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Anssi P. Klapuri, Antti J. Eronen, and Jaakko T. Astola

Abstract—A method is decribed which analyzes the basic
pattern of beats in a piece of music, the musical meter. The
analysis is performed jointly at three different time scales: at
the temporally atomic tatum pulse level, at the tactus pulse
level which corresponds to the tempo of a piece, and at the
musical measure level. Acoustic signals from arbitrary musical
genres are considered. For the initial time-frequency analysis,
a new technique is proposed which measures the degree of
musical accent as a function of time at four different frequency
ranges. This is followed by a bank of comb filter resonators
which extracts features for estimating the periods and phases of
the three pulses. The features are processed by a probabilistic
model which represents primitive musical knowledge and uses the
low-level observations to perform joint estimation of the tatum,
tactus, and measure pulses. The model takes into account the
temporal dependencies between successive estimates and enables
both causal and noncausal analysis. The method is validated
using a manually annotated database of 474 music signals from
various genres. The method works robustly for different types of
music and improves over two state-of-the-art reference methods
in simulations.

Index Terms—Acoustic signal analysis, music, musical meter
analysis, music transcription.

EDICS: 2-MUSI

I. INTRODUCTION

Meter analysis, here also called rhythmic parsing, is an

essential part of understanding music signals and an innate

cognitive ability of humans even without musical education.

Perceiving the meter can be characterized as a process of

detecting moments of musical stress (accents) in an acoustic

signal and filtering them so that underlying periodicities are

discovered [1], [2]. For example, tapping a foot to music

indicates that the listener has abstracted metrical information

about music and is able to predict when the next beat will

occur.

Musical meter is a hierarchical structure, consisting of pulse

sensations at different levels (time scales). Here, three metrical

levels are considered. The most prominent level is the tactus,

often referred to as the foot tapping rate or the beat. Following

the terminology of [1], we use the word beat to refer to the

individual elements that make up a pulse. A musical meter

can be illustrated as in Fig. 1, where the dots denote beats and

each sequence of dots corresponds to a particular pulse level.

By the period of a pulse we mean the time duration between

successive beats and by phase the time when a beat occurs

with respect to the beginning of the piece. The tatum pulse

has its name stemming from “temporal atom” [3]. The period

of this pulse corresponds to the shortest durational values

in music that are still more than incidentally encountered.

The other durational values, with few exceptions, are integer
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Fig. 1. A music signal with three metrical levels illustrated.

multiples of the tatum period and the onsets of musical events

occur approximately at a tatum beat. The musical measure

pulse is typically related to the harmonic change rate or to the

length of a rhythmic pattern. Although sometimes ambiguous,

these three metrical levels are relatively well-defined and span

the metrical hierarchy at the aurally most important levels.

The tempo of a piece is defined as the rate of the tactus pulse.

In order that a meter would make sense musically, the pulse

periods must be slowly varying and, moreover, each beat at

the larger levels must coincide with a beat at all the smaller

levels.

The concept phenomenal accent is important for meter

analysis. Phenomenal accents are events that give emphasis

to a moment in music. Among these are the beginnings of all

discrete sound events, especially the onsets of long pitched

events, sudden changes in loudness or timbre, and harmonic

changes. Lerdahl and Jackendoff define the role of phenomenal

accents in meter perception compactly by saying that “the

moments of musical stress in the raw signal serve as cues from

which the listener attempts to extrapolate a regular pattern” [1,

p.17].

Automatic rhythmic parsing has several applications. A met-

rical structure facilitates cut-and-paste operations and editing

of music signals. It enables synchronization with light effects,

video, or electronic instruments, such as a drum machine. In

a disc jockey application, metrical information can be used

to mark the boundaries of a rhythmic loop or to synchronize

two audio tracks. Provided that a time-stretching algorithm is

available, rhythmic modifications can be made to audio signals

[4]. Rhythmic parsing for symbolic (MIDI1) data is required

for time quantization, an indispensable subtask of score type-

setting from keyboard input [5]. The particular motivation for

the present work is to utilize metrical information in further

signal analysis and in music transcription [6], [7], [8].

A. Previous work

The work on automatic meter analysis originated from

algorithmic models that attempted to explain how a human

1Musical Instrument Digital Interface. A standard interface for exchanging
performance data and parameters between electronic musical devices.

Joint estimation 
of 3 levels of MH

New onset 
detection

Comb filterbank

Probabilistic 
model



Musical levels

• Tatum: shortest durations regularly encountered 
(from jazz drummer Art Tatum)

• Tactus: Most prominent beat level

• Measure: A slower changing level with integer 
harmonic relationship to the tactus 
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Previous work

This paper has good previous work section. Some 
papers of interest:

• Large & Kolen: oscillator model from last week

• Parncutt: interesting meter inference model

• Brown: early use of autocorrelation

• Cemgil & Kappen: discussed on Wednesday

• Goto et. al:  instrument-specific beat tracking

• Scheirer: discussed today

• Raphael: generative model to be discussed later



Method summary

• Time freq analysis (onset detection)

• Comb filterbank (similar to autocorrealtion)

• Prob. model for finding periods 

• Periods drive a secondary phase-extraction module

• Period and phase information drive meter extraction
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Fig. 2. Overview of the meter estimation method. The two intermediate
data representations are bandwise accent signals vc(n) and metrical pulse
saliences (weights) s(τ, n).

the proposed method with two reference methods. The main

conclusions will be summarized in Section IV.

II. METER ANALYSIS MODEL

This section will describe the different parts of the meter

analysis method illustrated in Fig. 2. Subsection II-A will

describe the time-frequency analysis part. In Subsection II-B,

the comb filter resonators will be introduced. Subsections II-C

and II-D will describe the probabilistic models which are used

to estimate the periods and phases of the three pulse levels.

A. Calculation of bandwise accent signals

All the phenomenal accent types mentioned in the intro-

duction can be observed in the time-frequency representation

of a signal. Although an analysis using a model of the

human auditory system might seem theoretically advantageous

(since meter is basically a cognitive phenomenon), we did

not manage to obtain a performance advantage using a model

similar to [26] and [30]. Also, the computational complexity

of such models makes them rather impractical.

In a time-frequency plane representation, some data reduc-

tion must take place to discard information which is irrelevant

for meter analysis. A big step forward in this respect was taken

by Scheirer who demonstrated that the perceived rhythmic

content of many music types remains the same if only the

power envelopes of a few subbands are preserved and then

used to modulate a white noise signal [20]. Approximately

five subbands were reported to suffice. Scheirer proposed a

method where periodicity analysis was carried out within the

subbands and the results were then combined across bands.

Although Scheirer’s method was indeed very successful, a

problem with it is that it applies primarily to music with a

“strong beat”. Harmonic changes for example in classical or

vocal music go easily unnoticed using only a few subbands.

In order to detect harmonic changes and note beginnings in

legato2 passages, approximately 40 logarithmically-distributed

subbands would be needed.3 However, this leads to a dilemma:

the resolution is sufficient to distinguish harmonic changes

but measuring periodicity at each narrow band separately is

2A smooth and connected style of playing in which no perceptible gaps are
left between notes.
3In this case, the center frequencies are approximately one whole tone apart,

which is the distance between e.g. the notes c and d.

no longer appropriate. The power envelopes of individual

narrow bands are not guaranteed to reveal the correct metrical

periods—or even to show periodicity at all, because individual

events may occupy different frequency bands.

To overcome the above problem, consider another state-

of-the-art system, that of Goto and Muraoka [18]. They

detect narrowband frequency components and sum their power

differentials across predefined frequency ranges before onset

detection and periodicity analysis takes place. This has the

advantage that harmonic changes are detected, yet periodicity

analysis takes place at wider bands.

There is a continuum between the above two approaches.

The tradeoff is: how many adjacent subbands are combined

before the periodicity analysis and how many at the later stage

when the bandwise periodicity analysis results are combined.

In the following, we propose a method which can be seen as

a synthesis of the approaches of Scheirer and Goto et al.

Acoustic input signals are sampled at 44.1 kHz rate and

16-bit resolution and then normalized to have zero mean and

unity variance. Discrete Fourier transforms are calculated in

successive 23 ms time frames which are Hanning-windowed

and overlap 50 %. In each frame, 36 triangular-response

bandpass filters are simulated that are uniformly distributed on

a critical-band scale between 50 Hz and 20 kHz [31, p.176].

The power at each band is calculated and stored to xb(k),
where k is the frame index and b = 1, 2, . . . , b0 is the band

index, with b0 = 36. The exact number of subbands is not
critical.

There are many potential ways of measuring the degree of

change in the power envelopes at critical bands. For humans,

the smallest detectable change in intensity, ∆I , is approxi-
mately proportional to the intensity I of the signal, the same
amount of increase being more prominent in a quiet signal.

That is, ∆I
I , the Weber fraction, is approximately constant

perceptually [31, p.134]. This relationship holds for intensities

from about 20 dB to about 100 dB above the absolute hearing

threshold. Thus it is reasonable to normalize the differential of

power with power, leading to d
dtxb(k)/xb(k) which is equal

to d
dt ln(xb(k)) . This measures spectral change and can be

seen to approximate the differential of loudness, since the

perception of loudness for steady sounds is rougly proportional

to the sum of log-powers at critical bands.

The logarithm and differentiation operations are both repre-

sented in a more flexible form. A numerically robust way of

calculating the logarithm is the µ-law compression,

yb(k) =
ln(1 + µxb(k))

ln(1 + µ)
, (1)

which performs a logarithmic-like transformation for xb(k) as
motivated above but behaves linearly near zero. The constant

µ determines the degree of compression and can be used to

adjust between a close-to-linear (µ < 0.1) and a close-to-
logarithmic (µ > 104) transformation. The value µ = 100 is
employed, but all values in the range [10, 106] were found to
perform almost equally well.

To achieve a better time resolution, the compressed power

envelopes yb(k) are interpolated by factor two by adding
zeros between the samples. This leads to the sampling rate



Onset detector
• Bello et al paper from two weeks ago gives more 

recent approaches

• Broadband approach: Scheirer did period detection 
independently for 5 independent bands

• Narrowband approach: Goto uses many narrower 
bands but sums their differences before doing 
period detection

• Tradoff between too few subbands (harmonic 
changes do not show up) and too many subbands  
(measuring periodicity at each subband is no 
longer appropriate)
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adjust between a close-to-linear (µ < 0.1) and a close-to-
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uLaw log transform y(k) of 
signal is interpolated and LP 
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Difference zb’(n) is 
calculated from half-wave-
rectified zb(n)

Weighted average ub(n) is 
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Fig. 3. Illustration of the dynamic compression and weighted differentiation
steps for an artificial signal. Upper panel shows xb(k) and the lower panel
shows ub(n).

fr = 172 Hz. A sixth-order Butterworth lowpass filter with

fLP = 10 Hz cutoff frequency is then applied to smooth the
compressed and interpolated power envelopes. The resulting

smoothed signal is denoted by zb(n).
Differentiation of zb(n) is performed as follows. First, a

half-wave rectified (HWR) differential of zb(n) is calculated
as

zb
′(n) = HWR(zb(n) − zb(n − 1)), (2)

where the function HWR(x) = max(x, 0) sets negative values
to zero and is essential to make the differentiation useful.

Then a weighted average of zb(n) and its differential zb
′(n)

is formed as

ub(n) = (1 − λ)zb(n) + λ
fr

fLP
zb

′(n), (3)

where 0 ≤ λ ≤ 1 determines the balance between zb(n) and
zb

′(n), and the factor fr/fLP compensates for the fact that the

differential of a lowpass-filtered signal is small in amplitude. A

prototypical meter analysis system and a subset of our acoustic

database (see Sec. III) were used to thoroughly investigate

the effect of λ. Values between 0.6 and 1.0 performed well
and λ = 0.8 was taken into use. Using this value instead of
1.0 makes a slight but consistent improvement in the analysis

accuracy.

Figure 3 illustrates the described dynamic compression and

weighted differentiation steps for an artificial subband-power

signal xb(k). Although the present work is motivated purely
from a practical application point of view, it is interesting to

note that the graphs in Fig. 3 bear considerable resemblance

to the response of Meddis’s auditory-nerve model to acoustic

stimulation [32].

Finally, each m0 adjacent bands are linearly summed to get

c0 = #b0/m0$ accent signals at different frequency ranges c:

vc(n) =
cm0∑

b=(c−1)m0+1

ub(n), c = 1, . . . , c0. (4)

The accent signals vc(n) serve as an intermediate data
representation for musical meter analysis. They represent the

degree of musical accent as a function of time at the wider

frequency bands (channels) c. We use b0 = 36 and m0 = 9,
leading to c0 = 4.
It should be noted that combining eachm0 adjacent bands at

this stage is not primarily an issue of computational complex-

ity, but improves the analysis accuracy. Again, a prototypical

meter analysis system was used to investigate the effect of

different values ofm0. It turned out that neither of the extreme

values m0 = b0 or m0 = 1 is optimal, but using a large
number of initial bands, b0 > 20, and three or four “accent
bands” (channels) c0 leads to the most reliable meter analysis.

Other parameters were re-estimated in each case to ensure

that this was not merely a symptom of parameter couplings.

Elsewhere, at least Scheirer [20] and Laroche [22] have noted

that a single accent signal (the case m0 = b0) appears not

to be sufficient as an intermediate representation for rhythmic

parsing.

The presented form of calculating the bandwise accent

signals is very flexible when varying µ, λ, b0, and m0. A

representation similar to that used by Scheirer in [20] is

obtained by setting µ = 0.1, λ = 1, b0 = 6, m0 = 1. A
representation roughly similar to that used by Goto in [18] is

obtained by setting µ = 0.1, λ = 1, b0 = 36, m0 = 6. In
the following, the fixed values µ = 100, λ = 0.8, b0 = 36,
m0 = 9 are used.

B. Bank of comb filter resonators

Periodicity of the bandwise accent signals vc(n) is analyzed
to estimate the salience (weight) of different pulse period

candidates. Four different period estimation algorithms were

evaluated: a method based on autocorrelation, another based

on the YIN method of de Cheveigné and Kawahara [33],

different types of comb-filter resonators [20], and banks of

phase-locking resonators [14].

As an important observation, three of the four period

estimation methods performed equally well after a thorough

optimization. This suggests that the key problems in meter

analysis are in measuring the degree of musical accentuation

and in modeling higher-level musical knowledge, not in find-

ing exactly the correct period estimator. The period estimation

method presented in the following was selected because it

is by far the least complex among the three best-performing

algorithms, requiring only few parameters and no additional

postprocessing steps.

Using a bank of comb-filter resonators with a constant half-

time was originally proposed for tactus tracking by Scheirer

[20]. The comb filters that we use have an exponentially-

decaying impulse response where the half-time refers to the

delay during which the response decays to a half of its initial

value. The output of a comb filter with delay τ for input vc(n)
is given by

rc(τ, n) = ατrc(τ, n − τ) + (1 − ατ )vc(n), (5)

where the feedback gain ατ = 0.5τ/T0 is calculated based

on a selected half-time T0 in samples. We used a half-time
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accuracy.

Figure 3 illustrates the described dynamic compression and

weighted differentiation steps for an artificial subband-power

signal xb(k). Although the present work is motivated purely
from a practical application point of view, it is interesting to

note that the graphs in Fig. 3 bear considerable resemblance

to the response of Meddis’s auditory-nerve model to acoustic

stimulation [32].

Finally, each m0 adjacent bands are linearly summed to get

c0 = #b0/m0$ accent signals at different frequency ranges c:

vc(n) =
cm0∑

b=(c−1)m0+1

ub(n), c = 1, . . . , c0. (4)

The accent signals vc(n) serve as an intermediate data
representation for musical meter analysis. They represent the

degree of musical accent as a function of time at the wider

frequency bands (channels) c. We use b0 = 36 and m0 = 9,
leading to c0 = 4.
It should be noted that combining eachm0 adjacent bands at

this stage is not primarily an issue of computational complex-

ity, but improves the analysis accuracy. Again, a prototypical

meter analysis system was used to investigate the effect of

different values ofm0. It turned out that neither of the extreme

values m0 = b0 or m0 = 1 is optimal, but using a large
number of initial bands, b0 > 20, and three or four “accent
bands” (channels) c0 leads to the most reliable meter analysis.

Other parameters were re-estimated in each case to ensure

that this was not merely a symptom of parameter couplings.

Elsewhere, at least Scheirer [20] and Laroche [22] have noted

that a single accent signal (the case m0 = b0) appears not

to be sufficient as an intermediate representation for rhythmic

parsing.

The presented form of calculating the bandwise accent

signals is very flexible when varying µ, λ, b0, and m0. A

representation similar to that used by Scheirer in [20] is

obtained by setting µ = 0.1, λ = 1, b0 = 6, m0 = 1. A
representation roughly similar to that used by Goto in [18] is

obtained by setting µ = 0.1, λ = 1, b0 = 36, m0 = 6. In
the following, the fixed values µ = 100, λ = 0.8, b0 = 36,
m0 = 9 are used.

B. Bank of comb filter resonators

Periodicity of the bandwise accent signals vc(n) is analyzed
to estimate the salience (weight) of different pulse period

candidates. Four different period estimation algorithms were

evaluated: a method based on autocorrelation, another based

on the YIN method of de Cheveigné and Kawahara [33],

different types of comb-filter resonators [20], and banks of

phase-locking resonators [14].

As an important observation, three of the four period

estimation methods performed equally well after a thorough

optimization. This suggests that the key problems in meter

analysis are in measuring the degree of musical accentuation

and in modeling higher-level musical knowledge, not in find-

ing exactly the correct period estimator. The period estimation

method presented in the following was selected because it

is by far the least complex among the three best-performing

algorithms, requiring only few parameters and no additional

postprocessing steps.

Using a bank of comb-filter resonators with a constant half-

time was originally proposed for tactus tracking by Scheirer

[20]. The comb filters that we use have an exponentially-

decaying impulse response where the half-time refers to the

delay during which the response decays to a half of its initial

value. The output of a comb filter with delay τ for input vc(n)
is given by

rc(τ, n) = ατrc(τ, n − τ) + (1 − ατ )vc(n), (5)

where the feedback gain ατ = 0.5τ/T0 is calculated based

on a selected half-time T0 in samples. We used a half-time
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Fig. 3. Illustration of the dynamic compression and weighted differentiation
steps for an artificial signal. Upper panel shows xb(k) and the lower panel
shows ub(n).

fr = 172 Hz. A sixth-order Butterworth lowpass filter with

fLP = 10 Hz cutoff frequency is then applied to smooth the
compressed and interpolated power envelopes. The resulting

smoothed signal is denoted by zb(n).
Differentiation of zb(n) is performed as follows. First, a

half-wave rectified (HWR) differential of zb(n) is calculated
as

zb
′(n) = HWR(zb(n) − zb(n − 1)), (2)

where the function HWR(x) = max(x, 0) sets negative values
to zero and is essential to make the differentiation useful.

Then a weighted average of zb(n) and its differential zb
′(n)

is formed as

ub(n) = (1 − λ)zb(n) + λ
fr

fLP
zb

′(n), (3)

where 0 ≤ λ ≤ 1 determines the balance between zb(n) and
zb

′(n), and the factor fr/fLP compensates for the fact that the

differential of a lowpass-filtered signal is small in amplitude. A

prototypical meter analysis system and a subset of our acoustic

database (see Sec. III) were used to thoroughly investigate

the effect of λ. Values between 0.6 and 1.0 performed well
and λ = 0.8 was taken into use. Using this value instead of
1.0 makes a slight but consistent improvement in the analysis

accuracy.

Figure 3 illustrates the described dynamic compression and

weighted differentiation steps for an artificial subband-power

signal xb(k). Although the present work is motivated purely
from a practical application point of view, it is interesting to

note that the graphs in Fig. 3 bear considerable resemblance

to the response of Meddis’s auditory-nerve model to acoustic

stimulation [32].

Finally, each m0 adjacent bands are linearly summed to get

c0 = #b0/m0$ accent signals at different frequency ranges c:

vc(n) =
cm0∑

b=(c−1)m0+1

ub(n), c = 1, . . . , c0. (4)

The accent signals vc(n) serve as an intermediate data
representation for musical meter analysis. They represent the

degree of musical accent as a function of time at the wider

frequency bands (channels) c. We use b0 = 36 and m0 = 9,
leading to c0 = 4.
It should be noted that combining eachm0 adjacent bands at

this stage is not primarily an issue of computational complex-

ity, but improves the analysis accuracy. Again, a prototypical

meter analysis system was used to investigate the effect of

different values ofm0. It turned out that neither of the extreme

values m0 = b0 or m0 = 1 is optimal, but using a large
number of initial bands, b0 > 20, and three or four “accent
bands” (channels) c0 leads to the most reliable meter analysis.

Other parameters were re-estimated in each case to ensure

that this was not merely a symptom of parameter couplings.

