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Abstract—Note onset detection and localization is useful in a
number of analysis and indexing techniques for musical signals.
The usual way to detect onsets is to look for “transient” regions in
the signal, a notion that leads to many definitions: a sudden burst
of energy, a change in the short-time spectrum of the signal or in
the statistical properties, etc. The goal of this paper is to review,
categorize, and compare some of the most commonly used tech-
niques for onset detection, and to present possible enhancements.
We discuss methods based on the use of explicitly predefined signal
features: the signal’s amplitude envelope, spectral magnitudes and
phases, time-frequency representations; and methods based on
probabilistic signal models: model-based change point detection,
surprise signals, etc. Using a choice of test cases, we provide
some guidelines for choosing the appropriate method for a given
application.

Index Terms—Attack transcients, audio, note segmentation, nov-
elty detection.

I. INTRODUCTION

A. Background and Motivation

MUSIC is to a great extent an event-based phenomenon for
both performer and listener. We nod our heads or tap our

feet to the rhythm of a piece; the performer’s attention is focused
on each successive note. Even in non note-based music, there
are transitions as musical timbre and tone color evolve. Without
change, there can be no musical meaning.

The automatic detection of events in audio signals gives new
possibilities in a number of music applications including con-
tent delivery, compression, indexing and retrieval. Accurate re-
trieval depends on the use of appropriate features to compare
and identify pieces of music. Given the importance of musical
events, it is clear that identifying and characterizing these events
is an important aspect of this process. Equally, as compres-
sion standards advance and the drive for improving quality at
low bit-rates continues, so does accurate event detection be-
come a basic requirement: disjoint audio segments with homo-
geneous statistical properties, delimited by transitions or events,
can be compressed more successfully in isolation than they can
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Fig. 1. “Attack,” “transient,” “decay,” and “onset” in the ideal case of a single
note.

in combination with dissimilar regions. Finally, accurate seg-
mentation allows a large number of standard audio editing al-
gorithms and effects (e.g., time-stretching, pitch-shifting) to be
more signal-adaptive.

There have been many different approaches for onset detec-
tion. The goal of this paper is to give an overview of the most
commonly used techniques, with a special emphasis on the ones
that have been employed in the authors’ different applications.
For the sake of coherence, the discussion will be focused on
the more specific problem of note onset detection in musical
signals, although we believe that the discussed methods can be
useful for various different tasks (e.g., transient modeling or lo-
calization) and different classes of signals (e.g., environmental
sounds, speech).

B. Definitions: Transients vs. Onsets vs. Attacks

A central issue here is to make a clear distinction between the
related concepts of transients, onsets and attacks. The reason
for making these distinctions clear is that different applications
have different needs. The similarities and differences between
these key concepts are important to consider; it is similarly im-
portant to categorize all related approaches. Fig. 1 shows, in the
simple case of an isolated note, how one could differentiate these
notions.

• The attack of the note is the time interval during which
the amplitude envelope increases.
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• The concept of transient is more difficult to describe pre-
cisely. As apreliminary informal definition, transients are
short intervals during which the signal evolves quickly
in some nontrivial or relatively unpredictable way. In the
case of acoustic instruments, the transient often corre-
sponds to the period during which the excitation (e.g., a
hammer strike) is applied and then damped, leaving only
the slow decay at the resonance frequencies of the body.
Central to this time duration problem is the issue of the
useful time resolution: we will assume that the human ear
cannot distinguish between two transients less than 10
ms apart [1]. Note that the release or offset of a sustained
sound can also be considered a transient period.

• The onset of the note is a single instant chosen to mark
the temporally extended transient. In most cases, it will
coincide with the start of the transient, or the earliest
time at which the transient can be reliably detected.

C. General Scheme of Onset Detection Algorithms

In the more realistic case of a possibly noisy polyphonic
signal, where multiple sound objects may be present at a given
time, the above distinctions become less precise. It is generally
not possible to detect onsets directly without first quantifying
the time-varying “transientness” of the signal.

Audio signals are both additive (musical objects in poly-
phonic music superimpose and not conceal each other) and
oscillatory. Therefore, it is not possible to look for changes
simply by differentiating the original signal in the time domain;
this has to be done on an intermediate signal that reflects, in
a simplified form, the local structure of the original. In this
paper, we refer to such a signal as a detection function; in the
literature, the term novelty function is sometimes used instead
[2].

