weakly typed setting where we can easily separate allocation from initializa-
tion. If we want type safety, this is clearly unacceptable.

—Add an otherwise unused variant to the data type, to forcefully provide a base case. This
incurs major costs because every piece of code that manipulate this data structure must
now handle the additional variant, which in the present case adds conditional jumps to
every access.

—OCaml provides special support to build cyclic data-structures, such as dlist above, with
val rec n = ref (Node(0, n, n)). This can then be used as a base case, without adding
a dummy variant to the type. Compared to the weakly typed solution, this is not bad,
but it still incurs an extra cost because we need to pre-initialize every field with those
dummy variants until the “real initial” value can be assigned to it. [Syme 2005] proposes
to extend this even further, but at even higher runtime costs.

The situation becomes even more problematic is we add genericity to the cycles: Fig-
ure 1 shows the core of a depth-first gc copy function. Its tentative type should look like
∀α.αF → αT, to indicate that it receives an argument in region F and returns an object of
the same type but allocated in region T. Since traditional type systems do not know how
to type an uninitialized object, the code cannot be typed without first adjusting it so that
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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(kinds) κ ::= Ω | R
(type env) Γ ::= • | Γ, x :σ
(heap type) Ψ ::= • | Ψ, ν.n 7→ σ
(region env) Θ ::= • | Θ⊕ ρ

(regions) ϕ, ρ ::= r | ν
(types) ϕ, σ ::= t | int | σ × σ | ∀t :κ.σ | σ at ρ | {Θ}(~σ)→ 0

(values) v ::= x | c | (v, v) | Λt :κ.v | ν.n | λ{Θ}(Γ).e
(terms) e ::= v(~v) | halt v | let x = πiv in e | let x = v[ϕ] in e

| let r = newrgn in e | freergn ρ; e
| let x = put[ρ] v in e | let x = get v in e | set v := v; e

Fig. 2. Syntax of a region-based language.

appropriate initial values for each field are passed to alloc. This implies a performance
penalty since we have to pre-initialize the object in alloc. But also, we do not know stat-
ically the type of the fields of the object, so the code has to be able to build such initial
values for any type α.

If we want to keep the same performance and genericity that we get in the weakly typed
setting, yet show that gc copy correctly preserves types, we need a type system that can
decouple allocation from initialization, but none of the systems developed so far [Walker
and Morrisett 2000; Morrisett et al. 1998] are sufficiently flexible to handle the case of a
function such as gc copy. The tricky part comes when trying to decide which type to give
to the field x.fwd:

—when it gets assigned, the value that is assigned to it comes straight out of alloc so its
type should indicate that the object is not yet initialized.

—on the other hand, when it is used (because x.visited is set), it should be of type αT

which is expected to be initialized. And as it happens, whether x.fwd points to a fully
initialized object or not depends on whether we are in the middle of copying a cycle,
which is not statically known.

Fundamentally, the problem is that none of the existing type systems know how to handle
the case where a pointer to an object escapes (i.e. is passed around and stored at arbitrary
locations such as x.fwd) before the object is initialized.

In order to type-check the above code, we need a new type system that is able to update
the type of x′ (e.g. from uninitialized to initialized) even though we do not statically know
all its aliases.

3.2 Regions

Region-based type systems [Tofte and Talpin 1994; Crary et al. 1999] are the most practical
systems offering type-safe explicit memory management. They provide a solution to the
problem of safe deallocation, with a minimum of added constraints. Even though they do
not offer any help when trying to type-check low-level code such as object initialization,
their practicality makes them very attractive as a starting point. The idea behind region
calculi is to only provide bulk deallocation of a whole region (group of objects) at a time.
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This way the type system only needs to keep track of regions rather than individual objects:
the type of every pointer is simply annotated with the region that it references.

Figure 2 shows an example of such a language, in continuation passing style, inspired
by the calculus of capabilities [Crary et al. 1999]. Values include:

c an integer constant of type int;
(v1, v2) a pair of type σ1 × σ2;
Λt :κ.v a type abstraction of type ∀t :κ.σ;
v[ϕ] an instantiation of type abstraction v with type ϕ;
ν.n a reference of type σ at ν to the nth object in region ν;
λ{Θ}(Γ).e a function of type {Θ}(~σ)→ 0, where Γ is the list of parame-

ters and Θ is the list of regions that need to be live at the time
of the call;

Operations are the following:

v(~v) call function v with arguments ~v;
halt v terminate with value v;
πiv select the ith word of pair v;
newrgn create a new region and return it;
freergn ρ deallocate region ρ;
put[ρ] v place object v in region ρ and return a reference to it;
get v dereference v and return the object it points to;
set v1 := v2; assign value v2 to the location to which v1 points;

We distinguish here between region variables r and region values ν, while ρ can be
either of the two. This means that every execution of newrgn generates a fresh new region
value. For simplicity we do not distinguish between term-level region descriptors which
exist at run time, and type-level regions which only exist at compile time. Regions are
manipulated as types: ρ is a type of kind R and σ is a type of kind Ω, while ϕ is used for
types that can be of any kind. Heap types Ψ do not appear in the terms but are used in the
typing rules (not shown here) where they keep track of the type of each memory location,
such that the type of a reference value ν.n is Ψ(ν.n) at ν.

The typing rules enforce that all operations like get and put only access regions men-
tioned in the list Θ of live regions. So all we need for freergn to be safe is that it removes
the freed region from Θ thus preventing future operations from accessing it.

Region aliasing (where two or more region variables refer to the same region) needs to
be kept under very tight control so as to prevent things like: deallocation of the region
via one of the two variables, and then use of the dead region via the other variable. This is
usually enforced with some sort of linearity constraint. In the region system presented here,
this manifests itself in the use of ⊕ in the region environment, which indicates that this
environment is not treated like a set. Since the region environment can only be manipulated
indirectly by the program, the system can enforce by construction that no region should
ever appear more once in Θ. We will expand on this subtle point in Sec. 5.2.

Here is a sample function that creates a cyclic node of the tree datatype presented previ-
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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(kinds) κ ::= Ω | Heap | Loc
(type env) Γ ::= • | Γ, x :σ
(mem env) Θ ::= • | ε | Θ⊕ ρ 7→(σ, ..., σ)

(locations) ϕ, ρ ::= r | ν
(types) ϕ, σ ::= t | int | ∀t :κ.σ | ρ | {Θ}(~σ)→ 0

(values) v ::= x | c | Λt :κ.v | ν | λ{Θ}(Γ).e
(terms) e ::= v(~v) | halt v | let x = πiv in e | let x = v[ϕ] in e

| let (r, x) = new n in e | set πiv := v; e | free ρ; e

Fig. 3. Syntax of an alias-types language.

ously, assuming the language has been extended with support for datatypes.2.

mktree[r :R, t :Ω] {r} (x : t, k : {r}((tree t) at r)→ 0)
= let y = put[r] (Node x) in

set y := Branch y y; k(y)

The function expects two type arguments r and t, it expects the region r to be live, and
expects an argument x of type t (which is only used temporarily to create the dummy
Node) and a continuation argument k. The kind of r is R and the kind of t is Ω. The
put operation allocates memory and temporarily puts a dummy Node into it, while the set
operation creates the actual cycle. The continuation k expects region r to still be live and
expects a single value argument which is a pointer to a tree in region r. If k’s type had {}
in place of {r}, it would force us to deallocate the region r before calling it and it would
make y into a dangling pointer, which is allowed because liveness of the region is only
needed and checked when dereferencing with get.

3.3 Alias types

The alias-types system [Smith et al. 2000; Walker and Morrisett 2000] was developed
precisely to handle low-level code such as object initialization, memory reuse, and safe
deallocation at the object level. To that end, the type of pointers is changed to carry no
information about the type of the referenced object. Instead, the type of a pointer is just
the location ρ it is pointing to, so it does not need to change when the location’s type or
liveness changes.

Figure 3 shows the syntax of a very simple alias-types language. It can be thought of as
a region-based language where the pointers can only point to regions rather than to objects
inside them, where regions have been turned into tuples, and where objects inside regions
are instead just fields of those tuples. put has disappeared since we cannot add fields to a
tuple; get is replaced by πi; set now only mutates a field of a tuple; pointers to ν now just
have type ν. The environment Ψ which mapped locations to their types is merged into Θ.
When dereferencing a pointer of type ρ, we thus have to check the liveness and the type of
the corresponding location by looking up ρ in Θ; a pointer of type ρ points to an object of
type Θ(ρ). let (r, x) = new n in e allocates a new object of size n and returns the location

2We use syntactic sugar such that name[t0 :κ0, ..., tn :κn]{Θ}(Γ) = e stands for
name = Λt0 :κ0....Λtn :κn.λ{Θ}(Γ).e
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as both a value x and a type r. In a region calculus, newrgn could also similarly return
separate term and type variables so as to distinguish between the region type and the region
descriptor passed to put at runtime.

Here is a sample code that takes a value of type t and creates an infinite list of this
element (a 1-element circular list):

mklist [ε :Heap, t :Ω] {ε} (x : t, k :∀r :Loc.{ε⊕ r 7→ (t, r)}(r)→ 0)
= let (r, y) = new 2 in

set π0y := x; set π1y := n; k[r](y)

The function expects two arguments ε and t where ε has kind Heap; it expects also that ε
is live, and it expects two value arguments x of type t and k, the continuation. The type
of the continuation shows that it expects a type argument r holding the location of the
allocated object; it expects the heap ε to still be live and extended with a pair at location r
holding the infinite list; and it expects a single value argument which is the pointer to that
list. Since new only knows about the size of the object, it can only do allocation and the
type at location r is originally set to (int, int) and is then incrementally updated by each
set operation to (t, int) and then (t, r).

The ability to update a location’s type is the key power of alias-types. But for that it
relies crucially on the fact that the type system keeps track of pointer values. In particular,
the types need to statically and precisely describe the shape of the heap. Witness the fact
in the above example that instead of being just List t, the type of the circular list explicitly
describes a 1-element cycle and thus disallows any other shape. The type language of
[Walker and Morrisett 2000] is of course much richer than what we show here, providing
a lot more flexibility in the kind of heap shapes you can describe.

While they provides a lot of power when dealing with low-level code, alias types rely
on an amount of static information which is not generally available, e.g. when reasoning
about a GC: if we had this information, we could also statically decide when to deallocate,
so we would not need a GC in the first place.

3.4 Calculus of inductive constructions

In most languages, type expressions are very simple, basically limited to a few constants
such as int or void plus some constructors like array, struct, union, or maybe ∀ to combine
them. In contrast our type expressions are written in a full fledged language complete with
functions, datatypes, and even primitive recursion: the calculus of inductive constructions
(CiC) [Paulin-Mohring 1993].

CiC is an extension of the calculus of constructions (CC) [Coquand and Huet 1988],
which is a higher-order dependently typed λ-calculus. Additionally to being a power-
ful programming language, CC can encode Church’s higher-order predicate logic via the
Curry-Howard isomorphism [Howard 1980]: propositions are encoded as types, and proofs
of those propositions are terms of the corresponding type. It also has a very useful property
for us: proof checking (i.e. type checking) is decidable. Understanding the details of this
language is not necessary for this paper; the only relevant aspects are that we can write and
manipulate logical propositions and proofs, and that the language includes higher order
functions and a kind of datatype (called inductive definitions) which makes it feel familiar
to SML programmers. We can easily define natural numbers, tuples, lists, and other data
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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(* The basic logical connectives. *)
Inductive False : Kind := (* No constructor. *).
Inductive True : Kind := () : True.
type Unit = True.
type ¬k = k → False.
Inductive ” ∨ ” (k1, k2 : Kind) : Kind := left : k1 → (k1 ∨ k2) | right : k1 → (k1 ∨ k2).
Inductive ” ∧ ” (k1, k2 : Kind) : Kind := conj : k1 → k2 → (k1 ∧ k2).

(* Reification of the builtin intensional equality. *)
Inductive ” = ” (k : Kind) (x : k) : k → Kind := eq refl : x = x.

(* Predicate for list membership. *)
Inductive ” ∈ ” (k :Kind) (x : k) : List k → Kind

:= inbase : Πl.x ∈ (x :: l)
| inskip : Πl, y.x ∈ l→ x ∈ (y :: l).

