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These slides follow closely the (English) course textbook  
Pattern Recognition and Machine Learning

by Christopher Bishop
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Goals of the course

• Understand basic concepts behind machine 
learning algorithms
Prerequisites:  Common sense

• Understand some elements of learning theory
Prerequisites: Probability, statistics, linear algebra

• Implement and use machine learning algorithms
Prerequisites:  Algorithms, programming, 
numerical analysis
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What is machine learning? 

• Automatic discovery of regularities in data. 

• Algorithms and techniques that allow computers 
to "learn". The major focus is to extract 
information from data automatically, by 
computational and statistical methods

• Applications: natural language processing, search 
engines, medical diagnosis, bioinformatics, stock 
market analysis, game playing and robot 
locomotion.

• http://en.wikipedia.org/wiki/Machine_learning
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Relation to “intelligence”

• Learning is fundamental characteristic of human 
intelligence 

• To learn is to change for the better 

• One way to measure change is in terms of behavior 
of organism in new but similar situations

• Generalization is key: it is easy to learn by heart, 
difficult to learn general-purpose strategies

• Useful distinction: innate versus acquired knowledge 
(for us: priors versus data)
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Example: Digit Recognition

• Example: 28 x 28 pixel image as vector x, |x|=78

• Build machine able to identify digit {0,1,...,9} as 
output
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• http://yann.lecun.com/exdb/mnist/

• http://www.cs.toronto.edu/~roweis/data.html

• Nontrivial: rules or 
heuristics yield poor 
results
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Basic terminology 

• Training Set: N digits 

• Target Vector: Unique vector t for each 
target digit

• Learned Function:  y(x)

• Training Phase: Process for determining y(x)

• Test Set: Some digit images not found in 
training set

{x1, ...,xN}
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Feature extraction 
Transform original input variables into 
some new space

Example 1: Translate and scale digit 
images to fit in box of fixed size

Example 2:  Convert audio waveform 
to Fourier-based features
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Kinds of Machine Learning

• Supervised learning:  
mapping inputs to targets

• Unsupervised learning:  
finding similar examples in data

• Semi-supervised learning:  
combining labeled and unlabeled examples

• Reinforcement learning: 
maximizing reward via appropriate action

9



Supervised Learning
Input vector xi is matched to a target vector ti

Classification: 
ti falls into discrete 
categories 

Regression : 
ti is continuous 
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Unsupervised Learning
Only input vector xi present; no ti

• Clustering (above):  Discover groups of similar examples 
within data

• Density estimation:  Determine distribution of data

• Dimensionality reduction: Find low-dimensional 
representations for, e.g., visualization
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Reinforcement Learning

• Find suitable actions to take in a given situation in 
order to maximize reward

• No explicit training targets

• Discovery via trial and error
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Polynomial curve fitting
• Training set: N observations of x; 

• Targets: N observations of t;

• Goal is generalization: predict x for some 
unseen t

X ≡ (x1, ..., xN )T

T ≡ (t1, ..., tN )T

Plot of training data (10 points). 
Green curve shows function sin(2 π x ) used to generate data
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Polynomial curve fitting

• Polynomial functional form:

• Fix coefficient values w via error minimization.  
Simple choice: minimize sum of the squares of the 
errors between predictions y(xn,w) for each point xn 

and corresponding target values tn

y(x,w) = w0 + w1x + w2x
2 + ... + wMxM =

M∑

j=0

wjx
j

E(w) =
1
2

N∑

n=1

(y(nn,w)− tn)2
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Error function

• Error is quadratic function of coefficients w

• Minimization of function is thus unique

The error function corresponds to (one half of) the sum of the 
squares of the displacements (shown by vertical green bars) of each 
data point from the function y(x,w)

t

x

y(xn,w)

tn

xn

E(w) =
1
2

N∑

n=1

(y(nn,w)− tn)2
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Model selection

• What is the appropriate polynomial order?

• Balance over-fitting and under-fitting

• RMS allows comparison between different datasets 

ERMS =
√

2E(w∗/N)
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Training versus testing

• What is the best model given these results?

