
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Typer: An infix statically typed Lisp
Pierre Delaunay

delaunap@iro.umontreal.ca
Université de Montréal

Département d’Informatique et Recherche
Opérationnelle

Montréal, QC, Canada

Vincent Archambault-Bouffard
archambv@iro.umontreal.ca

Université de Montréal
Département d’Informatique et Recherche

Opérationnelle
Montréal, QC, Canada

Stefan Monnier
monnier@iro.umontreal.ca

Université de Montréal
Département d’Informatique et Recherche

Opérationnelle
Montréal, QC, Canada

Abstract
We show how Lisp-style macros and extensible infix syntax are
combined in the programming language Typer, which is a combi-
nation of Lisp, ML, and Coq. Its name is an homage to Scheme(r)
with which it shares the goal of pushing as much functionality as
possible outside of the core and into libraries. While it superficially
looks more like Haskell and ML, with infix notation and static poly-
morphic typing, it tries to preserve the syntactic malleability of Lisp
by relying on the traditional Lisp-style S-expressions and macros.

Its main tool to this end is the use of an infix notation for S-
expressions, which still makes it possible to parse sub-expressions
before knowing what role they will play.

CCS Concepts •Software and its engineering →Functional
languages; Extensible languages; Control structures; Syntax; Pre-
processors;

Keywords Macros, S-expressions, Pure Type Systems, ML, Lisp
ACM Reference format:
Pierre Delaunay, Vincent Archambault-Bouffard, and Stefan Monnier. 2017.
Typer: An infix statically typed Lisp. In Proceedings of ML Family Workshop,
Oxford, UK, September 2017 (ML’2017), 2 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn
Synopsis We show how to extend Lisp’s S-expression syntax with
infix notations in order to design an ML-style language with Lisp-
style macros.

1 Introduction
The defining feature of languages from the Lisp family has been
their exclusive reliance on a very simple and regular syntax, basi-
cally composed of atomic elements like symbols, strings, numbers,
and parenthesized subtrees. While this limitations is what makes
Lisp unpalatable to some programmers, it is also the fundamental
element that gives Lisp its power for metaprogramming.

There is clearly a desire to extend Lisp with a richer syntax, as
evidenced by the various exceptions (which you might call exten-
sions) to the base parenthesized-prefix syntax present in languages
from the Lisp family, such as the use of the traditional “‘” and “,”
prefix symbols for quasi-quoting, Common-Lisp’s “pkg:id” quali-
fied identifiers or “var in exp” in the loop macro, syntax-parse’s
“var:syntaxclass” shorthand (?), or TypedRacket’s “[var : type]”
notation in formal arguments (?).

This work is supported by Canada’s National Science and Engineering Research Council
grant #298311 / 2012.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ML’2017, Oxford, UK
© 2017 Copyright held by the owner/author(s). 978-x-xxxx-xxxx-x/YY/MM. . .$15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

But attempts to add comparable macro systems to languages with
a richer syntax have not had the same success in the sense that
they apparently do not work well enough to be widely embraced
by their users. We believe, to be really successful, a macro system
needs to be simple and seamless. By “seamless” here we mean that
the syntax of macro calls is just as flexible as that of any other
construct of the language, so users of a macro can’t really tell if
it’s implemented as a macro or if it’s a primitive construct of the
language.

Most macro systems outside of the Lisp-family fail this test.
These systems additionally suffer from complexity: Some of that
complexity comes from the need to expose how that richer syntax
gets mapped to some data representation. But the main source is
the presence of various syntactic categories (such as expressions,
instructions, types annotations, or declarations). This can force
the system to have various kinds of macros, and it introduces fur-
ther difficulties because the parser needs to decide which syntactic
category to use to parse each macro call’s actual arguments.

When designing the language Typer, we wanted to have an ML-
style language where, just like in Scheme, we can define as much
of the language as possible in the form of libraries layered on top
of a minimalist core.

This means we wanted to be able to define constructs such as
“if 𝑒1 then 𝑒2 else 𝑒3” in the language itself, and we wanted to be
able to implement the compilation of pattern matching in a library
rather than inside the compiler. This in turn requires the ability to
extend the syntax of the language, including adding new infix or
mixfix (?) constructs.

In Typer we decided to start from a Lisp-style syntax and to gen-
eralize it to a more conventional infix notation, while still keeping
as much as possible of Lisp’s simple yet powerful macro system.
We do this by keeping macros decoupled from syntax: we first de-
fine a skeleton syntax tree (?) which we call S-expressions (because
they are very similar to Lisp’s S-expressions) and then we define
an infix syntax on top of it as mere syntactic sugar. Like Lisp’s
S-expressions, the syntax only accepts a single syntactic category.
This means that, just as in Lisp, Typer’s reader (the parser building
the S-expression) does not need to know if it’s parsing an instruc-
tion, or an expression, or a type annotation, because they are all
parsed in the same way.

