
Modeling the Semantics of Sound

Douglas Turnbull
Department of Computer Science and Engineering

University of California, San Diego
La Jolla, CA 92093

dturnbul@cs.ucsd.edu

Luke Barrington
Department of Electrical and Computer Engineering

University of California, San Diego
La Jolla, CA 92093

lbarring@ucsd.edu

David Torres
Department of Computer Science and Engineering

University of California, San Diego
La Jolla, CA 92093

dtorres@cs.ucsd.edu

Gert Lanckriet
Department of Electrical and Computer Engineering

University of California, San Diego
La Jolla, CA 92093

gert@ece.ucsd.edu

Abstract

Despite the recent focus on semantic image/video annotation and retrieval, rela-
tively little work has been done on semantic audio annotation and retrieval. We
show that the supervised mutli-class naı̈ve Bayes model, which has successfully
been used for image annotation, can be used to model the semantics of audio
data. This model, as opposed a host of recently proposed unsupervised model, has
shown superior performance and requires relatively little computation time for
both parameter estimation and inference. Fast parameter estimation is achieved
using the mixture hierarchies algorithm. We consider two heterogeneous au-
dio and text data sets; sound efffects with captions, and music with associated
reviews. We show that, with the supervised multi-class model, we can both anno-
tate a novel audio track with semantically meaningful words and retrieve relevant
audio track given a text-based query.

1 Introduction

Sound carries rich information from which we derive semantic understanding and we naturally use
language to describe what we hear and what we might want to hear. This paper presents an initial
computer audition system that derives similar notions of semantics from sound. Specifically,
our goal is to create a system that can both annotate audio content with semantically meaningful
language and retrieve relevant sounds requested by human users. We view the related problems of

sound annotation and retrieval as a supervised learning problem in which each heterogeneous piece
of data is represented by both audio and text. We learn a joint probabilistic model of audio music
features and semantic tokens (referred to as ’words’) from the data. Using the model, we can infer
likely words given a novel sound, and we can rank a set of unannotated sounds given a text-based
query.

Our proposed solution uses a supervised multi-class naı̈ve Bayes approach. This model was recently
used by [1] for image annotation and was proposed as an alternative to the numerous unsupervised
models that have been developed over the last five years [2, 3, 4, 5]. The supervised approach
directly represents each word as a class rather than introducing latent variables to encode a set of
states defining a joint distribution over the audio content and all the words in the vocabulary. The
supervised approach is appealing since it has been shown to achieve good annotation and retrieval
results[1], it is conceptually straight-forward, and can be computationally efficient with respect to
both parameter estimation and inference.

In our implementation, efficient estimation is achieved using hierarchical approach that involves
first modeling the audio content of each track with a Gaussian mixture model (GMM) and then
combining sets of these track-level distributions using the mixture hierarchies algorithm [6]. This
algorithm is an extension of the standard expectation maximization (EM) algorithm for learning
a GMM. The mixture hierarchies GMM parameter estimation technique and two alternatives are
described in Section 4.

2 Related work

While the idea of developing a system to model the semantics of images and videos has received
recent attention [1, 3, 4, 5, 7], literature on modeling the semantics of audio data is relatively lim-
ited. Slaney’s Semantic Audio Retrieval system [8, 9], and extensions proposed by Buchanan [10],
represent one tread of research on sound effects retrieval. Their approach involves creating separate
hierarchical models in the acoustic and text space, and then creating links between the two spaces
for either retrieval or annotation. Cano and Koppenberger propose a similar approach based on
nearest neighbor classification [11]. These drawback of these non-parametric approaches is that in-
ference requires calculating the similarity between a query and every training example. We propose
a parametric approach that requires one calculation per semantic concept. In practice, the number of
semantic concepts is orders of magnitude smaller than the number of potential training data points,
leading to a more scalable solution.

Previous work on modeling the semantics of audio data has focused almost exclusively on sound
effects. One exception is the work of Whitman and Ellis who present research on modeling a het-
erogeneous data set of music and words [12]. Their work focuses on finding terms that can be
predicted from audio content using binary classifiers learned for each term. By identifying these
“grounded” annotations they prune sentences in order to create unbiased album reviews.