(* Predicate for list element extraction. *)
Inductive Pick (k :Kind) (x : k) : List k → List k → Kind

:= pbase : Πl.pick x l (x :: l)
| pskip : Πl1, l2, y.pick x l1 l2 → pick x (y :: l1) (y :: l2).

(* Predicate for order insensitive list equality. *)
Inductive ” ∼ ” (k : Kind) : List k → List k → Kind

:= uleq refl : Πl.l ∼ l
| uleq cons : Πl1, l2, x, l′1, l

′
2.

pick x l′1 l1 → pick x l′2 l2 → l′1 ∼ l′2 → l1 ∼ l2.

(* Update a function ϕ at point n to return ϕ′. *)
upd ϕ n ϕ′ = λi.if (i == n) (ϕ′) (ϕ i).

Fig. 4. Auxiliary CiC declarations for typing rules.

structures such as representations of type expressions:

Inductive Nat : Kind := zero : Nat | succ : Nat→ Nat.
Inductive List t : Kind := nil : List t | cons : t→ List t→ List t.
Notation “x :: l” := cons x l.
Inductive Ωτ : Kind := int : Ωτ | ref : Ωτ → Ωτ | pair : Ωτ → Ωτ → Ωτ .

The above uses a surface syntax with added sugar. The abstract syntax we use for CiC is
(given as a pure type system [Barendregt 1991]):

(sort) s ::= Kind | Kscm | Ext
(ptm) ϕ ::= s | x | λx :ϕ.ϕ | ϕ ϕ | Πx :ϕ.ϕ

| Ind(x :ϕ){~ϕ} | Ctor (i, ϕ) | Elim[ϕ](ϕ){~ϕ}

x is a variable; ϕ1 ϕ2 is a function application; λx :ϕ1. ϕ2 is a function with argument x
of type ϕ1 and body ϕ2; Πx :ϕ1. ϕ2 is the type of a function taking an argument of type
ϕ1 and returning a value of type ϕ2. This is called a dependent product type and subsumes
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both the usual function type ϕ1 → ϕ2 and the universal quantifier ∀x :ϕ1.ϕ2. When the
bound variable x does not occur in ϕ2, it can be abbreviated ϕ1 → ϕ2.

The forms Ind, Ctor, and Elim, allow to resp. define, construct, and analyze inductive
definitions. Without syntactic sweetener, the definition of Nat above becomes:

Nat = Ind(Nat :Kind){Nat,Nat→ Nat}
zero = Ctor (0,Nat)
succ = Ctor (1,Nat)

The Ind form defines an inductive type by listing the type of each of its n constructors,
much like algebraic data types (except for a strict positivity requirement to make sure the
definition is truly inductive). Ctor (i, ϕ) is the ith constructor of the inductive type ϕ.
Elim[ϕ1](ϕ2){~ϕ} is the elimination constructs which analyzes its ϕ2 argument to decide
which of its ~ϕ branches to evaluate; ϕ1 describes the return type, which may depend on ϕ2.
The three builtin constants are the following: Kind is the kind of all inductively defined
data, Kscm is the type of Kind, and Ext is the type of Kscm. You can safely ignore Ext,
and even Kscm is only used infrequently.

In the remainder of this paper, we will generally use the more familiar Coq-style nota-
tions or we will even sometimes abuse the BNF notation to informally define an inductive
definition. We will, however, retain the Π notation, which can generally be read as a “for
all” quantifier.

We can also define propositions such as ordering on numbers:

Inductive ≤ : Nat→ Nat→ Kind
:= le n : Πn :Nat. n ≤ n
| le s : Πn,m :Nat. n ≤ m→ n ≤ succ m

n1 < n2 ≡ succ n1 ≤ n2

Figure 4 shows some definitions to manipulate region types and unordered lists which we
use later on in the typing rules. Note that those definitions often drop some arguments,
such as the k argument to = or ∈ because Coq can infer them and provide them implicitly.
upd takes a function ϕ taking an argument of type Nat and returns a function equal to it,
except at point nwhere it now returns ϕ′ instead. The predicates x ∈ l and l1 ∼ l2 are used
to lookup and reorder order-insensitive lists. We can easily prove that ∼ is commutative,
that Pick x l1 l2 → l2 ∼ x :: l1, and that x ∈ l2 → ∃l1.Pick x l1 l2.

CiC has been shown to be strongly normalizing [Werner 1994], hence the corresponding
logic is consistent. It is supported by the Coq proof assistant [Huet et al. 2000], which we
used to experiment with a prototype of the system presented in this paper.

3.5 λH

Shao et al. [2002] presented a programming language that can represent and manipulate
arbitrarily complex propositions and proofs, by using CiC as their type language. More
specifically, λH types are CiC terms, and hence CiC types are λH kinds. Figure 5 shows
part of the syntax of the language in BNF notation. But this is deceptive: the types shown
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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(types) σ ::= t | snat n | σ → σ | tup n ϕ | ∀t :κ.σ | ∃t :κ.σ

(functions) f ::= Λt :κ.f | λx :σ.e
(values) v ::= x | f | c | (v, ..., v) | 〈ϕ, v〉
(terms) e ::= v(v) | halt v | let x = sel[P ] v.v in e | let x = v[ϕ] in e

| let 〈t, x〉 = open v in e | let x = cast[P ] v in e

Fig. 5. Syntax of the λH language.

are only those of kind Ω, and in reality these are defined as a CiC inductive type:

Inductive Ω : Kind := snat : Nat→ Ω
| tup : Nat→ (Nat→ Ω)→ Ω
| → : Ω → Ω → Ω
| ∀ : Πk :Kind.(k → Ω)→ Ω
| ∃ : Πk :Kind.(k → Ω)→ Ω

The λH language is not dependently typed: it keeps the usual phase distinction between
types and terms, and hence type checking is decidable even in the presence of side-effects
and non termination. But it gets a reasoning power comparable to dependently typed lan-
guages by using singleton types: the type Nat 3 has only one member, which is the natural
number 3. This amounts to lifting values to the level of types. The power of such a
language is illustrated in [League and Monnier 2006] where it is used to encode sophis-
ticated OO programming features. A variant of λH is now available as an extension of
OCaml [Fogarty et al. 2007].

4. TYPED REGIONS

Our new system of typed regions can be thought of as a hybrid between alias-types [Walker
and Morrisett 2000] and the calculus of capabilities [Crary et al. 1999] supplemented with
the calculus of inductive constructions (CiC), similarly to λH [Shao et al. 2002]. Where
alias-types rely on a linear map of live locations’s types and the calculus of capabilities
relies on a linear set of live regions, we rely on a linear map of regions’s types.

In a typical region calculus, the type of the object reachable from a pointer (its target) is
entirely given by the type of the pointer. In contrast, in the alias-types system, the type of
the pointer does not provide any direct information about the type of the target; instead, the
target’s type is kept in a linearly managed type map indexed by the pointer’s type, which is
the singleton type holding the object’s location. Our new type system mixes the two, such
that the pointer’s type holds both the location and some information (called the intended
type) about the object to which it points, while the remaining information is kept in a map
of regions’s types. The type of a region is a function that maps an object’s location and its
intended type to its actual type.

Just like in λH , we use CiC as our type language. So in our language, CiC terms are
types and CiC types are kinds. Since in CiC propositions and predicates are encoded as
types and proofs as terms, that means that in our typed regions system, we can encode
predicates as kinds and proofs as types. While CiC is a dependently typed calculus, typed
regions intend to preserve a clear phase distinction between types and values, so it is clear
that all proof manipulation is done at compile time only.
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(sort) s ::= Kind | Kscm | Ext
(ptm) ϕ, τ, κ, P ::= s | x | λx :ϕ.ϕ | ϕ ϕ | Πx :ϕ.ϕ

| Ind(x :ϕ){~ϕ} | Ctor (i, ϕ) | Elim[ϕ](ϕ){~ϕ}
(memory) M ::= • |M,ν 7→ {n0 7→ v0, ..., ni 7→ vi}
(heap type) Ψ ::= • | Ψ, ν 7→ {n0 7→ τ0, ..., ni 7→ τi}

(kind env) ∆ ::= • |∆, t :κ
(type env) Γ ::= • | Γ, x :σ
(region env) Θ ::= • | Θ⊕ ρ 7→(ϕ, n)

(regions) ρ ::= r | ν
(types) σ ::= t | snat n | tup n ϕ | ∀t :κ.σ | ∃t :κ.σ | τ at ρ.n | {Θ}(~σ)→ 0

(functions) f ::= Λt :κ.f | λ{Θ}(Γ).e
(values) v ::= x | f | c | (v, ..., v)ϕ | 〈ϕ, v〉 | ν.n
(terms) e ::= v(~v) | halt v | let x = sel[P ] v.v in e | let x = v[ϕ] in e

| let 〈t, x〉 = open v in e | let x = cast[P ] v in e
| let r = newrgn ϕ in e | freergn ρ; e
| let x = put[ρ, τ ] v in e | let x = get[P ] v in e
| set[ϕ] v := v; e | cast[P ] Θ ∼ Θ′; e | cast[P ] ρ 7→ ϕ; e

(prog) p ::= fix x0 = f0 · · · xn = fn in e

Fig. 6. Syntax of the language.

4.1 The language

The syntax of our language is shown in Fig. 6. The language uses continuation passing
style. M,Ψ,Γ,∆,Θ are environments used in the typing rules and operational semantics.
We also use the following syntactic sugar: we sometimes write f [ϕ0, ..., ϕn](~v) instead
of let f0 = f [ϕ0] in ...let fn = fn−1[ϕn] in fn(~v) and we sometimes directly use v[ϕ]
where a value is expected instead of using an explicit let x = v[ϕ] in ...x.... Values include:
c the integer constant of singleton type snat c;
(v0, ..., vn−1)ϕ a tuple of type tup n ϕ;
Λt :κ.v a type abstraction of type ∀t :κ.σ;
〈ϕ, v〉 an existential package of type ∃t :κ.σ;
ν.n a pointer of type τ at ν.n to the nth object of region ν;
λ{Θ}(Γ).e a function of type {Θ}(~σ)→ 0; Γ is the list of arguments and e the body;

Θ lists the regions used by the function, along with their type and size;

The terms do the following:
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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v(~v) make a tail-call to function v;
halt v halt the machine, returning v as the result;
sel[P ] v1.v2 select field v2 from tuple v1; P is a proof that this field exists;
v[ϕ] an instantiation of type abstraction v with type ϕ;
open v open up an existential package;
cast[P ] v change the type of v according to P ;
newrgn ϕ allocate a new region of type ϕ;
freergn ρ; e free the region ρ;
put[ρ, τ ] v allocate object v of intended type τ in region ρ;
get[P ] v fetch the object pointed to by v; P is a proof that the object exists;
set[ϕ] v1 := v2; e strong update; assign v2 into location v1 ad change its type to ϕ;
cast[P ] ρ 7→ ϕ; e set the type of region ρ to ϕ; P proves ϕ is a valid replacement;
cast[P ] Θ ∼ Θ′; e reorder regions in Θ; P proves that Θ′ is a valid reordering;
fix defs in e definition of mutually recursive functions defs.

The language is similar to the simple region calculus presented before. The main differ-
ences are the following:

—The type language is CiC. The kinds such as Ω (the kind of types σ) and R (the kind
of regions ρ) along with the basic type constructors of σ are now defined directly as
inductive definitions in CiC(see next page).

—The region environment Θ now contains not only a list of live regions, but a map from
live regions to their type ϕ and size n. The type ϕ is a CiC function that maps the index
of a location and its intended type to the actual type of that location.

—Pointer types have the form τ at ρ.n rather than just σ at ρ, where n is the offset inside
the region. Such a pointer points to an object of intended type τ but whose actual type
can only be discovered by an indirection through the region’s type: the target’s type is
ϕ n τ where Θ(ρ) = (ϕ, n).

