
Typer
An infix statically typed Lisp

Stefan Monnier

monnier@iro.umontreal.ca

Université de Montréal

with Pierre Delaunay & Vincent Archambault-Bouffard

Stefan Monnier ML’2017 1

Infix statically typed Lisp

Lisp ≃ prefix dynamically typed functional programming

=⇒
ML ≃ infix statically typed Lisp

¡BUT!

ML and friends lack macros!

As a consequence, ML can’t be minimalist like Scheme

Less support for DSLs

I want it all:

simple core, flexible syntax, dependent types, seamless macros

Stefan Monnier ML’2017 2

A taste of Typer

Simple function definition:

add1 : Int -> Int;

add1 = lambda x -> x + 1;

Can be shortened to:

add1 x = x + 1;

New type definition:

type List (a : Type)

| nil

| cons a (List a);

Stefan Monnier ML’2017 3

Syntactic complexity of macros

Multiple syntactic classes:

expression, instruction, declaration, formal argument, sequence of ...

Example in OCaml:

let x = a; b in x = a; b

≃
let (x = (a; b)) in ((x = a); b)

[And yet, we call it “context free grammar”!]

How then should we parse a macro invocation like:

mymacro (x = a; b)

Stefan Monnier ML’2017 4

Syntactic complexity of macros (cont.)

Options to parse mymacro (x = a; b):

• Delay parsing mymacro arguments

– May still need to parse enough to find boundaries of arguments

• Let mymacro specify the class of each argument

– Imposes tight bond between macros and syntax

• Disallow the problem

Last choice is more restrictive ... more in the spirit of Lisp syntax:

The relative precedence of = and ; is always the same,

regardless if it’s an expression, declaration, ...

[Well, “restriction” or “feature” is in the eye of the beholder]

Stefan Monnier ML’2017 5

Operator Precedence Grammar

Old and weak parsing technology (Floyd 1963)

Parsing based on a table of precedences

• Each keyword gets two precedences: and left and a right one

• When faced with kw1 exp kw2 attach exp to the higher precedence

• The surrounding context is not taken into account

Constructs made of several keywords

• When right precedence of kw1 is equal to left precedence of kw2

Similar to Agda’s mixfix parsing

[Fun fact: Can parse backward just as easily!]

Stefan Monnier ML’2017 6

Example use of OPG

[•,1] 1,•

if •,2 then 2,3

+ 6,7 = 4,5

if x = y + 1 then [5]

if x = y + 1 then ([] 5)

if x = (+ y 1) then ([] 5)

if (= x (+ y 1)) then ([] 5)

(if then (= x (+ y 1)) ([] 5))

Stefan Monnier ML’2017 7

S-expressions

Typer’s front end is like that of Lisp:

1. Parse the source text using the reader

2. Returns an S-expression

type Sexp

| symbol String

| immediate Imm

| node Sexp (Lisp Sexp)

3. Expand macros and see if the S-expression is a meaningful program

The same reader can be used to read non-programs ...

... or programs in other languages (e.g. DSL)

Stefan Monnier ML’2017 8

Typer’s reader

A declaration like

type List (a : Type)

| nil

| cons a (List a)

is processed by the reader exactly like

type_ (_|_ (List (_:_ a Type))

nil

(cons a (List a))

Contrary to Lisp, parentheses are only used for grouping:

(nil) is identical to nil rather than to () nil

Stefan Monnier ML’2017 9

Extending the syntax

Typer separates syntactic extensions from macros

Simple primitive to set/change the precedence of operators:

define-operator if () 2;

define-operator then 2 3;

define-operator else 3 66;

Only affects code that’s not yet been parsed!

Syntactic extensions are mixfix syntactic sugar:

e1 + e2 ≡ + e1 e2

if e1 then e2 else e3 ≡ if then else e1 e2 e3

Stefan Monnier ML’2017 10

Defining macros

Like in Lisp, macros take a list of Sexp and return a new Sexp

if_then_else_ =

macro (lambda args ->

let e1 = List_nth 0 args Sexp_error;

e2 = List_nth 1 args Sexp_error;

e3 = List_nth 2 args Sexp_error;

in quote (case (uquote e1)

| true => (uquote e2)

| false => (uquote e3)));

where macro is a data constructor:

macro : (List Sexp -> Sexp) -> Macro;

