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Abstract

A musically meaningful vocabulary is one of the keystonds.iilding a computer
audition system that can model the semantics of audio cbontiea word in the
vocabulary is not clearly represented by the underlyingiatio representation,
the word can be consideremisy and should be removed from the vocabulary.
This paper proposes an approach to construct a vocabulamedictive seman-
tic concepts based ogparse canonical component analysis (sparse CCA). The
goal is to find words that are highly correlated with the uhdeg audio feature
representation with the expectation that these words camaoukeled more accu-
rately. Experimental results illustrate that, by ideritify these musically mean-
ingful words, we can improve the performance of a previopshposed computer
audition system for music annotation and retrieval.

1 Introduction

Over the past two years we have been developing a computéioauslystem that can annotate
songs with semantically meaningful words and retrievevesie songs based on a text query. This
system learns a joint probabilistic model between a voealuwlf words and acoustic feature vectors
using a heterogeneous data set of song and song annotitmmever, if a specific word is not well
represented by the acoustic features, the system will nalblgeto model thigioisy word accurately.

In this paper, we explore the problemwaicabulary selection in which our goal is to discover words
that can be modeled accurately and discard those wordsdhabt We propose the concept of
acoustic correlation as an indicator for picking candidate words. The goal is td firords in a
vocabulary that have a high correlation with the audio fesatapresentation. The expectation is that
this pattern between words and audio will be more readilywag by our models.

Previously, we collected annotations of music using varimethods: text-mining song reviews [16],
conducting a human survey [17], and exploring the use of agmioomputation game [18, 20]. In
all cases, we are forced to choose a vocabulary using ad-btdwuns. For example, text-mining
the song reviews resulted in a list of over 1,000 candidatelsmavhich the authors manually pruned
if there was a general consensus that a word was not ‘musieévant’. To collect the survey
and game data, we built, a priori, a two-level hierarchicatabulary by first considering a set
of high-level semantic categories (‘Instrumentation’m&tion’, ‘Vocal Characteristic’, ‘Genre’)
and then listing low-level words (‘Electric Guitar’, ‘Happ ‘Breathy’, ‘Bebop’) for each semantic
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category. In both cases, a vocabulary required manual remtisin and included sonmmaisy words
that degraded the performance of our computer auditioesyst

Presumably, one reason that certain words cause problersifeystem is that the acoustic rep-
resentation of these words is hard to model. This relatebagcekpressive power of our chosen
audio feature representation. For example, if we are iatedein words related to long-term music
structure (e.g., ‘12-bar blues’) and we only represent ti@icausing short-term & 1 sec) audio
feature vectors, we may be unable to model such conceptsth@&nexample is words that relate
to a geographical association (e.g., ‘British InvasioWpodstock’) which may have strong cultural
roots, but are poorly represented in the audio content.

In this paper and in our latest research [15], given an auelidufe representation, we wish to
identify words that are represented well by the audio cdnbefiore we try to model them. To
do this we propose the use of an unsupervised method basednonical correlation analysis
(CCA) to measuracoustic correlation. CCA is a method of exploring correlations between différen
representations of some underlying data where these spet®ns exist in two different feature
spaces (vector spaces). For example, in this paper themiatan we wish to model, the semantics
of music, is represented as text labels and audio featur€s t@s also been used in applications
dealing with multi-language text analysis [19], learnirgrantic representations between images
and text [2], and localizing pixels which are correlatedhagiudio in a video stream [6]. Similar
to the way principal component analysis (PCA) finds infoliweavectors in one feature space by
maximizing the variance of projected data, CCA finds pairseaaftors within two feature spaces
that maximize correlation. Put another way, CCA finds a omeedisional subspace within each
feature space such that the projection of data points oefofaspective subspaces maximizes the
correlation between these one-dimensional projections.

Given music data represented in both a semantic feature spatan acoustic feature space, we
propose that these vectors of maximal correlation can bettodend words that are strongly charac-
terized by an audio representation. Specifically, the COAt&m vector, or canonical component,
that corresponds to the semantic representation is a n@ppirocabulary words to weights where
a high weight implies that a given word is highly correlateithvihe audio feature representation.
We interpret high weights as singling out words that are ‘ically meaningful”. In other words,
the underlying relationship (a correlation) between ward audio feature representation hints that
a word may be more accurately modeled than a word for whichunb eelationship exists.

