Information Retrieval Evaluation

Jing He
hejing@iro.umontreal.ca
October 21, 2012
Outline

• Background and Problem

• Evaluation Methods
 – User Study
 – Cranfield Paradigm (Test Collections)
 – Implicit Feedback

• Summary
Outline

• Background and Problem
• Evaluation Methods
 – User Study
 – Cranfield Paradigm
 – Implicit Feedback
• Summary
Commercial Search Engines
Information Retrieval Algorithms

- Vector space model
- Language model
- Probabilistic model

- text 0.2
- mining 0.1
- association 0.01
- clustering 0.02
- food 0.00001
- ...
Problem

What is a better search engine (IR system)?
Wait......Better?
What do you mean?
Three different parties have different needs for a good system.

Evaluation

[Logos of search engines and other websites]
Outline

• Background and Problem
• IR Evaluation
 – User Study
 – Cranfield Paradigm
 – Implicit Feedback
• Summary
Outline

• Background and Problem
• IR Evaluation
 – User Study
 – Cranfield Paradigm
 – Implicit Feedback
• Summary
User Study Assumption

System’s Performance

Users’ Happiness
User Study

• Process
 – Actual users are hired
 – They use the systems to complete some tasks
 – They report their subjective feeling
User Study

- **Strength**
 - Close to real

- **Weakness**
 - Too subjective
 - Too expensive → Small Scale → Bias
User Study

• **Strength**
 – Close to real

• **Weakness**
 – Too subjective
 – Too expensive → Small Scale → Bias
User Study [Kagolovsky et al., 03]

• Process
 – Actual users are hired
 – They use the systems to finish a task
 – Their performance is measured
 • # of relevant documents found in a given time
 • of finding required answers
IR Evaluation: User Study

• Strength
 – Close to real

• Weakness
 – Too expensive → Small Scale → Bias
Outline

• Background and Problem
• IR Evaluation
 – User Study
 – Cranfield Paradigm (Test Collection)
 – Implicit Feedback
• Summary
Satisfaction/Happiness: Divide and Conquer

• **Efficiency**
 – Response Time
 – Throughput

• **Effectiveness**
 – Quality of the returned list

• **Interface**
 – e.g. faceted search
 – Usually rely on the user study
Efficiency

• Same as any database/Architecture/Software benchmark/test collection
 – Document collection
 – Query set
• Because the test collection is reusable, so
 – Cheap
 – Easy for Error Analysis
Effectiveness

• A reusable test collection for effectiveness?
Effectiveness Evaluation

Assumption

- Information need q
- Document d
- User u
- Satisfaction $S(q,d,u)$
Cranfield Paradigm

- A test collection
 - Document collection D
 - Topic set T
 - Relevance Judgments R

- A retrieval system runs
 - Retrieve lists L from D for topic T

- A measure is used to score the system
 - score = f(R, L)
Cranfield Paradigm: Process

• Given
 a) A test collection \((T, D, R)\)
 b) A retrieval run for the test collection: a doc-list \(L_t\) for each topic \(t\) in \(T\)

• For each topic \(t\) in \(T\)
 • Use a measure (e.g. \(P@10\)) to compute the quality of \(L_t\)

• Combine scores
 • e.g., arithmetic average
Test Collection/Benchmark

Document Collection

Query Set

Relevance Judgments

Assumption
\[R(d, q, u_1) = R(d, q, u_2) \]
Organizations for Standard Test Collections

• Cranfield
 – Cranfield College, UK, 1950s

• TREC (Text REtrieval Conference)
 – by U.S. National Institute of Standards and Technology
 – 1992-now

• NTCIR (NII Test Collection for IR Systems)
 – East Asian languages

• CLEF (Cross Language Evaluation Forum)
 – European languages
Cranfield Paradigm: Process

• Given
 a) A test collection \((T, D, R)\)
 b) A retrieval run for the test collection: a doc-list \(L_t\) for each topic \(t\) in \(T\)

• For each topic \(t\) in \(T\)
 • Use a measure (e.g. P@10) to compute the quality of \(L_t\)