More generally, there has been substantial work on acoustic signal processing and content-based
information retrieval (specifically involving the retrieval of text, music, images, and videos). The
music information retrieval community, has produced many useful audio feature extraction tech-
niques for modeling music (for example, see [13, 14, 15]). This community has focused on music
classification (by genre, instrumentation, emotion) and query-by-example retrieval systems. Query-
by-example retrieves sounds from a database based on similarity between audio-based queries such
as songs [16] or audible noises (e.g. query-by-humming [17]). We propose a system that can both
annotate and retrieve music based on semantic keywords; query-by-text.

We take inspiration from research on modeling the semantics of images and video (see [1] for a
recent review), employ Mel-frequency cepstral coefficients (MFCC) features shown to be useful
for speech and audio modeling [18] and apply these tools to the relatively unexplored domain of
semantic modeling of sound.

3 Semantic audio annotation and retrieval

This section by formalizes the related problems of semantic audio annotation and retrieval as a
supervised multi-class naı̈ve Bayes approach where each word in our vocabulary represents a class.

We learn class-conditional distributions for each class using only the training songs that have been
positively label with the associated word. The alternative one-versus-all approach is infeasible since
our data sets are weakly labeled: the absence of a word from an annotation does not necessarily
mean that the track could not be correctly labeled with that word. For example, a song reviewer
might fail to mention the word ‘drum’ even though drums are featured in the song. Using a multi-
class framework, we focus on learning just the positive-class model from only the positively labeled
data.

3.1 Problem formulation

Consider a vocabulary V consisting of |V| unique words. Each word wi ∈ V may be a unigram, such
as ‘happy’ or ‘blues’, or a bigram, such as ‘electric;guitar’ or ‘creaky;door’. The goal in annotation
is to find a set W = {w1, ..., wA} of A semantically meaningful words that describe a query song
sq. Retrieval involves rank ordering a set of audio tracks (i.e. songs) S = {s1, ..., sR} given a query
Wq. It will be convenient to represent each annotation W as a binary vector y = (y1, ..., yM) where
yi = 1 if wi ∈ W , and 0 otherwise. We represent an audio track s as a set X = {x1, ...,xT}
of T real-valued feature vectors, where each vector xt represents features extracted from a short
segment of the audio content and T depends on the length of the song. Our data set D is a collection
of track-annotation pairs D = {(X1,y1), ..., (XD,yD)}.

3.2 Multi-class naı̈ve Bayes model

Annotation can be thought of as a multi-class classification problem in which each word wi ∈ V
represents a class. Our approach involves modeling a class-conditional distribution P (x|i), i ∈
{1, ..., |V|} for each word wi ∈ V . Given a query song represented by X = {x1, ...,xT}, the Bayes
decision rule for selecting the individual word with the minimum probability of error is given by:

i∗ = arg max
i

P (i|Xq)

= arg max
i

P (Xq|i)P (i)
P (Xq)

where P (i) is the prior probability that word wi will appear in an annotation. If we assume that xa

and xb (∀a, b ≤ T, a 6= b) are conditionally independent given word wi, then

i∗ = arg max
i

[
T∏

t=1

P (xt|i)] · P (i) (1)

We assume a uniform prior (i.e. P (i) = 1/M for all i = 1, ..,M) because the T factors in the prod-
uct will dominate the word prior. Taking the logarithm, we arrive at our final annotation equation:

i∗ = arg max
i

T∑
t=1

log P (xt|i) (2)

While the naı̈ve Bayes assumption introduced in Equation 1 is unrealistic, attempting to model the
interaction between feature vectors may be infeasible due to computational complexity and data
sparsity. Computing Equation 2 for each word creates an ordering for all words in the vocabulary.
During annotation, we select the words that individually maximize this equation.

For retrieval, we want to rank all songs in a test set based on their conditional probability given a
single-word query wq. We find empirically that using the posterior P (X|q) always returns the same
ranking under every trained word model since some songs are much more likely than others. The
first reason for this is that longer songs (with more features) have lower log likelihoods resulting
from the sum of additional log probability terms. It has been argued that the underestimation of the
log likelihood is due to the poor conditional independence assumption (see Equation 1) between the
audio feature vectors [19]. The standard solution is to calculate the average log posterior for each
track

X ∗ = arg max
X

1
T

T∑
t=1

log P (xt|q) (3)

where T is proportional to the length of the song.