—Just as before, a value ν.n has type (Ψ(ν.n)) at ν.n but Ψ(ν.n) is an intended type and
can be of any kind rather than only Ω. E.g. we will show examples in Sec. 5 where
we use kinds such as Ω × Ω where the intended type is a pair of types, Unit where
the intended type can only be the constant (), and an inductively defined Ωτ where the
intended type can be any expression representing some source-level type.

—The kind of a region now takes the form R κwhere κ specifies the kind of intended types
in this region. Given a region ρ of kind R κ and a reference of type τ at ρ.n then τ has
to have kind κ, and the region’s type function ϕ will have kind Nat → κ → Ω. The
definition of R, at, and RDesc in Fig. 7 shows how these rules are enforced.

—put takes an additional parameter τ and returns a pointer of type τ at ρ.n after checking
that v :ϕ n τ .

—set is a strong update that can change the type of the location to ϕ which has kind
κ → Ω. This type needs to be provided because there are many valid choices and they
are not all equivalent.

—newrgn now takes a parameter ϕ which is the initial type of the region.
—We add a cast operator to replace the type of a value with another equivalent one: CIC’s

native notion of equivalence is intentional, so it does not know that 2+x is extensionally
equal to x + 2, even though we can easily write a proof that 2 + x = x + 2. The cast
operator allows us to provide such proofs to explain to the type-checker why a piece of
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code is correct. We also add 2 cast instructions to manipulate the list of regions: one to
simply reorder them, and another to change the type of a particular region with another
one that is observationally equal.

—get is annotated with a proof that the location is indeed valid.

We have decided to manipulate whole objects rather than words and not to split allo-
cation from initialization. It is easy to change the language to provide alloc, load, and
store instead of put, get, and set, but the typing rules become more verbose. Our code is
assumed to live outside of the heap.

The definitions of ρ, Θ, and σ in Fig. 6 are sloppy. In reality those categories are defined
directly in the CiC language as inductive definitions (contrary to the other categories which
are either part of the CIC’s own definition such as s, ϕ, and ∆, or are outside of CIC).
Programs can create their own such inductive definitions for example to manipulate source-
level types, as is done in example 6.1. Inductive definitions are more precise than BNF
definitions. In a sense, they include the formation rule along with the syntax. Here are
their real definitions in CiC, where with is used for mutually recursive definitions:

Inductive R (k :Kind) : Kind := ν : Nat→ R k
Inductive Ω : Kind := snat : Nat→ Ω

| tup : Nat→ (Nat→ Ω)→ Ω
| at : Πk :Kind.k → R k → Nat→ Ω
| ∀ : Πk :Kind.(k → Ω)→ Ω
| ∃ : Πk :Kind.(k → Ω)→ Ω
| → : REnv→ List Ω → Ω

with RDesc : Kind := RD : Πk :Kind.R k → ((Nat→ k → Ω) ∧ Nat)→ RDesc
with REnv : Kind := List RDesc
Notation “r 7→ (ϕ, n)” := (RD r (ϕ, n))

Fig. 7. Formal definition of Ω, R and REnv.

Notice how the case for at enforces that the kind of τ in τ at ρ.n is compatible with the
kind of region ρ. Notice also that we do not write the k argument in (RD r ϕ n) because
Coq can trivially infer it from the other arguments. Instead of a normal integer type, we
use a singleton type for our natural numbers. We can then define our integer type as:

Definition int := ∃ (λn :Nat.snat n)

4.2 Semantics

The machine state is defined as the pair (M ; e) of a memory state and an expression.
Figure 8 shows the operational small step semantics. The rules are straightforward, except
maybe for the side condition on the rule for put which basically just forces sequential
allocation in the region. A real implementation would probably keep track explicitly in M
of the size of each region.

Although M is a finite two-dimensional map that is first indexed by regions and then
by locations, we liberally abuse the notation M(ν.n) which really means M(ν)(n) and
presumes that ν ∈ Dom(M) and n ∈ Dom(M(ν)). The same is true for M,ν.n 7→ v
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(M ; (λ{Θ}(−−→x :σ).e)(~v)) =⇒ (M ; e[~v/~x])
(M ; let x = sel[P ] (v1, ..., vn)ϕ.ie in ) =⇒ (M ; e[vi/x])

(M ; let x = (Λt :κ.v)[ϕ] in e) =⇒ (M ; e[v[ϕ/t]/x])

(M ; let 〈t, x〉 = open 〈ϕ, v〉 in e) =⇒ (M ; e[ϕ, v/t, x])

(M ; let x = cast[P ] v in e) =⇒ (M ; e[v/x])
(M ; let r = newrgn ϕ in e) =⇒ (M,ν 7→ {}; e[ν/r]) where ν is fresh

(M,ν 7→ {...}; freergn ν; e) =⇒ (M ; e)

(M ; let x = put[ν, τ ] v in e) =⇒ (M,ν.n 7→ v; e[ν.n/x])
where ν.n 6∈ Dom(M) ∧ ν.n−1 ∈ Dom(M)

(M ; let x = get[P ] ν.n in e) =⇒ (M ; e[M(ν.n)/x])
(M ; set[ϕ] ν.n := v; e) =⇒ (M,ν.n 7→ v; e)
(M ; cast[P ] ; e) =⇒ (M ; e)

Fig. 8. Operational semantics of the language.

` Ψ memory type Ψ is well-formed
` Θ region type env Θ is well-formed
Ψ; Θ `M memory M is well formed in Ψ and Θ
` (M ; e) machine state is well-formed

` •
` Ψ • `CIC ν : R κ ∀ i. • `CIC ϕi : κ
` Ψ, ν 7→ {0 7→ ϕ0, . . . , n 7→ ϕn}

` Θ ν 6∈ Dom(Θ)
` Θ⊕ ν 7→(ϕ, n)

Ψ; Θ `M ∀i. if i > n then ν.i 6∈ Dom(Ψ) else Ψ; •; • ` vi : ϕ i (Ψ(ν.i))
Ψ; Θ⊕ ν 7→ (ϕ, n+1) `M,ν 7→ {0 7→ v0, . . . , n 7→ vn}

Ψ; • ` •
Ψ; Θ `M ` Θ ` Ψ Ψ; •; Θ; • ` e

` (M ; e)

Fig. 9. Environment formation rules.

which presumes that ν ∈ Dom(M) and adds a binding n 7→ v to M(ν). Similar abuse is
used in the formation rules below on Ψ.

The formation rules for environments are given in Fig. 9 together with the definition of
a well-formed machine state ` (M ; e). These describe the global invariants on which the
system relies for soundness and explains how the various maps are linked together, so it is
the key to understanding why the type system is sound. The judgment ∆ `CIC ϕ : κ used
in those rules, taken directly from CiC and not shown here, states that ϕ has kind κ in
environment ∆. The judgment ` Ψ checks that each intended type has a kind consistent
with its region. The judgment ` Θ checks that each region has only one binding in Θ
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Ψ; ∆; Γ ` v : σ value v has type σ
Ψ; ∆; Γ ` op : σ pure operation op returns a value of type σ

Γ(x) = σ

Ψ; ∆; Γ ` x : σ Ψ; ∆; Γ ` c : snat c
Ψ; ∆; Γ ` v : σ1 ∆ `CIC P : σ1 = σ2

Ψ; ∆; Γ ` cast[P ] v : σ2

∀i Ψ; ∆; Γ ` vi : ϕ i
Ψ; ∆; Γ ` (v0, ..., vn−1)ϕ : tup n ϕ

Ψ; ∆; Γ ` v1 : tup n ϕ Ψ; ∆; Γ ` v2 : snat m ∆ `CIC P : m < n

Ψ; ∆; Γ ` sel[P ] v1.v2 : ϕ i

ν 6∈ Dom(Ψ)
∨
τ = Ψ(ν.n)

Ψ; ∆; Γ ` ν.n : τ at ν.n
∀ i ∆ `CIC σi : Ω Ψ; ∆; Θ; Γ,−−→x :σ ` e

Ψ; ∆; Γ ` λ{Θ}(−−→x :σ).e : {Θ}(~σ)→ 0

Ψ; ∆, t :κ; Γ ` v : σ
Ψ; ∆; Γ ` Λt :κ.v : ∀t :κ.σ

∆ `CIC ϕ : κ Ψ; ∆; Γ ` v : σ[ϕ/t]
Ψ; ∆; Γ ` 〈ϕ, v〉 : ∃t :κ.σ

Ψ; ∆; Γ ` v : ∀t :κ.σ ∆ `CIC ϕ : κ
Ψ; ∆; Γ ` v[ϕ] : σ[ϕ/t]

Fig. 10. Static semantics of values and pure operations.

(a linearity constraint). This is important because in order to be able to free region ρ or
to change its type, we need to be sure that we do not refer to the same physical region
somewhere else under some other name. Note that the construction rule for RDesc already
ensures that the type of each region is consistent with its kind. The judgment Ψ; Θ `M is
the one that expresses the invariant that needs to hold so that intended types, actual types,
and region types are all consistent with one another. It checks that the actual type of each
object in M indeed matches the result of applying to its intended type (stored in Ψ) the
corresponding region’s type (stored in Θ). In a simple region system, the well-formedness
of M is sometimes written as ` M : Ψ so in our case the judgment Ψ; Θ ` M could
be thought of as ` M : Θ(Ψ) where Θ is taken as a function that interprets the intended
memory type Ψ and returns an actual memory type. An important detail about the rule is
that it verifies that Ψ has no binding for not-yet-allocated locations. This is needed because
the intended type is immutable, so Ψ can only be extended and none of its existing bindings
can be modified.

Figure 11 shows the formation rules for terms. We do not show any formation rules
for types because well-formedness of types is automatically enforced by CiC’s own typing
rules. In the rule for pointer values ν.n, dangling pointers to dead regions can have any type
(because the rule for get prevents dereferencing them), but pointers past the allocation line
of a region are disallowed by checking that they have a binding in Ψ. This way, pointers
are live iff their region is live. Note that typed regions only have an impact on the typing of
references and function values: any other standard types such as sum types or existential
packages can be added without any particular difficulty.
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Ψ; ∆; Θ; Γ ` e expression e is well-formed

Ψ; ∆; Γ ` v : {Θ}(~σ)→ 0 Ψ; ∆; Γ ` vi : σi
Ψ; ∆; Θ; Γ ` v(~v)

Ψ; ∆; •; Γ ` v : int
Ψ; ∆; •; Γ ` halt v

Ψ; ∆; Γ ` op : σ Ψ; ∆; Θ; Γ, x :σ ` e
Ψ; ∆; Θ; Γ ` let x = op in e

Ψ; ∆; Γ ` v : ∃t :κ.σ Ψ; ∆, t :κ; Θ; Γ, x :σ ` e
Ψ; ∆; Θ; Γ ` let 〈t, x〉 = open v in e

∆ `CIC ϕ : Nat→ κ→ Ω
Ψ; ∆, r :R κ; Θ⊕ r 7→(ϕ, 0); Γ ` e
Ψ; ∆; Θ; Γ ` let r = newrgn ϕ in e

Ψ; ∆; Θ; Γ ` e
Ψ; ∆; Θ⊕ ρ 7→(ϕ, n); Γ ` freergn ρ; e

∆ `CIC ρ : R κ ∆ `CIC τ : κ Ψ; ∆; Γ ` v : ϕ n τ
Ψ; ∆; Θ⊕ ρ 7→(ϕ, n+1); Γ, x :τ at ρ.n ` e

Ψ; ∆; Θ⊕ ρ 7→(ϕ, n); Γ ` let x = put[ρ, τ ] v in e

Ψ; ∆; Θ; Γ, x :ϕ n τ ` e Ψ; ∆; Γ ` v : τ at ρ.n ∆ `CIC P : ρ 7→ (ϕ,m) ∈ Θ
Ψ; ∆; Θ; Γ ` let x = get[P ] v in e

Ψ; ∆; Θ⊕ ρ 7→(ϕ, n); Γ ` v : τ at ρ.m
Ψ; ∆; Θ⊕ ρ 7→(ϕ, n); Γ ` v′ : ϕ′ τ

Ψ; ∆; Θ⊕ ρ 7→(upd ϕ m ϕ′, n); Γ ` e
∆ `CIC ρ : R κ ∆ `CIC ϕ′ : κ→ Ω

Ψ; ∆; Θ⊕ ρ 7→(ϕ, n); Γ ` set[ϕ′] v := v′; e

∆ `CIC P : Πi :Nat.Πt :κ. i < n→ ϕ i t = ϕ′ i t
Ψ; ∆; Θ⊕ ρ 7→(ϕ′, n); Γ ` e ∆ `CIC ρ : R κ

Ψ; ∆; Θ⊕ ρ 7→(ϕ, n); Γ ` cast[P ] ρ 7→ ϕ′; e
Ψ; ∆; Θ′; Γ ` e ∆ `CIC P : Θ ∼ Θ′

Ψ; ∆; Θ; Γ ` cast[P ] Θ ∼ Θ′; e

Fig. 11. Static semantics of the terms.

