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Efficient auditory coding
Evan C. Smith1,2 & Michael S. Lewicki2,3

The auditory neural code must serve a wide range of auditory
tasks that require great sensitivity in time and frequency and be
effective over the diverse array of sounds present in natural
acoustic environments. It has been suggested1–5 that sensory
systems might have evolved highly efficient coding strategies to
maximize the information conveyed to the brain while minimizing
the required energy and neural resources. Here we show that, for
natural sounds, the complete acoustic waveform can be repre-
sented efficiently with a nonlinear model based on a population
spike code. In this model, idealized spikes encode the precise
temporal positions and magnitudes of underlying acoustic fea-
tures. We find that when the features are optimized for coding
either natural sounds or speech, they show striking similarities to
time-domain cochlear filter estimates, have a frequency-
bandwidth dependence similar to that of auditory nerve fibres,
and yield significantly greater coding efficiency than conventional
signal representations. These results indicate that the auditory
code might approach an information theoretic optimum and that
the acoustic structure of speech might be adapted to the coding
capacity of the mammalian auditory system.
A fundamental issue in auditory coding is the nature of the

computations that transform the raw sensory signal into a represen-
tation that is useful for auditory tasks. The response properties of
cochlear nerves have been studied extensively, and models based on
these results capture many properties of the neural response6,7.
However, these properties and auditory coding are still poorly
understood in terms of underlying theoretical principles. Of the
many sensory codes that could have existed, why has nature chosen
one in particular, either through adaptation or evolution?
Traditional views describe auditory coding in terms of spectral

features, such as frequency, intensity and phase, that are estimated
from the signal. This perspective focuses on the properties and
response of the system rather than its purpose. In contrast, theoretical
approaches seek to predict properties of the system from underlying
principles. What are these principles? One hypothesis is that of
efficient coding, which posits that one of the primary goals of sensory
coding is to form an efficient code, namely one that maximizes the
amount of information conveyed about the sensory signal to the rest
of the brain1–5. In the peripheral auditory system, the incoming
acoustic signal is transmitted mechanically to the inner ear and
undergoes a highly complex transformation before it is encoded by
spikes at the auditory nerve. If the auditory code is efficient, it should
be possible to predict its properties from a theoretically ideal code.
To test this hypothesis, we must start with a mathematical

description of an acoustic waveform that can then be used to derive
theoretically optimal codes. Here we use a model in which sounds
are encoded as a pattern of spikes8–10. The signal, x(t), is encoded
with a set of kernel functions, f1, …, fm, that can be positioned
arbitrarily and independently in time. The mathematical form of the
representation with additive noise is

xðtÞ ¼
XX

smi fm t2 tmi
� �

þ 1ðtÞ ð1Þ

where tmi and smi are the temporal position and coefficient of the
ith instance of kernel fm, respectively. Note that the number of
instances of fm need not be the same across kernels. To allow the
kernel functions to assume arbitrary potential shapes, we rep-
resented each kernel fm by a vector of length Lm, where each
element is an independent parameter of the model. Both the
kernel shapes and their lengths were adapted to optimize coding
efficiency; in the results below, the kernels take on a variety
of shapes and range in length from ten to several hundred
milliseconds. This provides a mathematical description of sound
waveforms that has sufficient flexibility to encode arbitrary acous-
tic signals and encompass a broad range of potential auditory
codes.
The key theoretical abstraction of the model is that the acoustic

signal can be encoded most efficiently by decomposing it in terms of
discrete acoustic elements, each of which has a precise amplitude and
temporal position. This also yields a code that is time-relative and
does not depend on artificial blocking of the signal10. One interpre-
tation of each analogue tmi , s

