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Abstract

A musically meaningful vocabulary is one of the keystones inbuilding a computer
audition system that can model the semantics of audio content. If a word in the
vocabulary is not clearly represented by the underlying acoustic representation,
the word can be considerednoisy and should be removed from the vocabulary.
This paper proposes an approach to construct a vocabulary ofpredictive seman-
tic concepts based onsparse canonical component analysis (sparse CCA). The
goal is to find words that are highly correlated with the underlying audio feature
representation with the expectation that these words can memodeled more accu-
rately. Experimental results illustrate that, by identifying these musically mean-
ingful words, we can improve the performance of a previouslyproposed computer
audition system for music annotation and retrieval.

1 Introduction

Over the past two years we have been developing a computer audition system that can annotate
songs with semantically meaningful words and retrieve relevant songs based on a text query. This
system learns a joint probabilistic model between a vocabulary of words and acoustic feature vectors
using a heterogeneous data set of song and song annotations.However, if a specific word is not well
represented by the acoustic features, the system will not beable to model thisnoisy word accurately.
In this paper, we explore the problem ofvocabulary selection in which our goal is to discover words
that can be modeled accurately and discard those words that cannot. We propose the concept of
acoustic correlation as an indicator for picking candidate words. The goal is to find words in a
vocabulary that have a high correlation with the audio feature representation. The expectation is that
this pattern between words and audio will be more readily captured by our models.

Previously, we collected annotations of music using various methods: text-mining song reviews [16],
conducting a human survey [17], and exploring the use of a human computation game [18, 20]. In
all cases, we are forced to choose a vocabulary using ad-hoc methods. For example, text-mining
the song reviews resulted in a list of over 1,000 candidate words which the authors manually pruned
if there was a general consensus that a word was not ‘musically-relevant’. To collect the survey
and game data, we built, a priori, a two-level hierarchical vocabulary by first considering a set
of high-level semantic categories (‘Instrumentation’, ‘Emotion’, ‘Vocal Characteristic’, ‘Genre’)
and then listing low-level words (‘Electric Guitar’, ‘Happy’, ‘Breathy’, ‘Bebop’) for each semantic
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category. In both cases, a vocabulary required manual construction and included somenoisy words
that degraded the performance of our computer audition system.

Presumably, one reason that certain words cause problems for our system is that the acoustic rep-
resentation of these words is hard to model. This relates to the expressive power of our chosen
audio feature representation. For example, if we are interested in words related to long-term music
structure (e.g., ‘12-bar blues’) and we only represent the audio using short-term (< 1 sec) audio
feature vectors, we may be unable to model such concepts. Another example is words that relate
to a geographical association (e.g., ‘British Invasion’, ‘Woodstock’) which may have strong cultural
roots, but are poorly represented in the audio content.

In this paper and in our latest research [15], given an audio feature representation, we wish to
identify words that are represented well by the audio content before we try to model them. To
do this we propose the use of an unsupervised method based oncanonical correlation analysis
(CCA) to measureacoustic correlation. CCA is a method of exploring correlations between different
representations of some underlying data where these representations exist in two different feature
spaces (vector spaces). For example, in this paper the information we wish to model, the semantics
of music, is represented as text labels and audio features. CCA has also been used in applications
dealing with multi-language text analysis [19], learning semantic representations between images
and text [2], and localizing pixels which are correlated with audio in a video stream [6]. Similar
to the way principal component analysis (PCA) finds informative vectors in one feature space by
maximizing the variance of projected data, CCA finds pairs ofvectors within two feature spaces
that maximize correlation. Put another way, CCA finds a one dimensional subspace within each
feature space such that the projection of data points onto their respective subspaces maximizes the
correlation between these one-dimensional projections.

Given music data represented in both a semantic feature space and an acoustic feature space, we
propose that these vectors of maximal correlation can be used to find words that are strongly charac-
terized by an audio representation. Specifically, the CCA solution vector, or canonical component,
that corresponds to the semantic representation is a mapping of vocabulary words to weights where
a high weight implies that a given word is highly correlated with the audio feature representation.
We interpret high weights as singling out words that are “musically meaningful”. In other words,
the underlying relationship (a correlation) between word and audio feature representation hints that
a word may be more accurately modeled than a word for which no such relationship exists.

Generally CCA returns a mapping of words to weights that is non-sparse, meaning that each word
will be mapped to a non-zero weight. Hence, selecting good words from this vocabulary would be
done by thresholding the weights or by some other similar heuristic. It is desirable to remove such
an arbitrary step from the vocabulary selection process. This is done by imposing sparsity on the
solution weights, that is, we modify the CCA problem so that it tends to give solutions with few non-
zero weights, (sparse CCA [13]). This leads to a very natural criterion for selecting avocabulary:
throw away words with weights equal to zero.