The rule for put checks that the region is live, with appropriate type, and updates the
size. The rule for function calls checks that the arguments have the proper type and also
that the current region environment is equivalent to the one expected by the function. The
rule for cast checks that the region is live and that P indeed proves that the new type σ′

is equivalent to the old type for all the live locations and for all possible intended types. It
does not pay attention to which intended types are actually used at those locations because
those intended types are, in general, not known yet when type-checking. The rule for
freergn checks that the region is live before and that the rest of the code does not use the
region any more. The rule for the strong set does not care about the actual type before
assignment, since it will overwrite the location. Instead it just checks that the pointer is
live and that the new value matches the new type.

The rule for get checks that P is a proof of ρ 7→ (ϕ,m) ∈ Θ which means that ρ is
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live and has type ϕ. When ρ appears directly in Θ, the type checker can easily provide P
for us, in which case we could skip the annotation altogether, but the use of P makes it
possible to handle other cases as well. It can be used for example when part of the heap is
abstracted in a variable ε (as in the example in Sec. 3.3) and ρ is known to exist somewhere
in ε. Section 5.7 will show how to use it to handle cases where a region ρ can refer to either
ρ1 or ρ2 and it is not known statically which.

4.3 Properties of the language

We state here a few important properties of the language. The full proofs for an earlier
version of this language can be found in [Monnier 2003]. Since our type language is CiC,
we know it is strongly normalizing and confluent.

Lemma 4.1 (Type Preservation)
If ` (M ; e) and (M ; e) =⇒ (M ′; e′), then ` (M ′; e′).

Lemma 4.2 (Progress)
If ` (M ; e), either e = halt v or (M ; e) =⇒ (M ′; e′).

Lemma 4.3 (Complete Collection)
If ` (M ; e) and (M ; e) =⇒∗ (M ′; halt v) then M ′ = •.

PROOF. Type preservation implies that ` (M ′; halt v), from which we immediately get
that Θ′ = • and thus M ′ = •.

For soundness reasons, it is necessary that every region in Θ be distinct; yet, this is not
enforced anywhere in the typing rule of function definitions. Instead it is enforced by con-
struction: the condition is verified in the initial state (by the premise ` Θ in the definition
of ` (M ; e)) and is then preserved by the typing rule of each operation. So while you can
write and type check functions of the form Λr.λ{r, r}(x).e, you cannot call them, except
of course from another similarly ill-defined function.

5. EXAMPLES

To get an idea of how the language is used, here are some examples of how you can
simulate the behavior of other systems in this language. In the previous section, we have
kept our language simple and we will need to use some minor extensions in some of those
examples.

5.1 Programming with λH
Before getting into details of how to use the region types, we present here how the pure part
of the language (comparable to λH ) is used. First, we can define a boolean kind. Rather
than just use true and false constants, we use a disjunction so that each one of the two
alternatives carries with it a proof of the property represented by the boolean’s value:

type Bool (k : Kind) = k ∨ ¬k

Then we can define the corresponding singleton boolean type represented by an underlying
integer of value 0 or 1:

type sbool (k : Kind, b : Bool k) = snat (match b with left ⇒ 1 | right ⇒ 0)
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The corresponding non-singleton boolean type can be defined as follows:

type bool (k :Kind) = ∃b :Bool k.sbool b

In λH we can then try to encode a conditional expression via a jump table. Here is a first
attempt to write an if that does refinement in the sense that the type of each branch is
slightly different, reflecting the fact that when it is taken, we learn something about the
value of b:

fun if[k :Kind, t : Ω](b :bool k, x1 :∀ :k.t, x2 :∀ :¬k.t) : t =
let 〈bt, sb〉 = open b in
sel[P ] (x2, x1)ϕ.sb

But this code is idealized and we need to flesh it out to make it correct. At the very least
we need to fill in ϕ and P . The type of (x2, x1) can be:

(x2, x1) : tup 2 (λi.∀ : (match i with 0⇒ ¬k | ⇒ k).t)

So ϕ can be (λi.∀ : (match i with 0⇒ ¬k | ⇒ k).t). As for P :

P ≡ match bt with left ⇒ le n | right ⇒ le s le n
: (match bt with left ⇒ 1 | right ⇒ 0) < 2

Now even with these annotations, the above definition of if fails to give us the expected
return type: the return type of the function is the type of the value extracted by sel, i.e. it’s
ϕ applied to (match bt with left ⇒ 1 | right ⇒ 0):

∀ : (match (match bt with left ⇒ 1 | right ⇒ 0) with 0⇒ ¬k | ⇒ k).t

whereas we wanted just t. So we need to add a type application with argument:

match bt with left p⇒ p | right p⇒ p
: match (match bt with left ⇒ 1 | right ⇒ 0) with 0⇒ ¬k | ⇒ k

Additionally, the typed region calculus uses continuation passing and requires region an-
notations on functions, so the full code is:

fun if[k :Kind, h :REnv]{h}
(b :bool k, x1 :∀ :k.{h}()→ 0, x2 :∀ :¬k.{h}()→ 0) =

let 〈bt, sb〉 = open b in
let type P = match bt with left ⇒ le n | right ⇒ le s le n in
let type ϕ = (λi.∀ : (match i with 0⇒ ¬k | ⇒ k).t) in
let x = sel[P ] (x2, x1)ϕ.sb in
x[match bt with left p⇒ p | right p⇒ p]()

Notice how we use the type parameter h to abstract over an arbitrary set of regions and how
the type of if expresses the fact that it neither creates nor frees any region and neither does
it allocate any new object, since any one of those operations would have required the heap
h to be different in the argument to if than in the argument to the possible continuations
x1 and x2.

5.2 Unsound region aliasing

Our system shares with alias types the dubious quality of providing the sometimes confus-
ing ability to write apparently unsafe code. In the case of alias types, the typical example is
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that the language does not prevent you from creating dangling pointers, widely perceived
as dangerous: the trick there is that the safety of the alias types system relies on checking
the pointer indirections themselves, making dangling pointers perfectly safe (tho mostly
useless).

So to clear things up, we will start by presenting a similarly dangerous but legal piece of
code, which should help the reader get a better understanding of how the soundness of the
language is guaranteed. The example deals with the problem of region aliasing, where one
of the aliases is used to free the region while the other aliases may then be used to access
the region after it has been freed:

let r1 = newrgn ϕ in
let x = put[r1, int] 1 in
let f = Λr2 :R κ.λ{r1 7→ (ϕ, 1), r2 7→ (ϕ, 1)}().freergn r1; freergn r2; halt x in
...

In this example, we first create a region whose handle is stored in the type variable r1.
Then we define a function which expects another region handle r2 and then frees both r1
and r2. Provided that we correctly choose ϕ, and κ, the above code is perfectly valid.
This may give the impression that we can free r1 twice if we replace ... with f [r1](), thus
making r2 an alias for r1; but such a call would be rejected by our type system:

—The environment Θ starts empty, and after the newrgn it contains just {r1 7→ (ϕ, 0)}.
—After the put, Θ becomes {r1 7→ (ϕ, 1)}.
—After the function definition, Θ stays unchanged since such pure variable bindings have

no effect on the store.
—So when we get to f [r1]() the environment Θ is still {r1 7→ (ϕ, 1)}, but the typing rules

require it to be equal to the environment specified for the function, i.e. equal to {r1 7→
(ϕ, 1), r2 7→ (ϕ, 1)} where r1 is substituted for r2 (i.e. {r1 7→ (ϕ, 1), r1 7→ (ϕ, 1)}).
The constraint is clearly not satisfied.

Notice also that even after freeing r1 and r2, both r1 and r2 are still valid types which hap-
pen to refer to regions which are not live anymore (i.e. they are dangling region handles);
similarly, the pointer x that pointed to the first element of the region r1 and is thus now
dangling as well, is still a valid value. All those dangling elements are perfectly harmless,
because the typing rule of every operation that accesses a region first looks up Θ to check
the liveness of that region.

5.3 Weak update

The set operation as defined is very restrictive: it can only apply to a reference to an object
in the region that is at the top of Θ and it always changes the type of that region. Some
readers might have expected to also find a weak update operation in our language, with a
typing rule such as:

∆ `CIC P : ρ 7→ (ϕ,m) ∈ Θ
Ψ; ∆; Γ ` v : τ at ρ.n Ψ; ∆; Γ ` v′ : ϕ n τ Ψ; ∆; Θ; Γ ` e

Ψ; ∆; Θ; Γ ` set[P ] v := v′; e

where P is just a proof that the relevant region is alive and has type ϕ. But it turns out
that this is unnecessary since we can already define the weak update in the language by
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(* Definition of the existential quantifier. *)
Inductive Ex (k :Kind) (P :k → Kind) : Kind := ex intro : Πx.P x→ Ex P.
Notation “∃x, P” := Ex (λx.P ).

(* Proof that x ∈ l implies ∃l′.Pick x l′ l. *)
Fixpoint ItoP k x (l :List k) (P : x ∈ l) {struct P} : ∃l′,Pick x l′ l :=

match P in ∈ l return Ex (λl′.Pick x l′ l) with
| INbase l⇒ ex intro (λl′.Pick x l′ (x :: l)) l (Pbase x l)
| INskip l y P ′ ⇒
match ItoP P ′ with
| ex intro l′ PP ′ ⇒ ex intro (λl′.Pick x l′ (y :: l)) (y :: l′) (Pskip y PP ′).

(* Proof that Pick x l′ l implies l ∼ x :: l′. *)
Definition PickULeq k x (l l′ :List k) (P :Pick x l′ l) : l ∼ x :: l′ :=

uleq cons P (Pbase x l′) (uleq refl l′).

(* Proof that ∼ (also known as ULeq) is commutative. *)
Fixpoint uleq comm k (l1 l2 :List k) (P : l1 ∼ l2) {struct P} : l2 ∼ l1 :=

match P in l1 ∼ l2 return l2 ∼ l1 with
| uleq refl l⇒ uleq refl l
| uleq cons l1 l2 x l′1 l

′
2 P1 P2 P

′ ⇒ uleq cons P2 P1 (uleq comm P ′).

Fig. 12. Auxiliary proofs

combining the strong update with a healthy dose of casts:

set[P ] v := v′; e '

cast[P1] Θ ∼ Θ′ ⊕ ρ 7→ (ϕ,m);
set[ϕ n] v := v′;
cast[P2] ρ 7→ ϕ;
cast[P3] Θ′ ⊕ ρ 7→ (ϕ,m) ∼ Θ;
e

The first cast brings the relevant region ρ to the front, the second resets the region’s
type that was just changed by set, and the last brings ρ back to its original position. The
additional elements ρ, ϕ, m, Θ, and n can be extracted from the type of P and v while the
remaining P1, P2, P3, and Θ′ are boilerplate CiC expressions parameterized by P , ρ, ϕ, n,
and m. For example, from the proof P that ρ is in Θ, we can build P1 and P3 using some
auxiliary proofs shown in Fig. 12. The proof P2 is a bit longer because it needs to reason
about equality and its negation over Nat, so it is not shown here:

P1 : Θ ∼ Θ′ ⊕ ρ 7→ (ϕ,m) = PickULeq (ex2 (ItoP P ))
P3 : Θ′ ⊕ ρ 7→ (ϕ,m) ∼ Θ = uleq comm P1

5.4 Simple regions

Typed regions are a superset of traditional regions. Traditional regions are just regions
where the actual type is always identical to the intended type, i.e. the regions’s type is a
kind of identity function. If we define idr to be the function λn.λt.t, then we can encode
simple region kinds and types along the following lines, where p·q stands for the translation
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of simple region constructs:
pRq = R Ω
pσ at ρq = ∃n.pσq at ρ.n
pΘ⊕ ρq = pΘq ⊕ ρ 7→ (idr, nρ)
p{Θ}(~σ)→ 0q = ∀−−−−→nρ :Nat.{pΘq}(p~σq)→ 0

This only shows the types that are affected. The two main changes are first that references
are wrapped in existential packages to hide the precise location to which they point, and
second that in order to keep track of the region size information, we have to add one type
argument per region to every function.