m
i pair is that it represents a local

population of (binary) auditory nerve spikes firing probabilistically
in proportion to the underlying analogue value. The form of the
model allows for the case in which the coefficients smi are constrained
to be binary, but for computational reasons we have used analogue
spikes as an approximation. To optimize the theoretical model to
code natural sounds efficiently, we first need to address two pro-
blems: first, encoding (determining the optimal values of tmi and smi )
and second, learning (determining the optimal kernel functions fm).
From equation (1), coding efficiency can be defined approximately as
the number of spikes required to achieve a desired level of precision,
which is defined by the variance of the additive noise 1(t). This
assumes that the goal of coding is to represent the entire acoustic
signal and that coding efficiency is most closely related to the number
of spikes in the code. Other definitions are possible within this
framework, but this definition has the advantage of starting from a
minimal set of assumptions.
It is important to distinguish between the code and the encoding

algorithm. For a given code (for example equation (1)), there are
many different encoding algorithms that make different trade-offs in
terms of coding efficiency, representational precision and compu-
tational complexity. Although the generative form of the model is
linear, in other words the signal is a linear function of the represen-
tation, inferring the optimal representation for a signal is highly
nonlinear and computationally complex. In fact, the problem of
finding the optimal sparse representation by using a generic dic-
tionary of functions is NP-hard11, so only approximate algorithms
are feasible. Here we compute the values of tmi and smi for a given
signal by using a matching pursuit algorithm12, which iteratively
approximates the input signal and has been shown to yield highly
efficient representations for a broad range of sounds10. Note also that
although we have assumed a representation that consists of spikes
(that is, a localized representation of the time position of an
underlying acoustic feature13), spikes themselves are a consequence
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of optimizing the efficiency of the representation: if the coefficients
smi are assumed to be continuous in time and then optimized to
represent the signal efficiently, only a discrete set of temporally sparse
coefficients emerges8–10,14.
Figure 1 illustrates the spike code model and its efficiency in

representing speech. The spoken word ‘canteen’ was encoded with a
set of spikes with the use of a fixed set of kernel functions (because the
kernels can have arbitrary shape, for illustration purposes here we
have chosen gammatones, mathematical approximations of cochlear
filters). A brief segment from the input speech signal (Fig. 1, input)
consists of three glottal pulses in the /a/ vowel. The resulting spike
code is shown above it. The coloured arrows and curves indicate
the relationship between the spikes (grey ovals) and the acoustic
components they represent. The figure shows that a small set of
spikes (for comparison, the sound segment contains about 400

samples) is sufficient to produce a very accurate reconstruction of
the sound (Fig. 1, reconstruction and residual).
The spike-coding algorithm provides a way to encode signals given

a set of kernel functions, but the actual efficiency of this code depends
on howwell the kernel functions capture the acoustic structure of the
sound ensemble. To optimize the kernel functions we derived a
gradient-based algorithm for adapting each kernel in shape and
length to improve the fidelity of the representation (Supplementary
Methods). Information theory states that there is a fundamental
relationship between the efficiency of a code and the degree to which
it captures the statistical structure of the signals being encoded. Thus,
one of the primary tenets of efficient coding theory is that sensory
codes should be adapted to the statistics of the relevant sensory
environment. To make predictions, it is necessary to optimize the
code to an ensemble of sounds to which the auditory system is
thought to be adapted. However, this poses a problem because the
precise composition of the natural acoustic environment is
unknown, and many common sounds, such wind noise, may have
much less behavioural relevance than other sounds.
To address this issue, we made the generic assumption that the

auditory system is adapted to an unknown mixture of three broad
categories of natural sounds. The kernel functions were optimized
to an ensemble of natural sounds that consisted of mammalian
vocalizations15 and two subclasses of environmental sounds (Sup-
plementary Methods). These sound classes represent a wide range of
acoustic structure. Vocalizations tend to be harmonic and more
steady-state, whereas environmental sounds have little or no har-
monic structure and are more transient. Furthermore, to obtain an
ensemble composition that yielded a goodmatch to the physiological
data (described below), we found it necessary to divide environmen-
tal sounds into two subclasses, namely transient environmental
sounds, such as cracking twigs and crunching leaves, and ambient
environmental sounds, such as rain and rustling sounds. This
approach has the added advantage that we can investigate how the
theoretically ideal code changes as a function of the sound ensemble
composition.
Figure 2a shows the learned kernel functions (red curves) for the

natural sounds ensemble. All kernels are time-localized, have a
narrow spectral bandwidth and show a strong temporal asymmetry
not predicted by previous theoretical models. The sharp attack and