• Combine scores
 • e.g., arithmetic average
Measures

• Binary Judgment Measures
 – Unranked Results
 – Ranked Results Measures

• Graded Judgment Measures

\[J : Q \times D \rightarrow \{0,1\} \]

\[J : Q \times D \rightarrow \{0,1,2,3\} \]
Measures

• Binary Judgment Measures
 – Unranked Results: a document set
 – Ranked Results: a document list

• Graded Measures
Measures

• Binary Judgment Measures
 – Unranked Results: a document set
 • Precision
 • Recall
 • F-score
 – Ranked Results: a document list
• Graded Measures
Measures: Precision and Recall

• Precision (P) is the fraction of retrieved documents that are relevant

\[
\text{Precision} = \frac{\#(\text{relevant items retrieved})}{\#(\text{retrieved items})} = P(\text{relevant|retrieved})
\]

• Recall (R) is the fraction of relevant documents that are retrieved

\[
\text{Recall} = \frac{\#(\text{relevant items retrieved})}{\#(\text{relevant items})} = P(\text{retrieved|relevant})
\]
Measures: Precision and Recall

\[P = \frac{TP}{TP + FP} \]
\[R = \frac{TP}{TP + FN} \]

- Trade-off between precision and recall
 - Return more docs \(\rightarrow \) higher recall, (usually) lower precision
Measures: Combining Precision and Recall

• Combine precision and recall in F-score

\[F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R} \]

• \(\alpha \in [0, 1] \) is used to control the relative importance of precision/recall
 • Precision is more important for Web search
 • Recall is more important for patent search
• When \(\alpha=0.5 \), it is the harmonic mean
Why harmonic average?

• A kind of soft-minimum
Measures: a Example

<table>
<thead>
<tr>
<th></th>
<th>relevant</th>
<th>not relevant</th>
</tr>
</thead>
<tbody>
<tr>
<td>retrieved</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>not retrieved</td>
<td>60</td>
<td>1,000,000</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>1,000,040</td>
</tr>
</tbody>
</table>

- $P = \frac{20}{20 + 40} = \frac{1}{3}$
- $R = \frac{20}{20 + 60} = \frac{1}{4}$
- $F_1 = 2 \frac{\frac{1}{3} + \frac{1}{4}}{\frac{1}{3} + \frac{1}{4}} = \frac{2}{7}$
Measures: a Example

<table>
<thead>
<tr>
<th></th>
<th>relevant</th>
<th>not relevant</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>retrieved</td>
<td>20</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>not retrieved</td>
<td>60</td>
<td>1,000,000</td>
<td>1,000,060</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>1,000,040</td>
<td>1,000,120</td>
</tr>
</tbody>
</table>

• Why not using accuracy?
Measures

• Binary Judgment Measures
 – Unranked Results: a document set
 – Ranked Results: a document list
 • P@n, R@n, precision-recall curve, MRR, MAP

• Graded Measures
Measures: P@n and R@n

• For each cutoff n, take top n docs as a set

• Drawback
 – Only contains incomplete information of a list
 – Insensitive to the rank of relevant docs
 – e.g. P@5 values are identical for the following lists
 • 1,1,0,0,0
 • 0,0,0,1,1

• P-R curve
 – Contains complete information
Measures: P-R curve

• For each cut off n, get a \((R@n, P@n)\) pair
• Take \(R@n\) as x-axis, and \(P@n\) as y-axis, we get the P-R curve

Interpolation (in red): Take maximum of all future points

• P-R curve is usually only plotting for Recall \((0.0, 0.1, ..., 0.9, 1.0)\) – for easy combination
Measures: Average Precision

- Not easy to compare systems by P-R curves
- Approximate area under the P-R: Average Precision
 - Average the precision at the positions of relevant docs

\[
\text{AvgPrec} = 62.2\% \\
\text{AvgPrec} = 52.0\%
\]
Measures: MRR

• Mean Reciprocal Rank
 – Reciprocal of rank of the first relevant doc

• Used for some kinds of queries
 – Navigational Queries
 • “glassdoor”
 – Specific Informational Queries
 • “when was the first Olympic Game?”
Measures

• Binary Judgment Measures
 – Unranked Results: a document set
 – Ranked Results: a document list

• Graded Judgment Measures
 – nDCG
Measures: nDCG

• Graded Judgment
 – Relevant documents can provide different amount of useful information
 – Highly relevant doc vs. Marginal relevant doc