The second, more subtle, problem with using the posterior emerges as a result of the multiple in-
stance learning method our weakly labeled data set requires. The class conditional density functions
P (x|q) for most features take on values very similar to the track prior density function P (x). This
creates a track bias in which tracks that have high likelihood under the prior distribution will have
high likelihood under most of the class conditional distributions. We normalize for this track bias,
P (X), and use the likelihood P (q|X) instead of the posterior for retrieval:

X ∗ = arg max
X

P (q|X) (4)

= arg max
X

P (X|q)P (q)
P (X)

(5)

= arg max
X

[
∏T

t=1 P (xt|q)] · P (q)∑|V|
i=1[

∏T
t=1 P (xt|i)] · P (i)

(6)

= arg max
X

∑T
t=1 log P (xt|q)∑|V|

i=1

∑T
t=1 log P (xt|i)

(7)

where M is the size of the vocabulary. Again, we assume a uniform word prior and take logarithmic
transform for computational simplicity. By normalizing with the song bias, we effectively allow
each song to place more weight on the words that have highest relative posterior. We then rank
songs by the weight that each song in the database places on the query word. Note that the factor
1/T introduced in Equation 3 to account for the song length cancels out in our Equation 7.

4 Parameter Estimation

For each word wi, we learn the parameters of the class conditional density, P (x|i), using the audio
features from all songs which have wi in their associated annotations. That is, the training set Ti for
word wi consists of only the positive examples:

Ti = {Xd : [yd]i = 1} (8)

The output of parameter estimation is a set of M word-level distributions P (x|i) for i = 1, ...,M ,
where we represent each distribution as a R-component mixture of Gaussian distribution parameter-
ized by {πr, µr,Σr} for r = 1, ..., R. The word-level distribution for word wi is given by:

P (x|i) =
R∑

r=1

πrN (x|µr,Σr)

where N (·|µ,Σ) is a multivariate Gaussian distribution with mean µ and covariance matrix Σ. In
this work, we consider only diagonal covariance matrices since using full covariance matrices can
cause models to overfit the training data while scalar covariances do not provide adequate general-
ization. The resulting set of M models each have O(R ·D) parameters, where D is the dimension
of feature vector x.

We consider three parameter estimation techniques for learning a supervised multi-class naı̈ve Bayes
model: direct estimation, naı̈ve averaging, and mixture hiearchies [1]. The techniques are similar
in that, for each word wi ∈ V , they use the Expectation-Maximization (EM) algorithm for fitting a
mixture of Gaussians to training data. They differ in how they break down the problem of parameter
estimation into subproblems and then merge these results to produce a final density estimate.

4.1 Direct estimation

Direct estimation trains a model for each word wi using the superset of feature vectors for all the
songs that have word wi in the associated human annotation:

⋃
Xd, ∀d such that Xd ∈ Ti. Using

this training set, we directly learn the word-level mixture of Gaussian distribution using the EM
algorithm (see Figure 1a). The drawback of using this method is that computational complexity

Figure 1: (a) Direct, (b) naive averaging, and (c) mixture hierarchies parameter estimation. Solid ar-
rows indicate that the distribution parameters are learned using standard EM. Dashed arrows indicate
that the distribution is learned using mixture hierarchies EM.

increases with training set size. We find that, in practice, we are unable to estimate parameters using
this method in a reasonable amount of time since there are on the order of 100,000s of training
vectors for each word-level distribution.

⋃
Xd. We can subsample our training data but this is not

optimal since we not utilizing all of the available training data. E

4.2 Naive averaging

Instead of directly estimating a word-level distribution for wi, we can first learn track-level distri-
butions: P (x|i, j), j ∈ 1, ..., |Ti| where the variable j indicates an audio track. We use EM to train
a song-level distribution from the feature vectors extracted from that song. We then create a word-
level distribution by averaging the track-level distributions of each track annotated with wi. Naive
averaging gives equal weight to each track-level distribution, resulting in the following distribution:

PX|Y(x|i) =
1
|Ti|

|Ti|∑
j=1

K∑
k=1

π
(j)
k N (x|µ(j)

k ,Σ(j)
k)

where K is the number of mixture components in each track-level distribution (see Figure 1b).

