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ABSTRACT

Recent research has studied the relevance of various
features for automatic genre classification, showing the
particular importance of tempo in dance music classifica-
tion. We complement this work by considering a domain-
specific learning methodology, where the computed tempo
is used to select an expert classifier which has been spe-
cialised on its own tempo range. This enables the all-class
learning task to be reduced to a set of two- and three-class
learning tasks. Current results are around 70% classifi-
cation accuracy (8 ballroom dance music classes, 698 in-
stances, baseline 15.9%).

1. INTRODUCTION

Tempo is a musical attribute of prime importance. More-
over, recent research [3] advocated its relevance in the
task of classifying different styles of dance music: fo-
cusing solely on the correct tempo (i.e. measured manu-
ally) 8 classes of Standard and Latin ballroom dance mu-
sic can be classified, by means of diverse classification
techniques, with around 80% accuracy (total of 698 in-
stances, classes are listed in Table 1, baseline is 15.9%).
Decision tree classifiers revealed a clear ordering of dance
styles with respect to tempi. Therefore, one can assume
that, given a musical genre, the tempo of any instance is
among a very limited set of possible tempi. For instance,
the tempo of a Cha Cha is usually between 116 and 128
BPM. Table 1 gives tempo ranges for the 8 dance styles
used here.

This assumption may be arguable, yet it seems to make
sense for ballroom dance music as, on the one hand, com-
mon musical knowledge (e.g. instructional books, dance
class websites 1 ) suggests such boundaries, and on the
other hand, [4] shows on a large amount of data (more
than 90000 instances) that different dance music styles
(“trance, afro-american, house and fast”) show clearly dif-
ferent tempo distributions, centered around different “typ-
ical” tempi.

1 see e.g. http://www.ballroomdancers.com/Dances
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In this paper we propose to further exploit the high rel-
evance of the tempo in designing a classifier that focuses
first on this feature and then uses complementary features
to make decisions in possibly ambiguous situations (i.e.
tempo overlaps).

Our approach is to define the tempo range of each class
by a Gaussian probability function. An illustration is given
in Figure 1. The Gaussian standard deviations are defined
so that the probabilities at the limits specified in Table 1
are half the value of the corresponding probability maxi-
mum. Put together, these probabilities may overlap in cer-
tain tempo regions (e.g. Samba and Rumba, see dashed-
blue and solid-black lines around 100 BPM in Figure 1).
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Figure 1. Tempo probability functions and overlaps of 8
dance music styles. X-axis in BPM.

Hence, given an unknown instance, a simple classifica-
tion process could be:

1: Compute its tempo �
2: Retrieve the � classes that overlap significantly at �
3: Use a classifier tailored to these � classes

Assuming that different classes have different tempo
distributions, it is reasonable to consider that much less
than 8 classes do overlap significantly at any tempo. The
classifier design is consequently easier than the eight-class
learning task considering all examples.

However, there is a consensus in the tempo-tracking
literature on the fact that state-of-the-art tempo induction
algorithms typically make errors of metrical levels (they
output e.g. half the correct tempo). Accordingly, the tempo-
tracking algorithm we use here —BeatRoot [1]— may
output the correct tempo, twice or half of its value (in the
case of excerpts with a duple meter) or two thirds of its
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Figure 2. Adapted tempo probability functions of 8 dance music styles. X-axis in BPM. Solid black line is the sum of all
probability functions and represents overall class overlaps.

value (in the case of excerpts with a triple meter). 2 We
adapted each tempo probability function accordingly in
concatenating several Gaussians whose means are correct
tempi and relevant multiples (see Figure 2).

Observing the probability functions in Figure 2, one
can see that each tempo value corresponds usually to two
different potential classes, at the exception of three spe-
cific tempo regions in which three classes overlap. These
are 95 to 105 BPM and 193 to 209 BPM for Quickstep,
Rumba and Samba, and 117 to 127 BPM for Cha Cha,
Tango and Viennese Waltz. Therefore, we propose to build
30 different classifiers:

�����	��
��
 
 ������� two-class classifiers, ��� 
����	� ��� ��� ,
each expert in a specific pairwise classification task.

� 2 three-class classifiers, ����� and �� "! , each expert
in a three-class specific task

When presented with unknown instances, the knowl-
edge available to the system is this set of 30 expert clas-
sifiers and the tempo probability functions for all possible
classes. Therefore, the overall classification process is fi-
nally that detailed in Algorithm 1.