Fig. 2 illustrates the procedure employed in the majority
of onset detection algorithms: from the original audio signal,
which can be pre-processed to improve the performance of
subsequent stages, a detection function is derived at a lower
sampling rate, to which a peak-picking algorithm is applied
to locate the onsets. Whereas peak-picking algorithms are
well documented in the literature, the diversity of existing
approaches for the construction of the detection function makes
the comparison between onset detection algorithms difficult for
audio engineers and researchers.

D. Outline of the Paper

The outline of this paper follows the flowchart in Fig. 2. In
Section II, we review a number of preprocessing techniques that
can be employed to enhance the performance of some of the de-
tection methods. Section III presents a representative cross-sec-
tion of algorithms for the construction of the detection function.
In Section IV, we describe some basic peak-picking algorithms;
this allows the comparative study of the performance of a se-
lection of note onset detection methods given in Section V. We
finish our discussion in Section VI with a review of our find-
ings and some thoughts on the future development of these al-
gorithms and their applications.

Fig. 2. Flowchart of a standard onset detection algorithm.

II. PREPROCESSING

The concept of preprocessing implies the transformation of
the original signal in order to accentuate or attenuate various
aspects of the signal according to their relevance to the task in
hand. It is an optional step that derives its relevance from the
process or processes to be subsequently performed.

There are a number of different treatments that can be ap-
plied to a musical signal in order to facilitate the task of onset
detection. However, we will focus only on two processes that
are consistently mentioned in the literature, and that appear to
be of particular relevance to onset detection schemes, especially
when simple reduction methods are implemented: separating
the signal into multiple frequency bands, and transient/steady-
state separation.

A. Multiple Bands

Several onset detection studies have found it useful to in-
dependently analyze information across different frequency
bands. In some cases this preprocessing is needed to satisfy
the needs of specific applications that require detection in in-
dividual sub-bands to complement global estimates; in others,
such an approach can be justified as a way of increasing the
robustness of a given onset detection method.

As examples of the first scenario, two beat tracking systems
make use of filter banks to analyze transients across frequencies.
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Goto [3] slices the spectrogram into spectrum strips and recog-
nizes onsets by detecting sudden changes in energy. These are
used in a multiple-agent architecture to detect rhythmic patterns.
Scheirer [4] implements a six-band filter bank, using sixth-order
elliptic filters, and psychoacoustically inspired processing to
produce onset trains. These are fed into comb-filter resonators
in order to estimate the tempo of the signal.

The second case is illustrated by models such as the percep-
tual onset detector introduced by Klapuri [5]. In this implemen-
tation, a filter bank divides the signal into eight nonoverlapping
bands. In each band, onset times and intensities are detected and
finally combined. The filter-bank model is used as an approxi-
mation to the mechanics of the human cochlea.

Another example is the method proposed by Duxbury et al.
[6], that uses a constant-Q conjugate quadrature filter bank to
separate the signal into five subbands. It goes a step further by
proposing a hybrid scheme that considers energy changes in
high-frequency bands and spectral changes in lower bands. By
implementing a multiple-band scheme, the approach effectively
avoids the constraints imposed by the use of a single reduction
method, while having different time resolutions for different fre-
quency bands.

B. Transient/Steady-State Separation

The process of transient/steady-state separation is usually as-
sociated with the modeling of music signals, which is beyond
the scope of this paper. However, there is a fine line between
modeling and detection, and indeed, some modeling schemes
directed at representing transients may hold promise for onset
detection. Below, we briefly describe several methods that pro-
duce modified signals (residuals, transient signals) that can be,
or have been, used for the purpose of onset detection.

Sinusoidal models, such as “additive synthesis” [7], represent
an audio signal as a sum of sinusoids with slowly varying pa-
rameters. Amongst these methods, spectral modeling synthesis
(SMS) [8] explicitly considers the residual1 of the synthesis
method as a Gaussian white noise filtered with a slowly varying
low-order filter. Levine [9] calculates the residual between the
original signal and a multiresolution SMS model. Significant in-
creases in the energy of the residual show a mismatch between
the model and the original, thus effectively marking onsets. An
extension of SMS, transient modeling synthesis, is presented
in [10]. Transient signals are analyzed by a sinusoidal anal-
ysis/synthesis similar to SMS on the discrete cosine transform
of the residual, hence in a pseudo-temporal domain. In [11], the
whole scheme, including tonal and transients extraction is gen-
eralized into a single matching pursuit formulation.