Correspondingly, at the level of terms, every operation using references needs to (un)pack
the existential package, and every function and function call has to handle the additional
type arguments:

plet r = newrgn in eq = let r = newrgn idr in peq

pfreergn ρ; eq = freergn ρ; peq

plet x = put[ρ] v in eq = let x′ = put[ρ, σ] pvq in let x = 〈nρ, x′〉 in peq

plet x = get v in eq = let 〈n, x′〉 = open pvq in let x = get[P ] x′ in peq

pset v := v′; eq = let 〈n, x〉 = open pvq in set[P ] x := pv′
q; peq

pλ{Θ}(Γ).eq = Λ
−−−−→
nρ :Nat.λ{pΘq}(pΓq).peq

pv(~v)q = pvq[ ~nρ](p~vq)

Note that the set we use is really the weak update described in example 5.3. The proofs
P we need for both get and set are the same: they just give the position of ρ in Θ so as
to show it is still alive. Given the typing derivation in a hypothetical simple regions source
language, those proofs are trivial to build. Similarly, keeping track of the allocation limit
n is easy since each function is actually a basic block with a fixed number of allocations in
it.

The example from Sec. 3.2:

mktree[r :R, t :Ω] {r} (x : t, k : {r}((tree t) at r)→ 0)
= let y = put[r] (Node x) in

set y := Branch y y; k(y)

becomes:

mktree[n, r :R Ω, t :Ω]
{r 7→(idr, n)}
(x : t, k : ∀[n]{r 7→(idr, n)}(∃m :Nat.(tree t) at r.m)→ 0)

= let y′ = put[r, tree t] (Node x) in
let y = 〈n, y′〉 in
let 〈n, y′〉 = open y in
set[P ] y′ := Branch y y; k[n+1](y)

Where the open can be trivially eliminated.

5.5 Scanning regions

Creating a new reference out of a reference to an adjacent object in order to scan a region
of memory can be done safely in region systems since liveness is a property of regions
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rather than objects. But in traditional region systems, the new reference cannot be used
because its type can only be of the form ∃t.t at ρ which says that nothing is known about
the object at that location.

In our system of typed regions, the reference created out of a reference to an adjacent
object may have a type apparently just as useless: ∃t.t at ρ.n. But the difference is that
we know that the object at ρ.n will not just have any type t but instead will have a type
of the form ϕ n t. So, as long as the programmer ensures that the region type ϕ gives
enough information, she can carry on the scan. Typically ϕwill force all objects to describe
themselves via some standard header. Section 6.5 shows an example where the region’s
type ϕ enforces that all objects in the region start with a tag indicating what the rest of the
object looks like.

Concretely, to scan regions, we need to add a pointer arithmetic primitive offset to our
language. Also in order to be able to use a sentinel when scanning a region, or in order
to detect references crossing regions, we will want to be able to compare references and
regions. So we will add the following primitives:

let x = offset[P ] v1 v2 in e
let x = rcmp[P ] v ρ in e
let x = v1 < v2 in e

where v1 < v2 does the obvious pointer comparison, rcmp checks if a reference points
into a particular region, and offset does pointer arithmetic, where v1 is a pointer and v2 is
an offset to add to it, so if v1 has value ν.n and v2 has value m, then x will be bound to
ν.(n+m) and t will get bound to the intended type of that location. The typing rules are:

Ψ; ∆; Γ ` v1 : τ at ρ.m1 ∆ `CIC P : 0 ≤ m1+m2 < n ∧ ρ 7→ (ϕ, n) ∈ Θ
Ψ; ∆; Γ ` v2 : snat m2 Ψ; ∆; Θ; Γ, x :∃t.t at ρ.(m1+m2) ` e

Ψ; ∆; Θ; Γ ` let x = offset[P ] v1 v2 in e

Ψ; ∆; Γ ` v : τ at ρ1.n ∆ `CIC P : ρ2 7→ ∈ Θ
Ψ; ∆; Θ; Γ, x :bool ((ρ1 7→ ∈ Θ)→ ρ1 = ρ2) ` e

Ψ; ∆; Θ; Γ ` let x = rcmp[P ] v ρ2 in e

Ψ; ∆; Γ ` v1 : τ1 at ρ.n Ψ; ∆; Γ ` v2 : τ2 at ρ.m
Ψ; ∆; Γ ` v1 < v2 : bool (n < m)

P in offset is a proof that the region is alive and that the resulting location is within its
bounds. We will use this operator in some of the following example code, but only to jump
forward over a single object (with v2 being the constant 1): for less idealized realization
of our system of typed regions, elements of a region may actually have different sizes,
so jumping backward, or jumping in a single step over more than one object may not
always be possible. Also the size of the object over which to jump should then probably
be provided as an additional argument together with a proof that this argument indeed
contains the size of the object.

Of course, often in order to know when to stop scanning, we will want to use a runtime
check against the region’s upper bound. This check will also incidentally give us the proof
we need to pass to offset.
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5.6 Stacks

We can use a typed region to represent a contiguous stack of objects. As the stack grows,
shrinks, and grows again, we clearly need to reuse locations for objects of different types,
and since intended types are immutable, we cannot make much use of intended types. More
specifically, a stack is a region S of kind R Unit where Unit is a kind which has a single
element which we will denote (). A function using such a stack will have the following
shape:

λ[S :R Unit,St :ST,Sp :Nat,Ss :Nat, . . . ]
{S 7→(St, succ Ss)⊕ . . .}

sp : () at S.Sp
ss : () at S.Ss
k :∀[St’ :ST, . . .]{S 7→(λn.if (n < Sp)(St n)(St’ n), succ Ss)⊕ . . .}

(. . .)→ 0
. . .

 .

. . .

The kind of the stack type is defined as ST = Nat → Unit → Ω where the second
argument, of kind Unit, is unused. The type function St, maps the locations in the stack to
their current type. The top of the stack is kept both in the type variable Sp and the term
variable sp. The size of the stack is kept both in the type variable Ss and in the term variable
ss which will be used as a sentinel to detect stack overflow. The type of the continuation k
specifies that the stack S when we return to k has the same type as before for all elements
below Sp, while St’ describes the type of the rest, which can be changed at will.

When pushing a new element on the stack, we need to find the address of the next con-
secutive element in region S, so we use the offset operator presented in Sec. 5.5. Pushing
an object on the stack is done by:

set[λ .σ] sp := v;
let sp’ = offset[P ] sp 1 in
let 〈 , sp〉 = open sp’ in e

where e is the rest of the computation, indicates that we do not care about this argument
(it will always be () anyway), σ is the type of v, and where P is a proof that the stack
is still alive and that we do not overflow it. The proof that the stack is still alive is just
inbase since S is the first region in Θ. The proof that we do not overflow it will require
more work: it could come from an analysis of worst case stack use, or from runtime checks
using ss and the pointer comparison defined earlier:

if (sp < ss)
(λ[p : (Sp < Ss)]{h}().

set[λ .σ] sp := v;
let sp’ = offset[(conj p inbase)] sp 1 in
let 〈 , sp〉 = open sp’ in e)

(λ[ :¬(Sp < Ss)]{h}().
error ”Stack overflow”)

To pop elements off the stack we simply revert to a previously saved value of sp.
Before returning to the continuation k we need to find an appropriate st’, and show that

the current type of S is indeed the one expected by the continuation. This proof will be
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passed to a cast operation just before jumping to k. The first part is trivial since the current
stack type is exactly what we need to pass as st’. The second part requires proving that
λn.if (n < sp)(st n)(st’ n) is equivalent to st’. The type of S at that point will have the
following shape:

st’ = λn.if (n = sp) (λ .σ1)
(if (n = sp+1) (λ .σ2)

(if . . . (st n)))

The proof mainly entails showing that st and st’ (i.e. the old and the new stack types) are
equal w.r.t. locations below sp, which is easy to show since pushing only modifies locations
above sp.

5.6.1 STAL. Morrisett et al. [2002] present a typed assembly language STAL with type
safe stack manipulation primitives. Basically, every function takes a special sp argument
whose type σ is a list of types describing the type of every element in the stack. We can
encode their stack types σ by representing them as objects of type List Ω:

nil ⇒ nil
τ::σ ⇒ cons τ σ
σ1 ◦ σ2 ⇒ append σ1 σ2

ptr(σ) ⇒ () at S.(length σ)

Sp = length σ
St i = nth σ (Sp− (succ i))

In exchange for the additional proof manipulation that we have to use to explain what we’re
doing and which are not neccesary (or even possible) in STAL because it is built into its
type system, we get to use as many stakcs as we want, and we get to use normal references
to point into the stack.

5.7 Region aliases

Looking at example 5.3, one may wonder why we decided to provide a cast operation to
reorder Θ rather than just make the typing rules for set, freergn, put, and cast a bit more
flexible such that the affected region does not need to be the first in Θ. Indeed, the reader
may get the impression that doing so would save us 2 of the 3 casts in the case of weak
updates. But this is only true if it is syntactically obvious where the region ρ is located in
Θ, whereas the code using casts does not have such a restriction: all it requires is a proof
that ρ is somewhere in Θ. This flexibility can be used to encode region aliases.

For example, in a context where Θ = {ρ1 7→ (ϕ1, n1), ρ2 7→ (ϕ2, n2), ρ3 7→ (ϕ3, n3)},
we can have a pointer v of type τ at (ρ,m) together with a proof P that ρ ∈ {ρ1, ρ3}. Even
though we do not know where is ρ in Θ since we do not know whether ρ is ρ1 or ρ3, we
can apply get or (weak) set to v since they only require a proof that ρ 7→ (ϕ, n) ∈ Θ for
some ϕ and n. In the general case, we do not know whether to use ϕ1 and n1 or ϕ2 and
n2, but we can always use:

ϕ = match P with inbase ⇒ ϕ1 | ⇒ ϕ3

n = match P with inbase ⇒ n1 | ⇒ n3

In most cases where such region aliases are used, ϕ1 and ϕ3 are very similar (or even
equal) in which case a different ϕ can be chosen that better reflects that similarity.

If we look at what happens with such region aliases inside the weak set, we see that after
the first cast, the region environment Θ is neither {ρ1 7→ (ϕ1, n1), ρ2 7→ (ϕ2, n2), ρ3 7→
(ϕ3, n3)} nor {ρ1 7→ (ϕ3, n3), ρ2 7→ (ϕ2, n2), ρ3 7→ (ϕ1, n1)}. Instead it’s just Θ′ ⊕
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ρ 7→ (ϕ, n), which illustrates the unusual shape that the Θ environment can take and which
the simplistic BNF syntax in Fig. 6 cannot capture.

5.8 Focus

The Vault language [DeLine and Fähndrich 2001] uses a mix of alias types and traditional
types to provide a powerful user-level language used to write device drivers, where the
type system is used among other things to check the correct ordering of operations such as
open, write, close. They do that by allowing some types to be tracked, meaning that they
behave linearly like alias types. Operations on objects of tracked types can update their
type, so the type system can keep track of their state.

In a subsequent paper [Fähndrich and DeLine 2002], the authors extended the language
with adoption which makes it possible to “untrack” a tracked object so it behaves intuition-
istically, and focus which does the reverse. This allows them to use intuitionistic references
while at the same time being able to temporarily strengthen them to a linear reference, us-
ing the focus construct:

let x = focus e1 in e2

The expression e1 has an intuitionistic type, but while inside e2, the variable x to which
it is bound has a linear type and can thus be modified using strong update. To guarantee
soundness, they impose the restriction that even though strong update can modify the type
of the object referred to by x, its type should be the same at the end of e2 as it was at its
beginning, so the type modification is only temporary. Also any other object in the same
region as e1 is temporarily unavailable.