Algorithm 1 Overall classification process
1: Compute tempo � of the instance to classify
2: Find the classifier ��# whose tempo range includes �
3: Perform classification with ��#

In the remainder of this paper, we give the detail of
the audio data used for experiments. Then we introduce
the diverse features computed from this data. We then

2 For further tempo induction evaluation details, on the database used
here, we refer to [3].

detail our experiments, discuss the results, compare them
to the results reported in [3] and propose a summary and
directions for future work.

2. DATA AND ASSOCIATED METADATA

The musical database we use for training and testing con-
tains excerpts from 698 pieces of music, around 30 sec-
onds long. The audio quality of this data is quite low, it
was originally fetched in real audio format, with a com-
pression factor of almost 22 with respect to the common
44.1 kHz 16 bits mono WAV format. It was subsequently
converted to WAV format for experiments. This data is
publically available on the world-wide web at the follow-
ing URL:

http://www.ballroomdancers.com/Music/style.asp

Cha Cha 111 inst. $�$�%'&�$���� BPM
Jive 60 inst. $�%)('&*$���( BPM
Quickstep 82 inst. $�+��'&,�-$�( BPM
Rumba 98 inst. +�(.&�$�$�( BPM
Samba 86 inst. +�%.&�$�(�/ BPM
Tango 86 inst. $���(0&�$	/1( BPM
Viennese Waltz 65 inst. $324('&�$�+)( BPM
Slow Waltz 110 inst. 24�.&5+�� BPM

Table 1. Dance music classes, number of instances per
class and class tempo ranges.

For all those recordings, the musical genre is available
(see Table 1). In addition, the correct tempo, assigned
manually, of each recording is also available (in beats per
minute, BPM). The minimum value is 60 BPM, the max-
imum 224 BPM.



3. DESCRIPTORS

We consider 71 descriptors, divided into three groups. All
are implemented as open source software under the GNU
license.

3.1. Tempo

In addition to the ground truth tempo, in BPM, as provided
with the data, we also computed the tempo using Beat-
Root [1]. BeatRoot’s tempo induction stage yields several
tempo hypotheses that are subsequently refined, beat by
beat, and ranked in a tracking process. The final tempo is
the mean of the winning agent’s inter-beat intervals.

The following 69 features describe low-level character-
istics of 2 different periodicity representations (i.e. distri-
bution statistics as centroid, flatness, etc. or peak-related
quantities).

3.2. Periodicity Histogram descriptors

11 descriptors are based on a first representation of signal
periodicities, the “periodicity histogram” (PH) [5]. This
representation, is the collection in a histogram of the sal-
iences of different pulses (from 40 BPM to 240 BPM)
in successive chunks of signal (12s long, with overlap).
In each chunk of signal, periodicities are computed via a
comb filterbank.

3.3. Inter-Onset Interval Histogram descriptors

Remaining descriptors are quantities computed from a sec-
ond representation of the signal periodicities, the Inter-
Onset Interval Histogram (IOIH) proposed in [2]. This
representation gives a measure of recurrence of the dif-
ferent inter-onset intervals present in the signal (not just
successive onsets, but any pairs of onsets). Inter-onset
intervals are accumulated in a histogram which is then
smoothed by a Gaussian window.

We computed the saliences of 10 periodicities (promi-
nent periods in the IOIH) whose periods are the 10 first
integer multiples of the fastest pulse (computed as in [2]).
Note that solely the period salience is kept, not the period
value. Therefore, those descriptors are independent of the
tempo.

We also defined 48 other descriptors as common “spec-
tral” descriptors (8 distribution statistics and 40 MFCCs),
but computed on the IOIH, not on a spectrum. The MFCC-
like descriptors are computed as follows:

� IOIH computation

� Projection of the period axis from linear scale to
the Mel scale, of lower dimensionality (i.e. 40), by
means of a filterbank

� Magnitude logarithm computation

� Inverse Fourier transform

For each of the 30 classification tasks, we discarded the
use of the tempo and we evaluated the relevances of the re-
maining low-level descriptors on an individual basis (i.e.
Ranker search method associated to ReliefF attribute eval-
uator), and selected the 10 most relevant features. That is,
the 30 classifiers all use 10 low-level features, that may
be different in each case. All experiments have been con-
ducted with Weka [6]. 3

4. EXPERIMENTS

For classification, we use Support Vector Machines as it is
commonly suggested for problems with few classes (es-
pecially 2). All percentages result from 10-fold cross-
validation procedures. Systematic evaluation of different
classification methods is left to future work.