Figure 1 | Representing a natural sound with the use of spikes. A brief
segment of the word ‘canteen’ (input) is represented as a spike code (top).
Each spike (oval) represents the temporal position and centre frequency of
an underlying kernel function, with oval size and grey value indicating
kernel amplitude. The coloured arrows illustrate the correspondence
between the spikes and the underlying acoustic structure represented by the
kernel functions. Alignment of the spikes with respect to the kernels is
arbitrary and is an issue only for plotting. We choose the kernel centre of
mass, which for a delta-function input yields aligned spikes across the kernel
population. A reconstruction of the speech from only the 60 spikes shown is
accurate with little residual error (reconstruction and residual).

Figure 2 | Efficient codes for natural sounds predict revcor filter shapes and
population characteristics. a, When optimized to encode an ensemble of
natural sounds, kernel functions become asymmetric sinusoids (smooth
curves in red, with padding removed) with sharp attacks and gradual decays.
They also adapt in temporal extent, with longer and shorter functions
emerging from the same initial length (grey scale bars, 5 ms). Each kernel

function is overlaid on a revcor function obtained from cat auditory nerve
fibres (noisy curves in blue). b, The bandwidth–centre-frequency
distribution of learned kernel functions (red squares) is plotted together
with cat physiological data (small blue dots) and with kernel functions
trained on environmental sounds alone (black circles) or animal
vocalizations alone (green triangles).
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gradual decay of the envelope match the physiological filtering
properties of auditory nerves as characterized by reverse-correlation,
which estimates the impulse response function of individual audi-
tory nerve fibres16–18, the so-called ‘revcor’ filters. Kernel functions in
Fig. 2a are overlaid on revcor filters obtained from cat auditory
nerves19. The revcor functions were normalized, and the most similar
(as determined by correlation) were aligned in phase with each of the
learned kernels. Even though the learned kernel functions were
derived entirely independently of the physiological revcor functions,
they are strikingly similar. The similarity of the experimental data
and theoretical predictions is not a result of selection bias. Statistical
comparisons of the different models (both theoretical and para-
metric) show that the kernels derived theoretically have a slightly
higher median correlation with the revcor filters than do parametric
gammachirp models19 fitted to the same set of data (Supplementary
Fig. S2). Repeated training from different random initial conditions
produced similar results. We can also compare population properties
of the learned kernels with those of the physiological data. Figure 2b
shows a log–log scatter-plot of the bandwidth against centre fre-
quency for each kernel (red squares) and for the physiological revcor
data (small blue dots)20. Both the slope and spread of the learned
kernel functions match those of the empirical data, and the distri-
bution seems to follow shifts in the slope and spread at low and high
frequencies.
In contrast with the efficient code for the natural sounds ensemble,

kernel functions optimized for other sound classes predict neither
the structure of revcor filters nor their population characteristics
(Fig. 2b). Efficient codes for animal vocalizations (green triangles)
have kernels with much narrower bandwidths that do not increase
with frequency. Kernels optimized for only environmental sounds
(black circles) have bandwidths that increase much more rapidly
with frequency. Furthermore, their respective kernel functions are
significantly different from mammalian revcor filters (Supplemen-
tary Fig. S1). However, kernel functions optimized for speech predict
both the asymmetric revcor structure and the population distri-
bution just as well as the kernel functions optimized for the natural
sounds ensemble (Fig. 3, and Supplementary Fig. S2).
We can quantify the coding efficiency of the learned kernel