An alternative approach for the segregation of sinusoids from
transient/noise components is proposed by Settel and Lippe [12]
and later refined by Duxbury et al. [13]. It is based on the phase-
vocoder principle of instantaneous frequency (see Section III-
A.3) that allows the classification of individual frequency bins
of a spectrogram according to the predictability of their phase
components.

1The residual signal results from the subtraction of the modeled signal from
the original waveform. When sinusoidal or harmonic modeling is used, then the
residual is assumed to contain most of the impulse-like, noisy components of
the original signal—e.g., transients.

Other schemes for the separation of tonal from nontonal com-
ponents make use of lapped orthogonal transforms, such as the
modified discrete cosine transform (MDCT), first introduced by
Princen and Bradley [14]. These algorithms, originally designed
for compression [15], [16], make use of the relative sparsity of
MDCT representations of most musical signals: a few large co-
efficients account for most of the signal’s energy. Actually, since
the MDCT atoms are very tone-like (they are cosine functions
slowly modulated in time by a smooth window), the part of the
signal represented by the large MDCT atoms, according to a
given threshold, can be interpreted as the tonal part of the signal
[10], [17]. Transients and noise can be obtained by removing
those large MDCT atoms.

III. REDUCTION

In the context of onset detection, the concept of reduction
refers to the process of transforming the audio signal into a
highly subsampled detection function which manifests the oc-
currence of transients in the original signal. This is the key
process in a wide class of onset detection schemes and will
therefore be the focus of most of our review.

We will broadly divide reduction methods in two groups:
methods based on the use of explicitly predefined signal fea-
tures, and methods based on probabilistic signal models.

A. Reduction Based on Signal Features

1) Temporal Features: When observing the temporal evo-
lution of simple musical signals, it is noticeable that the oc-
currence of an onset is usually accompanied by an increase of
the signal’s amplitude. Early methods of onset detection capi-
talized on this by using a detection function which follows the
amplitude envelope of the signal [18]. Such an “envelope fol-
lower” can be easily constructed by rectifying and smoothing
(i.e., low-pass filtering) the signal

(1)

where is an -point window or smoothing kernel, cen-
tered at . This yields satisfactory results for certain appli-
cations where strong percussive transients exist against a quiet
background. A variation on this is to follow the local energy,
rather than the amplitude, by squaring, instead of rectifying,
each sample

(2)

Despite the smoothing, this reduced signal in its raw form is
not usually suitable for reliable onset detection by peak picking.
A further refinement, included in a number of standard onset
detection algorithms, is to work with the time derivative of the
energy (or rather the first difference for discrete-time signals) so
that sudden rises in energy are transformed into narrow peaks in
the derivative. The energy and its derivative are commonly used
in combination with preprocessing, both with filter-banks [3]
and transient/steady-state separation [9], [19].
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Another refinement takes its cue from psychoacoustics: em-
pirical evidence [20] indicates that loudness is perceived loga-
rithmically. This means that changes in loudness are judged rel-
ative to the overall loudness, since, for a continuous time signal,

. Hence, computing the first-dif-
ference of roughly simulates the ear’s perception of
loudness. An application of this technique to multiple bands [5]
showed a significant reduction in the tendency for amplitude
modulation to cause the detection of spurious onsets.

2) Spectral Features: A number of techniques have been
proposed that use the spectral structure of the signal to produce
more reliable detection functions. While reducing the need for
preprocessing (e.g., removal of the tonal part), these methods
are also successful in a number of scenarios, including onset
detection in polyphonic signals with multiple instruments.

Let us consider the short-time Fourier transform (STFT) of
the signal

(3)

where is again an -point window, and is the hop size,
or time shift, between adjacent windows.