The majority of the 28 pairwise classifier accuracies,
all using 10 descriptors, are above 90%. The worst classi-
fier is that between Slow Waltz and Viennese Waltz (81.8%
accuracy, baseline 63%). The best is that between Quick-
step and Viennese Waltz (100% accuracy, baseline 55.7%).
Regarding the three-class classifiers, also using 10 descrip-
tors, � ��� (Quickstep vs. Rumba vs. Samba) has 84.1%
accuracy (baseline 36.6%) and �  "! (Cha Cha vs. Tango
vs. Viennese Waltz) 91.9% accuracy (baseline 42.3%).

To measure the overall accuracy of the 30 classifiers, let
us compute a weighted average of their individual accu-
racy. The weights are proportional to the number of times
a classifier is actually required (given the tempo estima-
tions of the 698 excerpts). This yields 89.4% accuracy.

Let us now evaluate the whole classification process.
Recall that the process involves two steps, it suffers from
tempo estimation errors in addition to misclassifications.
In 24.3% of the cases (i.e. 170 excerpts) the tempo es-
timation step assigns excerpts to pairwise (or three-class)
classifiers that do not account for its true class. There is no
way to recover from these errors, whatever the subsequent
classification, the excerpt will be assigned to an incorrect
class.

The overall accuracy of the system is therefore the mul-
tiplication of both step accuracies, i.e. ( � ��+�/�67( � 2�8)29�
67.6%.

One might wonder whether considering metrical level
errors in the design of the tempo probabilities (i.e. using
tempo probabilitities as defined in Figure 2 instead of Fig-
ure 1) actually results in any improvement. As reported in
[3], the tempo induction algorithm has around 50% accu-
racy (considering multiples as errors). The resulting over-
all accuracy of the method presented here would therefore
be around ( � �)+�/:6;( � 8<� 44.7%. The improvement is over
20%.

However, we noted that tempo induction is especially
bad for Slow Waltz excerpts, yielding around 75% to be
assigned to wrong classifiers. This is because onset de-
tection, in the tempo induction algorithm, is designed for
percussive onsets, which are often lacking from waltzes.
Removing the Slow Waltz excerpts for the database, 587

3 http://www.cs.waikato.ac.nz/ml/weka



remain, and the number of excerpts that are assigned to
irrelevant classifiers falls to 13.9%. The overall accuracy
rises now to 76.5%.

Those results are encouraging. They are however slightly
lower than the results reported in [3], where the rationale
was to build an 8-class classifier (1-Nearest Neighbour
learner) with 15 MFCC-like descriptors and no tempo in-
formation. There, the classification accuracy reached 79%.

5. SUMMARY, DISCUSSION AND FUTURE
WORK

In this paper, we investigated the classification of 8 dance
styles from a particular viewpoint that puts a special em-
phasis on the tempo estimation. The proposed classifica-
tion process entails two subsequent steps: tempo compu-
tation and use of expert (pairwise or three-class) classi-
fiers in specific tempo regions. We show that it is possi-
ble to design very accurate expert classifiers. However,
logically, in this framework, if the tempo estimation fails,
the classification fails. We showed that considering tempo
multiples results in a substantial classification improve-
ment.

The accuracy on a database of 698 excerpts from 8
classes is 67.6%. Restricting tests to the 7 classes (587 ex-
cerpts) on which tempo estimation is reasonably reliable,
the accuracy is 76.5%. This is slightly worse than results
reported in [3] with a different method (an 8-class clas-
sifier yielded 79% accuracy with 15 tempo-independent
descriptors).

In conclusion, reducing the problem from an eight-class
learning task to several two- or three-class learning tasks
is only pertinent when using an extremely reliable tempo
estimation algorithm.

To illustrate this, let us consider using the correct tempo
(assigned manually) instead BeatRoot tempo (computed
automatically). There, the classification accuracy rises to
82.1%. This corresponds to two factors: misclassifica-
tions of the expert classifiers (i.e. 0.109%) and the “cost”
of the initial assumption regarding class tempo probabil-
ities (i.e. instances —outliers— that effectively have a
tempo outside of their class’s tempo range, i.e. 54 of 698
instances).

This opens two important avenues for future work: im-
proving the accuracy of the expert classifiers (for instance
in refining the selection of the most relevant descriptors
for each classifier) and study the validity of the limited-
tempo-ranges assumption on a database containing more
instances of a larger number of classes.

Further, as tempo-independent dance style classifica-
tion [3] seems to be more reliable than tempo induction it-
self (that principally suffers from metrical level errors)—
79% vs. 50%—, we will study in future work whether
genre classification can be used to improve tempo induc-
tion.
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