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of 3 levels of MH

/

New onset
detection

Abstract— A method is decribed which analyzes the basic
pattern of beats in a piece of music, the musical meter. The
analysis is performed jointly at three different time scales: at
the temporally atomic fatum pulse level, at the tfactus pulse
level which corresponds to the tempo of a piece, and at the
musical measure level. Acoustic signals from arbitrary musical
genres are considered. For the initial time-frequency analysis,
a new technique is proposed which measures the degree of
musical accent as a function of time at four different frequency
ranges. This is followed by a bank of comb filter resonators
which extracts features for estimating the periods and phases of
the three pulses. The features are processed by a probabilistic
model which represents primitive musical knowledge and uses the
low-level observations to perform joint estimation of the tatum,
tactus, and measure pulses. The model takes into account the
temporal dependencies between successive estimates and enables
both causal and noncausal analysis. The method is validated
using a manually annotated database of 474 music signals from
various genres. The method works robustly for different types of
music and improves over two state-of-the-art reference methods
in simulations.
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Musical levels

Tatum .............................................
Tactus . . . . . . . . . . .
Measure

161 162 163 164 165 166 167
Time (seconds)

® Jatum: shortest durations regularly encountered
(from jazz drummer Art Tatum)

® Jactus: Most prominent beat level

® Measure: A slower changing level with integer
harmonic relationship to the tactus



Previous work

This paper has good previous work section. Some
papers of interest:

Large & Kolen: oscillator model from last week
Parncutt: interesting meter inference model
Brown: early use of autocorrelation

Cemgil & Kappen: discussed on Wednesday
Goto et. al: instrument-specific beat tracking
Scheirer: discussed today

Raphael: generative model to be discussed later



Method summary
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Comb filterbank (similar to autocorrealtion)

Prob. model for finding periods

Periods drive a secondary phase-extraction module

Period and phase information drive meter extraction



Onset detector

Bello et al paper from two weeks ago gives more
recent approaches

Broadband approach: Scheirer did period detection
independently for 5 independent bands

Narrowband approach: Goto uses many narrower
bands but sums their differences before doing
period detection

Tradoff between too few subbands (harmonic
changes do not show up) and too many subbands
(measuring periodicity at each subband is no
longer appropriate)



Onset detector ctd.

Parameterized a model such that Goto and Scheirer are special cases
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Comb filter bank

Output of comb filter with delay Yy for v¢(n)
[Note similarity to autocorrelation. ]
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A bank of such resonators was applied, with 7 getting 0.2} - 0.2}
values from 1 to Ty ax, Where Tmax = 688 corresponds to 0 . . . . 0 . . . .
four seconds. The computational complexity of one resonator 0 24 48 72 96 0 24 48 72 96
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requires of the order cg f,-Tmax Operations per second, which
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Instantaneous energies 7.(7,n) of each comb filter in chan- 0 15241 48 712 96 0 DZ41 48 712 96
nel c at time n are calculated as elay T (samples) elay T (samples)
)~ ! n : .)2 . Fig. 4. Resonator energie;s for an impulse train with a period-length of .24
Te\T, ) = Z Te\T,1 (7) samples (left) and for white noise (right). Upper panels show the energies
i=n—71+1 7c(7,n) and the lower panels normalized energies s.(7,n).

These are then normalized to obtain

() — 1 Fe(T, M)
e(7:7) 1—7(047)(?%(%)

— v(w)) , (¥




Metrical salience

Metrical salience function

(observation for generative model)

Calculating salience of tatum via
discrete power spectrum S(f,n) which
performs a DCT using half-hanning
emphasis window

The rationale behind calculating the discrete Fourier transform
(DFT) in (10) is that, by definition, other pulse periods are
integer multiples of the tatum period. Thus the overall function
s(7,m) contains information about the tatum and this is conve-
niently gathered for each tatum-frequency candidate f using
the DFT as in (10). For comparison, Gouyon et al. [24] used an
inter-onset-interval histogram and Maher’s two-way mismatch
procedure [34] served the same purpose. Their idea was to find
a tatum period which best explained the multiple harmonically
related peaks in the histogram. Frequencies above 20 Hz can
be discarded from S(f,n), since tatum frequencies faster than
this are very rare.

s(t,n) = Z Sc(T,n).
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Probabilistic model for pulse periods

Simplifying assumption: we can calculate period
independent of phase (compare APM).

Use HMM (Hidden Markov Model) to observer
the energies of resonators s(Y,n) denoted s;

Unobserved: tatum period, tactus period and
measure period, respectively: 7';33 7-3? 7-7(5‘

Define meter state as holding values of all three

unobserved states: q,, = |J, &, (] equivalent to:

A _ B _ C _
7.5 =7, 17, = k,and 7,7 = [.



Defining the HMM

The joint probability density of a state sequence () =
(q195 - --q,) and observation sequence O = (S1S81...Sy)
can be written as

N

p(Q,0) = P(q)p(silay) | | Pla,la,—1)p(snla,), (12)

n=2

where the term P(q,,|q,, ;) can be decomposed as

P(qulan_1) = P(7 1@, 1) P(13 |77, @ 1) P(73 170, 70 1)

It is musically meaningful to assume that

P(ro|m mh @n1) = P75 |10 s @1 )5 (14)

This and other assumptions yield:

B|_B A_B _A C.B _C S \)
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Using the same assumptions, P <q1) is decomposed and sim- Fig. 5. Hidden markov model for the temporal evolution of the tatum, beat,

plified as and measure pulse periods.

