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Abstract

We describe how we used a data set of chorale harmonisatomzsosed
by Johann Sebastian Bach to train Hidden Markov Models. dJsiorob-
abilistic framework allows us to create a harmonisatiortesyswhich
learns from examples, and which can compose new harmanisatiVe
make a quantitative comparison of our system’s harmowoisgierfor-
mance against simpler models, and provide example haratans.

1 Introduction

Chorale harmonisation is a traditional part of the theoettducation of Western classical
musicians. Given a melody, the task is to create three futithes of music which will
sound pleasant when played simultaneously with the ofigmglody. A good chorale
harmonisation will show an understanding of the basic sulg harmonisation, which
codify the aesthetic preferences of the style. Here we @gbrchorale harmonisation as
a machine learning task, in a probabilistic framework. We esample harmonisations
to build a model of harmonic processes. This model can themsbd to compose novel
harmonisations.

Section 2 below gives an overview of the musical backgroundhorale harmonisation.
Section 3 explains how we can create a harmonisation systérg Hidden Markov Mod-
els. Section 4 examines the system’s performance quagliaind provides example
harmonisations generated by the system. In section 5 we a@ngur system to related
work, and in section 6 we suggest some possible enhancements

2 Musical Background

Since the sixteenth century, the music of the Lutheran ¢hbhied been centred on the
‘chorale’. Chorales were hymns, poetic words set to musitanaous early example is
Martin Luther’s “Ein’ feste Burg ist unser Gott”. At first chales had only relatively sim-
ple melodic lines, but soon composers began to arrange roorglex music to accompany
the original tunes. In the pieces by Bach which we use hees;hibrale tune is taken gen-
erally unchanged in the highest voice, and three other raugarts are created alongside
it, supporting it and each other. By the eighteenth centuggmplex system of rules had
developed, dictating what combinations of notes shouldi&geg at the same time or fol-
lowing previous notes. The added lines of music should ntaditeasily with the melody,
but should not clash with it too much either. Dissonance ocaprove the music, if it is
resolved into a pleasant consonance.
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Figure 1: Hidden state representations (a) for harmowisatb) for ornamentation.

The training and test chorales used here are divided intosets: one for chorales in
‘major’ keys, and one for chorales in ‘minor’ keys. Major améhor keys are based around
different sets of notes, and musical lines in major and mikegs behave differently.

The representation we use to model harmonisations dividehaorales into discrete time-
steps according to the regular beat underlying their mudigghm. At each time-step we
represent the notes in the various musical parts by couhtimgfar apart they are in terms
of all the possible ‘semitone’ notes.

3 Harmonisation M odel

3.1 HMM for Harmonisation

We construct a Hidden Markov model in which the visible statse melody notes and the
hidden states are chords. A sequence of observed events malemelody line, and a
sequence of hidden events makes up a possible harmonigataomelody line. We denote
the sequence of melody notes¥asind the harmonic motion &3, with y; representing the
melody at timet, andc; the harmonic state.

Hidden Markov Models are generative models: here we modeldhwisible melody line is
emitted by a hidden sequence of harmonies. This makes sensasical terms, since we
can view a chorale as having an underlying harmonic stracand the individual notes of
the melody line as chosen to be compatible with this harmstaite at each time step. We
will create separate models for chorales in major and miegsksince these groups have
different harmonic structures.

For our model we divide each chorale into time steps of a eibght, making the assump-
tion that the harmonic state does not change during a begpic@lly there are three or
four beats in a bar.) We want to create a model which we canaugeetlict three further
notes at each of these time steps, one for each of the thré&@madtimusical lines in the
harmonisation.

There are many possible hidden state representations flaaihwo choose. Here we rep-
resent a choice of notes by a list of pitch intervals. By udimgrvals in this way we

represent the relationship between the added notes andetoglyrat a given time step,
without reference to the absolute pitch of the melody noteesk interval sets alone would
be harmonically ambiguous, so we disambiguate them usingdrac labels, which are

included in the training data set. Adding harmonic labelsinsethat our hidden symbols
not only identify a particular chord, but also the harmonindtion that the chord is serv-
ing. Figure 1(a) shows the representation used for some @ramtes. Here (an A major



chord) the alto, tenor and bass notes are respectively 47 1& semitones below the
soprano melody. The harmonic label is ‘T’, labelling thisfasctionally a ‘tonic’ chord.
Our representation of both melody and harmony distingsidfetween a note which is
continued from the previous beat and a repeated note.

We make a first-order Markov assumption concerning the itiangrobabilities between
the hidden states, which represent choices of chord on andndl beat:

Plet|ei—1,¢i—2,...,c0) = Plet|ei—1).