Training a model for each track in the training set and summing them is relatively efficient, however,
the drawback of this estimation technique is that the size of word-level models grows with the size of
the training database since there will be |Ti| ·K components for word wi. In practice, we may have
to evaluate thousands of multivariate Gaussian distributions each of the feature vectors xt ∈ Xq,
where Xq represents a novel query track. Note that Xq may contain on the order of 10,000 feature
vectors depending on the audio representation.

4.3 Mixtures hierarchies estimation

The benefit of direct estimation is that it produces a parametric distribution with a fixed number
of parameter. However, in practice, parameter estimation is infeasible without subsampling the
training data. Naı̈ve averaging estimation can efficiently produce a parametric distribution, but it
is computationally expensive to evaluate this distribution since the number of parameters increases
with the size of the training data set. Mixture hierarchy estimation is an alternative is efficient and
produces a parametric distribution with a fixed number of parameters [6].

Consider the set of |Ti| track-level distribution (each with K mixture components) that are learned
during naı̈ve estimation. We can estimate a word-level distribution with R component using an
extension of the EM algorithm where the track-level distributions are consider the children and the
word-level distribution is the parent. (See Figure 1c.) This EM algorithm iterates between the E-step
and the M-step:

E-step: Compute the responsibilities of each of the parent components to a child component

hr
(j),k =

[
N (µ(j)

k |µr,Σr)e−
1
2 trace{(Σr)−1Σ

(j)
k

}
]π

(j)
k

N

πr∑
l

[
N (µ(j)

k |µl,Σl)e−
1
2 trace{(Σl)−1Σ

(j)
k

}
]π

(j)
k

N

πl

where N is a user defined parameter. (In practice, we set N = K so that E[π(j)
k N] = 1.)

M-step: Update the parameters of the parent distribution

πnew
r =

∑
(j),k hr

(j),k

|Ti| ·K
(9)

µnew
r =

∑
(j),k

wr
(j),kµ

(j)
k ,where wr

(j),k =
hr

(j),kπ
(j)
k∑

(j),k hr
(j),kπ

(j)
k

(10)

Σnew
r =

∑
(j),k

wr
(j),k

[
Σ(j)

k + (µ(j)
k − µt)(µ

(j)
k − µt)T

]
(11)

From a generative perspective, the track-level distribution is generated by sampling mixture com-
ponents from the word-level distribution. The observed audio features are then samples from the
track-level distribution. Note that the number of parameters for the word-level distribution is the
same as the number of parameter resulting from direct estimation yet we learn this model using all
of the training data without subsampling. We have essentially replaced one computationally expen-
sive (and often impossible) run of the standard EM algorithm with |Ti| computationally inexpensive
runs and one run of the mixture hierarchies EM. In practice, mixture hierarchies EM requires about
the same computation time of one run of standard EM.

5 Model evaluation

In this section, we quantitatively evaluate our supervised multi-class naı̈ve Bayes model for audio
annotation and retrieval. Our music data set consist of 2,131 song-review pair where the reviews
have been composed by expert music critics at AMG Allmusic [20]. The song taken from the our
private collections of music. The sound effects data set consists 1364 track-caption pairs from the
BBC Sound Effects. We find it hard to compare our results to existing work [8, 11] since the existing
results are mainly qualitiative and relate to individual tracks, or focus on a small subsets of sound
effects (e.g. animial vocalizations or isolated musical instrument). To our knowledge, there has been
very little work done on semantic music annotation [12] and virtually no work focused on semantic
music retrieval.

We evaluate our system against three baselines models: random sample, prior stochastic, and prior
deterministic. For each song, random sample picks words at random (without replacement) from
our vocabulary to annotate a song. Prior-stochastic samples words (without replacement) from a
multinomial distribution parameterized by the word prior distribution, P (i) for i = 1...|V|, estimated
using the observed word counts of the training set. Prior-deterministic ranks words according to the
word prior, P (i), and always select the same words for every annotation.