• Why does M=3 perform better than M=9? (Taylor expansion of 
generating function sine suggests that even M=∞ should work!)

Graph of the RMS error evaluated on training set and 
on an independent test set.
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Overfitting as function of training set size 

Plots of the solutions obtained by minimizing 
using M=9 for N=15 data points (left) and 

N=100 data points (right).
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Overtuning of parameters

• Magnitude of coefficients increases 
dramatically with model size

• M=9 can pass through all data points 
for N=10

• Minimizing least squares is example of 
maximum likelihood; Overfitting is 
general problem

• Many solutions; With Bayesian model, 
the effective number of parameters 
adjusts automatically to size of dataset. 

M=0 M=1 M=6 M=9

w*0

w*1

w*2

w*3

w*4

w*5

w*6

w*7

w*8

w*9

0.19 0.82 0.31 0.35

1.27 7.99 232.37

25.43 5321.83

17.37 48568.31

23163.30

640042.26

10618000.52

1042400.18

557682.99

125201.43

Table of coefficients for w* the unique 
solution of minimization of RMS for 

various polynomial orders.
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Regularization
• Large weights generally lead to 

inflexible solutions

• Add penalty term to error function

where

• Statistics term: shrinkage

• Quadratic regularization yields ridge 
regression

• Neural networks : weight decay Plots of M=9 using regularized error function
on same 10-point dataset as before 
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Results with regularization
ln λ= -∞ ln λ= -18 ln λ= 0

w*0

w*1

w*2

w*3

w*4

w*5

w*6

w*7

w*8

w*9

0.35 0.35 0.13

232.37 4.74 0.05

5321.83 0.77 0.06

48568.31 31.97 0.05

23163.30 3.89 0.03

640042.26 55.28 0.02

10618000.52 41.32 0.01

1042400.18 45.95 0.00

557682.99 91.53 0.00

125201.43 72.68 0.10

Table of coefficients for w* the unique solution 
of minimization of RMS for various values for 

regularization parameter λ in

λ

Ẽ(w) =
1
2
(y(xn,w)− tn)2 +

λ

2
||w||2
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• Regularization effectively controls complexity of model

• Regularization parameter (λ) a hyperparameter of model. 

• Possible to overfit hyperparameters

• Simple safeguard: use validation set (distinct from test set and training set) 
to optimize model complexity

Results with regularization

RMS error versus ln λ for the M=9 polynomial

λ
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• In principle, any number of consistent solutions may exist

• Occam’s Razor: prefer the simplest solution.  But what is “simple”?

• With curve fitting,  perhaps smooth == simple

• Can use prior knowledge to rank solutions 
E.g. prefer a sparse model for regularization and efficiency

• ML searches in the space of possible models; 
Models themselves search through hyperparameters and parameters

• ML balances engineering,  embedding prior knowledge in the model,  cost 
of obtaining data, etc. . . 

Generalization is difficult
λ
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Probability Theory

• Randomly select a box B = r or b [red or blue] 
such that p(B = r) = .6

• Then randomly select a piece of fruit F = a or o [apple or orange]
with equal probability across pieces of fruit in a box

Simple example of two coloured boxes each 
containing frut (apples in green, oranges in orange)
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• 2 random variables X and Y; 

• N trials; 

• X takes values xi ... xM; 

• Y takes values yj ... yL; 

• Number where X=xi and Y=yj is nij 

• Number where X=xi is ci

• Number where Y=yj is ri

Probability by counting
λ

}
}ci

rjyj

xi

nij

Example for deriving 
sum and product rules 

using 2 random 
variables X and Y
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Sum and Product Rules
λ

}

}ci

rjyj

xi

nij

p(X = xi, Y = yj) =
nij

N

p(X = xi) =
ci

N

p(X = xi) =
L∑

j=1

p(X = xi, Y = yj)

Joint probability:

Marginal probability:

Sum rule:

Conditional  probability:

Product rule:

(ci =
∑

j nij)

p(Y = yj |X = xi) =
nij

ci

p(X = xi, Y = yj) =
nij

ci
· ci

N

= p(Y = yj |X = xi)p(X = xi)
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Bayes’ Theorem
λ

p(X = xi) =
L∑

j=1

p(X = xi, Y = yj)Sum rule:

Product rule:

Bayes’  Theorem:

p(X = xi, Y = yj) = p(Y = yj |X = xi)p(X = xi)

p(X) =
∑

Y

p(X, Y )

p(X, Y ) = p(Y |X)p(X)

p(Y |X) =
p(X|Y )p(Y )

p(X)(From product rule plus symmetry 
property p(X,Y) = p(Y,X))

p(X) =
∑

Y

p(X|Y )p(Y )Denominator can be seen as normalizer 
to ensure conditionals sum to 1.0
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Simple example
λ

p(F = a) = p(F = a|B = r)p(B = r) + p(F = a|b = b)p(B = b)

=
1
4
× 4

10
× 3

4
× 6

10
=

11
20
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Marginal vs Conditional Distributions
λ

Marginal p(Y)

Marginal p(X) Conditional p(X|Y=1)
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Probability densities

• Probabilities over events can be extended to continuous variables

• Pr. of falling in interval (x, x + δx) given by p(x)δx for δx→0 

• Pr. that x will lie in interval (a,b) given by

• Sum rule for densities:

• Product rule for densities:

Probability density p(x) over continuous variable x

xδx

p(x) P (x)

p(x ∈ (a, b)) =
∫ b

a
p(x)dx

p(x) =
∫

p(x, y)dy

p(x, y) = p(y|x)p(x)
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Expectations and covariances

Expectation of f(x) is average value of f(x) under prob. dist. p(x) 

[f ] =
∑

x

p(x)f(x)

[f ] =
∫

p(x)f(x)dx

[f ] ! 1
N

N∑

n=1

f(xn)

[f |y] =
∑

x

p(x|y)f(x)

Discrete distribution:

Continuous variables:

Sample of N points:

Conditional expectation:
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Variance and covariance of f(x)

Variance provides a measure of how much variability there is in the 
function f(x) and is defined in terms of expectation. Note that the 
variance of a variable x can be treated as a special case. 

var[f ] = [(f(x)− [f(x)])2]
var[f ] = [f(x)2]− [f(x)])2

var[x] = [x2]− [x]2

Covariance expresses extent to which two variables x and y vary 
together. 

cov[x, y] = x,y[xy]− [x] [y]

cov[x,y] = x,y[xyT ]− [x] [yT ]
For vectors of random variables, covariance is a matrix. 
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Bayesian probabilities
• Make inference about the properties of our parameters w using 

p(w), called the prior 

• Effect of observed data D = {t1, t2,... tN} is expressed through 
conditional p(D|w) and is called likelihood

• Evaluate uncertainty in w after observing D in form p(w|D), 
called the posterior

• Denominator p(D) is normalization term

p(w|D) = p(D|w)p(w)
p(D)

posterior ∝ likelihood × prior
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Frequentist vs Bayesian

• Frequentist:

• Set w to value such that p(D|w) is maximized

• w considered a fixed parameter

• Use estimator, e.g., minimization of negative log likelihood

• Consider distribution of data sets D (e.g. training /testing) 

• Bayesian:

• Only consider a single dataset D

• Model uncertainty using distribution over w
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Gaussian distribution

• Always positive; sums to 1.0

• precision

• expectation

• variance

N (x|µ,σ2)

x

2σ

µ

N (x|µ,σ2) =
1

(2πσ2)1/2
exp

{
− 1

2σ2
(x− µ)2

}

β = 1/σ2

[x] =
∫ ∞

−∞
N (x|µ,σ2)x dx = µ

var[x] = [x2]− [x]2 = σ2
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Maximizing likelihood

x

p(x)

xn

N (xn|µ,σ2)