2 Acoustic Correlation with CCA

Canonical Correlation Analysis, or CCA, is a method of exploring dependencies between data which
are represented in two different, but related, feature spaces. For example, consider a set of songs
where each song is represented by both asemantic annotation vector and anaudio feature vector.
An annotation vector for a song is a real-valued (or binary) vector where each element represents the
strength of association between the song and a word from our vocabulary. An audio feature vector
is a real-valued vector of statistics calculated from the digital audio signal. It is assumed that the
two spaces share some joint information which can be captured in the form of correlations between
the data in the two feature spaces. CCA finds a one-dimensional projection of the data in each space
such that the correlations between the projections is maximized.

More formally, consider two data matrices,A andS, from two different feature spaces. The rows
of A contain music data represented in the audio feature spaceA. The corresponding rows ofS
contain the music data represented in the semantic annotation spaceS (e.g., annotation vectors).
CCA seeks to optimize

max
wa∈A,ws∈S

{wT
a Σasws : wT

a Σaawa = 1, wT
s Σssws = 1} (1)
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whereΣ =

(

Σaa Σas

Σsa Σss

)

is the covariance matrix of[A|S].

By formulating the Lagrangian dual of Eq. (1), it can be shownthat solving Eq. (1) is equivalent to
solving a pair of maximum eigenvalue problems,

Σ−1
aa ΣasΣ

−1
ss Σsawa = λ2wa, (2)

Σ−1
ss ΣsaΣ

−1
aa Σasws = λ2ws, (3)

with λ being the maximum value of Eq. (1).

The solution vectors,wa andws, in Eq. (1) are generally non-sparse, meaning that the coefficients
in the vectors tend to be non-zero. In many applications it may be of interest to limit the number of
non-zero elements in the solution vector as this aids in the interpretability of the results. For example,
in this application the solution vectorws can be interpreted as a mapping of words to weights where
a high weight implies that a given word is highly correlated with the audio feature representation. In
the next section we impose sparsity onws thereby turning CCA into an explicit vocabulary selection
mechanism where words with zero weight (i.e., negligible correlation) are thrown away.

2.1 Sparse CCA

While PCA and its two-view extension, CCA are well studied and understood, to our knowledge,
the sparse verion of CCA is not. Different algorithms [5, 23,1, 13], both convex and non-convex
have been proposed for sparse PCA. Recently in [13], we proposed a general framework for solving
sparse eigenvalue problems using d.c. programming (difference of convex functions) [3] which we
extend here to derive a sparse CCA algorithm.

Consider the variational formulation of CCA in Eq. (1) whichcan be written as a generalized eigen-

value problem,maxx {x
TPx : xT Qx = 1}, whereP =

(

0 Σas

Σsa 0

)

, Q =

(

Σaa 0

0 Σss

)

andx =

(

wa

ws

)

. Therefore, the variational formulation for sparse CCA is given by

max
x

{xTPx : xT Qx = 1, ||x||0 ≤ k}, (4)

where1 ≤ k ≤ n andn = dim(A) + dim(S). Eq. (4) is non-convex, NP-hard and therefore
intractable (see [13] for detailed discussion). A related problem to Eq. (4) is given by

max
x

{xTPx − ρ ||x||0 : xTQx ≤ 1}, (5)

whereρ > 0 is the penalization parameter that controls sparsity. Usually, ||x||0 is replaced by||x||1
to achieve convexity. However, in our setting, sinceP is indefinite,ℓ1 approximation does not yield
any computational advantage. So, we use a better approximation thanℓ1, given by

∑n

i log |xi|,
leading to the following program,

max
x

{xTPx − ρ

n
∑

i=1

log |xi| : xTQx ≤ 1}, (6)

This approximation has shown superior performance in sparse PCA experiments [13] and SVM
feature selection experiments [21]. WithP being indefinite, Eq. (6) can be reduced to a d.c. program
as

min
x

{

µ||x||2 −

(

xT [P + µI]x − ρ
n
∑

i=1

log |xi|

)