P(q,) = P(r7)P(r{|77) P( | 7). (16)




Estimating the parameters
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been measured from actual data by several authors [12],
[35], [36]. As suggested by Parncutt [12], we apply the two-

parameter lognormal distribution
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Fig. 7. Period-length histograms and the corresponding lognormal distribu-

tions for tatum, tactus, and measure pulses.



Relating different levels of MH

The relation dependencies of simultaneous periods are mod-
eled as follows. We model the latter terms in (18)—(19) as
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where g(z) is a Gaussian mixture density of the form

9
g(x) = Z wy N (x; 1, 02),(7 (25)
=1

Likelihood

Value of x

Fig. 8. Distribution g(x) which models the relation dependencies of
simultaneous periods (see (25)).

The weights w;
were obtained by first assigning them values according to a
musical intuition. Then the dynamic range of the weights was
found by raising them to a common power which was varied
between 0.1 and 10. The value which performed best in small-
scale simulations was selected. Finally, small adjustments to
the values were made.



Finding optimal sequence

® Viterbi search

3) Finding the optimal sequence of period estimates:
Now we must obtain an estimate for the unobserved state
variables given the observed resonator energies and the model
parameters. We do this by finding the most likely sequence
of state variables Q) = (q,q- - ..q,) given the observed data
O = (s181...8n). This can be straighforwardly computed
using the Viterbi algorithm widely applied in speech recogni-
tion [38]. Thus, we seek the sequence of period estimates,

Q = arg max (p(Q, 0)) (26)

where p(Q,O) denotes the joint probability density of the
hidden and observed variables (see (12)).

® State space too large for full Viterbi. Instead used
beam serarch carrying 5 best search candidates
forward in time.



Phase estimation

Tactus and measure done

independently from fiterbank outputs ™,

Fit 2nd HMM to filterbank outputs.

X State-conditional observation
likelihoods p(RE|pB) for the tactus pulse are approximated
as .

p(RYlen =) o ) (co—c+2)(RD)ey,  (27)
c=1

where ¢ = 1 corresponds to the lowest-frequency channel.

Channel ¢
- N oo; N

184 186 188 19 19.2 194 196 19.8
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Fig. 9. The rectangle indicates the observation matrix RE for tactus phase
estimation at time n (here period 7'7],? 1s 0.51 s.). Dashed line shows the correct
phase in this case.

Measure level used template matching

The first pattern
can be summarized as “low, loud, —, loud”, and the second as
“low, —, loud, —”. The two patterns are combined into a single
vector to perform phase estimation according to whichever
pattern matches better to the data

A2 (1) = max (hﬁﬁ(l), h§3>(z>) . 31)

The state-conditional observation likelihoods are then defined

as
p(RS|pS = j) oc M P (G — (n =28 + 1)), (32)

® FError measure for Viterbi:

normally distributed as a function of a prediction error e which
measures the deviation of ¢! from the predicted next beat
occurence time given the previous beat time ! , and the
period 7*:

) . 1 62
Pl |pd 1) = exp| — |, 33
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Results

TABLE II
TACTUS ANALYSIS PERFORMANCE (%) OF DIFFERENT METHODS.

Continuity required Individual estimates

TABLE I

Method Correct Accept d/h Period c. Correct Accept d/h Period c.
STATISTICS OF THE EVALUATION DATABASE.

Causal 57 68 74 63 78 76
# Pieces with annotated pulses Noncausal 59 73 74 64 80 75
Scheirer [20] 27 31 30 48 69 57
Genre Tatum  Tactus Measure Dixon [16] 7 26 10 15 53 25
Classical 69 34 0 O+Dixon 12 39 15 22 63 30
Electronic / dance 47 66 62
Hip hop / rap 22 37 36
Jazz / blues 70 94 71 TABLE III
Rock / pop 114 124 101 METER ANALYSIS PERFORMANCE OF THE PROPOSED METHOD.
Soul / RnB / funk 42 54 46
Unclassified 12 15 4 Continuity required Individual estimates
Total 376 474 320 Method Pulse  Correct Accept d/h Period Correct Accept d/h Period
Causal Tatum 44 57 62 51 72 65
Tactus 57 68 74 63 78 76
Measure 42 48 78 43 51 81
Non- Tatum 45 63 62 52 74 65
causal Tactus 59 73 74 64 80 75

Measure 46 54 79 47 55 81




Results ctd

Classical

Electronic / dance

METER ANALYSIS PERFORMANCE (%) FOR DIFFERENT SYSTEM
Hip hop / rap _i- CONFIGURATIONS,
Continuity required,  Individual estimates,
Jazz r * accept d/h accept d/h
Method Tatum Tactus Measure Tatum Tactus Measure

Rock / pop 1 0. Baseline 63 73 54 74 80 55

1. No joint estim. 58 68 49 71 75 50

2. No temporal proc. 45 54 31 72 77 50

Soul/RnB/funk - T 3. Neither of the two 41 50 25 70 72 44

0O 20 40 60 80 100
Percent correct
Fig. 10. Performance of the proposed causal system within different musical

genres. The “accept d/h” (continuity required) percentages are shown for the
tatum (white), tactus (gray), and measure pulses (black).