We can encode something similar. Let’s assume we have a region ρ like the ones used in
the simple regions example above. Its type is idr, i.e. it does not depend on the location of
a given object just as is the case in intuitionistic systems. So references will hide their lo-
cation using an existential wrapper: ∃n.σ at ρ.n. A code equivalent to the focus construct
will then look like:

let 〈n, x〉 = open e1 in e2; cast[P ] ρ 7→ idr ; ...

Where e1 has type ∃n.σ at ρ.n and x has thus type σ at ρ.n. Within e2, strong update can
be used at will on x, but before reaching cast the actual type at location n needs to be reset
to σ. The cast will usually be needed in order to massage the type of ρ which may look
like λi.if (i = n) (λt.t) (λt.t) so P will simply prove that this is equivalent to idr.

Remember that focus had the additional constraint that the operation is scoped and that
other references to ρ could temporarily not be used. In our encoding, the focus operation
does not have to be scoped: we can place the “unfocus” step performed by cast anywhere.
Better yet, we don’t have the constraint that other references can’t be used either. Instead,
our region’s type will simply not be uniform any more, so without knowing the aliasing
relationship of those other references we will not know precisely what is the actual type of
the location they point to. The difference may seem minor, but if the program can recognize
focused objects by putting a special runtime tag on them, then it can easily dynamically
recover the needed aliasing information. A common example of such an operation is when
you do a graph traversal with pointer reversal: the pointer reversal requires a focus opera-
tion, and objects whose pointer is reversed are tagged such that the code can tell at runtime
if the object is being traversed (and is thus currently focused) or not.
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6. GARBAGE COLLECTION

Now that we have shown some basic uses of our system, we will present a more significant
application, which is a generational garbage collector, which will demonstrate how strong
update can be used even in the absence of static information about the existing aliases.

The basic idea of a type-preserving GC, proposed by Wang and Appel [2001], is to layer
a stop&copy collector on top of a region calculus, where the whole heap is placed in a
single region and where the copy function copies the heap from the from region to a new
to region and then frees the from region.

Because the type of the heap contains region annotations which will necessarily be dif-
ferent before copying than after, the copy function cannot just be of type ∀t.t→ t but
instead has to be of the form ∀t.M F t→M T t where F and T are the source and desti-
nation regions, t represents the source level type that should be preserved, and M is a type
function that translates it into its lower-level representation, annotated with details that the
mutator does not care about. E.g. in order to work correctly, the copy routine might require
things like tag bits and mark bits or in case of generational GC it will need to make sure the
mutator obeyed the generation barriers and provides a correct remembered set. All those
added constraints will need to be somehow encoded in M since copy has obviously no
control over t. Let us sketch the types of a type-preserving generational GC.

6.1 Generational GC

Let us assume that the source language whose heap we want to collect only has integers,
immutable pairs, and mutable ref-cells. Let us take a very simple case where we have
3 regions: all the ref-cells go into region R, whereas the pairs are divided between the
nursery Y and the old space O. Since all data is immutable except for ref-cells, we can
take the R regions as a conservative approximation of the remembered-set. We will use
the source-level types for the intended types:

τ ::= int | pair τ τ | ref τ | mu τ | t

To translate those source-level types into their low-level representation (their actual type),
we create a type function M which takes the three regions and the source type as param-
eters: M r o y τ is the low-level representation of the source-level type τ , it will include
extra fields such as a place for forwarding pointers and will encode the generational con-
straint to make sure that no object in O points directly into Y . This constraint will be
obtained by instantiating the o and y arguments of M with the same region O for objects
in the region O.

M r o y (int) ⇒ int
M r o y (ref τ) ⇒ ∃n :Nat.τ at r.n
M r o y (pair τ1 τ2)⇒ ∃x.∃P :x ∈ {o, y}.∃n :Nat.(τ1, τ2) at x.n

The translation of a ref-cell is an intuitionistic reference to a location in region R, as seen
by the use of an existential package to hide the actual location inside R. For the translation
of a pair, we have to express the fact that it can live either in the nursery or in the old region
and we cannot statically tell which, so we use region aliases. The regions’s types while the
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GC [t, ...] {r, o, y} (x : M r o y t, x0 : ∃t.t at r.0, k : ∀[y′]{r, o, y′}(M r o y′ t)→ 0)

= GCcopy[y, o, ...](x : M r o y t,

λ[...]{...}(x′ : M r o o t).
GCredirect[r, o, y, ...](x0 : ∃t.t at r.0,

λ[...]{...}().
freergn y;

let y′ = newrgn in
GCwiden[...](x0, λ[...]{...}().

k[y′](x′))))

Fig. 13. Sketch of the GC

mutator is running are:

R 7→ λn.λt.M R O Y t
O 7→ λn.λ(t1, t2).(M R O O t1)× (M R O O t2)
Y 7→ λn.λ(t1, t2).(M R O Y t1)× (M R O Y t2)

Note how the type of O calls M with both parameters o and y set to O such that those
objects cannot refer to Y , thus enforcing the generation barrier. When the collection of Y
takes place, the GC, starting from the roots, copies objects from Y to O. Once this is done,
it needs to go through the remembered-set R and redirect any reference still pointing to Y .
To make it possible to free Y , the type of R should end up as R 7→ λn.λt.M R O O t, so
as to reflect the fact that no object in Y is reachable from ref-cells in R. The redirection is
done by scanning R and updating each ref-cell at a time. The type of R needs to be kept
up-to-date as this proceeds, of course, recording the progress of the boundary m between
the ref-cells already redirected and the ones left to process:

R 7→ λn.λt.let r = if (m > n) (O) (Y ) in M R O r t

Note how the type of R needs to be updated with each redirection step, requiring a strong
update, even though no static information about which other data in R or O might point to
the same location we are updating.

6.2 Overview of the GC

Figure 13 shows a sketch of the GC function. If you ignore the nesting due to the use of
continuation passing style, you can see that the function does the following:

(1) it takes 3 arguments: a pointer x which is the single root of the heap, a pointer x0 to
the beginning of the region R, and a continuation k;

(2) it first calls GCcopy which copies recursively x from the region Y to the region O;
(3) it then calls GCredirect which traverses the region R and redirects all references that

point to Y to point to new copies in O;
(4) then it can free the nursery Y and allocate a new one Y ′;
(5) finally the last step before returning to the continuation k is a call to GCwiden which

is a big no-op that simply updates all the types of the form M r o o to M r o y′ so as
to allow the use of the new region Y ′.

The GC code is split into the following parts:

GCcopy: depth-first copy of an object from Y to O.
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GCrmap: an auxiliary higher-order function that scans the region R, applying a given
function to every element. Used by both GCredirect and GCwiden.

GCredirect : scan the region R redirecting pointers to Y by copying the object to O and
redirecting the reference to use the new copy.

GCwiden: update the type of objects in R to refer to the new region Y ′.
GC : the toplevel function.

In order for GCredirect and GCwiden to be able to do their job, we need both a reference
to the beginning and the end of the region R. We decided to place the reference to the
end directly inside the region R at its location 0, so that the reference x0 that point to the
location R.0 gives us access both to the beginning as well as the end of the region, and it
also has the benefit of ensuring that we do not need to cater to the special case where the
region is empty.

6.3 Depth-first copy

To be able to copy parts of the heap, we need to be able to get runtime type information,
which our language does not provide directly. So we need to refine the definition of M to
add tags:

Inductive Ωτ : Kind := int : Ωτ | pair : Ωτ → Ωτ → Ωτ | ref : Ωτ → Ωτ

| mu : Ωτ → Ωτ | var : Nat→ Ωτ

type Mtag (int) = 0
| (pair t1 t2) = 1
| (ref t) = 2
| (mu t) = 3
| (var n) = 4

type Mdata r o y (int) = ∃n.snat n
| r o y (pair t1 t2) = ∃b.∃ :b ∈ {o, y}.∃n.(t1, t2) at b.n
| r o y (ref t) = ∃n.t at r.(succ n)
| r o y (mu t) = ∀t.t
| r o y (var n) = ∀t.t

type t1 × t2 = tup 2 (λi.match i with 0⇒ t1 | ⇒ t2)
type M ′ r o y t = snat (Mtag t)×Mdata r o y t

Notice how we map ref types to references at succ n so as to ensure that those references
do not point to the special location 0 of the region R. Both Mtag and Mdata pay attention
to the var case, but this case should never occur, since it corresponds to an occurrence out
of scope. The definition of M ′ is not very useful for recursive types either since it maps
them arbitrarily to the void type ∀t.t. So we define M as M ′ where recursive types have
been unfolded once:

type unfold (mu t) = DIsubstitute t (mu t)
| t = t

type M r o y t = M ′ r o y (unfold t)

DIsubstitute τ1 τ2 is a function not shown which replaces every occurrence of the topmost
variable in τ1 with τ2. Having to give tags to types such as var and mu is not very satis-
factory, but with a more precise definition of Ωτ we can easily rule out free occurrences of
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type TauxK tag = match tag with 0⇒ Unit | 1⇒ Ωτ ∧ Ωτ | 2⇒ Ωτ | 3⇒ Ωτ | 4⇒ Nat
type Taux t = match t with int⇒ () | pair t1 t2 ⇒ (t1, t2) | ref t⇒ t | mu t⇒ t | var n⇒ n

type TfromTag tag (aux : TauxK tag) =
match tag with 0⇒ int | 1⇒ pair (fst aux) (snd aux) | 2⇒ ref aux | 3⇒ mu aux | 4⇒ var aux

type EqTfromTag t : (t = TfromTag (Mtag t) (Taux t)) =
match t with int⇒ eq refl | pair t1 t2 ⇒ eq refl | ref t⇒ eq refl | mu t⇒ eq refl | var n⇒ eq refl

type Eq2Eq t1 t2 f (P : t1 = t2) : (f t1 = f t2) = match P with eq refl⇒ eq refl

type GCdispatchType r o y h fk tag
= ∀aux : TauxK tag.let t′ = Tfromtag tag aux in {h}(M ′ r o y t′, fk t′)→ 0

GCdispatchVoid [n, h, fk, aux]{h}(x : snat n× ∀t.t, k : fk aux) = x.1[{h}()→ 0]()

GCdispatch [r, o, y, h, fk, t] {h}0BBBB@
x : M ′ r o y t,
ki : ∀aux.{h}(snat 0× ∃n.snat n, fk int)→ 0,

k×: ∀aux.{h}(snat 1× ∃b.∃ :b ∈ {o, y}.∃n.aux at b.n, fk (pair (fst aux) (snd aux)))→ 0,
kr : ∀aux.{h}(snat 2× ∃n.aux at r.(succ n), fk (ref aux))→ 0,

k : fk t

1CCCCA
= let type ϕ = GCdispatchType r o y h fk

tag = sel[le s le n] x.0

table = (ki, k×, kr,GCdispatchVoid[3, h, fk ◦ mu],GCdispatchVoid[4, h, fk ◦ var])ϕ

branch = sel[TagLT5 t] table.tag
branch’ = branch[Taux t]
branch” = cast [Eq2Eq (λt′.{h}(x :M ′ r o by t′, k : fk t′)→ 0) (EqTfromTag t)]

branch’
in branch”(x, k)

Fig. 14. The GCdispatch code.

var. We cannot on the other hand rule out mu because unfold only does one step of un-
folding and removing all mus may require a variable or even infinite number of unfolding
steps, so we cannot code it in CiC. All in all, the only remaining problem is that we have to
occasionally worry about tags 3 and 4 even though they are never used, and that we have
to be careful to only use recursive types whose unfolding is not itself a mu type, which is
usually easy to ensure. It is interesting to see how thanks to the extra indirection provided
by the regions’s types, we can encode the source-level recursive types even though our
language does not itself provide recursive types.