In the spectral domain, energy increases linked to transients
tend to appear as a broadband event. Since the energy of the
signal is usually concentrated at low frequencies, changes due
to transients are more noticeable at high frequencies [21]. To
emphasize this, the spectrum can be weighted preferentially to-
ward high frequencies before summing to obtain a weighted en-
ergy measure

(4)

where is the frequency dependent weighting. By Parseval’s
theorem, if , is simply equivalent to the local
energy as previously defined. Note also that a choice of

would give the local energy of the derivative of the signal.
Masri [22] proposes a high frequency content (HFC) function

with , linearly weighting each bin’s contribution in
proportion to its frequency. The HFC function produces sharp
peaks during attack transients and is notably successful when
faced with percussive onsets, where transients are well modeled
as bursts of white noise.

These spectrally weighted measures are based on the instanta-
neous short-term spectrum of the signal, thus omitting any ex-
plicit consideration of its temporal evolution. Alternatively, a
number of other approaches do consider these changes, using
variations in spectral content between analysis frames in order
to generate a more informative detection function.

Rodet and Jaillet [21] propose a method where the frequency
bands of a sequence of STFTs are analyzed independently
using a piece-wise linear approximation to the magnitude
profile for , where is a short
temporal window, and is a fixed value. The parameters of
these approximations are used to generate a set of band-wise

detection functions, later combined to produce final onset re-
sults. Detection results are robust for high-frequencies, showing
consistency with Masri’s HFC approach.

A more general approach based on changes in the spectrum
is to formulate the detection function as a “distance” between
successive short-term Fourier spectra, treating them as points
in an -dimensional space. Depending on the metric chosen to
calculate this distance, different spectral difference, or spectral
flux, detection functions can be constructed: Masri [22] uses the

-norm of the difference between magnitude spectra, whereas
Duxbury [6] uses the -norm on the rectified difference

(5)

where , i.e., zero for negative arguments.
The rectification has the effect of counting only those frequen-
cies where there is an increase in energy, and is intended to em-
phasize onsets rather than offsets.

A related form of spectral difference is introduced by Foote
[2] to obtain a measure of “audio novelty”.2 A similarity matrix
is calculated using the correlation between STFT feature vectors
(power spectra). The matrix is then correlated with a “checker-
board” kernel to detect the edges between areas of high and low
similarity. The resulting function shows sharp peaks at the times
of these changes, and is effectively an onset detection function
when kernels of small width are used.

3) Spectral Features Using Phase: All the mentioned
methods have in common their use of the magnitude of the
spectrum as their only source of information. However, recent
approaches make also use of the phase spectra to further their
analyses of the behavior of onsets. This is relevant since much
of the temporal structure of a signal is encoded in the phase
spectrum.

Let us define the -unwrapped phase of a given STFT
coefficient . For a steady state sinusoid, the phase ,
as well as the phase in the previous window , are used
to calculate a value for the instantaneous frequency, an estimate
of the actual frequency of the STFT component within this
window, as [23]

(6)

where is the hop size between windows and is the sampling
frequency.

It is expected that, for a locally stationary sinusoid, the in-
stantaneous frequency should be approximately constant over
adjacent windows. Thus, according to (6), this is equivalent to
the phase increment from window to window remaining approx-
imately constant (cf. Fig. 3)

(7)

2The term novelty function is common to the literature in machine learning
and communication theory, and is widely used for video segmentation. In the
context of onset detection, our notion of the detection function can be seen also
as a novelty function, in that it tries to measure the extent to which an event is
unusual given a series of observations in the past.
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Fig. 3. Phase diagram showing instantaneous frequencies as phase derivative
over adjacent frames. For a stationary sinusoid this should stay constant (dotted
line).

Equivalently, the phase deviation can be defined as the second
difference of the phase

(8)

During a transient region, the instantaneous frequency is not
usually well defined, and hence will tend to be large.
This is illustrated in Fig. 3.

In [24], Bello proposes a method that analyzes the instan-
taneous distribution (in the sense of a probability distribution
or histogram) of phase deviations across the frequency domain.
During the steady-state part of a sound, deviations tend to zero,
thus the distribution is strongly peaked around this value. During
attack transients, values increase, widening and flat-
tening the distribution. In [24], this behavior is quantified by
calculating the inter-quartile range and the kurtosis of the dis-
tribution. In [25], a simpler measure of the spread of the distri-
bution is calculated as

(9)

i.e., the mean absolute phase deviation. The method, although
showing some improvement for complex signals, is susceptible
to phase distortion and to noise introduced by the phases of com-
ponents with no significant energy.