Evaluation is performed using 10-fold validation. However, both models learning using direct es-
timation and inference using models learned using naive averaging can take long time (e.g. days).
For these estimation techniques, we present results for just one fold.

5.1 Representing text and audio data

We represent each text document (i.e. song review or sound effects caption) as a bag of words: a set
of words W that are found in both the review and our vocabulary V . In the context of music, our
musical vocabulary consists of 317 musically informative words that we hand picked from a list of
common words found in a corpus of song reviews. “Musically informative” means that the word
may describe something about the audio content. We do not include common stop words (‘the’,
‘into’, ‘a’), vague words (‘meaningful’, ‘across’), or general words (‘song’, ‘genre’). In addition,
we preprocess the text with a custom stemming algorithm that alters suffixes so that some words,
such as ‘guitar’ and ‘guitars’, become the same word, while other words, such as ‘blue’ and ‘blues’,
remain unaffected. Our sound effects corpus consists of the captions associated with BBC Sound
Effects library. We select the 349 words each of which appear 5 or more times in this corpus.

Similarly, sounds are represented as a bag-of-feature-vectors: we extract an unordered set of feature
vectors for each segments of audio data. The length of the segment and feature extraction technique
depends on the class of audio. For music, we compute dynamic Mel-frequency cepstral coefficients

(dMFCCs) each half-overlapping, medium-time (∼743 msec) segment of music audio[14]. This
results in about 800 52-dimensional feature vectors for a five minute song. For sound effects, we
compute delta cepstrum feature vectors for each half-overlapping short-tme (∼12 msec) segment
[10]. We extract about 5000 39-dimensional feature vectors each 30 second of audio content.

We have also explored using principal component analysis (PCA) to reduce the dimension of the
audio feature vectors. We find that in practice PCA increases performance for music but decreases
performance for sound effect. The improvement of performance is most likely due to the fact DM-
FCC features are correlated with one another.

5.2 Annotation

Using Equation 2, we annotate all test set songs with 10 words and all test set sound effect tracks with
4 words. Annotation performance is measured using mean per-word precision and recall. Per-word
precision measures how often our system correctly guesses that a word will appears in a review. Per-
word Recall measures the percentage of reviews with a word that the system identifies as containing
that word. More formally, for each word w, |wH | is the number of tracks that have word w in the
“human” document. |wA| is the number of tracks that a model “automatically” annotates with word
w. |wC | is the number of “correct” words that have been used both in the document and by the
model. Per-word recall is |wC |/|wH | and per-word precision is |wC |/|wA|.
Mean per-word recall and precision is the average of these ratios over all the words in our vocabulary.
It should be noted that these metrics range between 0.0 and 1.0, but one may be upper bounded by
a value less than 1.0 if either the number of words that appear corpus is greater or lesser than the
number of words that are output by our system. For example, our system outputs 2150 words for
the 215 test songs for a corpus that contains 4116 words, thus mean recall will be upper-bounded
by a value less than one. The exact upper bound will depend on the relative word frequencies of
each word in the vocabulary. For our music data set, mean per-word recall is bound by 0.84 if we
perfectly predict the most infrequent words.

Precision is undefined for words that the model never uses. Therefore, we actually compute
smoothed precision by placing a small non-negative weight ε/|V| on each word that the model did
not use to annotate a test song (ε = 0.0001). The weight of a word that is used by the model is cor-
rected to 1− (ε/10) so that the total weight distributed across any one test song is 10. The smoothed
estimate for words that are not used by a model is approximately the word prior, PY . If we do not
smooth and define precision ≡ 0 for words where |wA| = 0, the precision of the deterministic prior
(which always chooses the same 10 words) is reduced from 0.060 to 0.010 while mean precisions
for all other models remain roughly unaffected. It may seem more straightforward to use per-song
precision and recall, rather than the per-word metrics describe above. However, per-song metrics
can lead to artificially good results if a system is good at predicting the few common words and bad
at predicting the many rare words in the vocabulary. Our goal is to find a system that is good at
predicting all the words.