Generally CCA returns a mapping of words to weights that is-sparse, meaning that each word
will be mapped to a non-zero weight. Hence, selecting goodisvisom this vocabulary would be
done by thresholding the weights or by some other similaribct It is desirable to remove such
an arbitrary step from the vocabulary selection processs ishdone by imposing sparsity on the
solution weights, that is, we modify the CCA problem so thtgmds to give solutions with few non-
zero weights, goarse CCA [13]). This leads to a very natural criterion for selectingazabulary:
throw away words with weights equal to zero.

2 Acoustic Correlation with CCA

Canonical Correlation Analysis, or CCA, is a method of exiplg dependencies between data which
are represented in two different, but related, featureepaEor example, consider a set of songs
where each song is represented by boskraantic annotation vector and anaudio feature vector.

An annotation vector for a song is a real-valued (or binaegter where each element represents the
strength of association between the song and a word fromanabulary. An audio feature vector
is a real-valued vector of statistics calculated from thgitdi audio signal. It is assumed that the
two spaces share some joint information which can be cagbtarthe form of correlations between
the data in the two feature spaces. CCA finds a one-dimerigiorjaction of the data in each space
such that the correlations between the projections is miagin

More formally, consider two data matrice&, andS, from two different feature spaces. The rows
of A contain music data represented in the audio feature sgacehe corresponding rows &
contain the music data represented in the semantic anmotsgiaceS (e.g., annotation vectors).
CCA seeks to optimize
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) is the covariance matrix ¢ |S].
By formulating the Lagrangian dual of Eq. (1), it can be shdlat solving Eqg. (1) is equivalent to
solving a pair of maximum eigenvalue problems,

E(:al Easz;elzsarwar = Nw,, (2)
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with A\ being the maximum value of Eq. (1).

The solution vectorsw, andwg, in Eqg. (1) are generally hon-sparse, meaning that the caefts

in the vectors tend to be non-zero. In many applications it b&of interest to limit the number of
non-zero elements in the solution vector as this aids intteepretability of the results. For example,

in this application the solution vecter, can be interpreted as a mapping of words to weights where
a high weight implies that a given word is highly correlatathvthe audio feature representation. In
the next section we impose sparsitywnthereby turning CCA into an explicit vocabulary selection
mechanism where words with zero weight (i.e., negligiblealation) are thrown away.

21 SparseCCA

While PCA and its two-view extension, CCA are well studied amderstood, to our knowledge,
the sparse verion of CCA is not. Different algorithms [5, 2313], both convex and non-convex
have been proposed for sparse PCA. Recently in [13], we gexpa general framework for solving
sparse eigenvalue problems using d.c. programming (differ of convex functions) [3] which we
extend here to derive a sparse CCA algorithm.

Consider the variational formulation of CCA in Eq. (1) whicdin be written as a generalized eigen-
value problemmax, {x”Px : x7'Qx = 1}, whereP = < 20 Ed” ) Q= ( 26” 20 )

andx = ( :VV“ ) Therefore, the variational formulation for sparse CCAiigeg by

max {x”Px : x'Qx =1, ||x||o <k}, 4)

wherel < k < nandn = dim(A) + dim(S). Eg. (4) is non-convex, NP-hard and therefore
intractable (see [13] for detailed discussion). A relatembfem to Eq. (4) is given by

max {(xTPx —p|x]lo : xTQx < 1}, (5)

wherep > 0 is the penalization parameter that controls sparsity. Wisug||o is replaced by|x||;
to achieve convexity. However, in our setting, sifiés indefinite,/; approximation does not yield
any computational advantage. So, we use a better appragimthgan/,, given by """ log |;],
leading to the following program,

max {x” Px — leog|xi| cxTQx <1}, (6)
=1
This approximation has shown superior performance in spBGA experiments [13] and SVM
feature selection experiments [21]. WEhbeing indefinite, Eq. (6) can be reduced to a d.c. program
as

min {/1,||X||2 - (xT[P + pllx — leog lzil | @ xTQx <1y, )
i=1
whereu > — 4. (P). Using the d.c. minimization algorithm (DCA) [14], we getthparse CCA
algorithm given by Algorithm 1, which is a sequence of quéidigrograms. In our experiments, we
impose a sparsity constraint only on the solution in the #reantic space$, therefore we need a
constraint orj|w||o instead of the overall vectdix||o. In such a case we have

x* = argmin pxTD?(x;)x — 2x7 [P + pI]D(x;)X + | |7 o X||1
S.t. )_(TD(XZ)QD(XI))_( <1 (8)
whereD(x) = diagx), (p 0 q); = a;b; and = [0,0,9MA) 0, p, p, dME) p)T,