As an alternative to the sole use of magnitude or phase in-
formation, [26] introduces an approach that works with Fourier
coefficients in the complex domain. The stationarity of the
spectral bin is quantified by calculating the Euclidean distance

between the observed and that predicted by the
previous frames,

(10)

These distances are summed across the frequency-domain to
generate an onset detection function

(11)

See [27] for an application of this technique to multiple
bands. Other preprocessing, such as the removal of the tonal
part, may introduce distortions to the phase information and thus
adversely affect the performance of subsequent phase-based
onset detection methods.

4) Time-Frequency and Time-Scale Analysis: An alternative
to the analysis of the temporal envelope of the signal and of
Fourier spectral coefficients, is the use of time-scale or time-
frequency representations (TFR).

In [28] a novelty function is calculated by measuring the
dissimilarity between feature vectors corresponding to a dis-
cretized Cohen’s class TFR, in this case the result of convolving
the Wigner-Ville TFR of the function with a Gaussian kernel.
Note that the method could be also seen as a spectral difference
approach, given that by choosing an appropriate kernel, the rep-
resentation becomes equivalent to the spectrogram of the signal.

In [29], an approach for transient detection is described based
on a simple dyadic wavelet decomposition of the residual signal.
This transform, using the Haar wavelet, was chosen for its sim-
plicity and its good time localization at small scales. The scheme
takes advantage of the correlations across scales of the coef-
ficients: large wavelet coefficients, related to transients in the
signal, are not evenly spread within the dyadic plane but rather
form “structures”. Indeed, if a given coefficient has a large am-
plitude, there is a high probability that the coefficients with the
same time localization at smaller scales also have large ampli-
tudes, therefore forming dyadic trees of significant coefficients.

The significance of full-size branches of coefficients, from the
largest to the smallest scale, can be quantified by a regularity
modulus, which is a local measure of the regularity of the signal

(12)

where the are the wavelet coefficients, is the full branch
leading to a given small-scale coefficient (i.e., the set of
coefficients at larger scale and same time localization), and
a free parameter used to emphasize certain scales ( is
often used in practice). Since increases of are related to the
existence of large, transient-like coefficients in the branch ,
the regularity modulus can effectively act as an onset detection
function.

B. Reduction Based on Probability Models

Statistical methods for onset detection are based on the as-
sumption that the signal can be described by some probability
model. A system can then be constructed that makes proba-
bilistic inferences about the likely times of abrupt changes in
the signal, given the available observations. The success of this
approach depends on the closeness of fit between the assumed
model, i.e., the probability distribution described by the model,
and the “true” distribution of the data, and may be quantified
using likelihood measures or Bayesian model selection criteria.

1) Model-Based Change Point Detection Methods: A well-
known approach is based on the sequential probability ratio test
[30]. It presupposes that the signal samples are generated
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from one of two statistical models, or . The log-likelihood
ratio is defined as

(13)

where and are the probability density functions as-
sociated with the two models. The expectation of the observed
log-likelihood ratio depends on which model the signal is actu-
ally following. Under model , the expectation is

(14)
where denotes the Kullback–Leibler divergence between the
model and the observed distributions. Under model , the ex-
pectation is

(15)

If we assume that the signal initially follows model , and
switches to model at some unknown time, then the short-time
average of the log-likelihood ratio will change sign. The al-
gorithms described in [30] are concerned with detecting this
change of sign. In this context, the log-likelihood ratio can be
considered as a detection function, though one that produces
changes in polarity, rather than localized peaks, as its detectable
feature.

The method can be extended to deal with cases in which the
models are unknown and must be estimated from the data. The
divergence algorithm [31] manages this by fitting model to
a growing window, beginning at the last detected change point
and extending to the current time. Model is estimated from a
sliding window of fixed size, extending back from the current
time. Both Jehan [32], and Thornburg and Gouyon [33] apply
variants of this method, using parametric Gaussian autoregres-
sive models for and .

Jehan [32] also applies Brandt’s method [34], in which a
fixed length window is divided at a hypothetical change point
. The two resulting segments are modeled using two separate

Gaussian AR models. The model parameters and the change
point are then optimized to maximize the log-likelihood ratio
between the probability of having a change at and the proba-
bility of not having an onset at all. Change points are detected
when this likelihood ratio surpasses a fixed threshold.