Elsewhere, at least Scheirer [20] and Laroche [22] have noted

that a single accent signal (the case m0 = b0) appears not

to be sufficient as an intermediate representation for rhythmic

parsing.

The presented form of calculating the bandwise accent

signals is very flexible when varying µ, λ, b0, and m0. A

representation similar to that used by Scheirer in [20] is

obtained by setting µ = 0.1, λ = 1, b0 = 6, m0 = 1. A
representation roughly similar to that used by Goto in [18] is

obtained by setting µ = 0.1, λ = 1, b0 = 36, m0 = 6. In
the following, the fixed values µ = 100, λ = 0.8, b0 = 36,
m0 = 9 are used.

B. Bank of comb filter resonators

Periodicity of the bandwise accent signals vc(n) is analyzed
to estimate the salience (weight) of different pulse period

candidates. Four different period estimation algorithms were

evaluated: a method based on autocorrelation, another based

on the YIN method of de Cheveigné and Kawahara [33],

different types of comb-filter resonators [20], and banks of

phase-locking resonators [14].

As an important observation, three of the four period

estimation methods performed equally well after a thorough

optimization. This suggests that the key problems in meter

analysis are in measuring the degree of musical accentuation

and in modeling higher-level musical knowledge, not in find-

ing exactly the correct period estimator. The period estimation

method presented in the following was selected because it

is by far the least complex among the three best-performing

algorithms, requiring only few parameters and no additional

postprocessing steps.

Using a bank of comb-filter resonators with a constant half-

time was originally proposed for tactus tracking by Scheirer

[20]. The comb filters that we use have an exponentially-

decaying impulse response where the half-time refers to the

delay during which the response decays to a half of its initial

value. The output of a comb filter with delay τ for input vc(n)
is given by

rc(τ, n) = ατrc(τ, n − τ) + (1 − ατ )vc(n), (5)

where the feedback gain ατ = 0.5τ/T0 is calculated based

on a selected half-time T0 in samples. We used a half-time
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Fig. 3. Illustration of the dynamic compression and weighted differentiation
steps for an artificial signal. Upper panel shows xb(k) and the lower panel
shows ub(n).

fr = 172 Hz. A sixth-order Butterworth lowpass filter with

fLP = 10 Hz cutoff frequency is then applied to smooth the
compressed and interpolated power envelopes. The resulting

smoothed signal is denoted by zb(n).
Differentiation of zb(n) is performed as follows. First, a

half-wave rectified (HWR) differential of zb(n) is calculated
as

zb
′(n) = HWR(zb(n) − zb(n − 1)), (2)

where the function HWR(x) = max(x, 0) sets negative values
to zero and is essential to make the differentiation useful.

Then a weighted average of zb(n) and its differential zb
′(n)

is formed as

ub(n) = (1 − λ)zb(n) + λ
fr

fLP
zb

′(n), (3)

where 0 ≤ λ ≤ 1 determines the balance between zb(n) and
zb

′(n), and the factor fr/fLP compensates for the fact that the

differential of a lowpass-filtered signal is small in amplitude. A

prototypical meter analysis system and a subset of our acoustic

database (see Sec. III) were used to thoroughly investigate

the effect of λ. Values between 0.6 and 1.0 performed well
and λ = 0.8 was taken into use. Using this value instead of
1.0 makes a slight but consistent improvement in the analysis

accuracy.

Figure 3 illustrates the described dynamic compression and

weighted differentiation steps for an artificial subband-power

signal xb(k). Although the present work is motivated purely
from a practical application point of view, it is interesting to

note that the graphs in Fig. 3 bear considerable resemblance

to the response of Meddis’s auditory-nerve model to acoustic

stimulation [32].

Finally, each m0 adjacent bands are linearly summed to get

c0 = #b0/m0$ accent signals at different frequency ranges c:

vc(n) =
cm0∑

b=(c−1)m0+1

ub(n), c = 1, . . . , c0. (4)

The accent signals vc(n) serve as an intermediate data
representation for musical meter analysis. They represent the

degree of musical accent as a function of time at the wider

frequency bands (channels) c. We use b0 = 36 and m0 = 9,
leading to c0 = 4.
It should be noted that combining eachm0 adjacent bands at

this stage is not primarily an issue of computational complex-

ity, but improves the analysis accuracy. Again, a prototypical

meter analysis system was used to investigate the effect of

different values ofm0. It turned out that neither of the extreme

values m0 = b0 or m0 = 1 is optimal, but using a large
number of initial bands, b0 > 20, and three or four “accent
bands” (channels) c0 leads to the most reliable meter analysis.

Other parameters were re-estimated in each case to ensure

that this was not merely a symptom of parameter couplings.

Elsewhere, at least Scheirer [20] and Laroche [22] have noted

that a single accent signal (the case m0 = b0) appears not

to be sufficient as an intermediate representation for rhythmic

parsing.

The presented form of calculating the bandwise accent

signals is very flexible when varying µ, λ, b0, and m0. A

representation similar to that used by Scheirer in [20] is

obtained by setting µ = 0.1, λ = 1, b0 = 6, m0 = 1. A
representation roughly similar to that used by Goto in [18] is

obtained by setting µ = 0.1, λ = 1, b0 = 36, m0 = 6. In
the following, the fixed values µ = 100, λ = 0.8, b0 = 36,
m0 = 9 are used.

B. Bank of comb filter resonators

Periodicity of the bandwise accent signals vc(n) is analyzed
to estimate the salience (weight) of different pulse period

candidates. Four different period estimation algorithms were

evaluated: a method based on autocorrelation, another based

on the YIN method of de Cheveigné and Kawahara [33],

different types of comb-filter resonators [20], and banks of

phase-locking resonators [14].

As an important observation, three of the four period

estimation methods performed equally well after a thorough

optimization. This suggests that the key problems in meter

analysis are in measuring the degree of musical accentuation

and in modeling higher-level musical knowledge, not in find-

ing exactly the correct period estimator. The period estimation

method presented in the following was selected because it

is by far the least complex among the three best-performing

algorithms, requiring only few parameters and no additional

postprocessing steps.

Using a bank of comb-filter resonators with a constant half-

time was originally proposed for tactus tracking by Scheirer

[20]. The comb filters that we use have an exponentially-

decaying impulse response where the half-time refers to the

delay during which the response decays to a half of its initial

value. The output of a comb filter with delay τ for input vc(n)
is given by

rc(τ, n) = ατrc(τ, n − τ) + (1 − ατ )vc(n), (5)

where the feedback gain ατ = 0.5τ/T0 is calculated based

on a selected half-time T0 in samples. We used a half-time
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Fig. 3. Illustration of the dynamic compression and weighted differentiation
steps for an artificial signal. Upper panel shows xb(k) and the lower panel
shows ub(n).

fr = 172 Hz. A sixth-order Butterworth lowpass filter with

fLP = 10 Hz cutoff frequency is then applied to smooth the
compressed and interpolated power envelopes. The resulting

smoothed signal is denoted by zb(n).
Differentiation of zb(n) is performed as follows. First, a

half-wave rectified (HWR) differential of zb(n) is calculated
as

zb
′(n) = HWR(zb(n) − zb(n − 1)), (2)

where the function HWR(x) = max(x, 0) sets negative values
to zero and is essential to make the differentiation useful.

Then a weighted average of zb(n) and its differential zb
′(n)

is formed as

ub(n) = (1 − λ)zb(n) + λ
fr

fLP
zb

′(n), (3)

where 0 ≤ λ ≤ 1 determines the balance between zb(n) and
zb

′(n), and the factor fr/fLP compensates for the fact that the

differential of a lowpass-filtered signal is small in amplitude. A

prototypical meter analysis system and a subset of our acoustic

database (see Sec. III) were used to thoroughly investigate

the effect of λ. Values between 0.6 and 1.0 performed well
and λ = 0.8 was taken into use. Using this value instead of
1.0 makes a slight but consistent improvement in the analysis

accuracy.

Figure 3 illustrates the described dynamic compression and

weighted differentiation steps for an artificial subband-power

signal xb(k). Although the present work is motivated purely
from a practical application point of view, it is interesting to

note that the graphs in Fig. 3 bear considerable resemblance

to the response of Meddis’s auditory-nerve model to acoustic

stimulation [32].

Finally, each m0 adjacent bands are linearly summed to get

c0 = #b0/m0$ accent signals at different frequency ranges c:

vc(n) =
cm0∑

b=(c−1)m0+1

ub(n), c = 1, . . . , c0. (4)

The accent signals vc(n) serve as an intermediate data
representation for musical meter analysis. They represent the

degree of musical accent as a function of time at the wider

frequency bands (channels) c. We use b0 = 36 and m0 = 9,
leading to c0 = 4.
It should be noted that combining eachm0 adjacent bands at

this stage is not primarily an issue of computational complex-

ity, but improves the analysis accuracy. Again, a prototypical

meter analysis system was used to investigate the effect of

different values ofm0. It turned out that neither of the extreme

values m0 = b0 or m0 = 1 is optimal, but using a large
number of initial bands, b0 > 20, and three or four “accent
bands” (channels) c0 leads to the most reliable meter analysis.

Other parameters were re-estimated in each case to ensure

that this was not merely a symptom of parameter couplings.

Elsewhere, at least Scheirer [20] and Laroche [22] have noted

that a single accent signal (the case m0 = b0) appears not

to be sufficient as an intermediate representation for rhythmic

parsing.

The presented form of calculating the bandwise accent

signals is very flexible when varying µ, λ, b0, and m0. A

representation similar to that used by Scheirer in [20] is

obtained by setting µ = 0.1, λ = 1, b0 = 6, m0 = 1. A
representation roughly similar to that used by Goto in [18] is

obtained by setting µ = 0.1, λ = 1, b0 = 36, m0 = 6. In
the following, the fixed values µ = 100, λ = 0.8, b0 = 36,
m0 = 9 are used.

B. Bank of comb filter resonators

Periodicity of the bandwise accent signals vc(n) is analyzed
to estimate the salience (weight) of different pulse period

candidates. Four different period estimation algorithms were

evaluated: a method based on autocorrelation, another based

on the YIN method of de Cheveigné and Kawahara [33],

different types of comb-filter resonators [20], and banks of

phase-locking resonators [14].

As an important observation, three of the four period

estimation methods performed equally well after a thorough

optimization. This suggests that the key problems in meter

analysis are in measuring the degree of musical accentuation

and in modeling higher-level musical knowledge, not in find-

ing exactly the correct period estimator. The period estimation

method presented in the following was selected because it

is by far the least complex among the three best-performing

algorithms, requiring only few parameters and no additional

postprocessing steps.

Using a bank of comb-filter resonators with a constant half-

time was originally proposed for tactus tracking by Scheirer

[20]. The comb filters that we use have an exponentially-

decaying impulse response where the half-time refers to the

delay during which the response decays to a half of its initial

value. The output of a comb filter with delay τ for input vc(n)
is given by

rc(τ, n) = ατrc(τ, n − τ) + (1 − ατ )vc(n), (5)

where the feedback gain ατ = 0.5τ/T0 is calculated based

on a selected half-time T0 in samples. We used a half-time
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Fig. 3. Illustration of the dynamic compression and weighted differentiation
steps for an artificial signal. Upper panel shows xb(k) and the lower panel
shows ub(n).

fr = 172 Hz. A sixth-order Butterworth lowpass filter with

fLP = 10 Hz cutoff frequency is then applied to smooth the
compressed and interpolated power envelopes. The resulting

smoothed signal is denoted by zb(n).
Differentiation of zb(n) is performed as follows. First, a

half-wave rectified (HWR) differential of zb(n) is calculated
as

zb
′(n) = HWR(zb(n) − zb(n − 1)), (2)

where the function HWR(x) = max(x, 0) sets negative values
to zero and is essential to make the differentiation useful.

Then a weighted average of zb(n) and its differential zb
′(n)

is formed as

ub(n) = (1 − λ)zb(n) + λ
fr

fLP
zb

′(n), (3)

where 0 ≤ λ ≤ 1 determines the balance between zb(n) and
zb

′(n), and the factor fr/fLP compensates for the fact that the

differential of a lowpass-filtered signal is small in amplitude. A

prototypical meter analysis system and a subset of our acoustic

database (see Sec. III) were used to thoroughly investigate

the effect of λ. Values between 0.6 and 1.0 performed well
and λ = 0.8 was taken into use. Using this value instead of
1.0 makes a slight but consistent improvement in the analysis

accuracy.

Figure 3 illustrates the described dynamic compression and

weighted differentiation steps for an artificial subband-power

signal xb(k). Although the present work is motivated purely
from a practical application point of view, it is interesting to

note that the graphs in Fig. 3 bear considerable resemblance

to the response of Meddis’s auditory-nerve model to acoustic

stimulation [32].

Finally, each m0 adjacent bands are linearly summed to get

c0 = #b0/m0$ accent signals at different frequency ranges c:

vc(n) =
cm0∑

b=(c−1)m0+1

ub(n), c = 1, . . . , c0. (4)

The accent signals vc(n) serve as an intermediate data
representation for musical meter analysis. They represent the

degree of musical accent as a function of time at the wider

frequency bands (channels) c. We use b0 = 36 and m0 = 9,
leading to c0 = 4.
It should be noted that combining eachm0 adjacent bands at

this stage is not primarily an issue of computational complex-

ity, but improves the analysis accuracy. Again, a prototypical

meter analysis system was used to investigate the effect of

different values ofm0. It turned out that neither of the extreme

values m0 = b0 or m0 = 1 is optimal, but using a large
number of initial bands, b0 > 20, and three or four “accent
bands” (channels) c0 leads to the most reliable meter analysis.

Other parameters were re-estimated in each case to ensure

that this was not merely a symptom of parameter couplings.

Elsewhere, at least Scheirer [20] and Laroche [22] have noted

that a single accent signal (the case m0 = b0) appears not

to be sufficient as an intermediate representation for rhythmic

parsing.

The presented form of calculating the bandwise accent

signals is very flexible when varying µ, λ, b0, and m0. A

representation similar to that used by Scheirer in [20] is

obtained by setting µ = 0.1, λ = 1, b0 = 6, m0 = 1. A
representation roughly similar to that used by Goto in [18] is

obtained by setting µ = 0.1, λ = 1, b0 = 36, m0 = 6. In
the following, the fixed values µ = 100, λ = 0.8, b0 = 36,
m0 = 9 are used.

B. Bank of comb filter resonators

Periodicity of the bandwise accent signals vc(n) is analyzed
to estimate the salience (weight) of different pulse period

candidates. Four different period estimation algorithms were

evaluated: a method based on autocorrelation, another based

on the YIN method of de Cheveigné and Kawahara [33],

different types of comb-filter resonators [20], and banks of

phase-locking resonators [14].

As an important observation, three of the four period

estimation methods performed equally well after a thorough

optimization. This suggests that the key problems in meter

analysis are in measuring the degree of musical accentuation

and in modeling higher-level musical knowledge, not in find-

ing exactly the correct period estimator. The period estimation

method presented in the following was selected because it

is by far the least complex among the three best-performing

algorithms, requiring only few parameters and no additional

postprocessing steps.

Using a bank of comb-filter resonators with a constant half-

time was originally proposed for tactus tracking by Scheirer

[20]. The comb filters that we use have an exponentially-

decaying impulse response where the half-time refers to the

delay during which the response decays to a half of its initial

value. The output of a comb filter with delay τ for input vc(n)
is given by

rc(τ, n) = ατrc(τ, n − τ) + (1 − ατ )vc(n), (5)

where the feedback gain ατ = 0.5τ/T0 is calculated based

on a selected half-time T0 in samples. We used a half-time

Output of comb filter with delay γ for vc(n) 
[Note similarity to autocorrelation. ]

5

equivalent to three seconds, i.e., T0 = 3.0s · fr, which is short

enough to react to tempo changes but long enough to reliably

estimate pulse-periods of up to four seconds in length.

The comb filters implement a frequency response where the

frequencies kfr/τ , k = 0, . . . , !τ/2" have a unity response
and the maximum attenuation between the peaks is ((1 −
ατ )/(1 + ατ ))2. The overall power γ(ατ ) of a comb filter
with feedback gain ατ can be calculated by integrating over

the squared impulse response, which yields

γ(ατ ) =
(1 − ατ )2

1 − α2
τ

. (6)

A bank of such resonators was applied, with τ getting

values from 1 to τmax, where τmax = 688 corresponds to
four seconds. The computational complexity of one resonator

is O(1) per input sample, and the overall resonator filterbank
requires of the order c0frτmax operations per second, which

is not too demanding for real-time applications.

Instantaneous energies r̂c(τ, n) of each comb filter in chan-
nel c at time n are calculated as

r̂c(τ, n) =
1
τ

n∑

i=n−τ+1

rc(τ, i)2. (7)

These are then normalized to obtain

sc(τ, n) =
1

1 − γ(ατ )

(
r̂c(τ, n)
v̂c(n)

− γ(ατ )
)

, (8)

where v̂c(n) is the energy of the accent signal vc(n), calculated
by squaring vc(n) and by applying a leaky integrator, i.e.,
a resonator which has τ = 1 and the same three-second

half-time as the other resonators. Normalization with γ(ατ )
compensates for the differences in the overall power responses

for different ατ . The proposed normalization is advantageous

because it preserves a unity response at the peak frequencies

and at the same time removes a τ -dependent trend for a white-
noise input.

Figure 4 shows the resonator energies r̂c(τ, n)/v̂c(n) and
the normalized energies sc(τ, n) for two types of artificial
input vc(n): an impulse train and a white-noise signal. It is im-
portant to notice that all resonators that are in rational-number

relations to the period of the impulse train (24 samples) show

response to it. In the case of the autocorrelation function, for

example, only integer multiples of 24 come up and an explicit

postprocessing step was necessary to generate responses to

the subharmonic lags and to achieve the same meter analysis

performance. This step is not needed for comb filter resonators

where the conceptual complexity and the number of free

parameters thus remains smaller.

Finally, a function s(τ, n) which represents the overall

saliences of different metrical pulses at time n is obtained

as

s(τ, n) =
c0∑

c=1

sc(τ, n). (9)

This function acts as the observation for the probabilistic

model that estimates the pulse periods.
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Fig. 4. Resonator energies for an impulse train with a period-length of 24
samples (left) and for white noise (right). Upper panels show the energies
r̂c(τ, n) and the lower panels normalized energies sc(τ, n).

For tatum period estimation, the discrete power spectrum

S(f, n) of s(τ, n) is calculated as

S(f, n) = f
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where the emphasis with f compensates for a spectral trend

and the window function ζ(τ) is half-Hanning:

ζ(τ) = 0.5(1 − cos(π(τ − 1 + τmax)/τmax)). (11)

The rationale behind calculating the discrete Fourier transform

(DFT) in (10) is that, by definition, other pulse periods are

integer multiples of the tatum period. Thus the overall function

s(τ, n) contains information about the tatum and this is conve-
niently gathered for each tatum-frequency candidate f using

the DFT as in (10). For comparison, Gouyon et al. [24] used an

inter-onset-interval histogram and Maher’s two-way mismatch

procedure [34] served the same purpose. Their idea was to find

a tatum period which best explained the multiple harmonically

related peaks in the histogram. Frequencies above 20 Hz can

be discarded from S(f, n), since tatum frequencies faster than
this are very rare.

It should be noted that the observation s(τ, n) and its
spectrum S(f, n) are zero-phase, meaning that the phases of
the pulses at different metrical levels have to be estimated

using some other source of information. As will be discussed

in Subsection II-D, the phases are estimated based on the states

of the comb filters, after the periods have been decided first.

C. Probabilistic model for pulse periods

Period-lengths of the metrical pulses can be estimated

independently of their phases and it is reasonable to compute

the phase only for the few winning periods.4 Thus the proposed

4For comparison, Laroche [22] estimates periods and phases simultane-
ously, at the expense of a larger search space. Here three pulse levels are
being estimated jointly and estimating periods and phases separately serves
the purpose of retaining a moderately-sized search space.

5

equivalent to three seconds, i.e., T0 = 3.0s · fr, which is short

enough to react to tempo changes but long enough to reliably

estimate pulse-periods of up to four seconds in length.

The comb filters implement a frequency response where the

frequencies kfr/τ , k = 0, . . . , !τ/2" have a unity response
and the maximum attenuation between the peaks is ((1 −
ατ )/(1 + ατ ))2. The overall power γ(ατ ) of a comb filter
with feedback gain ατ can be calculated by integrating over

the squared impulse response, which yields

γ(ατ ) =
(1 − ατ )2

1 − α2
τ

. (6)

A bank of such resonators was applied, with τ getting

values from 1 to τmax, where τmax = 688 corresponds to
four seconds. The computational complexity of one resonator

is O(1) per input sample, and the overall resonator filterbank
requires of the order c0frτmax operations per second, which

is not too demanding for real-time applications.