Algorithm 1 Sparse CCA Algorithm
Require: SymmetricP, Q = 0 andp > 0

1: Choosexy € {x : xTQx < 1} arbitrarily
2: repeat
3

X* = arg m}%n pxID?(x))% — 2xF' [P + pID(x)% + p||X]||1
X<

s.t. )_(TD(XZ)QD(XI) 1

4. x4 =x;0X*
5. until x4 = x;
6: return x;, x*

For our purposes Eq. (8) becomes a vocabulary selectionanesh which takes as its input the
semantic and audio feature representations for a set o6s®r=gd A, and a penalization parameter
p that controls sparsity. The method returns a set of spargghisev, associated with each word in
the vocabulary. Words with a weight of zero are removed frammodeling process.

The non-zero elements of the sparse solution vestpran be interpreted as those words which
have a high correlation with the audio representation. Thuthe experiments that follow, setting
values ofp and solving Eq. (8) reduces to a vocabulary selection tegtani

3 Representing Audio and Semantic Data

In this section we describe the audio and semantic represems, as well as describe the CAL500
[17] and Web2131 [16] annotated music corpora that are usedriexperiments. In both cases, the
semantic information will be represented using a singleotation vectors with dimension equal
to the size of the vocabulary. The audio content will be repnéed as multiple feature vectors
{ai,...,ar}, whereT depends on the length of the song.

The construction of the matrices andS to solve the sparse CCA follows: Each feature vector
in the music corpus is associated with the label for its soRgr example, for a given song, we
duplicate its annotation vecteifor a total ofT" times so that the song-label pair may be represented
as{(s,a1), ..., (s,ar)}. To constructA we stack the feature vectors for all songs in the corpus into
one matrix.S is constructed by stacking all the corresponding annotatetors into one matrix. If
each song has approximately 600 feature vectors and we BaMeuldred songs, then bathand

S will have about 30,000 rows.

3.1 Audio Representation

Each song is represented abag-of-feature-vectors. we extract an unordered set of feature vec-
tors for every song, by extracting one feature vector fohestwort-time segment of audio data.
Specifically, we compute dynamic Mel-frequency cepstrafiicents (A(IMFCC) from each half-
overlapping, medium-time<743 ms) segment of audio content [9].

Mel-frequency cepstral coefficients (MFCC) describe thexsal shape of a short-time audio frame
and are popular features for speech recognition and muassi€ication (e.g., [10, 7, 12]). We
calculate 13 MFCC coefficients for each short-time (23 méeahe of audio. For each of the 13
MFCCs, we take a discrete Fourier transform (DFT) over a serées of 64 frames, normalize by
the DC value (to remove the effect of volume) and summarigegdBulting spectrum by integrating
across 4 modulation frequency bands: (unnormalized) DZHA4-3-15Hz and 20-43Hz. Thus, we
create a 52-dimensional feature vector (4 features for ebitte 13 MFCCs) for ever$/4 segment
of audio content. For a five minute song, this results in aBO0t52-dimensional feature vectors.

3.2 Semantic Representation

The CAL500 is an annotated music corpus of 500 western pogolags by 500 unique artists.
Each song has been annotated by a minimum of 3 individuaig @svocabulary of 174 words. We
paid 66 undergraduate music students to annotate our maigpa with semantic concepts. We
collected a set of semantic labels created specifically fouaic annotation task. We considered



Top 3 words by semantic category
Acoustic Correlation
overall rapping, at a party, hip-hop/rap
emotion || arousing/awakening, exciting/thrilling, sad
genre hip-hop/rap, electronica, funk
instrument|| drum machine, samples, synthesizer
general || heavy beat, very danceable, synthesized texture
usage at a party, exercising, getting ready to go out
vocals rapping, strong, altered with effects
Bottom 3 wor ds by semantic category
Acoustic Correlation
overall not weird, not arousing, not angry/agressive
emotion || not weird, not arousing, not angry/agressive
genre classic rock, bebop, alternative folk
instrument|| female lead vocals, drum set, acoustic guitar
general || constant energy level, changing energy level, hot
catchy
usage going to sleep, cleaning the house, at work
vocals high pitches, falsetto, emotional

Table 1: Top and bottom 3 words by semantic category founghyse CCA .