: xT Qx ≤ 1

}

, (7)

whereµ ≥ −λmax(P). Using the d.c. minimization algorithm (DCA) [14], we get the sparse CCA
algorithm given by Algorithm 1, which is a sequence of quadratic programs. In our experiments, we
impose a sparsity constraint only on the solution in the the semantic space,S, therefore we need a
constraint on||ws||0 instead of the overall vector,||x||0. In such a case we have

x̄∗ = argmin
x̄

µx̄TD2(xl)x̄ − 2xT
l [P + µI]D(xl)x̄ + ||τ ◦ x̄||1

s.t. x̄T D(xl)QD(xl)x̄ ≤ 1 (8)

whereD(x) = diag(x), (p ◦ q)i = aibi andτ = [0, 0, dim(A). . . , 0, ρ, ρ, dim(S). . . , ρ]T .
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Algorithm 1 Sparse CCA Algorithm
Require: SymmetricP, Q ≻ 0 andρ > 0
1: Choosex0 ∈ {x : xT Qx ≤ 1} arbitrarily
2: repeat
3:

x̄∗ = argmin
x̄

µx̄TD2(xl)x̄ − 2xT
l [P + µI]D(xl)x̄ + ρ||x̄||1

s.t. x̄T D(xl)QD(xl)x̄ ≤ 1

4: xl+1 = xl ◦ x̄∗

5: until xl+1 = xl

6: return xl, x̄∗

For our purposes Eq. (8) becomes a vocabulary selection mechanism which takes as its input the
semantic and audio feature representations for a set of songs,S andA, and a penalization parameter
ρ that controls sparsity. The method returns a set of sparse weightsws associated with each word in
the vocabulary. Words with a weight of zero are removed from our modeling process.

The non-zero elements of the sparse solution vectorws can be interpreted as those words which
have a high correlation with the audio representation. Thus, in the experiments that follow, setting
values ofρ and solving Eq. (8) reduces to a vocabulary selection technique.

3 Representing Audio and Semantic Data

In this section we describe the audio and semantic representations, as well as describe the CAL500
[17] and Web2131 [16] annotated music corpora that are used in our experiments. In both cases, the
semantic information will be represented using a single annotation vectors with dimension equal
to the size of the vocabulary. The audio content will be represented as multiple feature vectors
{a1, ...,aT }, whereT depends on the length of the song.

The construction of the matricesA andS to solve the sparse CCA follows: Each feature vector
in the music corpus is associated with the label for its song.For example, for a given song, we
duplicate its annotation vectors for a total ofT times so that the song-label pair may be represented
as{(s,a1), ..., (s,aT )}. To constructA we stack the feature vectors for all songs in the corpus into
one matrix.S is constructed by stacking all the corresponding annotation vectors into one matrix. If
each song has approximately 600 feature vectors and we have 500 hundred songs, then bothA and
S will have about 30,000 rows.

3.1 Audio Representation

Each song is represented as abag-of-feature-vectors: we extract an unordered set of feature vec-
tors for every song, by extracting one feature vector for each short-time segment of audio data.
Specifically, we compute dynamic Mel-frequency cepstral coefficients (dMFCC) from each half-
overlapping, medium-time (∼743 ms) segment of audio content [9].

Mel-frequency cepstral coefficients (MFCC) describe the spectral shape of a short-time audio frame
and are popular features for speech recognition and music classification (e.g., [10, 7, 12]). We
calculate 13 MFCC coefficients for each short-time (23 msec)frame of audio. For each of the 13
MFCCs, we take a discrete Fourier transform (DFT) over a timeseries of 64 frames, normalize by
the DC value (to remove the effect of volume) and summarize the resulting spectrum by integrating
across 4 modulation frequency bands: (unnormalized) DC, 1-2Hz, 3-15Hz and 20-43Hz. Thus, we
create a 52-dimensional feature vector (4 features for eachof the 13 MFCCs) for every3/4 segment
of audio content. For a five minute song, this results in about800 52-dimensional feature vectors.

3.2 Semantic Representation

The CAL500 is an annotated music corpus of 500 western popular songs by 500 unique artists.
Each song has been annotated by a minimum of 3 individuals using a vocabulary of 174 words. We
paid 66 undergraduate music students to annotate our music corpus with semantic concepts. We
collected a set of semantic labels created specifically for amusic annotation task. We considered
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Top 3 words by semantic category
Acoustic Correlation

overall rapping, at a party, hip-hop/rap
emotion arousing/awakening, exciting/thrilling, sad
genre hip-hop/rap, electronica, funk

instrument drum machine, samples, synthesizer
general heavy beat, very danceable, synthesized texture
usage at a party, exercising, getting ready to go out
vocals rapping, strong, altered with effects

Bottom 3 words by semantic category
Acoustic Correlation

overall not weird, not arousing, not angry/agressive
emotion not weird, not arousing, not angry/agressive
genre classic rock, bebop, alternative folk

instrument female lead vocals, drum set, acoustic guitar
general constant energy level, changing energy level, not

catchy
usage going to sleep, cleaning the house, at work
vocals high pitches, falsetto, emotional

Table 1: Top and bottom 3 words by semantic category found by sparse CCA .