Instantaneous energies r̂c(τ, n) of each comb filter in chan-
nel c at time n are calculated as

r̂c(τ, n) =
1
τ

n∑

i=n−τ+1

rc(τ, i)2. (7)

These are then normalized to obtain

sc(τ, n) =
1

1 − γ(ατ )

(
r̂c(τ, n)
v̂c(n)

− γ(ατ )
)

, (8)

where v̂c(n) is the energy of the accent signal vc(n), calculated
by squaring vc(n) and by applying a leaky integrator, i.e.,
a resonator which has τ = 1 and the same three-second

half-time as the other resonators. Normalization with γ(ατ )
compensates for the differences in the overall power responses

for different ατ . The proposed normalization is advantageous

because it preserves a unity response at the peak frequencies

and at the same time removes a τ -dependent trend for a white-
noise input.

Figure 4 shows the resonator energies r̂c(τ, n)/v̂c(n) and
the normalized energies sc(τ, n) for two types of artificial
input vc(n): an impulse train and a white-noise signal. It is im-
portant to notice that all resonators that are in rational-number

relations to the period of the impulse train (24 samples) show

response to it. In the case of the autocorrelation function, for

example, only integer multiples of 24 come up and an explicit

postprocessing step was necessary to generate responses to

the subharmonic lags and to achieve the same meter analysis

performance. This step is not needed for comb filter resonators

where the conceptual complexity and the number of free

parameters thus remains smaller.

Finally, a function s(τ, n) which represents the overall

saliences of different metrical pulses at time n is obtained

as

s(τ, n) =
c0∑

c=1

sc(τ, n). (9)

This function acts as the observation for the probabilistic

model that estimates the pulse periods.
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Fig. 4. Resonator energies for an impulse train with a period-length of 24
samples (left) and for white noise (right). Upper panels show the energies
r̂c(τ, n) and the lower panels normalized energies sc(τ, n).

For tatum period estimation, the discrete power spectrum

S(f, n) of s(τ, n) is calculated as

S(f, n) = f
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where the emphasis with f compensates for a spectral trend

and the window function ζ(τ) is half-Hanning:

ζ(τ) = 0.5(1 − cos(π(τ − 1 + τmax)/τmax)). (11)

The rationale behind calculating the discrete Fourier transform

(DFT) in (10) is that, by definition, other pulse periods are

integer multiples of the tatum period. Thus the overall function

s(τ, n) contains information about the tatum and this is conve-
niently gathered for each tatum-frequency candidate f using

the DFT as in (10). For comparison, Gouyon et al. [24] used an

inter-onset-interval histogram and Maher’s two-way mismatch

procedure [34] served the same purpose. Their idea was to find

a tatum period which best explained the multiple harmonically

related peaks in the histogram. Frequencies above 20 Hz can

be discarded from S(f, n), since tatum frequencies faster than
this are very rare.

It should be noted that the observation s(τ, n) and its
spectrum S(f, n) are zero-phase, meaning that the phases of
the pulses at different metrical levels have to be estimated

using some other source of information. As will be discussed

in Subsection II-D, the phases are estimated based on the states

of the comb filters, after the periods have been decided first.

C. Probabilistic model for pulse periods

Period-lengths of the metrical pulses can be estimated

independently of their phases and it is reasonable to compute

the phase only for the few winning periods.4 Thus the proposed

4For comparison, Laroche [22] estimates periods and phases simultane-
ously, at the expense of a larger search space. Here three pulse levels are
being estimated jointly and estimating periods and phases separately serves
the purpose of retaining a moderately-sized search space.
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equivalent to three seconds, i.e., T0 = 3.0s · fr, which is short

enough to react to tempo changes but long enough to reliably

estimate pulse-periods of up to four seconds in length.

The comb filters implement a frequency response where the

frequencies kfr/τ , k = 0, . . . , !τ/2" have a unity response
and the maximum attenuation between the peaks is ((1 −
ατ )/(1 + ατ ))2. The overall power γ(ατ ) of a comb filter
with feedback gain ατ can be calculated by integrating over

the squared impulse response, which yields

γ(ατ ) =
(1 − ατ )2

1 − α2
τ

. (6)

A bank of such resonators was applied, with τ getting

values from 1 to τmax, where τmax = 688 corresponds to
four seconds. The computational complexity of one resonator

is O(1) per input sample, and the overall resonator filterbank
requires of the order c0frτmax operations per second, which

is not too demanding for real-time applications.

Instantaneous energies r̂c(τ, n) of each comb filter in chan-
nel c at time n are calculated as

r̂c(τ, n) =
1
τ

n∑

i=n−τ+1

rc(τ, i)2. (7)

These are then normalized to obtain

sc(τ, n) =
1

1 − γ(ατ )

(
r̂c(τ, n)
v̂c(n)

− γ(ατ )
)

, (8)

where v̂c(n) is the energy of the accent signal vc(n), calculated
by squaring vc(n) and by applying a leaky integrator, i.e.,
a resonator which has τ = 1 and the same three-second

half-time as the other resonators. Normalization with γ(ατ )
compensates for the differences in the overall power responses

for different ατ . The proposed normalization is advantageous

because it preserves a unity response at the peak frequencies

and at the same time removes a τ -dependent trend for a white-
noise input.

Figure 4 shows the resonator energies r̂c(τ, n)/v̂c(n) and
the normalized energies sc(τ, n) for two types of artificial
input vc(n): an impulse train and a white-noise signal. It is im-
portant to notice that all resonators that are in rational-number

relations to the period of the impulse train (24 samples) show

response to it. In the case of the autocorrelation function, for

example, only integer multiples of 24 come up and an explicit

postprocessing step was necessary to generate responses to

the subharmonic lags and to achieve the same meter analysis

performance. This step is not needed for comb filter resonators

where the conceptual complexity and the number of free

parameters thus remains smaller.

Finally, a function s(τ, n) which represents the overall

saliences of different metrical pulses at time n is obtained

as

s(τ, n) =
c0∑

c=1

sc(τ, n). (9)

This function acts as the observation for the probabilistic

model that estimates the pulse periods.
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Fig. 4. Resonator energies for an impulse train with a period-length of 24
samples (left) and for white noise (right). Upper panels show the energies
r̂c(τ, n) and the lower panels normalized energies sc(τ, n).

For tatum period estimation, the discrete power spectrum

S(f, n) of s(τ, n) is calculated as

S(f, n) = f
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where the emphasis with f compensates for a spectral trend

and the window function ζ(τ) is half-Hanning:

ζ(τ) = 0.5(1 − cos(π(τ − 1 + τmax)/τmax)). (11)

The rationale behind calculating the discrete Fourier transform

(DFT) in (10) is that, by definition, other pulse periods are

integer multiples of the tatum period. Thus the overall function

s(τ, n) contains information about the tatum and this is conve-
niently gathered for each tatum-frequency candidate f using

the DFT as in (10). For comparison, Gouyon et al. [24] used an

inter-onset-interval histogram and Maher’s two-way mismatch

procedure [34] served the same purpose. Their idea was to find

a tatum period which best explained the multiple harmonically

related peaks in the histogram. Frequencies above 20 Hz can

be discarded from S(f, n), since tatum frequencies faster than
this are very rare.

It should be noted that the observation s(τ, n) and its
spectrum S(f, n) are zero-phase, meaning that the phases of
the pulses at different metrical levels have to be estimated

using some other source of information. As will be discussed

in Subsection II-D, the phases are estimated based on the states

of the comb filters, after the periods have been decided first.

C. Probabilistic model for pulse periods

Period-lengths of the metrical pulses can be estimated

independently of their phases and it is reasonable to compute

the phase only for the few winning periods.4 Thus the proposed

4For comparison, Laroche [22] estimates periods and phases simultane-
ously, at the expense of a larger search space. Here three pulse levels are
being estimated jointly and estimating periods and phases separately serves
the purpose of retaining a moderately-sized search space.
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equivalent to three seconds, i.e., T0 = 3.0s · fr, which is short

enough to react to tempo changes but long enough to reliably

estimate pulse-periods of up to four seconds in length.

The comb filters implement a frequency response where the

frequencies kfr/τ , k = 0, . . . , !τ/2" have a unity response
and the maximum attenuation between the peaks is ((1 −
ατ )/(1 + ατ ))2. The overall power γ(ατ ) of a comb filter
with feedback gain ατ can be calculated by integrating over

the squared impulse response, which yields

γ(ατ ) =
(1 − ατ )2

1 − α2
τ

. (6)

A bank of such resonators was applied, with τ getting

values from 1 to τmax, where τmax = 688 corresponds to
four seconds. The computational complexity of one resonator

is O(1) per input sample, and the overall resonator filterbank
requires of the order c0frτmax operations per second, which

is not too demanding for real-time applications.

Instantaneous energies r̂c(τ, n) of each comb filter in chan-
nel c at time n are calculated as

r̂c(τ, n) =
1
τ

n∑

i=n−τ+1

rc(τ, i)2. (7)

These are then normalized to obtain

sc(τ, n) =
1

1 − γ(ατ )

(
r̂c(τ, n)
v̂c(n)

− γ(ατ )
)

, (8)

where v̂c(n) is the energy of the accent signal vc(n), calculated
by squaring vc(n) and by applying a leaky integrator, i.e.,
a resonator which has τ = 1 and the same three-second

half-time as the other resonators. Normalization with γ(ατ )
compensates for the differences in the overall power responses

for different ατ . The proposed normalization is advantageous

because it preserves a unity response at the peak frequencies

and at the same time removes a τ -dependent trend for a white-
noise input.

Figure 4 shows the resonator energies r̂c(τ, n)/v̂c(n) and
the normalized energies sc(τ, n) for two types of artificial
input vc(n): an impulse train and a white-noise signal. It is im-
portant to notice that all resonators that are in rational-number

relations to the period of the impulse train (24 samples) show

response to it. In the case of the autocorrelation function, for

example, only integer multiples of 24 come up and an explicit

postprocessing step was necessary to generate responses to

the subharmonic lags and to achieve the same meter analysis

performance. This step is not needed for comb filter resonators

where the conceptual complexity and the number of free

parameters thus remains smaller.

Finally, a function s(τ, n) which represents the overall

saliences of different metrical pulses at time n is obtained

as

s(τ, n) =
c0∑

c=1

sc(τ, n). (9)

This function acts as the observation for the probabilistic

model that estimates the pulse periods.
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Fig. 4. Resonator energies for an impulse train with a period-length of 24
samples (left) and for white noise (right). Upper panels show the energies
r̂c(τ, n) and the lower panels normalized energies sc(τ, n).

For tatum period estimation, the discrete power spectrum

S(f, n) of s(τ, n) is calculated as

S(f, n) = f
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where the emphasis with f compensates for a spectral trend

and the window function ζ(τ) is half-Hanning:

ζ(τ) = 0.5(1 − cos(π(τ − 1 + τmax)/τmax)). (11)

The rationale behind calculating the discrete Fourier transform

(DFT) in (10) is that, by definition, other pulse periods are

integer multiples of the tatum period. Thus the overall function

s(τ, n) contains information about the tatum and this is conve-
niently gathered for each tatum-frequency candidate f using

the DFT as in (10). For comparison, Gouyon et al. [24] used an

inter-onset-interval histogram and Maher’s two-way mismatch

procedure [34] served the same purpose. Their idea was to find

a tatum period which best explained the multiple harmonically

related peaks in the histogram. Frequencies above 20 Hz can

be discarded from S(f, n), since tatum frequencies faster than
this are very rare.

It should be noted that the observation s(τ, n) and its
spectrum S(f, n) are zero-phase, meaning that the phases of
the pulses at different metrical levels have to be estimated

using some other source of information. As will be discussed

in Subsection II-D, the phases are estimated based on the states

of the comb filters, after the periods have been decided first.

C. Probabilistic model for pulse periods

Period-lengths of the metrical pulses can be estimated

independently of their phases and it is reasonable to compute

the phase only for the few winning periods.4 Thus the proposed

4For comparison, Laroche [22] estimates periods and phases simultane-
ously, at the expense of a larger search space. Here three pulse levels are
being estimated jointly and estimating periods and phases separately serves
the purpose of retaining a moderately-sized search space.• Calculating salience of tatum via 

discrete power spectrum S(f,n) which 
performs a DCT using half-hanning 
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equivalent to three seconds, i.e., T0 = 3.0s · fr, which is short

enough to react to tempo changes but long enough to reliably

estimate pulse-periods of up to four seconds in length.

The comb filters implement a frequency response where the

frequencies kfr/τ , k = 0, . . . , !τ/2" have a unity response
and the maximum attenuation between the peaks is ((1 −
ατ )/(1 + ατ ))2. The overall power γ(ατ ) of a comb filter
with feedback gain ατ can be calculated by integrating over

the squared impulse response, which yields

γ(ατ ) =
(1 − ατ )2

1 − α2
τ

. (6)

A bank of such resonators was applied, with τ getting

values from 1 to τmax, where τmax = 688 corresponds to
four seconds. The computational complexity of one resonator

is O(1) per input sample, and the overall resonator filterbank
requires of the order c0frτmax operations per second, which

is not too demanding for real-time applications.

Instantaneous energies r̂c(τ, n) of each comb filter in chan-
nel c at time n are calculated as

r̂c(τ, n) =
1
τ

n∑

i=n−τ+1

rc(τ, i)2. (7)

These are then normalized to obtain

sc(τ, n) =
1

1 − γ(ατ )

(
r̂c(τ, n)
v̂c(n)

− γ(ατ )
)

, (8)

where v̂c(n) is the energy of the accent signal vc(n), calculated
by squaring vc(n) and by applying a leaky integrator, i.e.,
a resonator which has τ = 1 and the same three-second

half-time as the other resonators. Normalization with γ(ατ )
compensates for the differences in the overall power responses

for different ατ . The proposed normalization is advantageous

because it preserves a unity response at the peak frequencies

and at the same time removes a τ -dependent trend for a white-
noise input.

Figure 4 shows the resonator energies r̂c(τ, n)/v̂c(n) and
the normalized energies sc(τ, n) for two types of artificial
input vc(n): an impulse train and a white-noise signal. It is im-
portant to notice that all resonators that are in rational-number

relations to the period of the impulse train (24 samples) show

response to it. In the case of the autocorrelation function, for

example, only integer multiples of 24 come up and an explicit

postprocessing step was necessary to generate responses to

the subharmonic lags and to achieve the same meter analysis

performance. This step is not needed for comb filter resonators

where the conceptual complexity and the number of free

parameters thus remains smaller.

Finally, a function s(τ, n) which represents the overall

saliences of different metrical pulses at time n is obtained

as

s(τ, n) =
c0∑

c=1

sc(τ, n). (9)

This function acts as the observation for the probabilistic

model that estimates the pulse periods.
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Fig. 4. Resonator energies for an impulse train with a period-length of 24
samples (left) and for white noise (right). Upper panels show the energies
r̂c(τ, n) and the lower panels normalized energies sc(τ, n).

For tatum period estimation, the discrete power spectrum

S(f, n) of s(τ, n) is calculated as

S(f, n) = f
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where the emphasis with f compensates for a spectral trend

and the window function ζ(τ) is half-Hanning:

ζ(τ) = 0.5(1 − cos(π(τ − 1 + τmax)/τmax)). (11)

The rationale behind calculating the discrete Fourier transform

(DFT) in (10) is that, by definition, other pulse periods are

integer multiples of the tatum period. Thus the overall function

s(τ, n) contains information about the tatum and this is conve-
niently gathered for each tatum-frequency candidate f using

the DFT as in (10). For comparison, Gouyon et al. [24] used an

inter-onset-interval histogram and Maher’s two-way mismatch

procedure [34] served the same purpose. Their idea was to find

a tatum period which best explained the multiple harmonically

related peaks in the histogram. Frequencies above 20 Hz can

be discarded from S(f, n), since tatum frequencies faster than
this are very rare.

It should be noted that the observation s(τ, n) and its
spectrum S(f, n) are zero-phase, meaning that the phases of
the pulses at different metrical levels have to be estimated

using some other source of information. As will be discussed

in Subsection II-D, the phases are estimated based on the states

of the comb filters, after the periods have been decided first.

C. Probabilistic model for pulse periods

Period-lengths of the metrical pulses can be estimated

independently of their phases and it is reasonable to compute

the phase only for the few winning periods.4 Thus the proposed

4For comparison, Laroche [22] estimates periods and phases simultane-
ously, at the expense of a larger search space. Here three pulse levels are
being estimated jointly and estimating periods and phases separately serves
the purpose of retaining a moderately-sized search space.
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equivalent to three seconds, i.e., T0 = 3.0s · fr, which is short

enough to react to tempo changes but long enough to reliably

estimate pulse-periods of up to four seconds in length.

The comb filters implement a frequency response where the

frequencies kfr/τ , k = 0, . . . , !τ/2" have a unity response
and the maximum attenuation between the peaks is ((1 −
ατ )/(1 + ατ ))2. The overall power γ(ατ ) of a comb filter
with feedback gain ατ can be calculated by integrating over

the squared impulse response, which yields

γ(ατ ) =
(1 − ατ )2

1 − α2
τ

. (6)

A bank of such resonators was applied, with τ getting

values from 1 to τmax, where τmax = 688 corresponds to
four seconds. The computational complexity of one resonator

is O(1) per input sample, and the overall resonator filterbank
requires of the order c0frτmax operations per second, which

is not too demanding for real-time applications.

Instantaneous energies r̂c(τ, n) of each comb filter in chan-
nel c at time n are calculated as

r̂c(τ, n) =
1
τ

n∑

i=n−τ+1

rc(τ, i)2. (7)

These are then normalized to obtain

sc(τ, n) =
1

1 − γ(ατ )

(
r̂c(τ, n)
v̂c(n)

− γ(ατ )
)

, (8)

where v̂c(n) is the energy of the accent signal vc(n), calculated
by squaring vc(n) and by applying a leaky integrator, i.e.,
a resonator which has τ = 1 and the same three-second

half-time as the other resonators. Normalization with γ(ατ )
compensates for the differences in the overall power responses

for different ατ . The proposed normalization is advantageous

because it preserves a unity response at the peak frequencies

and at the same time removes a τ -dependent trend for a white-
noise input.

Figure 4 shows the resonator energies r̂c(τ, n)/v̂c(n) and
the normalized energies sc(τ, n) for two types of artificial
input vc(n): an impulse train and a white-noise signal. It is im-
portant to notice that all resonators that are in rational-number

relations to the period of the impulse train (24 samples) show

response to it. In the case of the autocorrelation function, for

example, only integer multiples of 24 come up and an explicit

postprocessing step was necessary to generate responses to

the subharmonic lags and to achieve the same meter analysis

performance. This step is not needed for comb filter resonators

where the conceptual complexity and the number of free

parameters thus remains smaller.

Finally, a function s(τ, n) which represents the overall

saliences of different metrical pulses at time n is obtained

as

s(τ, n) =
c0∑

c=1

sc(τ, n). (9)

This function acts as the observation for the probabilistic

model that estimates the pulse periods.
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Fig. 4. Resonator energies for an impulse train with a period-length of 24
samples (left) and for white noise (right). Upper panels show the energies
r̂c(τ, n) and the lower panels normalized energies sc(τ, n).

For tatum period estimation, the discrete power spectrum

S(f, n) of s(τ, n) is calculated as

S(f, n) = f

∣∣∣∣∣
1

τmax

τmax∑

τ=1

(
s(τ, n)ζ(τ)e−i2πf(τ−1)/τmax

)∣∣∣∣∣

2

,

(10)

where the emphasis with f compensates for a spectral trend

and the window function ζ(τ) is half-Hanning:

ζ(τ) = 0.5(1 − cos(π(τ − 1 + τmax)/τmax)). (11)

The rationale behind calculating the discrete Fourier transform

(DFT) in (10) is that, by definition, other pulse periods are

integer multiples of the tatum period. Thus the overall function

s(τ, n) contains information about the tatum and this is conve-
niently gathered for each tatum-frequency candidate f using

the DFT as in (10). For comparison, Gouyon et al. [24] used an

inter-onset-interval histogram and Maher’s two-way mismatch

procedure [34] served the same purpose. Their idea was to find

a tatum period which best explained the multiple harmonically

related peaks in the histogram. Frequencies above 20 Hz can

be discarded from S(f, n), since tatum frequencies faster than
this are very rare.

It should be noted that the observation s(τ, n) and its
spectrum S(f, n) are zero-phase, meaning that the phases of
the pulses at different metrical levels have to be estimated

using some other source of information. As will be discussed

in Subsection II-D, the phases are estimated based on the states

of the comb filters, after the periods have been decided first.

C. Probabilistic model for pulse periods

Period-lengths of the metrical pulses can be estimated

independently of their phases and it is reasonable to compute

the phase only for the few winning periods.4 Thus the proposed

4For comparison, Laroche [22] estimates periods and phases simultane-
ously, at the expense of a larger search space. Here three pulse levels are
being estimated jointly and estimating periods and phases separately serves
the purpose of retaining a moderately-sized search space.