functions to evaluate the model objectively and compare it quanti-
tatively with other signal representations. Fidelity–rate curves, which
plot the fidelity of the encoded signal (the signal-to-noise ratio in
decibels) against the coding rate in bits per second, provide a useful,

objective measure for comparison. Here we use a previously devel-
oped method10 in which we vary the precision of the spike amplitude
and temporal position values, smi and tmi , and compute the resulting
fidelity from the reconstruction error. This produces a curve showing
the trade-off between quality and cost for a given representation.
Fidelity–rate curves for speech coding were calculated for Fourier
transform, for discrete wavelet transform and for spike codes by
using either gammatones or kernel functions optimized for speech
(Supplementary Methods). For all fidelity–rate curves (Fig. 4),
increasing the information rate (x axis) always improves fidelity
(y axis). Below 30 dB, the spike codes using both the optimized and
fixed kernels (gammatones) resulted in more efficient represen-
tations of speech than the traditional representations. At a fidelity
of 15 dB, the learned spike code is over threefold more efficient
than either the Fourier or wavelet codes (8 kilobits s21 versus
30 kilobits s21). Spike codes using learned kernels are also more

Figure 3 |Human speech is adapted to themammalian cochlear code. a, As
with the kernel functions trained on the natural sounds ensemble, the
efficient code for speech consists of asymmetric sinusoids that closely match

auditory revcor filters. b, The population of speech-trained kernels also
matches the population centre bandwidth– frequency relationship of
cochlear revcor filters. Details are as in Fig. 2.

Figure 4 | Fidelity–rate curves for Fourier, wavelet and spike codes. The
curves show the trade-off between coding cost and signal fidelity in the
representation of speech signals from the TIMIT Speech Corpus testing set.
Curves were generated for spike coding by using both speech-trained kernels
(red circles) and gammatones (light blue circles) as well as with a discrete
Daubechies wavelet transform (dark blue squares) and a Fourier transform
(black triangles). Confidence intervals are extremely tight (see text) and are
not plotted.
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efficient than those using fixed gammatones. At fidelities above
35 dB, the residual signal being coded is not significantly different
from gaussian noise10 and is described more efficiently with the
Fourier or wavelet representation.
These results provide a theoretical explanation of the shape of

auditory revcor filters. Previous explanations of the revcor filter
shapes have been phenomenological, being a consequence of the
impulse response function of the basilar membrane. Our results
show that the rapid rise and slow decay that is characteristic of the
revcor envelope is ideally matched to the statistical structure of
natural sounds and indicate that it might not be an arbitrary feature
of the biological system. In this sense, the physics of basilar mem-
brane response (and subsequent cochlear processing) is tuned to the
vibrations of objects in the natural environment. Rapid onsets
followed by slower decays are characteristic of many types of
transient natural sound and provide acoustic cues for essential
auditory tasks such as sound localization. Note, however, that
rapid rise and slow decay are not present in all efficient codes or an
artefact of the learning algorithm, because the optimal kernels for
vocalizations are largely symmetric and kernels adapted to reverse
speech show the opposite pattern: slow rise and rapid decay
(Supplementary Fig. S1).
Filterbank models of the cochlear have assumed that for a given

frequency there is a fixed filter bandwidth (corresponding to gamma-
tone function of fixed length). The auditory revcor data show a range
of bandwidths at any given frequency, which is also matched by the
kernel functions derived theoretically. One interpretation of this
finding is that to form an efficient code for a variety of sounds it is
necessary to have kernel functions of varying lengths to provide a
better description of sounds with different temporal correlation
constants.
We have compared the learned kernels with the physiological

revcor filters, but it is not obvious why the comparison should be
appropriate. Reverse correlation provides a first-order characteriza-
tion of a nonlinear system, but there is no direct way to measure the
‘features’ that the auditory code is using to describe the acoustic
signal. However, the use of reverse correlation to derive the equiva-
lent revcor filters from the theoretical model yields an almost exact
match to the learned kernel functions (Supplementary Fig. S3). For
reverse correlation to recover the auditory nerve impulse response
functions, neural spikes must be uncorrelated, which is often
assumed to arise from stochastic firing. In contrast, spikes in the
theoretical model are uncorrelated because they precisely encode
non-redundant information. This indicates that if neural spikes are
uncorrelated for the same reason, the revcor ‘filters’ might be more
analogous to the acoustic features of the auditory code.
Our results depended on obtaining spike representations that are