135 musically-relevant concepts spanning six semantic categories: 29 instruments were annotated
as present in the song or not; 22 vocal characteristics were annotated as relevant to the singer or
not; 36 genres, a subset of the Codaich genre list [8], were annotated as relevant to the song or not;
18 emotions, found by Skowronek et al. [11] to be both important and easy to identify, were rated
on a scale from one to three (e.g., ”not happy”, ”neutral”, ”happy”); 15 song concepts describing
the acoustic qualities of the song, artist and recording (e.g., tempo, energy, sound quality); and 15
usage terms from [4], (e.g., “I would listen to this song while driving, sleeping, etc.”). The 135
concepts are converted to the 174-word vocabulary by first mapping bi-polar concepts to multiple
word labels (‘Energy Level’ maps to ‘low energy’ and ‘high energy’). Then we prune all words that
are represented in five or fewer songs to remove under-represented words. Lastly, we construct a
real-valued 174-dimensional annotation vector by averaging the label frequencies of the individual
annotators. Details of the summarization process can be found in [17]. In general, each element in
the annotation vector contains a real-valued scalar indicating the strength of association.

The Web2131 is an annotated collection of 2131 songs and accompanying expert song reviews
mined from a web-accessible music database1 [16]. Exactly 363 songs from Web2131 overlap with
the CAL500 songs. The vocabulary consists of 317 words that were hand picked from a list of the
common words found in the corpus of song reviews. Common stopwords are removed and the
resulting words are preprocesses with a custom stemming algorithm. We represent a song review as
a binary 317-dimensional annotation vector. The element ofa vector is 1 if the corresponding word
appears in the song review and 0 otherwise.

4 Experiments

4.1 Qualitative Results

We solve a series of sparse CCA problems, each time increasing the sparsity parameterρ correspond-
ing to the samantic space. This generates a series of vocabularies ranging in size. This effectively
gives us a “ranking” of words. The first three and last three words to be eliminated (i.e., the bottom
three and top three words, respectively) can be found in Table 1. The top three words were the last
words to be eliminated in the sequence and are words that are highly correlated with audio con-
tent. The bottom three words were those removed in the sequence in the very first step, these words
presumably have very low correlation with the audio content.

1AMG All Music Guide www.allmusic.com
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vocab.sz. 488 249 203 149 103 50
# CAL500 words 173 118 101 85 65 39
# Web2131 words 315 131 102 64 38 11

%Web2131 .64 .52 .50 .42 .36 .22

Table 2: The fraction of noisy web-mined words in a vocabulary as vocabulary size is reduced:
As the size shrinks sparse CCA prunes noisy words and the web-mined words are eliminated over
higher quality CAL500 words.

4.2 Quantitative Results

4.2.1 Vocabulary Pruning using Sparse CCA

Sparse CCA can be used to perform vocabulary selection wherethe goal is to prune noisy words
from a large vocabulary. To test this hypothesis we combinedthe vocabularies from the CAL500
and Web2131 data sets and consider the subset of 363 songs that are found in both data sets.

Based on our own informal user study, we found that the Web2131 annotations are noisy when com-
pared to the CAL500 annotations. We showed subjects 10 wordsfrom each data set and asked them
which set of words were relevant to a song. The Web2131 annotations were not much better than
selecting words randomly to from the vocabulary, whereas CAL500 words were mostly considered
relevant.

Because Web2131 was found to be noisier than CAL500, we expect sparse CCA to filter out more
of the Web2131 vocabulary. Table 2 shows the results of this experiment. In the experiment we
select a value for the sparsity parameterρ and obtain a sparse vocabulary. Then we record how
many noisy Web2131 words comprise the resulting vocabulary. The first column in Table 2 reflects
the vocabulary with no sparsity constraints. Because the starting vocabularies are of different sizes,
Web2131 initially comprises .64 of the combined vocabularysize. Subsequent columns in the table
show the resulting vocabulary sizes as we increaseρ and, consequently, reduce the vocabulary size.