5
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compensates for the differences in the overall power responses

for different ατ . The proposed normalization is advantageous

because it preserves a unity response at the peak frequencies

and at the same time removes a τ -dependent trend for a white-
noise input.
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Finally, a function s(τ, n) which represents the overall
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as

s(τ, n) =
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Fig. 4. Resonator energies for an impulse train with a period-length of 24
samples (left) and for white noise (right). Upper panels show the energies
r̂c(τ, n) and the lower panels normalized energies sc(τ, n).

For tatum period estimation, the discrete power spectrum

S(f, n) of s(τ, n) is calculated as

S(f, n) = f
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where the emphasis with f compensates for a spectral trend

and the window function ζ(τ) is half-Hanning:

ζ(τ) = 0.5(1 − cos(π(τ − 1 + τmax)/τmax)). (11)

The rationale behind calculating the discrete Fourier transform

(DFT) in (10) is that, by definition, other pulse periods are

integer multiples of the tatum period. Thus the overall function

s(τ, n) contains information about the tatum and this is conve-
niently gathered for each tatum-frequency candidate f using

the DFT as in (10). For comparison, Gouyon et al. [24] used an

inter-onset-interval histogram and Maher’s two-way mismatch

procedure [34] served the same purpose. Their idea was to find

a tatum period which best explained the multiple harmonically

related peaks in the histogram. Frequencies above 20 Hz can

be discarded from S(f, n), since tatum frequencies faster than
this are very rare.

It should be noted that the observation s(τ, n) and its
spectrum S(f, n) are zero-phase, meaning that the phases of
the pulses at different metrical levels have to be estimated

using some other source of information. As will be discussed

in Subsection II-D, the phases are estimated based on the states

of the comb filters, after the periods have been decided first.

C. Probabilistic model for pulse periods

Period-lengths of the metrical pulses can be estimated

independently of their phases and it is reasonable to compute

the phase only for the few winning periods.4 Thus the proposed

4For comparison, Laroche [22] estimates periods and phases simultane-
ously, at the expense of a larger search space. Here three pulse levels are
being estimated jointly and estimating periods and phases separately serves
the purpose of retaining a moderately-sized search space.

•  



Probabilistic model for pulse periods

• Simplifying assumption: we can calculate period 
independent of phase (compare APM). 

• Use HMM (Hidden Markov Model) to observer 
the energies of resonators s(γ,n) denoted sn

• Unobserved: tatum period, tactus period and 
measure period, respectively:

• Define meter state as holding values of all three 
unobserved states:                        equivalent to:

6

method finds periods first and then the phases (see Fig. 2).

Although estimating the phases is not trivial, the search

problem is largely completed when the period-lengths have

been found.

Musical meter cannot be assumed to remain static over the

whole duration of a piece. It has to be estimated causally at

successive time instants and there must be some tying between

the successive estimates. Also, the dependencies between

different metrical pulse levels have to be taken into account.

These require prior musical knowledge which is encoded in

the probabilistic model to be presented.

For period estimation, a hidden Markov model that de-

scribes the simultaneous evolution of four processes is con-

structed. The observable variable is the vector of instantaneous

energies of the resonators, s(τ, n), denoted sn in the following.

The unobservable processes and the corresponding hidden

variables are the tatum period τA
n , tactus period τB

n , and

measure period τC
n . As a mnemonic for this notation, recall

that the tatum is the temporally atomic (A) pulse level, the

tactus pulse is often called “beat” (B), and the musical measure

pulse is related to the harmonic (i.e., chord) change rate (C).

For convenience, we use qn = [j, k, l] to denote a “meter
state”, equivalent to τA

n = j, τB
n = k, and τC

n = l. The
hidden state process is a time-homogenous first-order Markov

model which has an initial state distribution P (q1) and tran-
sition probabilities P (qn|qn−1). The observable variable is
conditioned only on the current state, i.e., we have the state-

conditional observation densities p(sn|qn).
The joint probability density of a state sequence Q =

(q1q2 . . . qN ) and observation sequence O = (s1s1 . . . sN )
can be written as

p(Q,O) = P (q1)p(s1|q1)
N∏

n=2

P (qn|qn−1)p(sn|qn), (12)

where the term P (qn|qn−1) can be decomposed as

P (qn|qn−1) = P (τB
n |qn−1)P (τA

n |τB
n , qn−1)P (τC

n |τB
n , τA

n , qn−1).
(13)

It is musically meaningful to assume that

P (τC
n |τB

n , τA
n , qn−1) = P (τC

n |τB
n , qn−1), (14)

i.e., given the tactus period, the tatum period does not give

additional information regarding the measure period. We fur-

ther assume that given τB
n−1, the other two hidden variables at

time n−1 give no additional information regarding τB
n . For the

tatum and measure periods τ i
n, i ∈ {A,C}, we assume that

given τ i
n−1 and τB

n , the other two hidden variables at time

n − 1 give no additional information regarding τ i
n. It follows

that (13) can be written as

P (qn|qn−1) = P (τB
n |τB

n−1)P (τA
n |τB

n , τA
n−1)P (τC

n |τB
n , τC

n−1).
(15)

Using the same assumptions, P (q1) is decomposed and sim-
plified as

P (q1) = P (τB
1 )P (τA

1 |τB
1 )P (τC

1 |τB
1 ). (16)

The described modeling assumptions lead to a structure

which is represented as a directed acyclic graph in Figure 5.
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Fig. 5. Hidden markov model for the temporal evolution of the tatum, beat,
and measure pulse periods.

The arrows in the graph represent conditional dependencies

between the variables. The circles denote hidden variables and

the observed variable is marked with boxes. The tactus pulse

has a central role in meter perception and it is not by chance

that the other two variables are drawn to depend on it [1,

pp.73–74]. The assumption in (14) is not valid if the variables

are permuted.

1) Estimation of the state-conditional observation likeli-

hoods: The remaining problem is to find reasonable estimates

for the model parameters, i.e., for the probabilities that appear

in (12)–(16). In the following, we ignore the time indices

for a while for simplicity. The state-conditional observation

likelihoods p(s|q) are estimated from a database of musical

recordings where the musical meter has been hand-labeled (see

Sec. III). However, the data is very limited in size compared to

the number of parameters to be estimated. Estimation of the

state densities for each different q = [j, k, l] is impossible
since each of the three discrete hidden variables can take

on several hundreds of different values. By making a series

of assumptions we arrive at the following approximation for

p(s|q):
p(s|q = [j, k, l]) ∝ s(k)s(l)S(1/j). (17)

where s(τ) and S(f) are as defined in (9)–(10), omitting the
time indices. Appendix I presents the derivation of (17) and

the underlying assumptions in detail. An intuitive rationale of

(17) is that a truly existing tactus or measure pulse appears as

a peak in s(τ) at the lag that corresponds to the pulse period.
Analogously, the tatum period appears as a peak in S(f) at the
frequency that corresponds to the inverse of the period. The

product of these three values correlates approximately linearly

with the likelihood of the observation given the meter.

2) Estimation of the transition and initial probabilities: In

(15), the term P (τA
n |τB

n , τA
n−1) can be decomposed as

P (τA
n |τB

n , τA
n−1) = P (τA

n |τA
n−1)

P (τA
n , τB

n |τA
n−1)

P (τA
n |τA

n−1)P (τB
n |τA

n−1)
,

(18)
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Analogously, the tatum period appears as a peak in S(f) at the
frequency that corresponds to the inverse of the period. The

product of these three values correlates approximately linearly

with the likelihood of the observation given the meter.

2) Estimation of the transition and initial probabilities: In
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method finds periods first and then the phases (see Fig. 2).

Although estimating the phases is not trivial, the search

problem is largely completed when the period-lengths have

been found.

Musical meter cannot be assumed to remain static over the

whole duration of a piece. It has to be estimated causally at

successive time instants and there must be some tying between

the successive estimates. Also, the dependencies between

different metrical pulse levels have to be taken into account.

These require prior musical knowledge which is encoded in

the probabilistic model to be presented.

For period estimation, a hidden Markov model that de-

scribes the simultaneous evolution of four processes is con-

structed. The observable variable is the vector of instantaneous

energies of the resonators, s(τ, n), denoted sn in the following.

The unobservable processes and the corresponding hidden

variables are the tatum period τA
n , tactus period τB

n , and

measure period τC
n . As a mnemonic for this notation, recall

that the tatum is the temporally atomic (A) pulse level, the

tactus pulse is often called “beat” (B), and the musical measure

pulse is related to the harmonic (i.e., chord) change rate (C).

For convenience, we use qn = [j, k, l] to denote a “meter
state”, equivalent to τA

n = j, τB
n = k, and τC

n = l. The
hidden state process is a time-homogenous first-order Markov

model which has an initial state distribution P (q1) and tran-
sition probabilities P (qn|qn−1). The observable variable is
conditioned only on the current state, i.e., we have the state-

conditional observation densities p(sn|qn).
The joint probability density of a state sequence Q =

(q1q2 . . . qN ) and observation sequence O = (s1s1 . . . sN )
can be written as

p(Q,O) = P (q1)p(s1|q1)
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i.e., given the tactus period, the tatum period does not give
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ther assume that given τB
n−1, the other two hidden variables at

time n−1 give no additional information regarding τB
n . For the

tatum and measure periods τ i
n, i ∈ {A,C}, we assume that

given τ i
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n − 1 give no additional information regarding τ i
n. It follows
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Using the same assumptions, P (q1) is decomposed and sim-
plified as

P (q1) = P (τB
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1 |τB
1 ). (16)

The described modeling assumptions lead to a structure

which is represented as a directed acyclic graph in Figure 5.
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The arrows in the graph represent conditional dependencies

between the variables. The circles denote hidden variables and

the observed variable is marked with boxes. The tactus pulse

has a central role in meter perception and it is not by chance

that the other two variables are drawn to depend on it [1,

pp.73–74]. The assumption in (14) is not valid if the variables

are permuted.

1) Estimation of the state-conditional observation likeli-

hoods: The remaining problem is to find reasonable estimates

for the model parameters, i.e., for the probabilities that appear

in (12)–(16). In the following, we ignore the time indices

for a while for simplicity. The state-conditional observation

likelihoods p(s|q) are estimated from a database of musical

recordings where the musical meter has been hand-labeled (see

Sec. III). However, the data is very limited in size compared to

the number of parameters to be estimated. Estimation of the

state densities for each different q = [j, k, l] is impossible
since each of the three discrete hidden variables can take

on several hundreds of different values. By making a series

of assumptions we arrive at the following approximation for

p(s|q):
p(s|q = [j, k, l]) ∝ s(k)s(l)S(1/j). (17)

where s(τ) and S(f) are as defined in (9)–(10), omitting the
time indices. Appendix I presents the derivation of (17) and

the underlying assumptions in detail. An intuitive rationale of

(17) is that a truly existing tactus or measure pulse appears as

a peak in s(τ) at the lag that corresponds to the pulse period.
Analogously, the tatum period appears as a peak in S(f) at the
frequency that corresponds to the inverse of the period. The

product of these three values correlates approximately linearly
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sition probabilities P (qn|qn−1). The observable variable is
conditioned only on the current state, i.e., we have the state-

conditional observation densities p(sn|qn).
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ther assume that given τB
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time n−1 give no additional information regarding τB
n . For the
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the observed variable is marked with boxes. The tactus pulse

has a central role in meter perception and it is not by chance

that the other two variables are drawn to depend on it [1,

pp.73–74]. The assumption in (14) is not valid if the variables

are permuted.

1) Estimation of the state-conditional observation likeli-

hoods: The remaining problem is to find reasonable estimates

for the model parameters, i.e., for the probabilities that appear

in (12)–(16). In the following, we ignore the time indices

for a while for simplicity. The state-conditional observation

likelihoods p(s|q) are estimated from a database of musical

recordings where the musical meter has been hand-labeled (see

Sec. III). However, the data is very limited in size compared to

the number of parameters to be estimated. Estimation of the

state densities for each different q = [j, k, l] is impossible
since each of the three discrete hidden variables can take

on several hundreds of different values. By making a series

of assumptions we arrive at the following approximation for

p(s|q):
p(s|q = [j, k, l]) ∝ s(k)s(l)S(1/j). (17)

where s(τ) and S(f) are as defined in (9)–(10), omitting the
time indices. Appendix I presents the derivation of (17) and

the underlying assumptions in detail. An intuitive rationale of

(17) is that a truly existing tactus or measure pulse appears as

a peak in s(τ) at the lag that corresponds to the pulse period.
Analogously, the tatum period appears as a peak in S(f) at the
frequency that corresponds to the inverse of the period. The

product of these three values correlates approximately linearly

with the likelihood of the observation given the meter.

2) Estimation of the transition and initial probabilities: In
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pulse is related to the harmonic (i.e., chord) change rate (C).
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n = j, τB
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hidden state process is a time-homogenous first-order Markov

model which has an initial state distribution P (q1) and tran-
sition probabilities P (qn|qn−1). The observable variable is
conditioned only on the current state, i.e., we have the state-

conditional observation densities p(sn|qn).
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i.e., given the tactus period, the tatum period does not give

additional information regarding the measure period. We fur-

ther assume that given τB
n−1, the other two hidden variables at

time n−1 give no additional information regarding τB
n . For the

tatum and measure periods τ i
n, i ∈ {A,C}, we assume that

given τ i
n−1 and τB

n , the other two hidden variables at time

n − 1 give no additional information regarding τ i
n. It follows

that (13) can be written as
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plified as
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has a central role in meter perception and it is not by chance

that the other two variables are drawn to depend on it [1,

pp.73–74]. The assumption in (14) is not valid if the variables

are permuted.

1) Estimation of the state-conditional observation likeli-

hoods: The remaining problem is to find reasonable estimates

for the model parameters, i.e., for the probabilities that appear

in (12)–(16). In the following, we ignore the time indices

for a while for simplicity. The state-conditional observation

likelihoods p(s|q) are estimated from a database of musical

recordings where the musical meter has been hand-labeled (see

Sec. III). However, the data is very limited in size compared to

the number of parameters to be estimated. Estimation of the

state densities for each different q = [j, k, l] is impossible
since each of the three discrete hidden variables can take

on several hundreds of different values. By making a series

of assumptions we arrive at the following approximation for

p(s|q):
p(s|q = [j, k, l]) ∝ s(k)s(l)S(1/j). (17)

where s(τ) and S(f) are as defined in (9)–(10), omitting the
time indices. Appendix I presents the derivation of (17) and

the underlying assumptions in detail. An intuitive rationale of

(17) is that a truly existing tactus or measure pulse appears as

a peak in s(τ) at the lag that corresponds to the pulse period.
Analogously, the tatum period appears as a peak in S(f) at the
frequency that corresponds to the inverse of the period. The

product of these three values correlates approximately linearly

with the likelihood of the observation given the meter.
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different metrical pulse levels have to be taken into account.
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the probabilistic model to be presented.
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energies of the resonators, s(τ, n), denoted sn in the following.
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pulse is related to the harmonic (i.e., chord) change rate (C).

For convenience, we use qn = [j, k, l] to denote a “meter
state”, equivalent to τA

n = j, τB
n = k, and τC

n = l. The
hidden state process is a time-homogenous first-order Markov

model which has an initial state distribution P (q1) and tran-
sition probabilities P (qn|qn−1). The observable variable is
conditioned only on the current state, i.e., we have the state-

conditional observation densities p(sn|qn).
The joint probability density of a state sequence Q =
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additional information regarding the measure period. We fur-

ther assume that given τB
n−1, the other two hidden variables at

time n−1 give no additional information regarding τB
n . For the

tatum and measure periods τ i
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given τ i
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that the other two variables are drawn to depend on it [1,
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hoods: The remaining problem is to find reasonable estimates

for the model parameters, i.e., for the probabilities that appear
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Sec. III). However, the data is very limited in size compared to
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(17) is that a truly existing tactus or measure pulse appears as

a peak in s(τ) at the lag that corresponds to the pulse period.
Analogously, the tatum period appears as a peak in S(f) at the
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with the likelihood of the observation given the meter.

2) Estimation of the transition and initial probabilities: In

(15), the term P (τA
n |τB

n , τA
n−1) can be decomposed as

P (τA
n |τB

n , τA
n−1) = P (τA

n |τA
n−1)

P (τA
n , τB

n |τA
n−1)

P (τA
n |τA

n−1)P (τB
n |τA

n−1)
,

(18)

6

method finds periods first and then the phases (see Fig. 2).

Although estimating the phases is not trivial, the search

problem is largely completed when the period-lengths have

been found.

Musical meter cannot be assumed to remain static over the

whole duration of a piece. It has to be estimated causally at

successive time instants and there must be some tying between

the successive estimates. Also, the dependencies between

different metrical pulse levels have to be taken into account.

These require prior musical knowledge which is encoded in

the probabilistic model to be presented.

For period estimation, a hidden Markov model that de-

scribes the simultaneous evolution of four processes is con-

structed. The observable variable is the vector of instantaneous

energies of the resonators, s(τ, n), denoted sn in the following.

The unobservable processes and the corresponding hidden

variables are the tatum period τA
n , tactus period τB

n , and

measure period τC
n . As a mnemonic for this notation, recall

that the tatum is the temporally atomic (A) pulse level, the

tactus pulse is often called “beat” (B), and the musical measure

pulse is related to the harmonic (i.e., chord) change rate (C).

For convenience, we use qn = [j, k, l] to denote a “meter
state”, equivalent to τA

n = j, τB
n = k, and τC

n = l. The
hidden state process is a time-homogenous first-order Markov

model which has an initial state distribution P (q1) and tran-
sition probabilities P (qn|qn−1). The observable variable is
conditioned only on the current state, i.e., we have the state-

conditional observation densities p(sn|qn).
The joint probability density of a state sequence Q =

(q1q2 . . . qN ) and observation sequence O = (s1s1 . . . sN )
can be written as

p(Q,O) = P (q1)p(s1|q1)
N∏

n=2

P (qn|qn−1)p(sn|qn), (12)

where the term P (qn|qn−1) can be decomposed as

P (qn|qn−1) = P (τB
n |qn−1)P (τA

n |τB
n , qn−1)P (τC

n |τB
n , τA

n , qn−1).
(13)

It is musically meaningful to assume that

P (τC
n |τB

n , τA
n , qn−1) = P (τC

n |τB
n , qn−1), (14)

i.e., given the tactus period, the tatum period does not give

additional information regarding the measure period. We fur-

ther assume that given τB
n−1, the other two hidden variables at

time n−1 give no additional information regarding τB
n . For the

tatum and measure periods τ i
n, i ∈ {A,C}, we assume that

given τ i
n−1 and τB

n , the other two hidden variables at time

n − 1 give no additional information regarding τ i
n. It follows

that (13) can be written as

P (qn|qn−1) = P (τB
n |τB

n−1)P (τA
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Using the same assumptions, P (q1) is decomposed and sim-
plified as

P (q1) = P (τB
1 )P (τA

1 |τB
1 )P (τC

1 |τB
1 ). (16)

The described modeling assumptions lead to a structure

which is represented as a directed acyclic graph in Figure 5.
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The arrows in the graph represent conditional dependencies

between the variables. The circles denote hidden variables and

the observed variable is marked with boxes. The tactus pulse

has a central role in meter perception and it is not by chance

that the other two variables are drawn to depend on it [1,

pp.73–74]. The assumption in (14) is not valid if the variables

are permuted.

1) Estimation of the state-conditional observation likeli-

hoods: The remaining problem is to find reasonable estimates

for the model parameters, i.e., for the probabilities that appear

in (12)–(16). In the following, we ignore the time indices

for a while for simplicity. The state-conditional observation

likelihoods p(s|q) are estimated from a database of musical

recordings where the musical meter has been hand-labeled (see

Sec. III). However, the data is very limited in size compared to

the number of parameters to be estimated. Estimation of the

state densities for each different q = [j, k, l] is impossible
since each of the three discrete hidden variables can take

on several hundreds of different values. By making a series

of assumptions we arrive at the following approximation for

p(s|q):
p(s|q = [j, k, l]) ∝ s(k)s(l)S(1/j). (17)

where s(τ) and S(f) are as defined in (9)–(10), omitting the
time indices. Appendix I presents the derivation of (17) and

the underlying assumptions in detail. An intuitive rationale of

(17) is that a truly existing tactus or measure pulse appears as

a peak in s(τ) at the lag that corresponds to the pulse period.
Analogously, the tatum period appears as a peak in S(f) at the
frequency that corresponds to the inverse of the period. The

product of these three values correlates approximately linearly

with the likelihood of the observation given the meter.

2) Estimation of the transition and initial probabilities: In

(15), the term P (τA
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n−1) can be decomposed as
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6

method finds periods first and then the phases (see Fig. 2).

Although estimating the phases is not trivial, the search

problem is largely completed when the period-lengths have

been found.

Musical meter cannot be assumed to remain static over the

whole duration of a piece. It has to be estimated causally at

successive time instants and there must be some tying between

the successive estimates. Also, the dependencies between

different metrical pulse levels have to be taken into account.