Typer’s reader, while more complex than that of Lisp, is still very
primitive, since it uses an operator precedence grammar (?). This
is the sweet spot which gives us just enough power to handle a
syntax that should feel familiar to ML and Haskell users, while still
being able to parse the code without needing to know if it’s in the
middle of a type annotation, function declaration, or some as-yet
unknown DSL expression.

The result is a language whose syntax superficially looks like
ML, but is really more like that of Lisp, which lets us define a macro

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

ML’2017, September 2017, Oxford, UK P. Delaunay, V. Archambault-Bouffard, and S. Monnier

system which is just as seamless and almost as simple as that of
Lisp.

Typer macros are defined in Typer, and their expansion is per-
formed during the elaboration phase, which also infers types. This
interleaving is similar to the one used in Template Haskell (?), and
it makes the macro system a bit more complex than that of Lisp
since we cannot separate macro expansion from type inference. On
the other hand it makes it easy to support things such as lexically
scoped macros. More importantly, it enables Typer macros to make
use of type information.

2 Primer
Typer’s front-end has two important elements: the reader which
turns an input text into an S-expression tree, and the elaborator
which turns an S-expression into a typed lambda calculus.

2.1 The Reader
Based on a rudimentary grammar represented as a precedence table,
Typer’s reader will treat the following expressions as equivalent:

(a) + b = (+ a b)
[a, b, c] = \[\] (\, a b c)

lambda (x : t) -> e = lambda -> (: x t) e
lambda (a - b) -> e = lambda -> (- a b) e

Where the \ characters are needed because [] would be read as 3
separate tokens. Contrary to Lisp, parentheses have no significance
other than to group elements. Notice the last line, which is non-
sensical in Typer but is still a valid S-expression as far as the reader
is concerned, since it applies the same parsing rules to the “lambda
argument” as anywhere else, for the simple reason that it does not
know yet what “lambda -> ” is bound to.

2.2 Examples
New data types are typically defined with:
type List (a : Type)

| nil
| cons a (List a);

which the grammar treats as equivalent to the prefix form:
type_ (_|_ (List (_:_ a Type))

nil
(cons a (List a)));

And “type ” is actually a macro which expands the above to:
List = typecons (List (_:_ a Type))

nil
(cons a (List a)));

where typecons is a built-in special form which defines a new type
constructor.

To define a new form like “if 𝑒1 then 𝑒2 else 𝑒3”, we need 2 steps.
First, setup the grammar to give appropriate precedences to “if”,
“then”, and “else”

define-operator if () 2;
define-operator then 2 1;
define-operator else 1 66;

then define “if then else ” as a macro:
if_then_else_ =

macro (lambda args ->
let e1 = List_nth 0 args Sexp_error;

e2 = List_nth 1 args Sexp_error;

e3 = List_nth 2 args Sexp_error;
in quote (case (uquote e1)

| true => (uquote e2)
| false => (uquote e3)));

2.3 The Elaborator
In the above example, “macro” is the predefined data constructor
of type “(List Sexp -> Sexp) -> Macro” which constructs a
macro. Macro calls are distinguished from function calls by the fact
that the element in function position has type “Macro”.

So, Typer’s elaboration needs to know the type of sub-expressions
in order to know how to perform macro expansion. More specifi-
cally, the elaborator takes an S-expression and does:

elaborate : Ctx -> Sexp -> Pair Lexp Ltype;
elaborate c sexp =
case sexp
| symbol s => elab_variable_reference c s
| immediate v => elab_immediate_value v
| node head args =>

let (e1, t1) = elaborate c head in
case t1
| "Macro" => elaborate c (macroexpand e1 args)
| "Special-Form" => elab_special_form c e1 args
| _ => elab_funcall c t1 e1 args;

3 Conclusion and future work
We have presented the syntactic structure of the programming
language Typer. It demonstrates how to extend Lisp’s S-expressions
with an infix syntax without losing the power and flexibility of Lisp
macros. To do so, we use an operator precedence grammar, a sweet
spot that is flexible enough to provide a familiar infix syntax, yet
restricted enough that S-expressions can still be parsed without
needing to know anything about macros.

Typer’s implementation is available online from http://gitlab.
com/monnier/typer. It is currently still rather primitive. Our main
focus is on developing its macro facilities to have convenient access
to typing information.

Acknowledgments
We would like to thank Christopher League for his comments.
The work is supported by the National Science and Engineering
Research of Canada under grant No: 298311 / 2012.

http://gitlab.com/monnier/typer
http://gitlab.com/monnier/typer

	Abstract
	1 Introduction
	2 Primer
	2.1 The Reader
	2.2 Examples
	2.3 The Elaborator

	3 Conclusion and future work
	Acknowledgments