2) Approaches Based on ‘Surprise Signals’: The methods
described above look for an instantaneous switch between two
distinct models. An alternative is to look for surprising moments
relative to a single global model. To this end, a detection func-
tion is defined as the moment-by-moment trace of the negative
log-probability of the signal given its recent history, according
to a global model.

The approach, introduced by Abdallah and Plumbley [35], is
based on the notion of an observer which becomes “familiar”
with (i.e., builds a model of) a certain class of signals, such that
it is able to make predictions about the likely evolution of the
signal as it unfolds in time. Such an observer will be relatively
surprised at the onset of a note because of its uncertainty about
when and what type of event will occur next. However, if the
observer is in fact reasonably familiar with typical events (i.e.,

the model is accurate), that surprise will be localized to the tran-
sient region, during which the identity of the event is becoming
established. Thus, a dynamically evolving measure of surprise,
or novelty, can be used as a detection function.

Let us consider the signal as a multivariate random process
where each vector is a frame of audio samples. At
time , an observer’s expectations about will be summa-
rized by the conditional probability according to that observer’s
model: . When is actu-
ally observed, the observer will be surprised to a certain degree,
which we will define as

(16)

This is closely related to the entropy rate of the random process,
which is simply the expected surprise according to the “true”
model.

An alternative conditional density model can be defined for
an audio signal by partitioning the frame into two segments

and then expressing in terms of
. A detection function can then be generated from the sur-

prise associated with

(17)

both terms of which may be approximated by any suitable joint
density model; for example, [35] uses two separate independent
component analysis (ICA) models.

In ICA, we assume that a random vector is generated
by linear transformation of a random vector of indepen-
dent non-Gaussian components; that is, , where is an

basis matrix. This model gives

(18)

where is obtained from using , and is the as-
sumed or estimated probability density function of the com-
ponent of . Estimates of are relatively easy to obtain [36].
Results obtained with speech and music are given in [37].

It is worth noting that some of the detection func-
tions described in previous sections can be derived within
this probabilistic framework by making specific assump-
tions about the observer’s probability model. For ex-
ample, an observer that believes the audio samples in
each frame to be independent and identically distributed
according to a Laplacian (double-sided exponential) dis-
tribution, such that ,
where is the component of , would assign

, which is essentially an
envelope follower [cf. (1)]. Similarly, the assumption of a
multivariate Gaussian model for the would lead to a
quadratic form for , of which the short-term energy [(2)]
and weighted energy [(4)] measures are special cases. Finally,
measures of spectral difference [like (5)] can be associated
with specific conditional probability models of one short-term
spectrum given the previous one, while the complex domain
method [(10) and (11)], depending as it does on a Euclidean
distance measure between predicted and observed complex
spectra, is related to a time-varying Gaussian process model.



BELLO et al.: A TUTORIAL ON ONSET DETECTION IN MUSIC SIGNALS 7

Fig. 4. Comparison of different detection functions for 5 s of a solo violin
recording. From top to bottom: time-domain signal, spectrogram, high-frequency
content, spectral difference, spread of the distribution of phase deviations,
wavelet regularity modulus, and negative log-likelihood using an ICA model.
All detection functions have been normalized to their maximum value.

C. Comparison of Detection Functions

All the approaches described above provide a solution to the
problem of onset detection in musical signals. However, every
method presents shortcomings depending both on its definition
and on the nature of the signals to be analyzed. What follows is a
discussion of the merits of different reduction approaches, with
an emphasis on the ones that have been employed in the various
applications developed by the authors. Figs. 4–6 are included
to support the discussion. They correspond, respectively, to a
pitched nonpercussive sound (solo violin), a pitched percussive
sound (solo piano), and a complex mixture (pop music). The
figures show the waveforms, spectrograms, and a number of
different detection functions for comparison. The hand-labeled
onsets for each signal are marked with ticks in the time-axis of the
detection functions.

Temporal methods are simple and computationally efficient.
Their functioning depends on the existence of clearly identifi-
able amplitude increases in the analysis signal, which is the case

Fig. 5. Comparison of different detection functions for 5 s of a solo piano
recording. From top to bottom: time-domain signal, spectrogram, high-frequency
content, spectral difference, spread of the distribution of phase deviations,
wavelet regularity modulus, and negative log-likelihood using an ICA model.
All detection functions have been normalized to their maximum value.

only for highly percussive events in simple sounds. The robust-
ness of amplitude-based onset detection decreases when facing
amplitude modulations (i.e., vibrato, tremolo) or the overlap-
ping of energy produced by simultaneous sounds. This is true
even after dividing the signal into multiple bands or after ex-
tracting the transient signal. For nontrivial sounds, onset detec-
tion schemes benefit from using richer representations of the
signal (e.g., a time-frequency representation).