efficient. Learning experiments with an encoding algorithm that
yields less efficient representations but is more biologically plausible
(one in which the acoustic waveform was convolved with each of
the kernel functions and thresholded to obtain the spike trains)
produced kernel functions that showed no similarity to the auditory
revcor functions (E.C.S and M.S.L., unpublished observations).
Although these results offer an explanation of auditory revcor

data, we caution that there remain several challenges in extending the
scope of the theory to auditory nerve responses. Algorithms for
optimally encoding sound with binary spikes would permit a more
direct comparison with auditory nerve firing patterns. A more
accurate description of the encoding objective is also possible.
Exact representation of the sound pressure waveform, as assumed
here, is an unlikely goal, because not all acoustic information is
behaviourally relevant. The gradual decrease phase-locking proper-
ties for higher-frequency nerve fibresmight provide one indication of
what information the auditory system encodes. There is also no
explanation for the role of adaptation or changes in response with
stimulus intensity, which are probably important in maximizing the
information conveyed through the auditory nerve.

Finally, we note that deriving efficient codes for speech immedi-
ately yielded kernels that closely matched the auditory revcor filters.
In contrast, obtaining similar results for the natural sounds ensemble
required careful balancing of the different sound categories. This
indicates that the acoustic composition of speech itself might be
adapted to the mammalian auditory system.

METHODS
Encoding. Signals were encoding with a matching pursuit-based algorithm10,12,
which iteratively decomposed the signal in terms of the kernel functions. The
current residual signal (or the original signal) was projected onto the dictionary
of kernel functions. The projectionwith the largest inner product was subtracted
out, and its coefficient and time were recorded. For the results reported here, the
encoding was halted when smi fell below a preset ‘spiking’ threshold. Further
details are given in Supplementary Methods.
Learning. Equation (1) in the main text can be rewritten in probabilistic form in
which we assume that the noise is gaussian and the prior provability of a spike,
p(s), is sparse. The kernel functions are optimized by performing gradient ascent
on the approximate log data probability,

›

›fm
log ðpðxjFÞÞ ¼

›

›fm
log ðpðxjF; ŝÞÞþ log ðpðŝÞÞ

¼
1

2je

›

›fm
x2

XM
m¼1

Xnm
i¼1

ŝmi ½x2 x̂�tm
i

" #2

¼
1

je i

X
ŝmi ½x2 x̂�tm

i

ð2Þ

where ½x2 x̂�tm
i
indicates the residual error over the extent of kernel fm at

position tmi . The estimated kernel gradient is thus a weighted average of the
residual error. For training, 32 kernel functions were initialized as 100-sample
gaussian noise, and the spiking threshold (minimum value of smi ) was set at 0.1.
Further details are given in Supplementary Methods.
Sounds. The natural sounds ensemble used in training combined a collection of
mammalian vocalizations with two classes of environmental sounds recorded by
the authors in both natural and anechoic settings: ambient sounds (rustling
brush, wind, flowing water) and transients (snapping twigs, crunching leaves,
impacts of stone or wood). The reported ‘natural sounds’ results were based on
(encoded) power proportions of 1.0:0.8:1.2, respectively, which directly reflects
the impact of each sound class on kernel function adaptation. Speech was
obtained from the TIMIT continuous speech corpus. All sounds were converted
to a sampling frequency of 16 kHz, bandpass filtered to be between 100 and
6,000Hz, and normalized to have a maximum amplitude of 1. Spike encodings
of 5–40 s of training sounds were used to estimate the gradients on each update
of the kernel functions.
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