135 musically-relevant concepts spanning six semantegoates: 29 instruments were annotated
as present in the song or not; 22 vocal characteristics waretated as relevant to the singer or
not; 36 genres, a subset of the Codaich genre list [8], wanetated as relevant to the song or not;
18 emotions, found by Skowronek et al. [11] to be both impdrgand easy to identify, were rated
on a scale from one to three (e.g., "not happy”, "neutral’agpy”); 15 song concepts describing
the acoustic qualities of the song, artist and recording (&empo, energy, sound quality); and 15
usage terms from [4], (e.g., “l would listen to this song whdriving, sleeping, etc.”). The 135
concepts are converted to the 174-word vocabulary by firgiping bi-polar concepts to multiple
word labels (‘Energy Level’ maps to ‘low energy’ and ‘highezgy’). Then we prune all words that
are represented in five or fewer songs to remove under-r@peswords. Lastly, we construct a
real-valued 174-dimensional annotation vector by avatie label frequencies of the individual
annotators. Details of the summarization process can bedfisu[17]. In general, each element in
the annotation vector contains a real-valued scalar itidig#he strength of association.

The Web2131 is an annotated collection of 2131 songs andrguanwying expert song reviews
mined from a web-accessible music datab§$6]. Exactly 363 songs from Web2131 overlap with
the CAL500 songs. The vocabulary consists of 317 words tlea¢ Wwand picked from a list of the
common words found in the corpus of song reviews. Common wtaols are removed and the
resulting words are preprocesses with a custom stemmilogitddm. \We represent a song review as
a binary 317-dimensional annotation vector. The elemeatwctor is 1 if the corresponding word
appears in the song review and 0 otherwise.

4 Experiments
4.1 Qualitative Results

We solve a series of sparse CCA problems, each time incgetigrsparsity paramegecorrespond-
ing to the samantic space. This generates a series of vaecezutanging in size. This effectively
gives us a “ranking” of words. The first three and last threedsdo be eliminated (i.e., the bottom
three and top three words, respectively) can be found ineThbIlhe top three words were the last
words to be eliminated in the sequence and are words thatiginy ltorrelated with audio con-
tent. The bottom three words were those removed in the segueithe very first step, these words
presumably have very low correlation with the audio content
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| vocab.sz. | 488 249] 203 ] 149] 103] 50 |
# CALS00words || 173 | 118 101 | 85 | 65 | 39
# Web2131 words| 315| 131 | 102| 64 | 38 | 11

%Web2131 64| 52| 50| 42 ] .36 | .22

Table 2: The fraction of noisy web-mined words in a vocahuks vocabulary size is reduced:
As the size shrinks sparse CCA prunes noisy words and themedd words are eliminated over
higher quality CAL500 words.

4.2 Quantitative Results
4.2.1 Vocabulary Pruning using Sparse CCA

Sparse CCA can be used to perform vocabulary selection whergoal is to prune noisy words
from a large vocabulary. To test this hypothesis we combthedvocabularies from the CAL500
and Web2131 data sets and consider the subset of 363 sohggetiaund in both data sets.

Based on our own informal user study, we found that the Web2b®otations are noisy when com-
pared to the CAL500 annotations. We showed subjects 10 vimiseach data set and asked them
which set of words were relevant to a song. The Web2131 atioosawere not much better than
selecting words randomly to from the vocabulary, wherea& & words were mostly considered
relevant.

Because Web2131 was found to be noisier than CAL500, we espacse CCA to filter out more

of the Web2131 vocabulary. Table 2 shows the results of tpge®ment. In the experiment we
select a value for the sparsity parameteaind obtain a sparse vocabulary. Then we record how
many noisy Web2131 words comprise the resulting vocabulérg first column in Table 2 reflects
the vocabulary with no sparsity constraints. Because Hréirs vocabularies are of different sizes,
Web2131 initially comprises .64 of the combined vocabufarg. Subsequent columns in the table
show the resulting vocabulary sizes as we incrgeased, consequently, reduce the vocabulary size.

Noisy Web2131 words are being discarded by our vocabuldegten process at a faster rate than
the cleaner CAL500 vocabulary, upholding our predictioat thocabulary selection by accoustic
correlation should tend to remove noisy words. The resutgly that Web2131 contains more
words that are uncorrelated with the audio representafldre different ways that these data sets
were collected reinforces this fact. Web2131 was mined feooollection of music reviews; the
words used in a music review are not explicitly chosen by thieewbecause they describe a song.
This is the exact opposite condition under which the CAL58@&det was collected, in which human
subjects were specifically asked to label songs in a coatt@hvironment.