We make a similar assumption concerning emission probiaisilto model how the ob-
served event, a melody note, results from the hidden statema:

P(yt|ct7"‘7c()vyt717~" 7y0) = P(yt|ct)‘

In the Hidden Markov Models used here, the ‘hidden’ stateshofds and harmonic sym-
bols are in fact visible in the data during training. This methat we can learn transition
and emission probabilities directly from observationsun waining data set of harmonisa-
tions. We use additive smoothing (adding 0.01 to each bidgtd with zero counts in the
training data.

Using a Hidden Markov Model framework allows us to condudicefnt inference over
our harmonisation choices. In this way our harmonisaticatesy will ‘plan’ over an entire
harmonisation rather than simply making immediate choizzsed on the local context.
This means, for example, that we can hope to compose apatefradences’ to bring our
harmonisations to pleasant closes rather than finishingpéigr

Given a new melody line, we can use the Viterbi algorithm tal fine most likely state
sequence, and thus harmonisation, given our model. We sarpabvide alternative har-
monisations by sampling from the posterior [see 1, p. 156&xplained below.

3.2 Sampling Alternative Har monisations

Usinga:—1(j), the probability of seeing the observed events of a sequgntetimet — 1
and finishing in statg, we can calculate the probability of seeing the first 1 events,
finishing in statej, and then transitioning to stakeat the next step:

P(y():yla e Yi—1,Cpm1 = J, 6 = k) = atfl(j)P(Ct = k|Ct71 = j)~

We can use this to calculate(j|k), the probability that we are in stajeat timet — 1 given
the observed events up to time- 1, and given that we will be in stateat timet:

. . ai_1(j)P(cy = klei—1 =4
pelilk) = Plemr = jlyo,ys- - ye-s, 0 = k) = Ztatl(jl)(l)(PECt —|kic: 1 z)l)
Qi = =

To sample fromP(C|Y") we first choose the final state by sampling from its probabilit
distribution according to the model:

Pler =jlyo,yr, - yr) = ZOZTT%)

Once we have chosen a value for the final statewe can use the variablgs(j|k) to
sample backwards through the sequence:

P(Ct = j|y07yla cee 7yT7Ct+1) = pt+1(j|ct+1)~
3.3 HMM for Ornamentation

The chorale harmonisations produced by the Hidden Markodeé¥described above har-
monise the original melody according to beat-long time sté€thorale harmonisations are



Table 1: Comparison of predictive power achieved by difier@odels of harmonic se-
guences on training and test data sets (nats).

Training (maj) Test (maj) Training (min) Training (min)

_ LI P(C]Y) 2.56 4.90 2.66 5.02
S P(erly) 3.00 3.22 3.52 4.33
S Plerer) 5.41 7.08 5.50 7.21
ISP 6.43 7.61 6.57 7.84

not limited to this rhythmic form, so here we add a secondamamentation stage which
can add passing notes to decorate these harmonisationsraieg a harmonisation and
adding the ornamentation as a second stage greatly recueesitber of hidden states
in the initial harmonisation model: if we went straight tdljusornamented hidden states
then the data available to us concerning each state woulgttesreely limited. Moreover,
since the passing notes do not change the harmonic struftarpiece but only ornament
it, adding these passing notes after first determining thebic structure for a chorale is
a plausible compositional process.

We conduct ornamentation by means of a second Hidden MarlanleM The notes added
in this ornamentation stage generally smooth out the moxeb®tween notes in a line of

music, so we set up the visible states in terms of how muchhtiee tharmonising musical

lines rise or fall from one time-step to the next. The hiddiertes describe ornamentation
of this motion in terms of the movement made by each part dutie time step, relative

to its starting pitch. This relative motion is described &hze resolution four times as fine

as the harmonic movement. On the first of the four quartetsbse always leave notes
as they were, so we have to make predictions only for the fimaktquarter-beats. Figure
1(b) shows an example of the representation used. In thingeathe alto and tenor lines
remain at the same pitch for the second quarter-beat as theyfar the first, and rise by

two semitones for the third and fourth quarter-beats, sdatk represented as ‘0,0,2,2,
while the bass line does not change pitch at all, so is reptedas ‘0,0,0,0'.

4 Results

Our training and test data are derived from chorale harmatiniss by Johann Sebastian
Bach! These provide a relatively large set of harmonisations byglescomposer, and are
long established as a standard reference among musicdtsedrhere are 202 chorales in
major keys of which 121 were used for training and 81 useddstirig; and 180 chorales
in minor keys (split 108/72).

Using a probabilistic framework allows us to give quaniitaianswers to questions about
the performance of the harmonisation system. There are mpaaytities we could com-
pute, but here we will look at how high a probability the modskigns to Bach’s own
harmonisations given the respective melody lines. We Gatie@verage negative log prob-
abilities per symbol, which describe how predictable thmisgls are under the model.
These quantities provide sample estimates of cross-gntidimereas verbal descriptions
of harmonisation performance are unavoidably vague and teacompare, these figures
allow our model’s performance to be directly compared whtt bf any future probabilistic
harmonisation system.

