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Linear Models for Classification

• Goal: take input vector x and map it onto one of K discrete classes

• Input space divided into decision regions divided by decision surfaces 
or decision boundaries

• Consider linear models: those separable by (D-1) dimensional 
hyperplanes in the D-dimensional input space. 

• Perfect separation: linearly-separable

• Recall simplest linear regression model:

• Use activation function f(.) to map function onto discrete classes

• Due to f(.) these models are no longer linear in the parameters
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y(x) = wTx + w0

y(x) = f
(
wTx + w0

)



Discriminant Functions

• 2 class case, simplest:
where w is a weight vector and wo is the bias 

• Decision boundary is 0.

• Consider 2 points xa and xa lying on decision surface. Because y(xa) = 
y(xb) = 0 we have
thus vector w is orthogonal to every vector lying within decision 
surface

• If x is on decision surface then y(x)=0 indicating that:

We thus see that bias wo decides location of  decision surface 
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y(x) = wTx + w0

wT(xA − xB) = 0

wTx
||w|| = − w0

||w||



Geometry of linear discriminant

Decision surface is perpendicular to w.  Displacement controlled by w0. 
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Multiple Classes

Left: distinguish points in Ck from those not in Ck. Right: pairwise separation of classes Ck 

and Cj. Both lead to ambiguous regions. 
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• Not generally good idea to use multiple 2-class classifiers to do K-
class classification

• Leads to ambiguous regions. See figure:
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Single K-class classifier
• Single discriminant comprising K linear functions of form

• Point x belongs in class Ck if yk(x) > yj(x) for all j ≠ k

• Decision boundary between Ck and Cj is had by yk(x) = yj(x) and 
corresponds to (D-1)-dimensional hyperplane

• Decision region singly connected and convex (due to linearity of 
discriminant functions. See Bishop pg 184.
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yk(x) = wT
k x + wk0

(wk −wj)Tx + (wk0 − wj0) = 0

Ri
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Least Squares Classification
• Approximates conditional expectation E[t|x]

• Each class Ck described by its own linear model

• Minimize sum-of-squared errors on set of models 

• Works very poorly.  E.g. very sensitive compared to logistic 
regression to outliers. 
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yk(x) = wT
k x + wk0
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Least Squares Classification
• Second example: even for easy dataset with clear decision 

boundaries one class is underrepresented (compare to logistic 
regression below)

• Behavior not surprising when we consider that it corresponds to 
ML under assumption of Gaussian conditional distribution. Binary 
target vectors are far from Gaussian.
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Fisher’s linear discriminant
• Can look at classification as dimensionality reduction: take D 

dimensional input vector and project it down to 1 dimension using:

• Use threshold such that y≥w0 is classified as C0 (Yields standard 
linear classifier from previous slide). 

• Adjust weight vector to project with maximum class separation. 
Consider 2-class version:

• Simplest measure of class separation is separation of class means. 
Choose w to maximize                                        where
                     si the mean of the projected data from class Ck.

9

y = wTx

m1 =
1

N1

∑

n∈C1

xn m2 =
1

N2

∑

n∈C2

xn

m2 −m1 = wT(m2 −m1)
mk = wTmk



• Still problematic: when there is strongly non-diagonal covariance between 
class distributions, separation is poor:

• Fishers: maximize separating between class means while minimizing variance 
within each class. Within class variance is:
                                  where 

• Total within-class variance is 

• Fisher criterion is ratio of the between-class mean and the within-class 

Fisher’s linear discriminant
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Geometry of Fisher’s

Left: samples from two classes along with histograms resulting from projection onto 
line joining the class means (reproduced from previous slide). Right: corresponding 
projection based on Fisher linear discriminant. 

11

−2 2 6

−2

0

2

4

−2 2 6

−2

0

2

4



Fisher’s linear discriminant
• Fisher’s criterion: 

• Can relate this to weights w by rewriting as:

where SB is between-class covariance

and where SW is within-class covariance

• Differentiating J(w) with respect to w reveals maximum when:

• SBw is always in the direction of (m2 - m1). Don’t care about 
magnitiude of w so drop scalar factors  
Multiply both sides by      yields Fisher’s linear discriminant
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J(w) =
(m2 −m1)2

s2
1 + s2

2

J(w) =
wTSBw
wTSW w

SB = (m2 −m1)(m2 −m1)T

SW =
∑

n∈C1

(xn −m1)(xn −m1)T +
∑

n∈C2

(xn −m2)(xn −m2)T

(wTSBw)SW w = (wTSW w)SBw

w ∝ S−1
W (m2 −m1)

S−1
W

(wTSBw) and (wTSW w)



Fisher’s linear discriminant
• Least squares approach to linear discriminant was to make model 

predictions as close as possible to target values

• Fisher was derived based on maximum separation of classes 

• Fisher can still be derived as special case of least squares

• Trick is to recode target for C1 to be N/N1 where N1 is the number 
of patterns in class C1 and N is the total number of patterns. For C2 
target is -N/N2.  