4.2.2 Vocabulary Selection for Music Retrieval

In this experiment we apply our vocabulary selection teghaito a semantic music annotation
and retrieval system. In brief, our system estimates thelitional probabilities of audio feature
vectors given words in the vocabulaf(song|word). These conditional probabilities are modeled
as Gausian Mixture Models. With these probability disttibos in hand, our system can annotate a
novel song with words from its vocabulary, or it can retriaweordered list of (novel) songs based
based on a keyword query. A full description of this systemloafound in [17].

One useful evaluation metric for this system is the area uthdereceiver operating characteristic
(AROC) curve. (A ROC curve is a plot of the true positive raseaafunction of the false positive
rate as we move down a ranked list of songs given a keyword.infior each word, its AROC
ranges between 0.5 for a random ranking and 1.0 for a pede&irrg. Average AROC is used to
describe the performance of our entire system and is foural/byaging AROC over all words in
the vocabulary.

This final performance metric is brought down by words thatdifficult to model. These are words
that have a low AROC so they bring the average AROC down. Weqs® to use sparse CCA
to discover these difficult words (prior to modeling). (Ahatively, one can say that we are using
sparse CCA tdeep “easy” words that exhibit high correlation, as oppsedlitacarding difficult
words.)
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Figure 1: Comparison of vocabulary selection techniquescdpare retrieval performance using
vocabulary selection by human agreement and acousticlatiore The expected performance of
randomly selecting words is also shown.

In this experiment, we use sparse CCA to generate sparsbulacas of full size ( about 180)

down to 20. This is done by generating a sequence of vocaesilaf progressivly smaller sizes
as is described in Section 4.1. For each vocabulary the tiondi probability densities associated
with these words, or word models, are trained and the avexB§2C of the resulting word models

is calculated on a test set of 50 songs held out separatetydrtraining set of 450 songs from the
CAL500 data set.

Figure 1 shows that the average AROC of our system improvegarse CCA selects vocabularies
of smaller size. Any increase from the left most point of tigaufe implies that the technique is

removing words which would have had a low AROC (thus bringhmgjaverage down). To reiterate,

it is exactly the words with low AROC that we presume to be yaisd are difficult to model.

Also shown in Figure 1 are the performance results of trgitiased on two alternative vocabulary
selection techniques. One is a random baseline in which abudary is created by randomly se-
lecting words from the full vocabulary; the expected (mgaerformance of this method is shown.
The other technique is based on a heuristic we used in [15hinhwve assigned to words a score
based on the notion of human agreement. Then we select aulacabased on high agreement
scores. (Details can be found in [15].) Briefly, because westzcess to more than one human
annotation per song, we count how many times people agrebdha use of a particular word to
describe a song. For example, more subjects tended to agre®ie objective instrumentation
terms like “this song has drum.”, as opposed to more subjective usage terms like “| woushe i

to this song whilavaking up in the morning.” In this casedrum” would get a highehuman agree-
ment score thanwaking up,” and so we posit that it would be easier to mod#lim” (it would have

a higher AROC) than it would to modelaking up”. Our results show that vocabulary selection
using acoustic correlation outperforms using this verydalheuristic of human agreement.

It should be noted that the goal here is not to raise the padoce of some arbitrary system, rather
that raising the performance of this system suggests thatamabulary selection method is remov-
ing words that are difficult to model well and is selecting d®that can be accurately modeled.
Also, as a practical matter, our results show that this tiegfencould be used, in a preprocessing
step, to inform as to which words to spend computationaluness on when modeling.

5 Discussion

We have presented acoustic correlation via sparse CCA aghadigy which we can automatically,
and in an unsupervised fashion, discover words that ardyhagiirelated with their audio feature
representations. Our results suggest that this technaqjubeused to remove “noisy” words that are
difficult to model accurately. This ability to filter poorlgpresented words also provides a means to
construct a musically meaningful vocabulary prior to irireg further computational resources in
modeling or analyzing the semantics of music as is done imaugic annotation and retrieval sys-
tem. Those interested in the application of vocabularycsiele and music analysis are encouraged



to view the work of Whitman and Ellis who have previously ledkat vocabulary selection by train-
ing binary classifiers (e.g., Support Vector Machines) oatatogeneous data set of web-documents
related to artists and the audio content produced by théisesdR2].
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