Likelihood function for Gaussian distribution (red). Black points denote 
data set {xn}. Likelihood function corresponds to product of blue values. 

p(x|µ,σ2) =
N∏

n=1

N (xn|µ,σ2)

ln p(x|µ,σ2) = − 1
2σ2

N∑

n=1

(xn − σ)2 − N

2
ln σ2 − N

2
ln(2π)

• Maximum likelihood

• Log likelihood

• Sample mean via ML

• Sample variance via ML

µML =
1
N

N∑

n=1

xn

σ2
ML =

1
N

N∑

n=1

(xn − µML)2
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ML underestimates variance

Three samples from the green Gaussian, each consisting of 2 blue data points. Averaged 
across samples the mean is correct but the variance is systematically underestimated.

(a)

(b)

(c)

[µML] = µ

[σ2
ML] =

(N − 1
N

)
σ2

σ̃2 =
N

N − 1
σ2

ML =
1

N − 1

N∑

n=1

(xn − µML)2
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Derivation of unbiased variance

(From wikipedia’s variance entry)
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Curve fitting revisited
• Goal: predict target t for new values of input x on basis of training 

inputs x=(x1,...,xN)T and targets  t=(t1,...,tN)T

• To express uncertainty over targets, assume that given x, target t 
has Gaussian with mean equal to y(x,w) of the polynomial curve, 
thus: 

p(t|x,w,β) = N
(
t|y(x,w),β−1

)

t

xx0

2σy(x0,w)

y(x,w)

p(t|x0,w,β)
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• Train using maximum likelihood.  Assume samples independently 
drawn from

• ML solution wML obtained by maximizing w.r.t. w.  Last 2 terms fall 
away.  Scaling via β does not alter maximum. Thus maximizing 
likelihood is the same as minimizing sum-of-squares error:

Curve fitting revisited

p(ttt|xxx,w,β) =
N∏

n=1

N
(
tn|y(xn,w,β−1

)

p(t|x,w,β) = N
(
t|y(x,w),β−1

)

ln p(ttt|xxx,w,β) = −β

2

N∑

n=1

{y(xn,w)− tn}2 +
N

2
ln β − N

2
ln (2π)

E(w) =
1
2

N∑

n=1

(y(nn,w)− tn)2

40



• Can also use ML to determine precision (maximize w.r.t. β) :

• Now that we have predictions for w and β we can make 
predictions about x. These are now based on predictive distribution:

• Consider Gaussian prior over w 

Curve fitting revisited

1
βML

=
1
N

N∑

n=1

{y(xn,wML)− tn}2

p(t|x,wML,βML) = N
(
t|y(x,wML),β−1

ML

)

p(w|α) = N (w|0,α−1I) =
( α

2π

)(M+1)/2
exp

{
− α

2
wT w

}
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• Recall that posterior is proportional to prior and likelihood:

• Take negative log of eqn above and combine with:

and:

allows us to maximize posterior (MAP) via minimum of:

Yielding sum-of-squares with regularization of 

Maximizing posterior

p(w|xxx, ttt,α,β) ∝ p(ttt|xxx,w,β)p(w|α)

β

2

N∑

n=1

{y(xn,w)− tn}2 +
α

2
wT w

ln p(ttt|xxx,w,β) = −β

2

N∑

n=1

{y(xn,w)− tn}2 +
N

2
ln β − N

2
ln (2π)

p(w|α) = N (w|0,α−1I) =
( α

2π

)(M+1)/2
exp

{
− α

2
wT w

}

λ = α/β
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• With ML, performance on training set not a good measure

• Can divide data into training set for fixing w, validation set for 
comparing models and testing set for final performance test

• With sparse data can re-use data using cross-validation

• However must train models multiple times; slow

• Many approaches exist (Bayesian versus non-Bayesian)
Ex: Akaike information criterion (AIC) 
which balances best-fit log likelihood with complexity of 
model (M = number of parameters).   [Later in the course...]

Model selection

run 1

run 2

run 3

run 4

ln p(D|wML)−M
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