Figure 14 shows an auxiliary function GCdispatch which implements a switch statement
on objects of type M r o y t. This is similar to the if function presented in Sec. 5.1. All it
does, is extract the tag of its argument x and use it to look up a branch table. The subtlety
in the code is due to the fact that we need the encoded switch statement to refine the type t
in each branch although the switch only examines some integer that depends on t. For that
we define the functions TfromTag and Taux such that t = TfromTag (Mtag t) (Taux t).
This allows us to reflect the info we get about the tag into knowledge about t. The function
TfromTag is used in GCdispatchType, which is the function that describes the commonal-
ity between each branch in the branch table. EqTfromTag and Eq2Eq are auxiliary proofs
used to show that those functions indeed correctly split and reconstruct the same t. Note
that although we have 5 different tags, GCdispatch only has three branches, because it
automatically directs the two impossible cases (the mu and var cases) to GCdispatchVoid.

This GCdispatch function reproduces within our low-level language the functionality
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GCid [tf, hf, hd, aux]{hf hd}(x : tf aux, k : ∀[hd]{hf hd}(tf aux)→ 0) = k[hd]x

GCidInt = GCid[λaux.snat 0× ∃n.snat n]

GCidRef[r] = GCid[λaux.snat 2× ∃n.aux at r.(succ n)]

GCcopyPair[r, o, on, y, yn, h, by, P :by ∈ {o, y}, aux]
{GCcopyRenv r o on y yn h}„
x : snat 1× ∃b.∃ :b ∈ {o, by}.∃n.aux at b.n,
k : ∀[on]{GCcopyRenv r o on y yn h}(snat 1× ∃b.∃ :b ∈ {o, by}.∃n.aux at b.n)→ 0

«
= let x′ = sel[le n] x.1

〈b, 〈P ′, 〈n, x′′〉〉〉 = open x′

test = rcmp[inskip inbase] x′′ y
in if (test)

(λ[P= : (b 7→ ∈ Θ)→ b = y]{GCcopyRenv r o on y yn h}().
let P ′= : (b = y) = P= (match P ′, P with | inskip , inskip ⇒ (inskip inbase)| , ⇒ inbase)
xp = get[inskip inbase] x′′

x0 = sel[le s le n] x.0

x1 = sel[le n] x.1

in GCcopy[r, o, on, y, yn, h, fst aux, y, inskip inbase]

(x0, λ[on]{GCcopyRenv r o on y yn h}(x′0 : M r o y (fst aux)).
GCcopy[r, o, on, y, yn, h, snd aux, y, inskip inbase]

(x1, λ[on]{GCcopyRenv r o on y yn h}(x′1 : M r o y (snd aux)).

let new = put[o, aux] (x0, x1)
in k[on+ 1]((1, 〈o, 〈inbase, 〈on, new〉〉〉)))))

(λ[P6= :¬((b 7→ ∈ Θ)→ b = y)]{GCcopyRenv r o on y yn h}().
let P= : (b = o) = (match P ′, P with | inskip , inskip ⇒ (P 6= (λ ..eq refl)) | , ⇒ inbase)
in k[on]((1, 〈o, 〈inbase, 〈n, x′′〉〉〉)))

GCcopy[r, o, on, y, yn, h, t, by, P :by ∈ {o, y}]
{GCcopyRenv r o on y yn h}
(x : M r o by t, k : ∀[on]{GCcopyRenv r o on y yn h}(M r o o t)→ 0)

= GCdispatch

2664
r, o, by,

GCcopyRenv r o on y yn h,
λt′.∀[on]{GCcopyRenv r o on y yn h}(M ′ r o o t′)→ 0,
unfold t

3775
0BBBB@
x,

GCidInt[(λon.GCcopyRenv r o on y yn h), on],
GCcopyPair[r, o, on, y, yn, h, by, P ],

GCidRef[(λon.GCcopyRenv r o on y yn h), on],

k

1CCCCA

Fig. 15. The GCcopy code.

typically provided by refining pattern matching on inductive definitions or GADTs [Xi
et al. 2003], including the fact that some of the branches are eliminated because their
typing context contains a contradiction, witnessing the fact that the code is unreachable.

The GCcopy entry point is shown in Fig. 15. It just uses GCdispatch to either do nothing
(via GCid ), if the value to copy is a ref-cell or an integer, or delegate to GCcopyPair. A
more interesting part of GCcopy is the way it describes its region’s types:

type TupRgn o y r = λn.λt.(M r o y (fst t))× (M r o y (snd t))
type GCcopyRenv r o on y yn h

= (h⊕ y 7→ (TupRgn o y r, yn)⊕ o 7→ (TupRgn o o r, on))

where fst and snd are the usual projection functions for tuples. Since it only accesses
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GCrmap[i, r, rn, o, y, y′, hf, hd]

{GCrmapRenv i r rn o y y′ (hf hd)}0BBBB@
x : ∃t.t at r.i,
lim : ∃t.t at r.rn,
f : ∀[i, t, hd]{GCrmapRenv i r rn y′ y′ (hf hd)}

(M r o y t,∀[hd]{GCrmapRenv i r rn y′ y′ (hf hd)}(M r o y′ t)→ 0)→ 0

k : ∀[hd]{GCrmapRenv 0 r rn y′ y′ (hf hd)}()→ 0

1CCCCA
= let 〈t, x′〉 = open x

〈 , lim’〉 = open lim
notdone = x′ < lim’

in if notdone
(λ[P : i < rn]{GCrmapRenv i r rn o y y′ (hf hd)}().

let p = offset[(P, inbase)] x′ 1
x = get[inbase] p

in f [hd](x, λ[hd]{GCrmapRenv i r rn y′ y′ (hf hd)}(x′ : M r o y′ t).
set[M r o y′] p := x′;
cast[...] r 7→ RefRgn ((succ i) r rn o y′ y′);
GCrmap[succ i, r, rn, o, y, y′, hf, hd](p, lim, f, k)))

(λ[P : ¬i < rn]{GCrmapRenv i r rn o y y′ (hf hd)}().
cast[λi′.λt.λP ′ : i′ < succ rn....]

r 7→ RefRgn 0 r rn o y′ y′
;

k[h]())

Fig. 16. The GCrmap code.

values in region y and only modifies region o, the rest of the memory is abstracted in h.
GCcopyPair checks with rcmp if the pair is in y and if so, recurses on both fields. In case
it does not point to y, we would really want to return just x, but instead we rebuild a new
pair of the tag and the value, because the existential package in the Mdata part needs to be
changed to reflect the fact that we know the content does not point to y. We could easily
improve this code to avoid this reconstruction and return x directly if we add coercions
such as the ones presented in [Monnier 2007].

6.4 Mapping over R

One of the unusual functionalities offered by typed regions is the ability to scan a region,
which we need for our GC. Figure 16 shows the GCrmap function that abstracts such a
scan.

It take two references x and lim that point in a region r, along with a function f to apply
to all elements in r from right after x upto and including lim. Of course it also takes a
continutation k. Since this function only cares about the region R its region’s types only
describe R and abstract the rest in h:

type RefRgn i r rn o y y′ =
(λn.match n with zero⇒ λ .∃t.t at r.rn | succ n′ ⇒M r o (if (i < succ n′) y y′),
succ rn)

type GCrmapRenv i r rn o y y′ h = h⊕ r 7→ RefRgn i r rn o y y′

In the GCrmap code, h is actually decomposed into hf and hd where h = hf hd because
the function f may modify h, so hf describes the invariant part of h and hd is the variable
part.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



Typed Regions · 33

GCredirectAux[r, rn, o, y, h, i, t, on]

{GCrmapRenv i r rn o y o (GCcopyRenv r o on y yn h)}„
x : M r o y t,
k : ∀[on]{GCrmapRenv i r rn o y o (GCcopyRenv r o on y yn h)}(M r o o t)→ 0

«
= cast[...](GCrmapRenv i r rn o y o (GCcopyRenv r o on y yn h))

∼ (GCcopyRenv r o on y yn (GCrmapRenv i r rn o y o h))
GCcopy[r, o, on, y, yn, (GCrmapRenv i r rn o y o h), t, y, inskip inbase]

(x, λ[on]{GCcopyRenv r o on y yn (GCrmapRenv i r rn o y o h)}(x′ : M r o o t).
cast[...](GCcopyRenv r o on y yn (GCrmapRenv i r rn o y o h))

∼ (GCrmapRenv i r rn o y o (GCcopyRenv r o on y yn h))

k[on](x′))

GCredirect [r, rn, o, on, y, yn, h]

{GCrmapRenv 0 r rn o y o (GCcopyRenv r o on y yn h)}„
x0 : ∃t.t at r.0,
k : ∀[on]{GCrmapRenv 0 r rn o o o (GCcopyRenv r o on y yn h)}()→ 0

«
= let 〈 , x′0〉 = open x0

lim = get[inbase] x′0
in GCrmap[0, r, rn, o, y, o, (λon.GCcopyRenv r o on y yn h), on](x0, lim,GCredirectAux, k)

Fig. 17. The GCredirect code.

The type RefRgn used to describeR gives a special type to its element 0, which is hence
forced to hold a pointer to the last element of R; also the type is parameterized by i which
is the index of the scan: all elements before i (other than the element 0) have a type of the
form M r o y t, whereas all the ones after i have a type of the form M r o y′ t, so the
scan start with a region with all non-zero elements of type M r o y t and at the end, they
have all been updated to M r o y′ t. This is a prime example of a code that uses a strong
update, yet does not have any particular aliasing information available about the locations
it updates: there can be any number of references pointing from anywhere into any part of
region r.

6.5 Redirecting pointers

Once the copy from the heap root is performed, we need to check every reference cell in
region R and if it points to an object in Y redirect it by copying it into region O. The code
is shown in Fig. 17. We also need to update the type of region R at each step, so that at the
end of the redirection loop, the type of R does not refer to Y any more. This redirection
loop basically uses GCrmap to apply GCcopy to every element of R. But of course,
GCcopy cannot be passed directly to GCrmap: the main problem is that the two functions
expects their regions in a different order, so we introduce a wrapper GCredirectAux which
uses cast to reorder the regions back and forth between the order expected by the two
functions.

6.6 Widening R to allow references to the new Y ′

After all the objects have been copied and the references redirected, the nursery Y is not
needed any more and can be freed, and a new one allocated in its place. But we cannot
yet return to the main continuation: all our objects now have types of the form M r o o t,
whereas the continuation expects objects of type M r o y t. This is no problem since
M r o o t is a sort of subtype of M r o y t, but since our type system does not provide
subsumption, we have to explicitly cast those objects by unpacking and repacking them.
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GCwidenPair[i, r, rn, o, y, h, aux]

{GCrmapRenv i r rn o o y h}„
x : snat 1× ∃b.∃ :b ∈ {o, o}.∃n.aux at b.n,
k : ∀[ ]{GCrmapRenv i r rn o o y h}(snat 1× ∃b.∃ :b ∈ {o, y}.∃n.aux at b.n)→ 0

«
= let x1 = sel[le n] x.1

〈b, 〈 , x2〉〉 = open x1

in k((1, 〈o, 〈inbase, x2〉〉))

GCwidenAux[r, rn, o, y, h, i, t, hd]

{GCrmapRenv i r rn o o y h}„
x : M r o o t,
k : ∀[ ]{GCrmapRenv i r rn o o y h}(M r o y t)→ 0

«
= GCdispatch

24r, o, o,GCrmapRenv i r rn o o y h,
λm.∀[ ]{GCrmapRenv i r rn o o y h}(m r o y)→ 0

35
0BBBB@
x,

GCidInt[λ .GCrmapRenv i r rn o o y h, ()],
GCwidenPair[...],
GCidRef[λ .GCrmapRenv i r rn o o y h, ()],
k

1CCCCA
GCwiden[r, rn, o, y, h]

{GCrmapRenv 0 r rn o o y h}„
x0 : ∃t.t at r.0,
k : ∀[ ]{GCrmapRenv 0 r rn o y y h}()→ 0

«
= let 〈 , x′0〉 = open x0

lim = get[inbase] x′0
in GCrmap[0, r, rn, o, o, y, (λ .h), ()](x0, lim,GCwidenAux[r, rn, o, y, h], k)

Fig. 18. The GCwiden code.