In Table 1, we see that our model trained using mixture hierarchy estimation significantly outper-
forms the three baselines for both the music and sound effects data sets. We see that for music,
models trained using the three parameter estimation techniques are comparable, but for sound ef-
fects, naive averaging results in superior performance. For the music data set, each word is often
present in 100s of reviews, where is for sound effects, each word is in 10s of captions. Thus for sound
effects, the number of mixture components is manageable and produces a good density estimate.

5.3 Retrieval

For each word wq, we rank the test songs in S according to Equation 6 and calculate the mean
average precision (mAP) [3] and the mean area under the receiver operating characteristic (ROC)
curve (mAROC). Average precision is found by moving down our ranked list of test songs and
averaging the precisions at every point where we correctly identify a new song. A receiver operating
characteristic (ROC) curve is a plot of true positive rate as a function of the false positive rate as
we move down our ranked list of songs. The area under the ROC (AROC) is found by integrating
the ROC curve and is upper bound by 1.0. Random guessing produces an AROC of 0.5 (as shown

Table 1: Audio annotation and retrieval results: mAP = mean average precision, mAROC = mean
area under the ROC curve, Cover = number of unique words used by a model. Values represent
means and standard error using 10-fold cross validation. Values without an associated standard
deviation represent the result of just one fold (due to computational constraints).

Model Annotation Retrieval
Recall Precision Cover mAP mAROC

Music - |V| = 317, A=10
Random Sample 0.029 (0.002) 0.059 (0.002) 316 (1) 0.082 (0.001) 0.496 (0.002)
Prior (Stochastic) 0.032 (0.001) 0.061 (0.002) 297 (1) 0.084 (0.001) 0.502 (0.002)
Prior (Deterministic) 0.032 (0.000) 0.061 (0.001) 10 (0) 0.081 (0.001) 0.496 (0.004)

DMFCC features, 12 PCA dimensions
Direct (R=32) 0.081 0.106 290 0.121 0.600
NaiveAvg (K = 8) 0.072 0.119 290 0.109 0.610
MixHier (K = 8, R = 32) 0.077 (0.003) 0.095 (0.003) 263 (2) 0.117 (0.003) 0.598 (0.003)

Sound effects - |V| = 349, A=4
Random Sample 0.014 (0.002) 0.012 (0.001) 269 (3) 0.052 (0.002) 0.509 (0.003)
Prior (Stochastic) 0.013 (0.001) 0.011 (0.001) 229 (2) 0.049 (0.001) 0.505 (0.005)
Prior (Deterministic) 0.018 (0.002) 0.010 (0.000) 4 (0) 0.052 (0.002) 0.502 (0.005)

Delta cepstrum features
Direct (R = 12) 0.166 0.150 207 0.152 0.761
NaiveAvg (K = 8) 0.243 0.220 208 0.201 0.793
MixHier (K = 8, R = 12) 0.189 (0.011) 0.125 (0.012) 194 (1) 0.187 (0.013) 0.759 (0.007)

empirically in Table 1) since . Columns 4 and 5 of Table 1 show mAP and mAROC found by
averaging each metric over all the words in our vocabulary.

Similar to the annotation results, we see that (in Table 1) our model significantly outperforms the
baseline models. Again, note that naive averaging estimation produces the best sound effects model
and may be preferred over mixture hierarchies estimation when the number of track-level models is
small.

5.4 Comments

While our models significantly outperform the random baselines, the best audio annotation results,
especially our music results, leave room for improvement. State-of-the-art content-based image
annotation systems [1] report mean per-word recall and precision scores of about 0.25 which is
comparable to our best sound effects results. However, the relative objectivity of the tasks in the two
domains as well as the vocabulary, the quality of annotations, the features, and the amount of data
differ greatly between our audio annotation system and existing image annotation systems. This
makes any direct comparisons somewhat misleading.