Table 1 shows the average negative log probability per symbBach’s chord symbol

We used a computer-readable edition of Bach’s chorales downloaatedtp://i11ftp.
ira.uka.de/pub/neuro/dominik/midifiles/bach.zip



S
o R r?rr|| e Hrr\
oy Al ddud e dd ] |d
R LA s S
50 [T | | o |
bV gdss|feds g 298]5 2590 g g
[J) L I I\rrr\ T ] I
PP PP LE e

Figure 2: Most likely harmonisation under our model of cheitgd, BWV 48
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Figure 3: Most likely harmonisation under our model of chet8389, BWV 438

sequences given their respective melodic symbol sequ,en{%em P(C1Y), on training
and test data sets of chorales in major and minor keys. As padson we give analo-
gous negative log probabilities for a model predicting chstates from their respective
melody notes—= > In P(c;|y:), for a simple Markov chain between the chord states,
—+ > In P(c;|e;—q), and for a model which assumes that the chord states areeindep

dently drawn,— £ >~ In P(c;). The Hidden Markov Model here has 5046 hidden chord
states and 58 visible melody states.

The Hidden Markov Model finds a better fit to the training ddiart the simpler models:
to choose a good chord for a particular beat we need to takeodount both the melody
note on that beat and the surrounding chords. Even the siinpledel of the data, which
assumes that each chord is drawn independently, performsewn the test data than the
training data, showing that we are suffering from sparsa.dgtere are many chords, chord
to melody note emissions, and especially chord to chorditians, that are seen in the test
data but never occur in the training data. The models’ peréorce with unseen data could
be improved by using a more sophisticated smoothing metftwdexample taking into
account the overall relative frequencies of harmonic syimtMien assigning probabilities
to unseen chord transitions. However, this lower perfomeanith unseen test data is not
a problem for the task we approach here, of generating nemvdrasations, as long as we
can learn a large enough vocabulary of events from the hgudata to be able to find good
harmonisations for new chorale melodies.

Figures 2 and 3 show the most likely harmonisations undernoodel for two short



chorales. The system has generated reasonable harmmmisatie can see, for example,
passages of parallel and contrary motion between the diffqrarts. There is an appropri-
ate harmonic movement through the harmonisations, andcireg to plausible cadences.

The generated harmonisations suffer somewhat from natdakito account the flow of
the individual musical lines which we add. There are largegs, especially in the bass
line, more often than is desirable — the bass line suffers siese has the greatest variance
with respect to the soprano melody. This excessive jumplisg faeds through to reduce
the performance of the ornamentation stage, creatingleistates which are unseen in the
training data. The model structure means that the mosylikaimonisation leaves these
states unornamented. Nevertheless, where ornamentat®bden added it fits with its
context and enhances the harmonisations.

The authors will publish further example harmonisations|uding MIDI files, online at
http://www.tardis.ed.ac.uk/"moray/harmony/

5 Reationship to previouswork

Even while Bach was still composing chorales, music théovigre catching up with mu-
sical practice by writing treatises to explain and to teaamfonisation. Two famous ex-
amples, Rameau'$reatise on Harmony2] and theGradus ad Parnassurhy Fux [3],
show how musical style was systematised and formalisedsatsof rules. The traditional
formulation of harmonisation technique in terms of ruleggests that we might create an
automatic harmonisation system by finding as many rules asawend encoding them as
a consistent set of constraints. Pachet and Roy [4] provigleod overview of constraint-
based harmonisation systems. For example, one early sys}¢akes rules from Fux and
assigns penalties according to the seriousness of eachainlg broken. This system then
conducts a modified best-first search to produce harmooiisatising standard constraint-
satisfaction techniques for harmonisation is problematitce the space and time needs of
the solver tend to rise extremely quickly with the lengthtad piece.

Several systems have applied genetic programming tecbsiguharmonisation, for ex-
ample Mcintyre [6]. These are similar to the constraintdabsystems described above,
but instead of using hard constraints they encode theis ragea fitness function, and try
to optimise that function by evolutionary techniques. RAonnuaisuk and Wiggins [7]
are reserved in their assessment of genetic programminttafononisation. They make a
direct comparison with an ordinary constraint-based systed conclude that the perfor-
mance of each system is related to the amount of knowledgeleddn it rather than the
particular technique it uses. In their comparison the @dirtonstraint-based system actu-
ally performs much better, and they argue that this is becaymssesses implicit control
knowledge which the system based on the genetic algoritbksla

Even if they can be made more efficient, these rule-basedragstio not perform the full
task of our harmonisation system. They take a large set emutitten by a human and
attempt to find a valid solution, whereas our system leasnales from examples.