• Approximates reciprocal of the prior for the class.   Read 4.1.7

• Fisher’s criterion can be extended to >2 classes. Read 4.1.6 
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Perceptron algorithm. 
• Rosenblatt (1962)

• Linear model with step activation function:

• Train using perceptron criterion

where M is the set of misclassified patterns.  Note that direct 
misclassification using total number of miscalssified patterns will not 
work because of nonlinear f() (the gradient is ill-conditioned). 
Instead we seek a weight vector such that
and                                  .
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y(x) = f(wTφ(x))

f(a) =

{
+1, a ≥ 0
−1, a < 0.

EP = −
∑

n∈M
wTφntn

∀xn ∈ C1,wTφ(xn) > 0
∀xn ∈ C2,wTφ(xn) < 0



Perceptron algorithm. 
• Total error function is piecewise linear (across 

all misclassified patterns).  Stochastic gradient 
descent: 

• Update is not a function of w thus η can be 
equal to 1

• Perceptron convergence theorem:  If there exists 
an exact solution (i.e. if training set is indeed 
linearly separable) then PA will find a solution 
in finite number of steps. 

• Attacked by Minsky and Papert in Perceptrons 
(1969).  Attack valid only for single-layer 
perceptrons.  Still, stopped research in neural 
computation for nearly a decade. 
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w(τ+1) = w(τ) − η∇EP(w) = w(τ) + ηφntn



Geometry of Perceptron

Convergence for 2 classes (red and blue). Black arrow = w; black line is decision boundary.  
On top left,  the point circled in green is misclassified thus its feature vector is added to w.   
This is repeated on the bottom
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Probabilistic Generative Models

• Model class-conditional densities 

• Posterior probability for class C1:

where we have defined

• σ is the logistic sigmoid; Note that
and that the inverse of σ is the logit function 

representing ratio of probabilities 
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p(x|Ck)

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)

=
1

1 + exp(−a)
= σ(a)

a = ln
p(x|C1)p(C1)
p(x|C2)p(C2)
σ(−a) = 1− σ(a)

a = ln
( σ

1− σ

)

a = ln[p(C1|x)/p(C2|x)]



Probabilistic Generative Models
• Generalization to multiple classes: normalized exponential function

where

Also known as softmax function because it is a smoothed version of 
“max”. 

• Different representations for class-conditional densities yield 
different consequences in how classification is done [see following 
slides...]
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p(Ck|x) =
p(x|Ck)p(Ck)∑
j p(x|Cj)p(Cj)

=
exp(ak)∑
j exp(aj)

ak = ln p(x|Ck)p(Ck)



Continuous inputs
• First assume all classes share same covariance matrix and only 2 

classes. This yields:

where:

• Quadratic term from Gaussians vanishes. priors p(Ck) only enter via 
bias parameter.  Thus make parallel shift in decision boundry. 

• For general case of K classes we have:

where:
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p(C1|x) = σ(wTx + w0)

w = Σ−1(µ1 − µ2)

w0 = −1
2
µT

1 Σ−1µ1 +
1
2
µT

2 Σ−1µ2 + ln
p(C1)
p(C2)

wk = Σ−1(µk)

wk0 = −1
2
µT

k Σ−1µk + ln p(Ck)

ak(x) = wT
k x + wk0



Continuous inputs

Left: class-conditional densities for two classes, red and blue. Right,  
corresponding posterior probability p(C1|x) which is given by a logistic sigmoid 
of a linear function of x.  On right: proportion of red yields p(C1|x), proportion 
of blue yields p(C2|x) = 1-p(C1|x)
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Linear versus quadratic 
• When covariance is shared by classes, decision boundary is linear. 

When covariances are unlinked, decision boundary is quadratic. See 
Bishop p198-199 for details
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Maximum likelihood
• Now have a parametric form for class-conditional densities p(x|Ck). 