For music, it should be noted that our “ground truth” human reviews represent noisy versions of
ideal annotations. A music reviewer creating a document to describe a song does not make explicit
decisions about whether specific words that we include in our vocabulary are relevant or not. Thus,
relevant words are often omitted (weak labeling) and erroneous words can be found in our feature
representation of the reviews (e.g., “this song does not rock”). In an informal evaluation of our
“ground truth”, we asked six individuals to evaluate 20 songs each. For each song, we presented
individual with five words from the ground truth annotation, and asked them to say whether each
word was relevant or not. We found that on average about two of the five words were relevant (e.g.
precision = 0.38). This suggest that we are learning word models based on with many irrelevant
songs.

6 Discussion

The goal for this work is to provide a framework semantic audio annotation and retrieval. Our initial
approach was based on a recently proposed image annotation model. We can imagine adapting other
models such as the correspondence latent Dirichlet allocation model [2] or the mutliple Bernoulli
relevance model [3] for modeling audio data. Future work will also involves incorporating alterna-
tive audio representations. We used existing audio feature extraction techniques and model these

features using GMMs. One drawback of using GMMs is that they ignore the temporal nature of ex-
tracted audio feature vectors. Exploring alternative audio representations and modeling the temporal
aspects our our audio (with hidden Markov models) may lead to better performance.

Another goal was to use existing annotations rather than to manually annotate each audio track. This
approach allows us to rapidly incorporate new training data without spending time and energy on
creating labels. However, our initial approach for deriving semantic labels for music (e.g. repre-
senting a review as a bags-of-words) produced unreliable annotations. This may be remedied by
collecting a data set that is specifically designed for the task of music annotation and retrieval.

References
[1] G. Carneiro and N. Vasconcelos. Formulating semantic image annotation as a supervised learning prob-

lem. IEEE CVPR, 2005.

[2] D. M. Blei and M. I. Jordan. Modeling annotated data. ACM SIGIR, 2003.

[3] S. L. Feng, R. Manmatha, and Victor Lavrenko. Multiple bernoulli relevance models for image and video
annotation. IEEE CVPR, 2004.

[4] J. Li and J. Z. Wang. Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE
PAMI, 25(9):1075–1088, 2003.

[5] K. Barnard, P. Duygulu, D. Forsyth, N. de Freitas, D. Blei, and M. Jordan. Matching words and pictures.
JMLR, 3:1107–1135, 2002.

[6] N. Vasconcelos. Image indexing with mixture hierarchies. IEEE CVPR, pages 3–10, 2001.

[7] D. Forsyth and M. Fleck. Body plans. IEEE CVPR, 1997.

[8] M. Slaney. Semantic-audio retrieval. IEEE ICASSP, 2002.

[9] M. Slaney. Mixtures of probability experts for audio retrieval and indexing. IEEE Multimedia and Expo,
2002.

[10] C. R. Buchanan. Semantic-based audio recognition and retrieval. Master’s thesis, School of Informatics,
University of Edinburgh, 2005.

[11] P. Cano and M. Koppenberger. Automatic sound annotation. In IEEE workshop on Machine Learning for
Signal Processing, 2004.

[12] B. Whitman and D. Ellis. Automatic record reviews. ISMIR, 2004.

[13] A. Meng, P. Ahrendt, and J. Larsen. Improving music genre classification by short-time feature integra-
tion. IEEE ICASSP, 2005.

[14] M. F. McKinney and J. Breebaart. Features for audio and music classification. ISMIR, 2003.

[15] G. Tzanetakis and P. R. Cook. Musical genre classification of audio signals. IEEE Transaction on Speech
and Audio Processing, 10(5):293–302, 7 2002.

[16] A. Flexer, E. Pampalk, and G. Widmer. Novelty detection for spectral similarity of songs. ISMIR, 2005.

[17] R. B. Dannenberg and N. Hu. Understanding search performance in query-by-humming systems. ISMIR,
2004.

[18] L. Rabiner and B. H. Juang. Fundamentals of Speech Recognition. Prentice Hall, 1993.

[19] D. Reynolds, T.F. Quatieri, and R.B. Dunn. Speaker verification using adapted gaussian mixture models.
Digital Signal Processing, 10:19–41, 2000.

[20] AMG. Allmusic guide. http://www.allmusic.com.