These require prior musical knowledge which is encoded in

the probabilistic model to be presented.

For period estimation, a hidden Markov model that de-

scribes the simultaneous evolution of four processes is con-

structed. The observable variable is the vector of instantaneous

energies of the resonators, s(τ, n), denoted sn in the following.

The unobservable processes and the corresponding hidden

variables are the tatum period τA
n , tactus period τB

n , and

measure period τC
n . As a mnemonic for this notation, recall

that the tatum is the temporally atomic (A) pulse level, the

tactus pulse is often called “beat” (B), and the musical measure

pulse is related to the harmonic (i.e., chord) change rate (C).

For convenience, we use qn = [j, k, l] to denote a “meter
state”, equivalent to τA

n = j, τB
n = k, and τC

n = l. The
hidden state process is a time-homogenous first-order Markov

model which has an initial state distribution P (q1) and tran-
sition probabilities P (qn|qn−1). The observable variable is
conditioned only on the current state, i.e., we have the state-

conditional observation densities p(sn|qn).
The joint probability density of a state sequence Q =
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can be written as
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It is musically meaningful to assume that
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i.e., given the tactus period, the tatum period does not give

additional information regarding the measure period. We fur-

ther assume that given τB
n−1, the other two hidden variables at

time n−1 give no additional information regarding τB
n . For the

tatum and measure periods τ i
n, i ∈ {A,C}, we assume that

given τ i
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n , the other two hidden variables at time

n − 1 give no additional information regarding τ i
n. It follows

that (13) can be written as
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The described modeling assumptions lead to a structure
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pp.73–74]. The assumption in (14) is not valid if the variables

are permuted.

1) Estimation of the state-conditional observation likeli-

hoods: The remaining problem is to find reasonable estimates

for the model parameters, i.e., for the probabilities that appear

in (12)–(16). In the following, we ignore the time indices

for a while for simplicity. The state-conditional observation

likelihoods p(s|q) are estimated from a database of musical

recordings where the musical meter has been hand-labeled (see

Sec. III). However, the data is very limited in size compared to

the number of parameters to be estimated. Estimation of the

state densities for each different q = [j, k, l] is impossible
since each of the three discrete hidden variables can take

on several hundreds of different values. By making a series

of assumptions we arrive at the following approximation for

p(s|q):
p(s|q = [j, k, l]) ∝ s(k)s(l)S(1/j). (17)

where s(τ) and S(f) are as defined in (9)–(10), omitting the
time indices. Appendix I presents the derivation of (17) and

the underlying assumptions in detail. An intuitive rationale of

(17) is that a truly existing tactus or measure pulse appears as

a peak in s(τ) at the lag that corresponds to the pulse period.
Analogously, the tatum period appears as a peak in S(f) at the
frequency that corresponds to the inverse of the period. The
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the successive estimates. Also, the dependencies between

different metrical pulse levels have to be taken into account.

These require prior musical knowledge which is encoded in

the probabilistic model to be presented.

For period estimation, a hidden Markov model that de-

scribes the simultaneous evolution of four processes is con-

structed. The observable variable is the vector of instantaneous

energies of the resonators, s(τ, n), denoted sn in the following.
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additional information regarding the measure period. We fur-

ther assume that given τB
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time n−1 give no additional information regarding τB
n . For the

tatum and measure periods τ i
n, i ∈ {A,C}, we assume that

given τ i
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n. It follows
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the observed variable is marked with boxes. The tactus pulse

has a central role in meter perception and it is not by chance

that the other two variables are drawn to depend on it [1,

pp.73–74]. The assumption in (14) is not valid if the variables

are permuted.

1) Estimation of the state-conditional observation likeli-

hoods: The remaining problem is to find reasonable estimates

for the model parameters, i.e., for the probabilities that appear

in (12)–(16). In the following, we ignore the time indices

for a while for simplicity. The state-conditional observation

likelihoods p(s|q) are estimated from a database of musical

recordings where the musical meter has been hand-labeled (see

Sec. III). However, the data is very limited in size compared to

the number of parameters to be estimated. Estimation of the

state densities for each different q = [j, k, l] is impossible
since each of the three discrete hidden variables can take

on several hundreds of different values. By making a series

of assumptions we arrive at the following approximation for

p(s|q):
p(s|q = [j, k, l]) ∝ s(k)s(l)S(1/j). (17)

where s(τ) and S(f) are as defined in (9)–(10), omitting the
time indices. Appendix I presents the derivation of (17) and

the underlying assumptions in detail. An intuitive rationale of

(17) is that a truly existing tactus or measure pulse appears as

a peak in s(τ) at the lag that corresponds to the pulse period.
Analogously, the tatum period appears as a peak in S(f) at the
frequency that corresponds to the inverse of the period. The

product of these three values correlates approximately linearly

with the likelihood of the observation given the meter.

2) Estimation of the transition and initial probabilities: In

(15), the term P (τA
n |τB

n , τA
n−1) can be decomposed as

P (τA
n |τB

n , τA
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n |τA
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n |τA
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(18)



Estimating the parameters 7

0.33 0.5 0.67 1 1.5 2 3
0

0.05

0.1

L
ik

el
ih

o
o

d

Ratio of !
n

i
 and !

n!1

i

Fig. 6. The likelihood function f(τ i
n/τ i

n−1) which describes the tendency
that the periods are slowly-varying.

where the first factor represents transition probabilities be-

tween successive period estimates and the second term rep-

resents the relation dependencies of simultaneous periods, τA
n

and τB
n , independent of their actual frequencies of occurrence

(in practice τB
n tends to be integer multiple of τA

n ). Similarly,

P (τC
n |τB

n , τC
n−1) = P (τC

n |τC
n−1)

P (τC
n , τB

n |τC
n−1)

P (τC
n |τC

n−1)P (τB
n |τC

n−1)
,

(19)

The transition probabilities P (τ i
n|τ i

n−1), i ∈ {A,B,C}
between successive period estimates are obtained as follows.

Again, the number of possible transitions is too large for any

reasonable estimates to be obtained by counting occurrences.

The transition probability is modeled as a product of the prior

probability for a certain period, P (τ i
1), and a term f(τ i

n/τ i
n−1)

which describes the tendency that the periods are slowly-

varying:

P (τ i
n|τ i

n−1) = P (τ i
1)

P (τ i
n, τ i

n−1)
P (τ i

n)P (τ i
n−1)

≈ P (τ i
1)f

(
τ i
n

τ i
n−1

)
,

(20)

where i ∈ {A,B,C}. The function f ,

f

(
τ i
n

τ i
n−1

)
=

1
σ1

√
2π

exp

[
− 1

2σ2
1

(
ln

(
τ i
n

τ i
n−1

))2
]

, (21)

implements a normal distribution as a function of the logarithm

of the ratio of successive period values. It follows that the

likelihood of large changes in period is higher for long periods,

and that period doubling and halving are equally probable. The

parameter σ1 = 0.2 was found by monitoring the performance
of the system in simulations. The distribution (21) is illustrated

in Fig. 6.5

Prior probabilities for tactus period lengths, P (τB), have
been measured from actual data by several authors [12],

[35], [36]. As suggested by Parncutt [12], we apply the two-

parameter lognormal distribution

p(τ i) =
1

τ iσi
√

2π
exp

[
− 1

2(σi)2

(
ln

(
τ i

mi

))2
]

, (22)

where mi and σi are the scale and shape parameters, re-

spectively. For the tactus period, the values mB = 0.55 and
σB = 0.28 were estimated by counting the occurrences of
different period lengths in our hand-labeled database (see

Sec. III) and by fitting the lognormal distribution to the

5For comparison, Laroche uses a cost function where tempo changes
exceeding a certain threshold are assigned a fixed cost and smaller tempo
changes cause no cost at all [22].

0.4 0.6 0.8 1 1.2 1.4

Tactus

L
ik
e
li
h
o
o
d

1.5 2 2.5 3 3.5 4
Period length (seconds)

Measure

L
ik

el
ih

o
o

d

0.1 0.2 0.3 0.4 0.5

Tatum

L
ik
e
li
h
o
o
d

Fig. 7. Period-length histograms and the corresponding lognormal distribu-
tions for tatum, tactus, and measure pulses.

histogram data. The parameters depend somewhat on genre

(see [35], [36]) but since the genre is generally not known,

common parameter values are used here. Figure 7 shows

the period-length histograms and the corresponding lognormal

distributions for the tactus, measure, and tatum periods. The

scale and shape parameters for the tatum and measure periods

are mA = 0.18, σA = 0.39, mC = 2.1, and σC = 0.26,
respectively. These were estimated from the hand-labeled data

in the same way.

The relation dependencies of simultaneous periods are mod-

eled as follows. We model the latter terms in (18)–(19) as

P (τA
n , τB

n |τA
n−1)

P (τA
n |τA

n−1)P (τB
n |τA

n−1)
≈ g

(
τB

τA

)
, (23)

P (τC
n , τB

n |τC
n−1)

P (τC
n |τC

n−1)P (τB
n |τC

n−1)
≈ g

(
τC

τB

)
, (24)

where g(x) is a Gaussian mixture density of the form

g(x) =
9∑

l=1

wlN(x; l,σ2), (25)

where wl are the component weights and sum to unity, l
are the component means, and σ2 = 0.3 is the common

variance. The function models the relation dependencies of

simultaneous periods, independent of their actual frequencies

of occurrence. The exact weight values are not critical, but

are designed to realize a tendency towards binary or ternary

integer relationships between concurrent pulses. For example,

it happens quite often that one tactus period consists of two,

four, or six tatum periods, but multiples five and seven are

much less likely in music and thus have lower weights. The

distribution is shown in Fig. 8. The Gaussian mixture model

was employed to allow some deviation from strictly integral

ratios. In theory, the period-lengths should be precisely in

integral ratios but, in practice, there are inaccuracies since the

period candidates are chosen from discrete vectors sn and Sn.
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where the first factor represents transition probabilities be-

tween successive period estimates and the second term rep-

resents the relation dependencies of simultaneous periods, τA
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and τB
n , independent of their actual frequencies of occurrence
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The transition probabilities P (τ i
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between successive period estimates are obtained as follows.

Again, the number of possible transitions is too large for any

reasonable estimates to be obtained by counting occurrences.

The transition probability is modeled as a product of the prior

probability for a certain period, P (τ i
1), and a term f(τ i
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which describes the tendency that the periods are slowly-
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implements a normal distribution as a function of the logarithm

of the ratio of successive period values. It follows that the

likelihood of large changes in period is higher for long periods,

and that period doubling and halving are equally probable. The

parameter σ1 = 0.2 was found by monitoring the performance
of the system in simulations. The distribution (21) is illustrated

in Fig. 6.5

Prior probabilities for tactus period lengths, P (τB), have
been measured from actual data by several authors [12],

[35], [36]. As suggested by Parncutt [12], we apply the two-

parameter lognormal distribution

p(τ i) =
1
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√
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[
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2(σi)2
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, (22)

where mi and σi are the scale and shape parameters, re-

spectively. For the tactus period, the values mB = 0.55 and
σB = 0.28 were estimated by counting the occurrences of
different period lengths in our hand-labeled database (see

Sec. III) and by fitting the lognormal distribution to the

5For comparison, Laroche uses a cost function where tempo changes
exceeding a certain threshold are assigned a fixed cost and smaller tempo
changes cause no cost at all [22].
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histogram data. The parameters depend somewhat on genre

(see [35], [36]) but since the genre is generally not known,

common parameter values are used here. Figure 7 shows

the period-length histograms and the corresponding lognormal

distributions for the tactus, measure, and tatum periods. The

scale and shape parameters for the tatum and measure periods

are mA = 0.18, σA = 0.39, mC = 2.1, and σC = 0.26,
respectively. These were estimated from the hand-labeled data

in the same way.
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where g(x) is a Gaussian mixture density of the form

g(x) =
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wlN(x; l,σ2), (25)

where wl are the component weights and sum to unity, l
are the component means, and σ2 = 0.3 is the common

variance. The function models the relation dependencies of

simultaneous periods, independent of their actual frequencies

of occurrence. The exact weight values are not critical, but

are designed to realize a tendency towards binary or ternary

integer relationships between concurrent pulses. For example,

it happens quite often that one tactus period consists of two,

four, or six tatum periods, but multiples five and seven are

much less likely in music and thus have lower weights. The

distribution is shown in Fig. 8. The Gaussian mixture model

was employed to allow some deviation from strictly integral

ratios. In theory, the period-lengths should be precisely in

integral ratios but, in practice, there are inaccuracies since the

period candidates are chosen from discrete vectors sn and Sn.
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where the first factor represents transition probabilities be-

tween successive period estimates and the second term rep-

resents the relation dependencies of simultaneous periods, τA
n

and τB
n , independent of their actual frequencies of occurrence

(in practice τB
n tends to be integer multiple of τA

n ). Similarly,

P (τC
n |τB

n , τC
n−1) = P (τC

n |τC
n−1)

P (τC
n , τB

n |τC
n−1)

P (τC
n |τC

n−1)P (τB
n |τC

n−1)
,

(19)

The transition probabilities P (τ i
n|τ i

n−1), i ∈ {A,B,C}
between successive period estimates are obtained as follows.

Again, the number of possible transitions is too large for any

reasonable estimates to be obtained by counting occurrences.

The transition probability is modeled as a product of the prior

probability for a certain period, P (τ i
1), and a term f(τ i

n/τ i
n−1)

which describes the tendency that the periods are slowly-

varying:

P (τ i
n|τ i

n−1) = P (τ i
1)

P (τ i
n, τ i

n−1)
P (τ i

n)P (τ i
n−1)

≈ P (τ i
1)f

(
τ i
n

τ i
n−1

)
,

(20)

where i ∈ {A,B,C}. The function f ,

f

(
τ i
n

τ i
n−1

)
=

1
σ1

√
2π

exp

[
− 1

2σ2
1

(
ln

(
τ i
n

τ i
n−1

))2
]

, (21)

implements a normal distribution as a function of the logarithm

of the ratio of successive period values. It follows that the

likelihood of large changes in period is higher for long periods,

and that period doubling and halving are equally probable. The

parameter σ1 = 0.2 was found by monitoring the performance
of the system in simulations. The distribution (21) is illustrated

in Fig. 6.5

Prior probabilities for tactus period lengths, P (τB), have
been measured from actual data by several authors [12],

[35], [36]. As suggested by Parncutt [12], we apply the two-

parameter lognormal distribution

p(τ i) =
1

τ iσi
√

2π
exp

[
− 1

2(σi)2

(
ln

(
τ i

mi

))2
]

, (22)

where mi and σi are the scale and shape parameters, re-

spectively. For the tactus period, the values mB = 0.55 and
σB = 0.28 were estimated by counting the occurrences of
different period lengths in our hand-labeled database (see

Sec. III) and by fitting the lognormal distribution to the

5For comparison, Laroche uses a cost function where tempo changes
exceeding a certain threshold are assigned a fixed cost and smaller tempo
changes cause no cost at all [22].
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Fig. 7. Period-length histograms and the corresponding lognormal distribu-
tions for tatum, tactus, and measure pulses.

histogram data. The parameters depend somewhat on genre

(see [35], [36]) but since the genre is generally not known,

common parameter values are used here. Figure 7 shows

the period-length histograms and the corresponding lognormal

distributions for the tactus, measure, and tatum periods. The

scale and shape parameters for the tatum and measure periods

are mA = 0.18, σA = 0.39, mC = 2.1, and σC = 0.26,
respectively. These were estimated from the hand-labeled data

in the same way.

The relation dependencies of simultaneous periods are mod-

eled as follows. We model the latter terms in (18)–(19) as

P (τA
n , τB

n |τA
n−1)

P (τA
n |τA

n−1)P (τB
n |τA

n−1)
≈ g

(
τB

τA

)
, (23)

P (τC
n , τB

n |τC
n−1)

P (τC
n |τC

n−1)P (τB
n |τC

n−1)
≈ g

(
τC

τB

)
, (24)

where g(x) is a Gaussian mixture density of the form

g(x) =
9∑

l=1

wlN(x; l,σ2), (25)

where wl are the component weights and sum to unity, l
are the component means, and σ2 = 0.3 is the common

variance. The function models the relation dependencies of

simultaneous periods, independent of their actual frequencies

of occurrence. The exact weight values are not critical, but

are designed to realize a tendency towards binary or ternary

integer relationships between concurrent pulses. For example,

it happens quite often that one tactus period consists of two,

four, or six tatum periods, but multiples five and seven are

much less likely in music and thus have lower weights. The

distribution is shown in Fig. 8. The Gaussian mixture model

was employed to allow some deviation from strictly integral

ratios. In theory, the period-lengths should be precisely in

integral ratios but, in practice, there are inaccuracies since the

period candidates are chosen from discrete vectors sn and Sn.
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where the first factor represents transition probabilities be-

tween successive period estimates and the second term rep-

resents the relation dependencies of simultaneous periods, τA
n

and τB
n , independent of their actual frequencies of occurrence

(in practice τB
n tends to be integer multiple of τA

n ). Similarly,

P (τC
n |τB

n , τC
n−1) = P (τC

n |τC
n−1)

P (τC
n , τB

n |τC
n−1)

P (τC
n |τC

n−1)P (τB
n |τC

n−1)
,

(19)

The transition probabilities P (τ i
n|τ i

n−1), i ∈ {A,B,C}
between successive period estimates are obtained as follows.

Again, the number of possible transitions is too large for any

reasonable estimates to be obtained by counting occurrences.

The transition probability is modeled as a product of the prior

probability for a certain period, P (τ i
1), and a term f(τ i

n/τ i
n−1)

which describes the tendency that the periods are slowly-

varying:

P (τ i
n|τ i

n−1) = P (τ i
1)

P (τ i
n, τ i

n−1)
P (τ i

n)P (τ i
n−1)

≈ P (τ i
1)f

(
τ i
n

τ i
n−1

)
,

(20)

where i ∈ {A,B,C}. The function f ,

f

(
τ i
n

τ i
n−1

)
=

1
σ1

√
2π

exp

[
− 1

2σ2
1

(
ln

(
τ i
n

τ i
n−1

))2
]

, (21)

implements a normal distribution as a function of the logarithm

of the ratio of successive period values. It follows that the

likelihood of large changes in period is higher for long periods,

and that period doubling and halving are equally probable. The

parameter σ1 = 0.2 was found by monitoring the performance
of the system in simulations. The distribution (21) is illustrated

in Fig. 6.5

Prior probabilities for tactus period lengths, P (τB), have
been measured from actual data by several authors [12],

[35], [36]. As suggested by Parncutt [12], we apply the two-

parameter lognormal distribution

p(τ i) =
1

τ iσi
√

2π
exp

[
− 1

2(σi)2

(
ln

(
τ i

mi

))2
]

, (22)

where mi and σi are the scale and shape parameters, re-

spectively. For the tactus period, the values mB = 0.55 and
σB = 0.28 were estimated by counting the occurrences of
different period lengths in our hand-labeled database (see

Sec. III) and by fitting the lognormal distribution to the

5For comparison, Laroche uses a cost function where tempo changes
exceeding a certain threshold are assigned a fixed cost and smaller tempo
changes cause no cost at all [22].
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histogram data. The parameters depend somewhat on genre

(see [35], [36]) but since the genre is generally not known,

common parameter values are used here. Figure 7 shows

the period-length histograms and the corresponding lognormal

distributions for the tactus, measure, and tatum periods. The

scale and shape parameters for the tatum and measure periods

are mA = 0.18, σA = 0.39, mC = 2.1, and σC = 0.26,
respectively. These were estimated from the hand-labeled data

in the same way.

The relation dependencies of simultaneous periods are mod-

eled as follows. We model the latter terms in (18)–(19) as

P (τA
n , τB

n |τA
n−1)

P (τA
n |τA

n−1)P (τB
n |τA

n−1)
≈ g

(
τB

τA

)
, (23)

P (τC
n , τB

n |τC
n−1)

P (τC
n |τC

n−1)P (τB
n |τC

n−1)
≈ g

(
τC

τB

)
, (24)

where g(x) is a Gaussian mixture density of the form

g(x) =
9∑

l=1

wlN(x; l,σ2), (25)

where wl are the component weights and sum to unity, l
are the component means, and σ2 = 0.3 is the common

variance. The function models the relation dependencies of

simultaneous periods, independent of their actual frequencies

of occurrence. The exact weight values are not critical, but

are designed to realize a tendency towards binary or ternary

integer relationships between concurrent pulses. For example,

it happens quite often that one tactus period consists of two,

four, or six tatum periods, but multiples five and seven are

much less likely in music and thus have lower weights. The

distribution is shown in Fig. 8. The Gaussian mixture model

was employed to allow some deviation from strictly integral

ratios. In theory, the period-lengths should be precisely in

integral ratios but, in practice, there are inaccuracies since the

period candidates are chosen from discrete vectors sn and Sn.
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where the first factor represents transition probabilities be-

tween successive period estimates and the second term rep-

resents the relation dependencies of simultaneous periods, τA
n

and τB
n , independent of their actual frequencies of occurrence

(in practice τB
n tends to be integer multiple of τA

n ). Similarly,

P (τC
n |τB

n , τC
n−1) = P (τC

n |τC
n−1)

P (τC
n , τB

n |τC
n−1)

P (τC
n |τC

n−1)P (τB
n |τC

n−1)
,

(19)

The transition probabilities P (τ i
n|τ i

n−1), i ∈ {A,B,C}
between successive period estimates are obtained as follows.