The commonly used HFC [22, eq. (4)] is an example of a
spectral weighting method. It is successful at emphasizing the
percussiveness of the signal [cf. Figs. 5 and 6], but less ro-
bust at detecting the onsets of low-pitched and nonpercussive
events [cf. Fig. 4], where energy changes are at low frequencies
and hence de-emphasized by the weighting. In some signals,
even broadband onsets are susceptible to masking by contin-
uous high-frequency content such as that due to open cymbals
in a pop recording. This problem can be overcome by using tem-
poral difference methods such as the -norm of the rectified
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Fig. 6. Comparison of different detection functions for 5 s of a pop song.
From top to bottom: time-domain signal, spectrogram, high-frequency content,
spectral difference, spread of the distribution of phase deviations, wavelet
regularity modulus, and negative log-likelihood using an ICA model. All
detection functions have been normalized to their maximum value.

spectral difference [[6, eq. (5)], as these can respond to changes
in the distribution of spectral energy, as well as the total, in any
part of the spectrum. However, the difference calculation relies
solely on magnitude information, thus neglecting the detection
of events without a strong energy increase: e.g., low notes, tran-
sitions between harmonically related notes or onsets played by
bowed instruments (cf. Fig. 4).

Phase-based methods, such as the spread of the distribution
of phase deviations in (9) (see [25]), are designed to compen-
sate for such shortcomings. They are successful at detecting low
and high-frequency tonal changes regardless of their intensity.
The approach suffers from variations introduced by the phases
of noisy low-energy components, and from phase distortions
common to complex commercial music recordings (e.g., audio
effects, post-production treatments—cf. Fig. 6).

The wavelet regularity modulus [29] in (12), is an example of
an approach using an alternative time-scale representation that
can be used to precisely localize events down to a theoretical res-

olution of as little as two samples of the original signal, which for
typical audio sampling rates is considerably better than the ear’s
resolution in time. The price of this is a much less smooth detec-
tion function (cf. all figures), therefore emphasizing the need for
post-processing to remove spurious peaks. The method provides
an interestingalternative to other feature-basedmethods,butwith
an increase in algorithmic complexity.

Approaches based on probabilistic models provide a more
general theoretical view of the analysis of onsets. As shown in
Section III-B.2, previous reduction methods can be explained
within the context of measuring surprise relative to a proba-
bilistic model, while new methods can be proposed and evalu-
ated by studying refinements or alternatives to existing models.
An example is the surprise-based method using ICA to model
the conditional probability of a short segment of the signal, cal-
culated in (17) as the difference between two negative log-like-
lihoods [35]. If the model is adequate (i.e., the assumptions be-
hind the model are accurate and the parameters well-fitted), then
robust detection functions for a wide range of signals can be pro-
duced. Examples are at the bottom of Figs. 4–6. However, for
adaptive statistical models such as ICA, these advantages accrue
only after a potentially expensive and time-consuming training
process during which the parameters of the model are fitted to a
given training set.

IV. PEAK-PICKING

If the detection function has been suitably designed, then on-
sets or other abrupt events will give rise to well-localized iden-
tifiable features in the detection function. Commonly, these fea-
tures are local maxima (i.e., peaks), generally subject to some
level of variability in size and shape, and masked by ‘noise’,
either due to actual noise in the signal, or other aspects of the
signal not specifically to do with onsets, such as vibrato. There-
fore a robust peak-picking algorithm is needed to estimate the
onset times of events within the analysis signal.3

We will divide the process of peak-picking a detection func-
tion in three steps: post-processing, thresholding, and a final de-
cision process.

A. Post-Processing

Like preprocessing, post-processing is an optional step that
depends on the reduction method used to generate the detection
function. The purpose of post-processing is to facilitate the tasks
of thresholding and peak-picking by increasing the uniformity
and consistency of event-related features in the detection func-
tion, ideally transforming them into isolated, easily detectable
local maxima. Into this category fall processes intended to re-
duce the effects of noise (e.g., smoothing) and processes needed
for the successful selection of thresholding parameters for a
wide range of signals (e.g., normalization and DC removal).