Hild et al. [8] use neural networks to harmonise choraleke lthe Hidden Markov Models
in our system, these neural networks are trained using deamapmonisations. However,
while two of their three subtasks use only neural networkié&d on example harmonisa-
tions, their second subtask, where chords are chosen émtiege more general harmonies,
includes constraint satisfaction. Rules written by a hurpanalise undesirable combi-
nations of notes, so that they will be filtered out when the bbasrd is chosen from all
those compatible with the harmony already decided. In esqtiour model learns all its
harmonic ‘rules’ from its training data.

Ponsford et al. [9] use-gram Markov models to generate harmonic structures. &niik



chorale harmonisation, there is no predetermined tunewitbh the harmonies need to fit.
The data set they use is a selection of 84 saraband dancesdiffetent seventeen-century
French composers. An automatically annotated corpus id tesérain Markov models
using contexts of different lengths, and the weighted suth@forobabilities assigned by
these models used to predict harmonic movement. Ponsfatdaeeate new pieces first by
random generation from their models, and secondly by setettiose randomly-generated
pieces which match a given template. Using templates gieéieresults, but the great
majority of randomly-generated pieces will not match thapiate and so will have to be
discarded. Using a Hidden Markov Model rather than simptgams allows this kind of
template to be included in the model as the visible state @&ifstem: the chorale tunes
in our system can be thought of as complex templates for haigations. Ponsford et
al. note that even with their longest context length, theecads are poor. In our system
the ‘planning’ ability of Hidden Markov Models, using the rabination of chords and
harmonic labels encoded in the hidden states, producesoasigvhich bring the chorale
tunes to harmonic closure.

This paper stems from work described in the first author's Mf&sis [10] carried out in
2002. We have recently become aware that similar work hasdseeied out independently

in Japan by a team led by Prof S. Sagayama [11, 12]. To our ladgel this work has
been published only in Japanés&he basic frameworks are similar, but there are several
differences. First, their system only describes the harsadion in terms of the harmonic
label (e.g. T for tonic) and does not fully specify the vogiof the three harmony lines or
ornamentation. Secondly, they do not give a quantitatiaduation of the harmonisations
produced as in our Table 1. Thirdly, in [12] a Markov modellidocksof chord sequences
rather than on individual chords is explored.

6 Discussion

Using the framework of probabilistic influence allows us &fprm efficient inference to
generate new chorale harmonisations, avoiding the cortipuigh scaling problems suf-
fered by constraint-based harmonisation systems. We idedcabove neural network
and genetic algorithm techniques which were less compuénsive than straightforward
constraint satisfaction, but the harmonisation systerrgyubese techniques retain a pre-
programmed knowledge base, whereas our model is able to iksanarmonisation con-
straints from training data.

Different forms of graphical model would allow us to takedrgccount more of the de-
pendencies in harmonisation. For example, we could usetehimyder Markov structure,
although this by itself would be likely to greatly increabe problems already seen here
with sparse data. An alternative might be to use an Autossgre Hidden Markov Model
[13], which models the transitions between visible statewell as the hidden state transi-
tions modelled by an ordinary Hidden Markov Model.

Not all of Bach’s chorale harmonisations are in the samesfbme of his harmonisations
are intentionally complex, and others intentionally sieaplVe could improve our harmon-
isations by modelling this stylistic variation, either nuafly annotating training chorales
according to their style or by training a mixture of HMMs.

As we only wish to model the hidden harmonic state given thiedygerather than construct
a full generative model of the data, Conditional RandomdsdICRFs) [14] provide a
related but alternative framework. However, note thantreg such models (e.g. using
iterative scaling methods) is more difficult than the simpdeinting methods that can be
applied to the HMM case. On the other hand the use of the CRRefrark would have

2\We thank Yoshinori Shiga for explaining this work to us.



some advantages, in that additional features could bepocated. For example, we might
be able to make better predictions by taking into accountthieent time step’s position
within its musical bar. Music theory recognises a hierarchgtressed beats within a bar,
and harmonic movement should correlated with these see$be ornamentation process
especially might benefit from a feature-based approach.

Our system described above only considers chords as setteofdls, and thus does not
have a notion of the key of a piece (other than major or minbigwever, voices have a
preferred range and thus the notes that should be used dodlepehe key, so the key

signature could also be used as a feature in a CRF. Takingéatmunt the natural range of
each voice would prevent the bass line from descending toalal keep the three parts
closer together. In general more interesting harmoniadtretien musical lines are closer
together and their movements are more constrained. Andliegnsion that could be

explored with CRFs would be to take into account the word$iefdhorales, since Bach'’s
own harmonisations are affected by the properties of ths eexwell as of the melodies.
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