Again, the number of possible transitions is too large for any

reasonable estimates to be obtained by counting occurrences.

The transition probability is modeled as a product of the prior

probability for a certain period, P (τ i
1), and a term f(τ i

n/τ i
n−1)

which describes the tendency that the periods are slowly-

varying:

P (τ i
n|τ i

n−1) = P (τ i
1)

P (τ i
n, τ i

n−1)
P (τ i

n)P (τ i
n−1)

≈ P (τ i
1)f

(
τ i
n

τ i
n−1

)
,

(20)

where i ∈ {A,B,C}. The function f ,

f

(
τ i
n

τ i
n−1

)
=

1
σ1

√
2π

exp

[
− 1

2σ2
1

(
ln

(
τ i
n

τ i
n−1

))2
]

, (21)

implements a normal distribution as a function of the logarithm

of the ratio of successive period values. It follows that the

likelihood of large changes in period is higher for long periods,

and that period doubling and halving are equally probable. The

parameter σ1 = 0.2 was found by monitoring the performance
of the system in simulations. The distribution (21) is illustrated

in Fig. 6.5

Prior probabilities for tactus period lengths, P (τB), have
been measured from actual data by several authors [12],

[35], [36]. As suggested by Parncutt [12], we apply the two-

parameter lognormal distribution

p(τ i) =
1

τ iσi
√

2π
exp

[
− 1

2(σi)2

(
ln

(
τ i

mi

))2
]

, (22)

where mi and σi are the scale and shape parameters, re-

spectively. For the tactus period, the values mB = 0.55 and
σB = 0.28 were estimated by counting the occurrences of
different period lengths in our hand-labeled database (see

Sec. III) and by fitting the lognormal distribution to the

5For comparison, Laroche uses a cost function where tempo changes
exceeding a certain threshold are assigned a fixed cost and smaller tempo
changes cause no cost at all [22].
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Fig. 7. Period-length histograms and the corresponding lognormal distribu-
tions for tatum, tactus, and measure pulses.

histogram data. The parameters depend somewhat on genre

(see [35], [36]) but since the genre is generally not known,

common parameter values are used here. Figure 7 shows

the period-length histograms and the corresponding lognormal

distributions for the tactus, measure, and tatum periods. The

scale and shape parameters for the tatum and measure periods

are mA = 0.18, σA = 0.39, mC = 2.1, and σC = 0.26,
respectively. These were estimated from the hand-labeled data

in the same way.

The relation dependencies of simultaneous periods are mod-

eled as follows. We model the latter terms in (18)–(19) as

P (τA
n , τB

n |τA
n−1)

P (τA
n |τA

n−1)P (τB
n |τA

n−1)
≈ g

(
τB

τA

)
, (23)

P (τC
n , τB

n |τC
n−1)

P (τC
n |τC

n−1)P (τB
n |τC

n−1)
≈ g

(
τC

τB

)
, (24)

where g(x) is a Gaussian mixture density of the form

g(x) =
9∑

l=1

wlN(x; l,σ2), (25)

where wl are the component weights and sum to unity, l
are the component means, and σ2 = 0.3 is the common

variance. The function models the relation dependencies of

simultaneous periods, independent of their actual frequencies

of occurrence. The exact weight values are not critical, but

are designed to realize a tendency towards binary or ternary

integer relationships between concurrent pulses. For example,

it happens quite often that one tactus period consists of two,

four, or six tatum periods, but multiples five and seven are

much less likely in music and thus have lower weights. The

distribution is shown in Fig. 8. The Gaussian mixture model

was employed to allow some deviation from strictly integral

ratios. In theory, the period-lengths should be precisely in

integral ratios but, in practice, there are inaccuracies since the

period candidates are chosen from discrete vectors sn and Sn.
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where the first factor represents transition probabilities be-

tween successive period estimates and the second term rep-

resents the relation dependencies of simultaneous periods, τA
n

and τB
n , independent of their actual frequencies of occurrence

(in practice τB
n tends to be integer multiple of τA

n ). Similarly,

P (τC
n |τB

n , τC
n−1) = P (τC

n |τC
n−1)

P (τC
n , τB

n |τC
n−1)

P (τC
n |τC

n−1)P (τB
n |τC

n−1)
,

(19)

The transition probabilities P (τ i
n|τ i

n−1), i ∈ {A,B,C}
between successive period estimates are obtained as follows.

Again, the number of possible transitions is too large for any

reasonable estimates to be obtained by counting occurrences.

The transition probability is modeled as a product of the prior

probability for a certain period, P (τ i
1), and a term f(τ i

n/τ i
n−1)

which describes the tendency that the periods are slowly-

varying:

P (τ i
n|τ i

n−1) = P (τ i
1)

P (τ i
n, τ i

n−1)
P (τ i

n)P (τ i
n−1)

≈ P (τ i
1)f

(
τ i
n

τ i
n−1

)
,

(20)

where i ∈ {A,B,C}. The function f ,

f

(
τ i
n

τ i
n−1

)
=

1
σ1

√
2π

exp

[
− 1

2σ2
1

(
ln

(
τ i
n

τ i
n−1

))2
]

, (21)

implements a normal distribution as a function of the logarithm

of the ratio of successive period values. It follows that the

likelihood of large changes in period is higher for long periods,

and that period doubling and halving are equally probable. The

parameter σ1 = 0.2 was found by monitoring the performance
of the system in simulations. The distribution (21) is illustrated

in Fig. 6.5

Prior probabilities for tactus period lengths, P (τB), have
been measured from actual data by several authors [12],

[35], [36]. As suggested by Parncutt [12], we apply the two-

parameter lognormal distribution

p(τ i) =
1

τ iσi
√

2π
exp

[
− 1

2(σi)2

(
ln

(
τ i

mi

))2
]

, (22)

where mi and σi are the scale and shape parameters, re-

spectively. For the tactus period, the values mB = 0.55 and
σB = 0.28 were estimated by counting the occurrences of
different period lengths in our hand-labeled database (see

Sec. III) and by fitting the lognormal distribution to the

5For comparison, Laroche uses a cost function where tempo changes
exceeding a certain threshold are assigned a fixed cost and smaller tempo
changes cause no cost at all [22].

0.4 0.6 0.8 1 1.2 1.4

Tactus

L
ik
e
li
h
o
o
d

1.5 2 2.5 3 3.5 4
Period length (seconds)

Measure

L
ik

el
ih

o
o
d

0.1 0.2 0.3 0.4 0.5

Tatum

L
ik
e
li
h
o
o
d

Fig. 7. Period-length histograms and the corresponding lognormal distribu-
tions for tatum, tactus, and measure pulses.

histogram data. The parameters depend somewhat on genre

(see [35], [36]) but since the genre is generally not known,

common parameter values are used here. Figure 7 shows

the period-length histograms and the corresponding lognormal

distributions for the tactus, measure, and tatum periods. The

scale and shape parameters for the tatum and measure periods

are mA = 0.18, σA = 0.39, mC = 2.1, and σC = 0.26,
respectively. These were estimated from the hand-labeled data

in the same way.

The relation dependencies of simultaneous periods are mod-

eled as follows. We model the latter terms in (18)–(19) as

P (τA
n , τB

n |τA
n−1)

P (τA
n |τA

n−1)P (τB
n |τA

n−1)
≈ g

(
τB

τA

)
, (23)

P (τC
n , τB

n |τC
n−1)

P (τC
n |τC

n−1)P (τB
n |τC

n−1)
≈ g

(
τC

τB

)
, (24)

where g(x) is a Gaussian mixture density of the form

g(x) =
9∑

l=1

wlN(x; l,σ2), (25)

where wl are the component weights and sum to unity, l
are the component means, and σ2 = 0.3 is the common

variance. The function models the relation dependencies of

simultaneous periods, independent of their actual frequencies

of occurrence. The exact weight values are not critical, but

are designed to realize a tendency towards binary or ternary

integer relationships between concurrent pulses. For example,

it happens quite often that one tactus period consists of two,

four, or six tatum periods, but multiples five and seven are

much less likely in music and thus have lower weights. The

distribution is shown in Fig. 8. The Gaussian mixture model

was employed to allow some deviation from strictly integral

ratios. In theory, the period-lengths should be precisely in

integral ratios but, in practice, there are inaccuracies since the

period candidates are chosen from discrete vectors sn and Sn.
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Fig. 8. Distribution g(x) which models the relation dependencies of
simultaneous periods (see (25)).

These inaccuracies are conveniently handled by choosing an

appropriate value for σ2 in the above model. The weights wl

were obtained by first assigning them values according to a

musical intuition. Then the dynamic range of the weights was

found by raising them to a common power which was varied

between 0.1 and 10. The value which performed best in small-

scale simulations was selected. Finally, small adjustments to

the values were made.

It should be noted that here the model parameters were spec-

ified in part by hand, considering one probability distribution

at a time. It seems possible to devise an algorithm that would

learn the model parameters jointly by Bayesian optimization,

that is, by maximizing the posterior probability of training

data given the prior distributions. However, even after all the

described modeling assumptions and simplifications, deriving

an expectation-maximization algorithm [37] for the described

model, for example, is not easy and such an algorithm does

not exist at the present time.

3) Finding the optimal sequence of period estimates:

Now we must obtain an estimate for the unobserved state

variables given the observed resonator energies and the model

parameters. We do this by finding the most likely sequence

of state variables Q = (q1q2 . . . qN ) given the observed data
O = (s1s1 . . . sN ). This can be straighforwardly computed
using the Viterbi algorithm widely applied in speech recogni-

tion [38]. Thus, we seek the sequence of period estimates,

Q̂ = arg max
Q

(p(Q,O)) , (26)

where p(Q,O) denotes the joint probability density of the
hidden and observed variables (see (12)).

In a causal model, the meter estimate qn at time n is

determined according to the end-state of the best partial path

at that point in time. A noncausal estimate after seeing a

complete sequence of observations can be computed using

backward decoding.

Evaluating all the possible path candidates would be compu-

tationally very demanding. Therefore, we apply a suboptimal

beam-search strategy and evaluate only a predefined number of

the most promising path candidates at each time instant. The

selection of the most promising candidates is made using a

greedy selection strategy. Once in a second, we select K best

candidates independently for the tatum, tactus, and measure

periods. The number of candidates K = 5 was found to be
safe and was used in simulations. The selection is made by

maximizing p(τ i
n)p(sn|τ i

n) for i ∈ {A,B,C}. The probabili-
ties in (23)–(24) could be included to ensure that the selected

candidates are consistent with each other, but in practice this

is unnecessary. After selecting the best candidates for each, we

need only to compute the observation likelihoods for K3 =
125 meter candidates, i.e., for the different combinations of the
tatum, tactus, and measure periods. This is done according to

(17) and the results are stored into a data vector. The transition

probabilities are computed using (15) and stored into a 125-by-

125 matrix. These data structures are then used in the Viterbi

algorithm.

D. Phase estimation

The phases of the three pulses are estimated at successive

time instants, after the periods have been decided at these

points. We use τ̂ i
n, i ∈ {A,B,C} to refer to the estimated

periods of the tatum, tactus, and measure pulses at time n,
respectively. The corresponding phases of the three pulses, ϕi

n,

are expressed as “temporal anchors”, i.e., time values when

the nearest beat unit occurs with respect to the beginning of a

piece. The periods and phases, τ i
n and ϕi

n, completely define

the meter at time n.
In principle, the phase of the measure pulse, ϕC

n , determines

the phases of all the three levels. This is because in a well-

formed meter each measure-level beat must coincide with a

beat at all the lower metrical levels. However, determining the

phase of the measure pulse is difficult and turned out to require

rhythmic pattern matching techniques, whereas tactus phase

estimation is more straightforward and robust. We therefore

propose a model where the tactus and measure phases are

estimated separately using two parallel models. For the tatum

pulse, phase estimation is not needed but the tactus phase can

be used.

Scheirer proposed using the state vectors of comb filters to

determine the phase of the tactus pulse [20]. This is equivalent

to using the latest τ outputs of a resonator with delay τ . We
have resonators at several channels c and, consequently, an
output matrix rc(τ, j) where c = 1, 2, . . . , c0 is the channel

index and the phase index j takes on values between n −
τ + 1 and n when estimation is taking place at time n. For
convenience, we use Ri

n to denote the output matrix rc(τ̂ i
n, j)

of a found pulse period τ̂ i
n and the notation (Ri

n)c,j to refer

to the individual elements of Ri
n. The matrix Ri

n acts as the

observation for phase estimation at time n.
Figure 9 shows an example of the observation matrix RB

n

when tactus phase estimation is taking place 20 seconds after

the beginning of a piece. The four signals at different channels

are the outputs of the comb filter which corresponds to the

estimated tactus period τ̂B
n = 0.51 seconds. The output matrix

RB
n contains the latest 0.51 seconds of the output signals, as

indicated with the rectangle. The correct phase ϕB
n is marked

with a dashed line.

Two separate hidden Markov models are evaluated in paral-

lel, one for the tactus phase and another for the measure phase.

No joint estimation is attempted. The two models are very

similar and differ only in how the state-conditional observation

densities are defined. In both models, the observable variable

is the output matrix Ri
n of the resonator τ̂ i

n which corresponds

to the found pulse period. The hidden variable is the phase of

the pulse, ϕi
n, taking on values between n− τ̂ i

n +1 and n. The
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Fig. 8. Distribution g(x) which models the relation dependencies of
simultaneous periods (see (25)).

These inaccuracies are conveniently handled by choosing an

appropriate value for σ2 in the above model. The weights wl

were obtained by first assigning them values according to a

musical intuition. Then the dynamic range of the weights was

found by raising them to a common power which was varied

between 0.1 and 10. The value which performed best in small-

scale simulations was selected. Finally, small adjustments to

the values were made.

It should be noted that here the model parameters were spec-

ified in part by hand, considering one probability distribution

at a time. It seems possible to devise an algorithm that would

learn the model parameters jointly by Bayesian optimization,

that is, by maximizing the posterior probability of training

data given the prior distributions. However, even after all the

described modeling assumptions and simplifications, deriving

an expectation-maximization algorithm [37] for the described

model, for example, is not easy and such an algorithm does

not exist at the present time.

3) Finding the optimal sequence of period estimates:

Now we must obtain an estimate for the unobserved state

variables given the observed resonator energies and the model

parameters. We do this by finding the most likely sequence

of state variables Q = (q1q2 . . . qN ) given the observed data
O = (s1s1 . . . sN ). This can be straighforwardly computed
using the Viterbi algorithm widely applied in speech recogni-

tion [38]. Thus, we seek the sequence of period estimates,

Q̂ = arg max
Q

(p(Q,O)) , (26)

where p(Q,O) denotes the joint probability density of the
hidden and observed variables (see (12)).

In a causal model, the meter estimate qn at time n is

determined according to the end-state of the best partial path

at that point in time. A noncausal estimate after seeing a

complete sequence of observations can be computed using

backward decoding.

Evaluating all the possible path candidates would be compu-

tationally very demanding. Therefore, we apply a suboptimal

beam-search strategy and evaluate only a predefined number of

the most promising path candidates at each time instant. The

selection of the most promising candidates is made using a

greedy selection strategy. Once in a second, we select K best

candidates independently for the tatum, tactus, and measure

periods. The number of candidates K = 5 was found to be
safe and was used in simulations. The selection is made by

maximizing p(τ i
n)p(sn|τ i

n) for i ∈ {A,B,C}. The probabili-
ties in (23)–(24) could be included to ensure that the selected

candidates are consistent with each other, but in practice this

is unnecessary. After selecting the best candidates for each, we

need only to compute the observation likelihoods for K3 =
125 meter candidates, i.e., for the different combinations of the
tatum, tactus, and measure periods. This is done according to

(17) and the results are stored into a data vector. The transition

probabilities are computed using (15) and stored into a 125-by-

125 matrix. These data structures are then used in the Viterbi

algorithm.

D. Phase estimation

The phases of the three pulses are estimated at successive

time instants, after the periods have been decided at these

points. We use τ̂ i
n, i ∈ {A,B,C} to refer to the estimated

periods of the tatum, tactus, and measure pulses at time n,
respectively. The corresponding phases of the three pulses, ϕi

n,

are expressed as “temporal anchors”, i.e., time values when

the nearest beat unit occurs with respect to the beginning of a

piece. The periods and phases, τ i
n and ϕi

n, completely define

the meter at time n.
In principle, the phase of the measure pulse, ϕC

n , determines

the phases of all the three levels. This is because in a well-

formed meter each measure-level beat must coincide with a

beat at all the lower metrical levels. However, determining the

phase of the measure pulse is difficult and turned out to require

rhythmic pattern matching techniques, whereas tactus phase

estimation is more straightforward and robust. We therefore

propose a model where the tactus and measure phases are

estimated separately using two parallel models. For the tatum

pulse, phase estimation is not needed but the tactus phase can

be used.

Scheirer proposed using the state vectors of comb filters to

determine the phase of the tactus pulse [20]. This is equivalent

to using the latest τ outputs of a resonator with delay τ . We
have resonators at several channels c and, consequently, an
output matrix rc(τ, j) where c = 1, 2, . . . , c0 is the channel

index and the phase index j takes on values between n −
τ + 1 and n when estimation is taking place at time n. For
convenience, we use Ri

n to denote the output matrix rc(τ̂ i
n, j)

of a found pulse period τ̂ i
n and the notation (Ri

n)c,j to refer

to the individual elements of Ri
n. The matrix Ri

n acts as the

observation for phase estimation at time n.
Figure 9 shows an example of the observation matrix RB

n

when tactus phase estimation is taking place 20 seconds after

the beginning of a piece. The four signals at different channels

are the outputs of the comb filter which corresponds to the

estimated tactus period τ̂B
n = 0.51 seconds. The output matrix

RB
n contains the latest 0.51 seconds of the output signals, as

indicated with the rectangle. The correct phase ϕB
n is marked

with a dashed line.

Two separate hidden Markov models are evaluated in paral-

lel, one for the tactus phase and another for the measure phase.

No joint estimation is attempted. The two models are very

similar and differ only in how the state-conditional observation

densities are defined. In both models, the observable variable

is the output matrix Ri
n of the resonator τ̂ i

n which corresponds

to the found pulse period. The hidden variable is the phase of

the pulse, ϕi
n, taking on values between n− τ̂ i

n +1 and n. The
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Fig. 8. Distribution g(x) which models the relation dependencies of
simultaneous periods (see (25)).

These inaccuracies are conveniently handled by choosing an

appropriate value for σ2 in the above model. The weights wl

were obtained by first assigning them values according to a

musical intuition. Then the dynamic range of the weights was

found by raising them to a common power which was varied

between 0.1 and 10. The value which performed best in small-

scale simulations was selected. Finally, small adjustments to

the values were made.

It should be noted that here the model parameters were spec-

ified in part by hand, considering one probability distribution

at a time. It seems possible to devise an algorithm that would

learn the model parameters jointly by Bayesian optimization,

that is, by maximizing the posterior probability of training

data given the prior distributions. However, even after all the

described modeling assumptions and simplifications, deriving

an expectation-maximization algorithm [37] for the described

model, for example, is not easy and such an algorithm does

not exist at the present time.

3) Finding the optimal sequence of period estimates:

Now we must obtain an estimate for the unobserved state

variables given the observed resonator energies and the model

parameters. We do this by finding the most likely sequence

of state variables Q = (q1q2 . . . qN ) given the observed data
O = (s1s1 . . . sN ). This can be straighforwardly computed
using the Viterbi algorithm widely applied in speech recogni-

tion [38]. Thus, we seek the sequence of period estimates,

Q̂ = arg max
Q

(p(Q,O)) , (26)

where p(Q,O) denotes the joint probability density of the
hidden and observed variables (see (12)).

In a causal model, the meter estimate qn at time n is

determined according to the end-state of the best partial path

at that point in time. A noncausal estimate after seeing a

complete sequence of observations can be computed using

backward decoding.