Luckily it only needs to be done at the roots, i.e. on x and on all elements of R. The
GCwiden takes care of updating the type of R accordingly, by scanning it again, using
GCrmap.

GCwidenAux is the function that update a single element of R. Because of how we
structured our objects, we only have to unpack&repack an existential when the pointed
object is a pair. That turns out to be unfortunate here, since we now have to use GCdispatch
to as to call GCwidenPair when applicable.

Notice that this whole loop is nothing more than a complex no-op in the sense that it only
modifies existentials. And indeed, this loop is equivalent to the no-op that was called widen
in [Monnier et al. 2001]. This code was one of the main motivation for the development
of the coercion calculus presented in [Monnier 2007], and indeed such a coercion calculus
could be used here to replace GCwiden by a coercion. Notice that this coercion would still
have to do the same loop, examine the same data, unpack and repack the same existentials,
except that it would be completely done at the level of types.

6.7 Putting it all together

Figure 19 shows the GC function itself which binds all the previous functions together.
Compared to the sketch shown at the beginning, the main difference is the addition of a
few cast operations. They do nothing more than re-order regions in the region environment
to match the order expected by the next function, except for the cast performed right after
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type GCrenv r rn o on y yn h = GCcopyRenv r o on y yn (GCrmapRenv 0 r rn o y y h)

GC [r, rn, o, on, y, yn, t, h]
{GCrenv r rn o on y yn h}
(x : M r o y t, x0 : ∃t.t at r.0, k : ∀[y′, on′′]{GCrenv r rn o on′′ y′ 0 h}(M r o y′ t)→ 0)

= GCcopy[r, o, on, y, yn, (GCrmapRenv 0 r rn o y y h), t, y, inskip inbase]

(x : M r o y t,

λ[on′]{GCrenv r rn o on′ y yn h}(x′ : M r o o t).
cast[...](GCcopyRenv r o on′ y yn (GCrmapRenv 0 r rn o y o h))

∼ (GCrmapRenv 0 r rn o y o (GCcopyRenv r o on′ y yn h))

GCredirect[r, rn, o, on, y, yn, (GCcopyRenv r o on′ y yn h)]
(x0 : ∃t.t at r.0,
λ[on′′]{GCrmapRenv 0 r rn o o o (GCcopyRenv r o on′′ y yn h)}().

cast[...](GCrmapRenv 0 r rn o o y (GCcopyRenv r o on′′ y yn h))
∼ (h⊕ o 7→ ...⊕ r 7→ ...⊕ y 7→ ...)

freergn y;

let y′ = newrgn λn.λt.snat 0 in
cast[...]y′ 7→ TupRgn o y′ r
cast[...](h⊕ o 7→ ...⊕ r 7→ ...⊕ y′ 7→ (TupRgn o y′ r, 0))

∼ (GCrmapRenv 0 r rn o o y (GCcopyRenv r o on′′ y′ 0 h))
GCwiden[r, rn, o, y, h]

(x0, λ[ ]{(GCrmapRenv 0 r rn o y y (GCcopyRenv r o on′′ y′ 0 h))}().
cast[...](GCrmapRenv 0 r rn o y y (GCcopyRenv r o on′′ y′ 0 h))

∼ (GCcopyRenv r o on′′ y′ 0 (GCrmapRenv 0 r rn o y y h))

k[y′, on′′](x′))))

Fig. 19. Toplevel of the GC

allocating the new nursery. This one addresses the problem of self-reference: the type of
the new region y′ refers to y′, so when we allocate that region, the initial type that we pass
to newrgn cannot be the proper type since we do not know y′ yet. For this reason, newrgn
is provided with a dummy type λn.λt.snat 0, which is promptly replaced by the proper
TupRgn o y′ r via a cast.

7. RELATED WORK

7.1 Languages

The calculus of capabilities [Crary et al. 1999] was the first calculus to provide safe explicit
memory deallocation while allowing dangling pointers. The linear handling of our regions
was strongly influenced by that work. Monadic regions [Fluet and Morrisett 2006] show
a simple and clean way to design a region calculus, based on the idea of encoding region
types in a polymorphic λ-calculus. The prototype Coq encoding of our work uses such a
monadic structure, for no other reason than its elegance. Hicks et al. [2004] presents actual
experience with the use of such region-based memory management.

In the work on TAL [Morrisett et al. 1998], the authors showed a simple way to handle
the problem of separating allocation from object initialization, without resorting to any
form of linearity.

Alias types [Walker and Morrisett 2000] was the first type system that accommodated a
strong update primitive, even in the presence of aliasing, so long as the aliasing pattern can
be described statically. Our handling of both regions and pointers is strongly influenced by
this work.
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The Vault language [DeLine and Fähndrich 2001] took the work on alias types and
both extended it and gave it a surface syntax (so as to enable the programmer to give
that needed aliasing information). In the first paper, they mostly showed how to integrate
classical intuitionistic references with alias-types-style statically tracked references. They
also showed that tracking references to region objects allows their system to subsume a
region type system. One difference compared to our work is that you have to choose once
and for all whether a reference should be intuitionistic or linear (i.e. tracked). In [Fähndrich
and DeLine 2002] they addressed that limitation by introducing the operators adoption,
which allows the user to make a linear reference intuitionistic, and focus, which does the
converse.

Shao et al. [2002] proposed to use CiC as the type language of a programming language.
This allows sophisticated type manipulation and enables programs to express arbitrary
properties of the values manipulated. By keeping a clear separation between the compu-
tational language and the type language, they get to have complete freedom in the choice
of computational language, as well as being able to reuse CiC wholesale as a black box,
rather than reinvent a logic and its consistency proof. We reuse their idea with the same
purpose but by virtue of the rest of the type system we can additionally capture arbitrary
properties of the state.

Monnier [2007] shows how a language similar to λH can be extended very simply with
a coercion calculus. Adding these coercions to our language is easy and makes it possible
to improve the code of our generational GC significantly.

The Deputy type system [Condit et al. 2007] extends C with a notion of dependent
typing which can handle side effects while staying decidable, by postponing some of the
checks to the runtime. Their goal is fairly different from ours and for our use case, their
main limitation is that they do not attempt to deal with global invariants such as the ones
preserved by a garbage collector.

7.2 Type-safe GC

Wang and Appel [1999] built a tracing garbage collector on top of a region-based calculus,
thus providing both type safety and completely automatic memory management. Monnier
et al. [2001] extended Wang and Appel’s work by using intensional type analysis [Harper
and Morrisett 1995] to provide a generic copy function and to use existential packages to
encode closures. They also presented a very primitive form of generational collection and
a formally sound, though very ad-hoc, treatment of forwarding pointers. We build directly
on that work.

Vanderwaart and Crary [2003] design a type system to check correct handling of details
of the stack layout required by a particular GC which is kept implicit. The system is
designed to handle even very sophisticated GCs which use a static table indexed by the
return address to describe the activation frames, much like stack-walking implementations
of exception handling. The type system checks among other things that the table provided
by the program is correct and used consistently.

Hawblitzel et al. [2004] introduced a very low-level language along the lines of alias
types but using linear logic, with a very expressive type system. Their language allows
types to be stored in run time data structures, which gives them a lot of flexibility. They
show how to write a type-safe garbage collector and use the language to write low-level
operating systems code like device drivers, but it is not clear how to extend this work to our
case where we garbage collect a typed language and hence need type-preservation rather
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than only type-safety.
Bierman et al. [2003] show how to do type-safe marshalling and unmarshalling, although

their type-safety concern is very different from ours.

7.3 Hoare logic

An alternative approach to ours is to go straight to Hoare logic and prove correctness of the
code. There is a lot of work in that area which tackles similar problems to ours. The main
difference is first that we limit ourselves to type-safety, in order to keep the proof burden
to its minimum. And second that we aim to stay within a language which can not only be
used for such low-level work but can also be used, with an appropriate dose of syntactic
sugar, as a classic high-level source language.

Separation Logic [Reynolds 2002] is a form of Hoare logic to reason about mutable data
structures in local and modular ways. Yang [2001] shows how to use this kind of Hoare
logic to reason about data structures with arbitrary sharing and cycles, more specifically
traversal of a homogeneous graph using pointer reversal. This approach has been extended
in [Birkedal et al. 2004] to specify and prove the correctness of an implementation of
Cheney’s copying GC. Because the devil is in the details, that work shares surprisingly
little with ours, except that we also divide the heap into disjoint subheaps, either statically
in the form of regions, or dynamically as in Sec. 6.5 where the index i of RefRgn is used
to divide the region R into the part that has already been redirected and the part that has
not.

Support for stack allocation in a typed language was already proposed in STAL [Mor-
risett et al. 2002]. Ahmed and Walker [2003] present a much more ambitious solution to
that problem.

Filliâtre [2003] formalizes Hoare-logic style rules in CiC, thus making it possible to
formally prove more or less arbitrary properties of side effecting programs. The computa-
tional language is completely external to the logic, so the type system is not integrated into
the logic either. This approach could probably be extended to make a completely formal
system that supports Separation Logic.

The Hoare Type Theory [Nanevski et al. 2006; Nanevski et al. 2007] is the closest in
spirit and expressiveness to ours. They define a language that uses dependent typing to-
gether with side-effects, preserving decidability by confining all side effecting and non-
terminating primitives inside a monad. Their language is also a variant of the Calculus
of Constructions, so their logic is comparable to ours. To reason about the state of the
heap as well as deal with aliasing, they use the Separation Logic, which is lower-level than
our typed regions. Contrary to us, they do not stratify their type language on top of their
computational language. This makes it more difficult to formalize and prove that types and
proofs can be completely erased at runtime and imposes extra constraints on the design of
the computation language. The flip side is of course is that their computational language
enjoys true dependent types, whereas we have to simulate them with singleton types which
sometimes involves a lot of code duplication between the computational and type levels.

8. CONCLUSION

We have presented a novel type system that offers an unusual flexibility to play with the
typing of memory locations. This type system offers the ability to choose any mix of
linear or intuitionistic typing of references and to change this choice over time to adapt it
to the current needs. It is able to handle strong update of memory locations even in the
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presence of unknown aliasing patterns. The reliance on CiC allows very sophisticated type
manipulations.

We have shown how to encode the features of other systems in this language. We have
also developed a toy prototype implementation of an extension of this language, using Coq,
in which we have written a type-preserving generational garbage collector that can handle
cycles and that allows the mutator to perform destructive assignment.

8.1 Acknowledgments

Thank you to Christopher League, Gregory Morrisett, Zhong Shao, and Valery Trifonov
for their comments and criticisms, and to the anonymous reviewers for the numerous and
helpful comments.

REFERENCES

AHMED, A. AND WALKER, D. 2003. The logical approach to stack typing. See TLDI’03 [2003], 74–85.
APPEL, A. W. 2001. Foundational proof-carrying code. In Annual Symposium on Logic in Computer Science.

247–258.
BARENDREGT, H. P. 1991. Lambda calculi with types. In Handbook of Logic in Computer Science (volume 2),

S. Abramsky, D. Gabbay, and T. Maibaum, Eds. Oxford Univ. Press.
BIERMAN, G., HICKS, M., SEWELL, P., STOYLE, G., AND WANSBROUGH, K. 2003. Dynamic rebinding

for marshalling and update, with destruct-time? In International Conference on Functional Programming.
99–110.

BIRKEDAL, L., TORP-SMITH, N., AND REYNOLDS, J. C. 2004. Local reasoning about a copying garbage
collector. In Symposium on Principles of Programming Languages. Venice, Italy, 220–231.

CHASE, D. R., WEGMAN, M., AND ZADECK, F. K. 1990. Analysis of pointers and structures. In Symposium
on Programming Languages Design and Implementation. ACM Press, 296–310.

CONDIT, J., HARREN, M., ANDERSON, Z., GAY, D., AND NECULA, G. C. 2007. Dependent types for low-level
programming. See ESOP’07 [2007].

COQUAND, T. AND HUET, G. P. 1988. The calculus of constructions. Information and Computation 76, 95–120.
CRARY, K., WALKER, D., AND MORRISETT, G. 1999. Typed memory management in a calculus of capabilities.

In Symposium on Principles of Programming Languages. San Antonio, TX, 262–275.
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