Noisy Web2131 words are being discarded by our vocabulary selection process at a faster rate than
the cleaner CAL500 vocabulary, upholding our prediction that vocabulary selection by accoustic
correlation should tend to remove noisy words. The results imply that Web2131 contains more
words that are uncorrelated with the audio representation.The different ways that these data sets
were collected reinforces this fact. Web2131 was mined froma collection of music reviews; the
words used in a music review are not explicitly chosen by the writer because they describe a song.
This is the exact opposite condition under which the CAL500 data set was collected, in which human
subjects were specifically asked to label songs in a controlled environment.

4.2.2 Vocabulary Selection for Music Retrieval

In this experiment we apply our vocabulary selection technique to a semantic music annotation
and retrieval system. In brief, our system estimates the conditional probabilities of audio feature
vectors given words in the vocabulary,P (song|word). These conditional probabilities are modeled
as Gausian Mixture Models. With these probability distributions in hand, our system can annotate a
novel song with words from its vocabulary, or it can retrievean ordered list of (novel) songs based
based on a keyword query. A full description of this system can be found in [17].

One useful evaluation metric for this system is the area under the receiver operating characteristic
(AROC) curve. (A ROC curve is a plot of the true positive rate as a function of the false positive
rate as we move down a ranked list of songs given a keyword input.) For each word, its AROC
ranges between 0.5 for a random ranking and 1.0 for a perfect ranking. Average AROC is used to
describe the performance of our entire system and is found byaveraging AROC over all words in
the vocabulary.

This final performance metric is brought down by words that are difficult to model. These are words
that have a low AROC so they bring the average AROC down. We propose to use sparse CCA
to discover these difficult words (prior to modeling). (Alternatively, one can say that we are using
sparse CCA tokeep “easy” words that exhibit high correlation, as oppsed todiscarding difficult
words.)
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Figure 1: Comparison of vocabulary selection techniques: We compare retrieval performance using
vocabulary selection by human agreement and acoustic correlation. The expected performance of
randomly selecting words is also shown.

In this experiment, we use sparse CCA to generate sparse vocabularies of full size ( about 180)
down to 20. This is done by generating a sequence of vocabularies of progressivly smaller sizes
as is described in Section 4.1. For each vocabulary the conditional probability densities associated
with these words, or word models, are trained and the averageAROC of the resulting word models
is calculated on a test set of 50 songs held out separately from a training set of 450 songs from the
CAL500 data set.

Figure 1 shows that the average AROC of our system improves assparse CCA selects vocabularies
of smaller size. Any increase from the left most point of the figure implies that the technique is
removing words which would have had a low AROC (thus bringingthe average down). To reiterate,
it is exactly the words with low AROC that we presume to be noisy and are difficult to model.

Also shown in Figure 1 are the performance results of training based on two alternative vocabulary
selection techniques. One is a random baseline in which a vocabulary is created by randomly se-
lecting words from the full vocabulary; the expected (mean)performance of this method is shown.
The other technique is based on a heuristic we used in [15] in which we assigned to words a score
based on the notion of human agreement. Then we select a vocabulary based on high agreement
scores. (Details can be found in [15].) Briefly, because we have access to more than one human
annotation per song, we count how many times people agreed with the use of a particular word to
describe a song. For example, more subjects tended to agree on more objective instrumentation
terms like “this song has adrum.”, as opposed to more subjective usage terms like “I would listen
to this song whilewaking up in the morning.” In this case “drum” would get a higherhuman agree-
ment score than “waking up,” and so we posit that it would be easier to model “drum” (it would have
a higher AROC) than it would to model “waking up”. Our results show that vocabulary selection
using acoustic correlation outperforms using this very logical heuristic of human agreement.

It should be noted that the goal here is not to raise the performance of some arbitrary system, rather
that raising the performance of this system suggests that our vocabulary selection method is remov-
ing words that are difficult to model well and is selecting words that can be accurately modeled.
Also, as a practical matter, our results show that this technique could be used, in a preprocessing
step, to inform as to which words to spend computational resources on when modeling.

5 Discussion

We have presented acoustic correlation via sparse CCA as a method by which we can automatically,
and in an unsupervised fashion, discover words that are highly correlated with their audio feature
representations. Our results suggest that this technique can be used to remove “noisy” words that are
difficult to model accurately. This ability to filter poorly represented words also provides a means to
construct a musically meaningful vocabulary prior to investing further computational resources in
modeling or analyzing the semantics of music as is done in ourmusic annotation and retrieval sys-
tem. Those interested in the application of vocabulary selection and music analysis are encouraged
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to view the work of Whitman and Ellis who have previously looked at vocabulary selection by train-
ing binary classifiers (e.g., Support Vector Machines) on a heterogeneous data set of web-documents
related to artists and the audio content produced by these artists [22].
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