• Gain from a doc (G)
 – Determined by its relevance degree
Measures: nDCG

• Cumulated Gain (CG)
 – Sum of gain from docs in the list

• Discounted Cumulated Gain (DCG)
 – Top ranked docs are more important for users
 – Top ranked docs should be weighted highly

\[
DCG_p = rel_1 + \sum_{i=2}^{p} \frac{rel_i}{\log_2 i}
\]
Measures: nDCG

- Gain
 3, 2, 3, 0, 0, 1, 2, 2, 3, 0

- Discounted Gain
 3, 2/1, 3/1.59, 0, 0, 1/2.59, 2/2.81, 2/3, 3/3.17, 0

- Discounted Cumulated Gain
 3, 5, 6.89, 6.89, 6.89, 7.28, 7.99, 8.66, 9.61, 9.61
Measures: nDCG

• Normalized Discounted Cumulated Gain (nDCG)
 – Why normalizing?
 – Value ranges for queries are quite different
 – e.g.
 • q1 has only 1 relevant doc in D
 • q2 has 1000 relevant docs in D
 • The average score of DCG will be dominated by q2

• Normalized Factor
 – DCG value for an ideal (best) doc list
Measures: nDCG

- G and DCG (assume it contains all rel docs)
 3, 2, 3, 0, 0, 1, 2, 2, 3, 0
 3, 5, 6.89, 6.89, 6.89, 7.28, 7.99, 8.66, 9.61, 9.61

- Ideal G and DCG
 3, 3, 3, 2, 2, 2, 1, 0, 0, 0
 3, 6, 7.89, 8.89, 9.75, 10.52, 10.88, 10.88, 10.88, 10.88

- nDCG
 1, 0.83, 0.87, 0.76, 0.71, 0.69, 0.73, 0.8, 0.88, 0.88
Measures

• Binary Judgment Measures
 – Unranked Results: a document set
 • Precision, Recall, F
 – Ranked Results: a document list
 • P@n, R@n, P-R curve, Average Precision, MRR

• Graded Judgment Measures
 – nDCG
Cranfield Paradigm: Process

• Given
 a) A test collection \((T, D, R)\)
 b) A retrieval run for the test collection: a doc-list \(L_t\) for each topic \(t\) in \(T\)

• For each topic \(t\) in \(T\)
 • Use a measure (e.g. P@10) to compute the quality of \(L_t\)

• Combine scores
 • e.g., arithmetic average
Combine Scores and Compare

- Two systems (A and B), which is better?
- Compare the arithmetic average score?
 - Difference between scores
 - Sample size
- Principle Comparison: Significant Test
 - For comparison: One-sided test
 - Widely used: t-test, Wilcoxon signed-rank test
Cranfield Paradigm

• Strength
 – Cheap
 – Easy for Error Analysis
 – Large Sample for More Confidence
 – Repeatable
Cranfield Paradigm: Weakness

• test collection
 – Document collection D
 – Topic set T
 – Relevance Judgments R

• Weakness
 – Relevance Judgments are expensive → incomplete
 – Assumption

\[S(q, d, u_1) \quad \text{vs.} \quad S(q, d, u_2) \]
Problem of Relevance Judgments

- Collect Relevance Judgments from Real User?
Outline

• Background and Problem
• IR Evaluation
 – User Study
 – Cranfield Paradigm
 – Implicit Feedback
• Summary
Implicit Feedback

- User Behavior \rightarrow Relevance Judgments
Implicit Feedback

• Strength
 – Real User
 – Cheaper than cranfield paradigm
 – Much Larger sample size

• Challenge
 – User behavior noise
 – Long-tail search
Implicit Feedback

• A/B test
 – Use a small proportion of traffic (1%) for evaluation
 – Option 1: Show results from different retrieval methods alternatively
 – Option 2: Merge results in a doc list
 – Compare the clickthrough-rate of two results
Outline

• Background and Problem
• IR Evaluation
 – User Study
 – Cranfield Paradigm
 – Implicit Feedback
• Summary
Summary

• Real users are ground-truth
• Evaluation of methods can be decomposed
• Reusable test collection is useful
• User behavior (log) is really a kind of wealth
Thank You!