Stefan Monnier ML’2017 11

Invoking macros

Macros are expanded from the outside, like in Lisp

Macro calls distinguished by type:

1. For e1 ... en, lookup type of e1

2. If type is Macro, then it’s a macro call

⇒ Need to interleave type inference and macro expansion

Elaboration: Type inference and macro-expansion

Takes an S-expression, returns a core lambda expression with its type:

elaborate : Ctx -> Sexp -> Pair Lexp Ltype;

Stefan Monnier ML’2017 12

Elaboration pseudo-code

elaborate : Ctx -> Sexp -> Pair Lexp Ltype;

elaborate c sexp =

case sexp

| symbol s => elab_variable_reference c s

| immediate v => elab_immediate_value v

| node head args =>

let (e1, t1) = elaborate c head in

case t1

| "Macro"

=> elaborate c (macroexpand c e1 args)

| "Special-Form"

=> elab_special_form c e1 args

| _ => elab_funcall c t1 e1 args;

Stefan Monnier ML’2017 13

Bidirectional type-inference

To better propagate existing type information

Usually done by handling core-constructs in either check or infer:

infer : Ctx -> Sexp -> Pair Lexp Ltype;

check : Ctx -> Sexp -> Ltype -> Lexp;

Core constructs use special-forms rather than hard-coded names, so:

elaborate : Ctx -> Sexp -> Option Ltype

-> Pair Lexp (Option Ltype);

[Then define check and infer on top of elaborate]

Stefan Monnier ML’2017 14

Expanding macros

macroexpand takes a Lexp which describes the macro

Usually, this Lexp is just a variable reference

⇒ Need to turn this Lexp into an executable, closed function

1. Check that it is indeed closed

2. Evaluate in turn all the vars transitively referenced

3. Evaluate the macro itself; extract its function, and call it

Typer is pure: those evaluations have no side-effects and can be cached

Supports anonymous macros and more [tho, not a design goal]

Stefan Monnier ML’2017 15

Conclusion

ML-style syntax and semantics

Lisp-style syntactic structure and metaprogramming

Simple core

Syntax extensions independent from macros

Simple, seamless, and powerful macros

Stefan Monnier ML’2017 16

Declarations and macros

Mutual recursion à la Haskell does not mesh well with macros:

p aul = h ud ak;

john (or mccarty (p eterson));

• Is ud defined in the expansion of the call to john?

• Is p a macro that should be expanded in the second line?

Typer’s mutual recursion needs explicit annotations:

ud : ?;

p aul = h ud ak;

john (or mccarty (p eterson));

Stefan Monnier ML’2017 17

OPG in practice

We can’t have both

x : a -> b = x : (a -> b)

lambda x : a -> b = lambda (x : a) -> b

Anecdotal evidence from Emacs’s SMIE:

Modula-2, Octave, Prolog, Ruby, sh, CSS, SML, OCaml, Coq, ...

Example problems for SML syntax: = | of val

OPG focuses on finding a structure, not checking it:

“if A (C then D” ≡ “if_ A (\(_ (_then_ C D))”

Stefan Monnier ML’2017 18

Lexer

Strings, comments, integers, floats, identifiers

Identifiers separated by spaces or comments

A set of single-char identifiers:

() { } , ;

Meant to be user-extensible

Expects UTF-8 but does not really care

No distinction between upper and lower case

Stefan Monnier ML’2017 19

Structured identifiers

Our OPG parser is sufficient to define a satisfactory ML-style syntax

Only sore point: things like Str.concat

Str.concat a b ?≡? . Str (concat a b)

Rather than allow some keywords to bind more tightly than the space

• Parse “identifiers” with a secondary precedence table

Str.concat ≡ . Str concat

Str.concat a b ≡ (. Str concat) a b

Stefan Monnier ML’2017 20

Related work

Mixfix in Agda (and others), Coq’s Notation, ...

Honu and Star use OPG in a very similar way

• Some additional parsing done by the macros

Prolog for systematic use of an even more restrictive class of grammars

Template Haskell, for the interleaving of expansion and inference

Stefan Monnier ML’2017 21

Future work

Rewrite in Typer

Hygiene (we’re not in ’63 any more, right?)

Tolerable error reporting

Give access to the context and the expected type of macro calls

Something like syntax-parse

Stefan Monnier ML’2017 22