Evaluating all the possible path candidates would be compu-

tationally very demanding. Therefore, we apply a suboptimal

beam-search strategy and evaluate only a predefined number of

the most promising path candidates at each time instant. The

selection of the most promising candidates is made using a

greedy selection strategy. Once in a second, we select K best

candidates independently for the tatum, tactus, and measure

periods. The number of candidates K = 5 was found to be
safe and was used in simulations. The selection is made by

maximizing p(τ i
n)p(sn|τ i

n) for i ∈ {A,B,C}. The probabili-
ties in (23)–(24) could be included to ensure that the selected

candidates are consistent with each other, but in practice this

is unnecessary. After selecting the best candidates for each, we

need only to compute the observation likelihoods for K3 =
125 meter candidates, i.e., for the different combinations of the
tatum, tactus, and measure periods. This is done according to

(17) and the results are stored into a data vector. The transition

probabilities are computed using (15) and stored into a 125-by-

125 matrix. These data structures are then used in the Viterbi

algorithm.

D. Phase estimation

The phases of the three pulses are estimated at successive

time instants, after the periods have been decided at these

points. We use τ̂ i
n, i ∈ {A,B,C} to refer to the estimated

periods of the tatum, tactus, and measure pulses at time n,
respectively. The corresponding phases of the three pulses, ϕi

n,

are expressed as “temporal anchors”, i.e., time values when

the nearest beat unit occurs with respect to the beginning of a

piece. The periods and phases, τ i
n and ϕi

n, completely define

the meter at time n.
In principle, the phase of the measure pulse, ϕC

n , determines

the phases of all the three levels. This is because in a well-

formed meter each measure-level beat must coincide with a

beat at all the lower metrical levels. However, determining the

phase of the measure pulse is difficult and turned out to require

rhythmic pattern matching techniques, whereas tactus phase

estimation is more straightforward and robust. We therefore

propose a model where the tactus and measure phases are

estimated separately using two parallel models. For the tatum

pulse, phase estimation is not needed but the tactus phase can

be used.

Scheirer proposed using the state vectors of comb filters to

determine the phase of the tactus pulse [20]. This is equivalent

to using the latest τ outputs of a resonator with delay τ . We
have resonators at several channels c and, consequently, an
output matrix rc(τ, j) where c = 1, 2, . . . , c0 is the channel

index and the phase index j takes on values between n −
τ + 1 and n when estimation is taking place at time n. For
convenience, we use Ri

n to denote the output matrix rc(τ̂ i
n, j)

of a found pulse period τ̂ i
n and the notation (Ri

n)c,j to refer

to the individual elements of Ri
n. The matrix Ri

n acts as the

observation for phase estimation at time n.
Figure 9 shows an example of the observation matrix RB

n

when tactus phase estimation is taking place 20 seconds after

the beginning of a piece. The four signals at different channels

are the outputs of the comb filter which corresponds to the

estimated tactus period τ̂B
n = 0.51 seconds. The output matrix

RB
n contains the latest 0.51 seconds of the output signals, as

indicated with the rectangle. The correct phase ϕB
n is marked

with a dashed line.

Two separate hidden Markov models are evaluated in paral-

lel, one for the tactus phase and another for the measure phase.

No joint estimation is attempted. The two models are very

similar and differ only in how the state-conditional observation

densities are defined. In both models, the observable variable

is the output matrix Ri
n of the resonator τ̂ i

n which corresponds

to the found pulse period. The hidden variable is the phase of

the pulse, ϕi
n, taking on values between n− τ̂ i

n +1 and n. The

• State space too large for full Viterbi.  Instead used 
beam serarch carrying 5 best search candidates 
forward in time.
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Fig. 9. The rectangle indicates the observation matrix RB
n for tactus phase

estimation at time n (here period τB
n is 0.51 s.). Dashed line shows the correct

phase in this case.

hidden state process is a time-homogenous first-order Markov

model which has an initial state distribution P (ϕ1) and

transition probabilities P (ϕn|ϕn−1). The observable variable
is conditional only on the current state, thus we have the state-

conditional observation densities p(Ri
n|ϕi

n).
Again, the remaining problem is to find reasonable esti-

mates for the model parameters. State-conditional observation

likelihoods p(RB
n |ϕB

n) for the tactus pulse are approximated
as

p(RB
n |ϕB

n = j) ∝
c0∑

c=1

(c0 − c + 2)(RB
n )c,j , (27)

where c = 1 corresponds to the lowest-frequency channel.
That is, the likelihood is proportional to a weighted sum

of the resonator outputs across the channels. Across-band

summing is intuitively meaningful and earlier used in [20],

[30]. Emphasizing the low frequencies is motivated by the

“stable bass” rule as stated in [1], and improved the robustness

of phase estimation in simulations. The exact weight values

are not critical.

For the purpose of estimating the phase of the measure

pulse, a formula for the state-conditional observation likeli-

hoods analogous to that in (27) is derived, but so that different

channels are weighted and delayed in a more complex manner.

It turned out that rhythmic pattern matching of some kind is

necessary to analyze music at this time scale and to estimate

the measure phase ϕC
n based on the output matrix RC

n . That is,

no simple formula such as (27) exists. The drawback of this

is that rhythmic pattern matching is more genre-specific than

for example the stable bass rule which appears to be quite

universal. In the case that the system would have access to

the pitch content of an incoming piece, the points of harmonic

change might serve as cues for estimating the measure phase

in a more straightforward manner. However, this remains to be

proved. Estimation of the higher-level metrical pulses in audio

data has been earlier attempted by Goto and Muraoka who

resorted to pattern matching [18] or to straightforward chord

change detection [19]. The method presented in the following

is the most reliable that we found.

First, a vector hn(l) is constructed as

hn(l) =
c0∑

c=1

3∑

k=0

ηc,k(RC
n )c,j(k,l,n), (28)

where

l = 0, 1, . . . , τ̂C
n − 1, (29)

j(k, l, n) = n − τ̂C
n + 1 +

((
l +

kτ̂C
n

4

)
mod τ̂C

n

)
, (30)

and (x mod y) denotes modulus after division. The scalars
ηc,k are weights for the resonator outputs at channels c and
with delays k. The weights ηc,k are used to encode a typical

pattern of energy fluctuations within one measure period,

so that the maximum of hn(l) indicates the measure phase.
The delay k is expressed in quarter-measure units so that k
corresponds to the delay kτ̂C

n /4. For example, a simple pattern
consisting of two events, a low-frequency event (at channel

c = 1) in the beginning of a measure (k = 0) and a loud event
in the middle of the measure (k = 2), could be represented by
defining the weights η1,0 = 3 (low), ηc,2 = 1 for all c (loud),
and ηc,k = 0 otherwise.
Two rhythmic patterns were found that generalized quite

well over our database. The weight matrices η(1)
c,k and η(2)

c,k
of these patterns are given in Appendix II and lead to the

corresponding h(1)
n (l) and h(2)

n (l). The patterns were found
by trial and error, trying out various arrangements of simple

atomic events and monitoring the behaviour of hn(l) against
manually annotated phase values. Both of the two patterns

can be characterized as a pendulous motion between a low-

frequency event and a high-intensity event. The first pattern

can be summarized as “low, loud, –, loud”, and the second as

“low, –, loud, –”. The two patterns are combined into a single

vector to perform phase estimation according to whichever

pattern matches better to the data

h(1,2)
n (l) = max

(
h(1)

n (l), h(2)
n (l)

)
. (31)

The state-conditional observation likelihoods are then defined

as

p(RC
n |ϕC

n = j) ∝ h(1,2)
n (j − (n − τ̂C

n + 1)). (32)

Obviously, the two patterns imply a binary time signature: they

assume that one measure period consists of two or four tactus

periods. Analysis results for ternary meters will be separately

discussed in Sec. III-C.

Other pattern-matching approaches were evaluated, too. In

particular, we attempted to sample RC
n at the times of the tactus

beats and to train a statistical classifier to choose the beat

which corresponds to the measure beat (see [36] for further

elaboration on this idea). However, the methods were basically

equivalent to that described above, yet less straightforward to

implement and performed slightly worse.

Transition probabilities P (ϕi
n|ϕi

n−1) between successive

phase estimates are modeled as follows. Given two phase

estimates (i.e., beat occurrence times), the conditional prob-

ability which ties the successive estimates is assumed to be

normally distributed as a function of a prediction error e which
measures the deviation of ϕi

n from the predicted next beat

occurence time given the previous beat time ϕi
n−1 and the

period τ̂ i
n:

P (ϕi
n|ϕi

n−1) =
1

σ3

√
2π

exp
(
− e2

2σ2
3

)
, (33)

where

e =
1
τ̂ i
n

{[(∣∣ϕi
n − ϕi

n−1

∣∣ +
τ̂ i
n

2

)
mod τ̂ i

n

]
− τ̂ i

n

2

}
, (34)

• Tactus and measure done 
independently from fiterbank outputs

• Fit 2nd HMM to filterbank outputs.  
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Fig. 9. The rectangle indicates the observation matrix RB
n for tactus phase

estimation at time n (here period τB
n is 0.51 s.). Dashed line shows the correct

phase in this case.

hidden state process is a time-homogenous first-order Markov

model which has an initial state distribution P (ϕ1) and

transition probabilities P (ϕn|ϕn−1). The observable variable
is conditional only on the current state, thus we have the state-

conditional observation densities p(Ri
n|ϕi

n).
Again, the remaining problem is to find reasonable esti-

mates for the model parameters. State-conditional observation

likelihoods p(RB
n |ϕB

n) for the tactus pulse are approximated
as

p(RB
n |ϕB

n = j) ∝
c0∑

c=1

(c0 − c + 2)(RB
n )c,j , (27)

where c = 1 corresponds to the lowest-frequency channel.
That is, the likelihood is proportional to a weighted sum

of the resonator outputs across the channels. Across-band

summing is intuitively meaningful and earlier used in [20],

[30]. Emphasizing the low frequencies is motivated by the

“stable bass” rule as stated in [1], and improved the robustness

of phase estimation in simulations. The exact weight values

are not critical.

For the purpose of estimating the phase of the measure

pulse, a formula for the state-conditional observation likeli-

hoods analogous to that in (27) is derived, but so that different

channels are weighted and delayed in a more complex manner.

It turned out that rhythmic pattern matching of some kind is

necessary to analyze music at this time scale and to estimate

the measure phase ϕC
n based on the output matrix RC

n . That is,

no simple formula such as (27) exists. The drawback of this

is that rhythmic pattern matching is more genre-specific than

for example the stable bass rule which appears to be quite

universal. In the case that the system would have access to

the pitch content of an incoming piece, the points of harmonic

change might serve as cues for estimating the measure phase

in a more straightforward manner. However, this remains to be

proved. Estimation of the higher-level metrical pulses in audio

data has been earlier attempted by Goto and Muraoka who

resorted to pattern matching [18] or to straightforward chord

change detection [19]. The method presented in the following

is the most reliable that we found.

First, a vector hn(l) is constructed as

hn(l) =
c0∑

c=1

3∑

k=0

ηc,k(RC
n )c,j(k,l,n), (28)

where

l = 0, 1, . . . , τ̂C
n − 1, (29)

j(k, l, n) = n − τ̂C
n + 1 +

((
l +

kτ̂C
n

4

)
mod τ̂C

n

)
, (30)

and (x mod y) denotes modulus after division. The scalars
ηc,k are weights for the resonator outputs at channels c and
with delays k. The weights ηc,k are used to encode a typical

pattern of energy fluctuations within one measure period,

so that the maximum of hn(l) indicates the measure phase.
The delay k is expressed in quarter-measure units so that k
corresponds to the delay kτ̂C

n /4. For example, a simple pattern
consisting of two events, a low-frequency event (at channel

c = 1) in the beginning of a measure (k = 0) and a loud event
in the middle of the measure (k = 2), could be represented by
defining the weights η1,0 = 3 (low), ηc,2 = 1 for all c (loud),
and ηc,k = 0 otherwise.
Two rhythmic patterns were found that generalized quite

well over our database. The weight matrices η(1)
c,k and η(2)

c,k
of these patterns are given in Appendix II and lead to the

corresponding h(1)
n (l) and h(2)

n (l). The patterns were found
by trial and error, trying out various arrangements of simple

atomic events and monitoring the behaviour of hn(l) against
manually annotated phase values. Both of the two patterns

can be characterized as a pendulous motion between a low-

frequency event and a high-intensity event. The first pattern

can be summarized as “low, loud, –, loud”, and the second as

“low, –, loud, –”. The two patterns are combined into a single

vector to perform phase estimation according to whichever

pattern matches better to the data

h(1,2)
n (l) = max

(
h(1)

n (l), h(2)
n (l)

)
. (31)

The state-conditional observation likelihoods are then defined

as

p(RC
n |ϕC

n = j) ∝ h(1,2)
n (j − (n − τ̂C

n + 1)). (32)

Obviously, the two patterns imply a binary time signature: they

assume that one measure period consists of two or four tactus

periods. Analysis results for ternary meters will be separately

discussed in Sec. III-C.

Other pattern-matching approaches were evaluated, too. In

particular, we attempted to sample RC
n at the times of the tactus

beats and to train a statistical classifier to choose the beat

which corresponds to the measure beat (see [36] for further

elaboration on this idea). However, the methods were basically

equivalent to that described above, yet less straightforward to

implement and performed slightly worse.

Transition probabilities P (ϕi
n|ϕi

n−1) between successive

phase estimates are modeled as follows. Given two phase

estimates (i.e., beat occurrence times), the conditional prob-

ability which ties the successive estimates is assumed to be

normally distributed as a function of a prediction error e which
measures the deviation of ϕi

n from the predicted next beat

occurence time given the previous beat time ϕi
n−1 and the

period τ̂ i
n:

P (ϕi
n|ϕi

n−1) =
1

σ3

√
2π

exp
(
− e2

2σ2
3

)
, (33)

where

e =
1
τ̂ i
n

{[(∣∣ϕi
n − ϕi

n−1

∣∣ +
τ̂ i
n

2

)
mod τ̂ i

n

]
− τ̂ i

n

2

}
, (34)

• Measure level used template matching
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Fig. 9. The rectangle indicates the observation matrix RB
n for tactus phase

estimation at time n (here period τB
n is 0.51 s.). Dashed line shows the correct

phase in this case.

hidden state process is a time-homogenous first-order Markov

model which has an initial state distribution P (ϕ1) and

transition probabilities P (ϕn|ϕn−1). The observable variable
is conditional only on the current state, thus we have the state-

conditional observation densities p(Ri
n|ϕi

n).
Again, the remaining problem is to find reasonable esti-

mates for the model parameters. State-conditional observation

likelihoods p(RB
n |ϕB

n) for the tactus pulse are approximated
as

p(RB
n |ϕB

n = j) ∝
c0∑

c=1

(c0 − c + 2)(RB
n )c,j , (27)

where c = 1 corresponds to the lowest-frequency channel.
That is, the likelihood is proportional to a weighted sum

of the resonator outputs across the channels. Across-band

summing is intuitively meaningful and earlier used in [20],

[30]. Emphasizing the low frequencies is motivated by the

“stable bass” rule as stated in [1], and improved the robustness

of phase estimation in simulations. The exact weight values

are not critical.

For the purpose of estimating the phase of the measure

pulse, a formula for the state-conditional observation likeli-

hoods analogous to that in (27) is derived, but so that different

channels are weighted and delayed in a more complex manner.

It turned out that rhythmic pattern matching of some kind is

necessary to analyze music at this time scale and to estimate

the measure phase ϕC
n based on the output matrix RC

n . That is,

no simple formula such as (27) exists. The drawback of this

is that rhythmic pattern matching is more genre-specific than

for example the stable bass rule which appears to be quite

universal. In the case that the system would have access to

the pitch content of an incoming piece, the points of harmonic

change might serve as cues for estimating the measure phase

in a more straightforward manner. However, this remains to be

proved. Estimation of the higher-level metrical pulses in audio

data has been earlier attempted by Goto and Muraoka who

resorted to pattern matching [18] or to straightforward chord

change detection [19]. The method presented in the following

is the most reliable that we found.

First, a vector hn(l) is constructed as

hn(l) =
c0∑

c=1

3∑

k=0

ηc,k(RC
n )c,j(k,l,n), (28)

where

l = 0, 1, . . . , τ̂C
n − 1, (29)

j(k, l, n) = n − τ̂C
n + 1 +

((
l +

kτ̂C
n

4

)
mod τ̂C

n

)
, (30)

and (x mod y) denotes modulus after division. The scalars
ηc,k are weights for the resonator outputs at channels c and
with delays k. The weights ηc,k are used to encode a typical

pattern of energy fluctuations within one measure period,

so that the maximum of hn(l) indicates the measure phase.
The delay k is expressed in quarter-measure units so that k
corresponds to the delay kτ̂C

n /4. For example, a simple pattern
consisting of two events, a low-frequency event (at channel

c = 1) in the beginning of a measure (k = 0) and a loud event
in the middle of the measure (k = 2), could be represented by
defining the weights η1,0 = 3 (low), ηc,2 = 1 for all c (loud),
and ηc,k = 0 otherwise.
Two rhythmic patterns were found that generalized quite

well over our database. The weight matrices η(1)
c,k and η(2)

c,k
of these patterns are given in Appendix II and lead to the

corresponding h(1)
n (l) and h(2)

n (l). The patterns were found
by trial and error, trying out various arrangements of simple

atomic events and monitoring the behaviour of hn(l) against
manually annotated phase values. Both of the two patterns

can be characterized as a pendulous motion between a low-

frequency event and a high-intensity event. The first pattern

can be summarized as “low, loud, –, loud”, and the second as

“low, –, loud, –”. The two patterns are combined into a single

vector to perform phase estimation according to whichever

pattern matches better to the data

h(1,2)
n (l) = max

(
h(1)

n (l), h(2)
n (l)

)
. (31)

The state-conditional observation likelihoods are then defined

as

p(RC
n |ϕC

n = j) ∝ h(1,2)
n (j − (n − τ̂C

n + 1)). (32)

Obviously, the two patterns imply a binary time signature: they

assume that one measure period consists of two or four tactus

periods. Analysis results for ternary meters will be separately

discussed in Sec. III-C.

Other pattern-matching approaches were evaluated, too. In

particular, we attempted to sample RC
n at the times of the tactus

beats and to train a statistical classifier to choose the beat

which corresponds to the measure beat (see [36] for further

elaboration on this idea). However, the methods were basically

equivalent to that described above, yet less straightforward to

implement and performed slightly worse.

Transition probabilities P (ϕi
n|ϕi

n−1) between successive

phase estimates are modeled as follows. Given two phase

estimates (i.e., beat occurrence times), the conditional prob-

ability which ties the successive estimates is assumed to be

normally distributed as a function of a prediction error e which
measures the deviation of ϕi

n from the predicted next beat

occurence time given the previous beat time ϕi
n−1 and the

period τ̂ i
n:

P (ϕi
n|ϕi

n−1) =
1

σ3

√
2π

exp
(
− e2

2σ2
3

)
, (33)

where

e =
1
τ̂ i
n

{[(∣∣ϕi
n − ϕi

n−1

∣∣ +
τ̂ i
n

2

)
mod τ̂ i

n

]
− τ̂ i

n

2

}
, (34)

• Error measure for Viterbi:
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Fig. 9. The rectangle indicates the observation matrix RB
n for tactus phase

estimation at time n (here period τB
n is 0.51 s.). Dashed line shows the correct

phase in this case.

hidden state process is a time-homogenous first-order Markov

model which has an initial state distribution P (ϕ1) and

transition probabilities P (ϕn|ϕn−1). The observable variable
is conditional only on the current state, thus we have the state-

conditional observation densities p(Ri
n|ϕi

n).
Again, the remaining problem is to find reasonable esti-

mates for the model parameters. State-conditional observation

likelihoods p(RB
n |ϕB

n) for the tactus pulse are approximated
as

p(RB
n |ϕB

n = j) ∝
c0∑

c=1

(c0 − c + 2)(RB
n )c,j , (27)

where c = 1 corresponds to the lowest-frequency channel.
That is, the likelihood is proportional to a weighted sum

of the resonator outputs across the channels. Across-band

summing is intuitively meaningful and earlier used in [20],

[30]. Emphasizing the low frequencies is motivated by the

“stable bass” rule as stated in [1], and improved the robustness

of phase estimation in simulations. The exact weight values

are not critical.

For the purpose of estimating the phase of the measure

pulse, a formula for the state-conditional observation likeli-

hoods analogous to that in (27) is derived, but so that different

channels are weighted and delayed in a more complex manner.

It turned out that rhythmic pattern matching of some kind is

necessary to analyze music at this time scale and to estimate

the measure phase ϕC
n based on the output matrix RC

n . That is,

no simple formula such as (27) exists. The drawback of this

is that rhythmic pattern matching is more genre-specific than

for example the stable bass rule which appears to be quite

universal. In the case that the system would have access to

the pitch content of an incoming piece, the points of harmonic

change might serve as cues for estimating the measure phase

in a more straightforward manner. However, this remains to be

proved. Estimation of the higher-level metrical pulses in audio

data has been earlier attempted by Goto and Muraoka who

resorted to pattern matching [18] or to straightforward chord

change detection [19]. The method presented in the following

is the most reliable that we found.