Can now determine values of parameters and priors p(Ck).

• Yields likelihood:

• Maximize log-likelihood.  For π relevant terms are:

set derivative with respect to π to 0 yields:
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p(xn, C1) = p(C1)p(xn|C1) = πN (xn|µ1,Σ)

p(xn, C2) = p(C2)p(xn|C2) = (1− π)N (xn|µ2,Σ)

p(ttt|π,µ1,µ2,Σ) =
N∏

n=1

[πN (xn|µ1,Σ)]tn [(1− π)N (xn|µ2,Σ)]1−tn

N∑

n=1

{tn lnπ + (1− tn) ln(1− π)}

π =
1
N

N∑

n=1

tn =
N1

N
=

N1

N1 + N2



Probabilistic Discriminative Models 

• Generative approach: 
For two-class classification, posterior of C1 is logistic sigmoid acting 
on linear function of x for many distributions p(x|Ck).  Used ML to 
determine parameters of densities as well as class priors p(Ck). Then 
use Bayes to determine posterior class probabilities

• Discriminiative approach: 
Learn parameters of general linear model explicitly using ML. 
Maximize likelihood of conditional p(Ck|x) directly. 

•  Advantages of discriminiative approach: fewer parameters, better 
performance when class-conditional densities do not correspond  
well to true distributions 
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Fixed Basis Functions
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Left: original data is not linearly separable.  Two Gaussian basis functions ϕ1 and 
ϕ1  are defined, as shown by green lines.   Right:  New linearly-separable space as 
created by the Gaussians.  Line is nonlinear in the original variables. 
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Logistic regression
• Posterior probability of class C1written as a logistic sigmoid acting on linear 

function of feature vector ϕ 

where σ(.) is the logistic sigmoid

• Called logistic regression but really a model of classification

• More compact than ML-fitting of Gaussians:  for M parameters, Gaussian 
model uses 2M parameters for the means and M(M + 1) /2 parameters for 
shared covariance matrix.  Grows quadratically. 

•  Use ML to determine parameters. Recall derivitive of logistic sigmoid is: 

25

p(C1|φ) = y(φ) = σ(wTφ)

dσ

da
= σ(1− σ)

p(ttt|w) =
N∏

n=1

ytn
n

{
1− yn

}1−tn



Logistic regression
• Negative log of likelihood yields cross entropy:

• Gradient with respect to w yields:

• Takes same form as the gradient for sum-of-squares error (eqn B3.13):

• However logistic  sigmoid means no closed-form quadratic solution (here is 
sum of squared error for comparison:)

where Φ is the design matrix
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E(w) = − ln p(ttt,w) = −
N∑

n=1

{
tn ln yn + (1− tn) ln(1− tn)

}

∇E(w) =
N∑

n=1

(yn − tn)φn

∇ ln p(ttt|w,β) =
N∑

n=1

{
tn −wTφ(xn)

}
φ(xn)T

wML =
(
ΦTΦ

)−1ΦTttt

wML =
(
ΦTΦ

)−1ΦTttt



Iterative reweighted least squares  (IRLS)

• Efficient iterative optimization: Newton-Raphson

where H is the Hessian matrix comprising the second derivatives of 
E(w) with respect to w. 

• For sum-of-squares error this can be done in one step because the 
error function is quadratic (see p207)

• For cross-entropy we get a similar set of normal equations for 
weighted least squares where the weighting depends on w

• This dependancy forces us to apply the update iteratively.  (see 
p208)
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wnew = wold −H−1∇E(w)



Final notes on chapter 4
• Logistic regression suffers from overfitting.  ML solution corresponds to 

σ=0.5 which is where wTϕ=0.  Magnitude of w goes to infinity; slope of the 
sigmoid becomes infinitely steep. All positive examples take a posterior of p
(Ck|x)=1. 

• Not resolved by having more data. But is resolved using (a)regularization or 
(b) a Bayesian approach involving an appropriate prior over w. 

• (4.3.4) Multiclass logistic regression is an easy extension of the two-class 
formulation. Replace logistic sigmoid with softmax and use maximum 
likelihood.

• (4.3.5)  Probit regression is of theoretical interest but is in practice similar to 
logistic regression. 

• (4.3.6) Canonical link functions provide a principled framework for matching 
activation functions and error functions.  Based on assumptions about the 
conditional distribution for the target variable. 

• 4.3.4-6 are not discussed further. Please read them.
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