First, a vector hn(l) is constructed as

hn(l) =
c0∑

c=1

3∑

k=0

ηc,k(RC
n )c,j(k,l,n), (28)

where

l = 0, 1, . . . , τ̂C
n − 1, (29)

j(k, l, n) = n − τ̂C
n + 1 +

((
l +

kτ̂C
n

4

)
mod τ̂C

n

)
, (30)

and (x mod y) denotes modulus after division. The scalars
ηc,k are weights for the resonator outputs at channels c and
with delays k. The weights ηc,k are used to encode a typical

pattern of energy fluctuations within one measure period,

so that the maximum of hn(l) indicates the measure phase.
The delay k is expressed in quarter-measure units so that k
corresponds to the delay kτ̂C

n /4. For example, a simple pattern
consisting of two events, a low-frequency event (at channel

c = 1) in the beginning of a measure (k = 0) and a loud event
in the middle of the measure (k = 2), could be represented by
defining the weights η1,0 = 3 (low), ηc,2 = 1 for all c (loud),
and ηc,k = 0 otherwise.
Two rhythmic patterns were found that generalized quite

well over our database. The weight matrices η(1)
c,k and η(2)

c,k
of these patterns are given in Appendix II and lead to the

corresponding h(1)
n (l) and h(2)

n (l). The patterns were found
by trial and error, trying out various arrangements of simple

atomic events and monitoring the behaviour of hn(l) against
manually annotated phase values. Both of the two patterns

can be characterized as a pendulous motion between a low-

frequency event and a high-intensity event. The first pattern

can be summarized as “low, loud, –, loud”, and the second as

“low, –, loud, –”. The two patterns are combined into a single

vector to perform phase estimation according to whichever

pattern matches better to the data

h(1,2)
n (l) = max

(
h(1)

n (l), h(2)
n (l)

)
. (31)

The state-conditional observation likelihoods are then defined

as

p(RC
n |ϕC

n = j) ∝ h(1,2)
n (j − (n − τ̂C

n + 1)). (32)

Obviously, the two patterns imply a binary time signature: they

assume that one measure period consists of two or four tactus

periods. Analysis results for ternary meters will be separately

discussed in Sec. III-C.

Other pattern-matching approaches were evaluated, too. In

particular, we attempted to sample RC
n at the times of the tactus

beats and to train a statistical classifier to choose the beat

which corresponds to the measure beat (see [36] for further

elaboration on this idea). However, the methods were basically

equivalent to that described above, yet less straightforward to

implement and performed slightly worse.

Transition probabilities P (ϕi
n|ϕi

n−1) between successive

phase estimates are modeled as follows. Given two phase

estimates (i.e., beat occurrence times), the conditional prob-

ability which ties the successive estimates is assumed to be

normally distributed as a function of a prediction error e which
measures the deviation of ϕi

n from the predicted next beat

occurence time given the previous beat time ϕi
n−1 and the

period τ̂ i
n:

P (ϕi
n|ϕi

n−1) =
1

σ3

√
2π

exp
(
− e2

2σ2
3

)
, (33)

where

e =
1
τ̂ i
n

{[(∣∣ϕi
n − ϕi

n−1

∣∣ +
τ̂ i
n

2

)
mod τ̂ i

n

]
− τ̂ i

n

2

}
, (34)
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period lengths are large and allow the creation of a more

accurate reference signal. For the tatum pulse, tactus phase

is used and thus the phase is correct always when the tactus

phase is correct, and only the period has to be considered

separately.

Performance rates are given for three different criteria [39]:

• “Correct”: A pulse estimate at time n is accepted if both

its period and phase are correct.

• “Accept d/h”: Consistent period doubling or halving is

accepted. More exactly, a pulse estimate is accepted if

its phase is correct, the period matches either 0.5, 1.0,

or 2.0 times the annotated reference, and the factor does

not change within the continuous sequence. Correct meter

analysis is taking place but a wrong metrical level is

chosen to be e.g. the tactus pulse.

• “Period correct”: A pulse estimate is accepted if its period

is correct. Phase is ignored. For the tactus pulse, this can

be interpreted as the tempo estimation accuracy.

Which is the single best number to characterize the perfor-

mance of a pulse estimator? This was investigated by aural-

izing meter analysis results.7 It was observed that temporal

continuity of correct meter estimates is indeed very important

aurally (see also [1, pp.74,104]). Secondly, phase errors are

very disturbing. Third, period doubling or halving is not very

disturbing; tapping consistently twice too fast or slow does not

matter much and selecting the correct metrical level is in some

cases ambiguous even for a human listener [12]. In summary,

it appears that the “accept d/h” criterion gives a single best

number to characterize the performance of a system.

B. Reference systems

To put the results in perspective, two reference methods are

used as a baseline in simulations. This is essential because the

principle of using a continuous sequence of correct estimates

for evaluation gives a somewhat pessimistic picture of the

absolute performance.

The methods of Scheirer [20] and Dixon [16] are very dif-

ferent, but both systems represent the state-of-the-art in tactus

pulse estimation and their source codes are publicly available.

Here, the used implementations and parameter values were

those of the original authors. However, for Scheirer’s method,

some parameter tuning was made which slightly improved the

results. Dixon developed his system primarily for MIDI-input,

and provided only a simple front-end for analyzing acoustic

signals. Therefore, a third system denoted “O+Dixon” was

developed where an independent onset detector (described in

Sec. II-E) was used prior to Dixon’s tactus analysis. Systematic

phase errors were compensated for.

C. Experimental results

In Table II, the tactus tracking performance of the proposed

causal and noncausal algorithms is compared with those of

the two reference methods. As the first observation, it was

noticed that the reference methods did not maintain the tem-

poral continuity of acceptable estimates. For this reason, the

7Samples are available at URL http://www.cs.tut.fi/∼klap/iiro/meter.

TABLE II

TACTUS ANALYSIS PERFORMANCE (%) OF DIFFERENT METHODS.

Continuity required Individual estimates

Method Correct Accept d/h Period c. Correct Accept d/h Period c.

Causal 57 68 74 63 78 76
Noncausal 59 73 74 64 80 75
Scheirer [20] 27 31 30 48 69 57
Dixon [16] 7 26 10 15 53 25
O+Dixon 12 39 15 22 63 30

TABLE III

METER ANALYSIS PERFORMANCE OF THE PROPOSED METHOD.

Continuity required Individual estimates

Method Pulse Correct Accept d/h Period Correct Accept d/h Period

Causal Tatum 44 57 62 51 72 65
Tactus 57 68 74 63 78 76
Measure 42 48 78 43 51 81

Non- Tatum 45 63 62 52 74 65
causal Tactus 59 73 74 64 80 75

Measure 46 54 79 47 55 81

performance rates are also given as percentages of individual

acceptable estimates (right half of Table II). Dixon’s method

has difficulties in choosing the correct metrical level for tactus,

but performs well according to the “accept d/h” criterion

when equipped with the new onset detector. The proposed

method outperforms the previous systems in both accuracy

and temporal stability.

Table III shows the meter analysis performance of the

proposed causal and noncausal algorithms. As for human

listeners, meter analysis seems to be easiest at the tactus pulse

level. For the measure pulse, period estimation can be done

robustly but estimating the phase is difficult. A reason for

this is that in a large part of the material, a drum pattern

recurs twice within one measure period and the system has

difficulties in choosing which one is the first. In the case that π-
phase errors (each beat is displaced by a half-period) would be

accepted, the performance rate would be essentially the same

as for the tactus pulse. However, π-phase errors are disturbing
and should not be accepted.

For the tatum pulse, in turn, deciding the period is difficult.

This is because the temporally atomic pulse rate typically

comes up only occasionally, making temporally stable analysis

hard to attain. The method often has to halve its period

hypothesis when the first rapid event sequence occurs. This

appears in the performance rates so that the method is not able

to produce a consistent tatum period over time but alternates

between e.g. the reference and double the reference. This

degrades the temporally continuous rate, although the “accept

d/h” rate is very good for individual estimates. The produced

errors are not very disturbing when listening to the results.

As mentioned in Sec. II-D, the phase analysis of the measure

pulse using rhythmic patterns assumes a binary time signature.

Nine percent of the pieces in our database have a ternary (3/4)

meter but, unfortunately, most of these represent the classical

genre where the measure pulse was not annotated. Among the
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and σ3 = 0.1 is common for i ∈ {B,C}. In (34), it should
be noted that any integer number of periods τ̂ i

n may elapse

between ϕi
n−1 and ϕi

n. Since estimates are produced quite

frequently compared to the pulse rates, in many cases ϕi
n =

ϕi
n−1. The initial state distributions P (ϕi

1) are assumed to be
uniform.

Using (27), (32), and (33), causal and noncausal compu-

tation of phase is performed using the Viterbi algorithm as

described in Sec. II-C. Fifteen phase candidates for both the

winning tactus and the winning measure period are generated

once in a second. The candidates are selected in a greedy

manner by picking local maxima in p(Ri
n|ϕi

n = j). The
corresponding probability values are stored into a vector

and transition probabilities between successive estimates are

computed using (33).

E. Sound onset detection and extrametrical events

Detecting the beginnings of discrete acoustic events one-

by-one has many uses. It is often of interest whether an

event occurs at a metrical beat or not, and what is the exact

timing of an event with respect to its ideal metrical position.

Also, in some musical pieces there are extrametrical events,

such as triplets, where an entity of e.g. four tatum periods is

exceptionally divided into three parts, or grace notes which

are pitched events that occur shortly before a metrically stable

event.

In this paper, we used an onset detector as a front-end to one

of the reference systems (designed for MIDI input) to enable

it to process acoustic signals. Rather robust onset detection

is achieved by using an overall accent signal v(n) which
is computed by setting m0 = b0 in (4). Local maxima in

v(n) represent onset candidates and the value of v(n) at these
points reflects the likelihood that a discrete event occurred.

A simple peak-picking algorithm with a fixed threshold level

can then be used to distinguish genuine onsets from the

changes and modulations that take place during the ringing

of a sound. Automatic adaptation of the threshold would

presumably further improve the detection accuracy.

III. RESULTS

This section looks at the performance of the proposed

method in simulations and compares the results with two

reference systems. Also, the importance of different processing

elements will be validated.

A. Experimental setup

Table I shows the statistics of the database6 that was used to

evaluate the accuracy of the proposed meter analysis method

and the two reference methods. Musical pieces were collected

from CD recordings, downsampled to a single channel, and

stored to a hard disc using 44.1 kHz sampling rate and

16 bit resolution. The database was created for the purpose

of musical signal classification in general and the balance

between genres is according to an informal estimate of what

people listen to.

6Details of the database can be found on-line at URL http://www.cs.tut.fi/
∼klap/iiro/meter.

TABLE I

STATISTICS OF THE EVALUATION DATABASE.

# Pieces with annotated pulses

Genre Tatum Tactus Measure

Classical 69 84 0
Electronic / dance 47 66 62
Hip hop / rap 22 37 36
Jazz / blues 70 94 71
Rock / pop 114 124 101
Soul / RnB / funk 42 54 46
Unclassified 12 15 4

Total 376 474 320

The metrical pulses were manually annotated for approx-

imately one-minute long excerpts which were selected to

represent each piece. Tactus and measure-pulse annotations

were made by a musician who tapped along with the pieces.

The tapping signal was recorded and the tapped beat times

were then detected semiautomatically using signal level thresh-

olding. The tactus pulse could be annotated for 474 of a total

of 505 pieces. The measure pulse could be reliably marked

by listening for 320 pieces. In particular, annotation of the

measure pulse was not attempted for classical music without

the musical scores. Tatum pulse was annotated by the first

author by listening to the pieces together with the annotated

tactus pulse and by determining the integer ratio between the

tactus and the tatum period lengths. The integer ratio was then

used to interpolate the tatum beats between the tapped tactus

beats.

Evaluating a meter analysis system is not trivial. The issue

has been addressed in depth by Goto and Muraoka in [39]. As

suggested by them, we use the longest continuous correctly

analyzed segment as a basis for measuring the performance.

This means that one inaccuracy in the middle of a piece leads

to 50 % performance. The longest continuous sequence of

correct pulse estimates in each piece is sought and compared

to the length of the segment which was given to be analyzed.

The ratio of these two lengths determines the performance

rate for one piece and these are then averaged over all pieces.

However, prior to the meter analysis, all the algorithms under

consideration were given a four-second “build-up period” in

order to make it theoretically possible to estimate the correct

period already from the beginning of the evaluation segment.

Also, it was taken care that none of the input material involved

tempo discontinuities. More specifically, the interval between

two tapped reference beat times (pulse period) does not change

more than 40 % at a time, between two successive beats. Other

tempo fluctuations were naturally allowed.

A correct period estimate is defined to deviate less than

17.5 % from the annotated reference and a correct phase to

deviate from an annotated beat time less than 0.175 times the

annotated period length. This precision requirement has been

suggested in [39] and was found perfectly appropriate here

since inaccuracies in the manually tapped beat times allow

meaningful comparison of only up to that precision. However,

for the measure pulse, the period and phase requirements were

tightened to 10 % and 0.1, respectively, because the measure-
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Fig. 10. Performance of the proposed causal system within different musical
genres. The “accept d/h” (continuity required) percentages are shown for the
tatum (white), tactus (gray), and measure pulses (black).

TABLE IV

METER ANALYSIS PERFORMANCE (%) FOR DIFFERENT SYSTEM

CONFIGURATIONS.

Continuity required, Individual estimates,
accept d/h accept d/h

Method Tatum Tactus Measure Tatum Tactus Measure

0. Baseline 63 73 54 74 80 55
1. No joint estim. 58 68 49 71 75 50
2. No temporal proc. 45 54 31 72 77 50
3. Neither of the two 41 50 25 70 72 44

other genres, there were only five pieces with ternary meter.

For these, the measure-level analysis was approximately twice

less accurate than for the rest of the database. For the tactus

and tatum, there were 41 and 30 annotated ternary pieces,

respectively, and no significant degradation in performance

was observed. On the contrary, the ternary pieces were rhyth-

mically easier than the others within the same genre.

Figure 10 shows the “accept d/h” (continuity required)

performance rates for the proposed causal system within

different musical genres. For classical music, the proposed

method is only moderately successful, although e.g. the tactus

estimation error rate still outperforms the performance of the

reference methods for the whole material (31 % and 26 % for

Scheirer’s and Dixon’s methods, respectively). However, this

may suggest that pitch analysis would be needed to analyze

the meter of classical music. In jazz music, the complexity of

musical rhythms is higher on the average and the task thus

harder.

D. Importance of the different parts of the probability model

Table IV shows the performance rates for different system

configurations. Different elements of the proposed model were

disabled in order to evaluate their importance. In each case,

the system was kept otherwise fixed. The baseline method is

the noncausal system.

In the first test, the dependencies between the different

pulse levels were broken by using a non-informative (flat)

distribution for g(x) in (25). This slightly degrades the per-
formance in all cases. In the second test, the dependencies

between temporally successive estimates were broken by using

a non-informative distribution for the transition probabilities

between successive period and phase estimates, P (τ i
n|τ i

n−1)
and P (ϕi

n|ϕi
n−1), respectively. This degrades the temporal

stability of the estimates considerably and hence collapses the

performance rates which use the longest continuous correct

segment for evaluation. In the third case, the both types of de-

pendencies were broken. The system still performs moderately,

indicating that the initial time-frequency analysis method and

the comb-filter resonators provide a high level of robustness.

IV. CONCLUSIONS

A method has been described which can successfully ana-

lyze the meter of acoustic musical signals. Musical genres of

very diverse types can be processed with a common system

configuration and parameter values. For most musical material,

relatively low-level acoustic information can be used, without

the need to model the higher-level auditory functions such as

sound source separation or multipitch analysis.

Similarly to human listeners, computational meter analysis

is easiest at the tactus pulse level. For the measure pulse,

period estimation can be done equally robustly but estimating

the phase is less straightforward. Either rhythmic pattern

matching or pitch analysis seems to be needed to analyze

music at this time scale. For the tatum pulse, in turn, phase

estimation is not difficult at all, but deciding the period is very

difficult for both humans and a computational algorithm. This

is because the temporally atomic pulse rate typically comes

up only occasionally. Thus causal processing is difficult and

it is often necessary to halve the tatum hypothesis when the

first rapid event sequence occurs.

The critical elements of a meter analysis system appear to

be the initial time-frequency analysis part which measures

musical accentuation as a function of time and the (often

implicit) internal model which represents primitive musical

knowledge. The former is needed to provide robustness for

diverse instrumentations in classical, rock, or electronic music,

for example. The latter is needed to achieve temporally stable

meter tracking and to fill in parts where the meter is only

faintly implied by the musical surface. A challenge in this

part is to develop a model which is generic for jazz and

classical music, for example. The proposed model describes

sufficiently low-level musical knowledge to generalize over

different genres.

APPENDIX I

This appendix presents the derivation and underlying as-

sumptions in the estimation of the state-conditional observa-

tion likelihoods p(s|q). We first assume that the realizations of
τA are independent of the realizations of τB and τC, that is,

P (τA = j|τB = k, τC = l) = P (τA = j). This violates
the dependencies of our model but significantly simplifies
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TABLE IV

METER ANALYSIS PERFORMANCE (%) FOR DIFFERENT SYSTEM

CONFIGURATIONS.

Continuity required, Individual estimates,
accept d/h accept d/h

Method Tatum Tactus Measure Tatum Tactus Measure

0. Baseline 63 73 54 74 80 55
1. No joint estim. 58 68 49 71 75 50
2. No temporal proc. 45 54 31 72 77 50
3. Neither of the two 41 50 25 70 72 44

other genres, there were only five pieces with ternary meter.

For these, the measure-level analysis was approximately twice

less accurate than for the rest of the database. For the tactus

and tatum, there were 41 and 30 annotated ternary pieces,

respectively, and no significant degradation in performance

was observed. On the contrary, the ternary pieces were rhyth-

mically easier than the others within the same genre.

Figure 10 shows the “accept d/h” (continuity required)

performance rates for the proposed causal system within

different musical genres. For classical music, the proposed

method is only moderately successful, although e.g. the tactus

estimation error rate still outperforms the performance of the

reference methods for the whole material (31 % and 26 % for

Scheirer’s and Dixon’s methods, respectively). However, this

may suggest that pitch analysis would be needed to analyze

the meter of classical music. In jazz music, the complexity of

musical rhythms is higher on the average and the task thus

harder.

D. Importance of the different parts of the probability model

Table IV shows the performance rates for different system

configurations. Different elements of the proposed model were

disabled in order to evaluate their importance. In each case,

the system was kept otherwise fixed. The baseline method is

the noncausal system.

In the first test, the dependencies between the different

pulse levels were broken by using a non-informative (flat)

distribution for g(x) in (25). This slightly degrades the per-
formance in all cases. In the second test, the dependencies

between temporally successive estimates were broken by using

a non-informative distribution for the transition probabilities

between successive period and phase estimates, P (τ i
n|τ i

n−1)
and P (ϕi

n|ϕi
n−1), respectively. This degrades the temporal

stability of the estimates considerably and hence collapses the

performance rates which use the longest continuous correct

segment for evaluation. In the third case, the both types of de-

pendencies were broken. The system still performs moderately,

indicating that the initial time-frequency analysis method and

the comb-filter resonators provide a high level of robustness.

IV. CONCLUSIONS

A method has been described which can successfully ana-

lyze the meter of acoustic musical signals. Musical genres of

very diverse types can be processed with a common system

configuration and parameter values. For most musical material,

relatively low-level acoustic information can be used, without

the need to model the higher-level auditory functions such as

sound source separation or multipitch analysis.

Similarly to human listeners, computational meter analysis

is easiest at the tactus pulse level. For the measure pulse,

period estimation can be done equally robustly but estimating

the phase is less straightforward. Either rhythmic pattern

matching or pitch analysis seems to be needed to analyze

music at this time scale. For the tatum pulse, in turn, phase

estimation is not difficult at all, but deciding the period is very

difficult for both humans and a computational algorithm. This

is because the temporally atomic pulse rate typically comes

up only occasionally. Thus causal processing is difficult and

it is often necessary to halve the tatum hypothesis when the

first rapid event sequence occurs.

The critical elements of a meter analysis system appear to

be the initial time-frequency analysis part which measures

musical accentuation as a function of time and the (often

implicit) internal model which represents primitive musical

knowledge. The former is needed to provide robustness for

diverse instrumentations in classical, rock, or electronic music,

for example. The latter is needed to achieve temporally stable

meter tracking and to fill in parts where the meter is only

faintly implied by the musical surface. A challenge in this

part is to develop a model which is generic for jazz and

classical music, for example. The proposed model describes

sufficiently low-level musical knowledge to generalize over

different genres.

APPENDIX I

This appendix presents the derivation and underlying as-

sumptions in the estimation of the state-conditional observa-

tion likelihoods p(s|q). We first assume that the realizations of
τA are independent of the realizations of τB and τC, that is,

P (τA = j|τB = k, τC = l) = P (τA = j). This violates
the dependencies of our model but significantly simplifies