B. Thresholding

For each type of detection function, and even after post-pro-
cessing, there will be a number of peaks which are not related to

3It is worth noting that identifiable features are not necessarily peaks, they
could be steep rising edges or some other characteristic shape. An algorithm
able to identify characteristic shapes in detection functions is presented in [38].
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onsets. Hence, it is necessary to define a threshold which effec-
tively separates event-related and nonevent-related peaks. There
are two main approaches to defining this threshold: fixed thresh-
olding and adaptive thresholding.

Fixed thresholding methods define onsets as peaks where
the detection function exceeds the threshold: , where

is a positive constant and is the detection function.
Although this approach can be successful with signals with
little dynamics, music generally exhibits significant loudness
changes over the course of a piece. In such situations, a fixed
threshold will tend to miss onsets in the most quiet passages,
while over-detecting during the loud ones.

For this reason, some adaptation of the threshold is usually
required. Generally, an adaptive threshold is computed as a
smoothed version of the detection function. This smoothing can
be linear, for instance using a low-pass FIR-filter

(19)

with . Alternatively, this smoothing can be nonlinear,
using for instance the square of the detection function

(20)

where is a positive constant and is a (smooth)
window. However, a threshold computed in this way can exhibit
very large fluctuations when there are large peaks in the detec-
tion function, tending to mask smaller adjacent peaks. Methods
based on percentiles (such as the local median) are less affected
by such outliers

(21)

C. Peak-Picking

After post-processing and thresholding the detection func-
tion, peak-picking is reduced to identifying local maxima above
the defined threshold. For a review of a number of peak-picking
algorithms for audio signals, see [39].

For our experiments the detection functions were first nor-
malized by subtracting the mean and dividing by the maximum
absolute deviation, and then low-pass filtered. An adaptive
threshold, calculated using a moving-median filter [(21)], was
then subtracted from the normalized detection function. Finally,
every local maximum above zero was counted as an onset. Both
the filter and the thresholding parameters (cutoff frequency,

, and ) were hand-tuned based on experimenting, thus
resulting in a separate parameter set for each detection function.
Values for the cutoff frequency are selected according to the in-
herent characteristics of each detection method, as discussed in
Section III-C; is set to the longest time interval on which the
global dynamics are not expected to evolve (around 100 ms);
while is set to 1, as it is not critical for the detection. However,
experiments show sensitivity to variations of , such that error
rates can be minimized by changing it between different types

of music signals (e.g., pitched percussive, nonpercussive, etc).
The signal dependency of the onset detection process is further
discussed in Section V-C.

V. RESULTS

A. About the Experiments

This section presents experimental results comparing some
of the onset detection approaches described in Section III-C:
the high frequency content, the spectral difference, the spread
of the distribution of phase deviations, the wavelet regularity
modulus and the negative log-likelihood of the signal according
to a conditional ICA model. Peak-picking was accomplished
using the moving-median adaptive threshold method described
in Section IV.

The experiments were performed on a database of commer-
cial and noncommercial recordings covering a variety of mu-
sical styles and instrumentations. All signals were processed as
monaural signals sampled at 44.1 kHz.

The recordings are broadly divided into four groups ac-
cording to the characteristics of their onsets: pitched nonper-
cussive (e.g., bowed strings), pitched percussive (e.g., piano),
nonpitched percussive (e.g., drums) and complex mixtures
(e.g., pop music). The number of onsets per category is given
in Table I; there are 1065 onsets in total.

Onset labeling was done mostly by hand, which is a lengthy
and inaccurate process, especially for complex recordings such
as pop music: typically including voice, multiple instruments
and post-production effects. A small subsection of the database
corresponds to acoustic recordings of MIDI-generated piano
music which removes the error introduced by hand-labeling.
Correct matches imply that target and detected onsets are within
a 50-ms window. This relatively large window is to allow for the
inaccuracy of the hand labeling process.

B. Discussion: Comparison of Performance

Fig. 7 depicts a graphical comparison of the performance of
the different detection functions described in this paper. For
each method, it displays the relationship between the percentage
of true positives (i.e., correct onset detections relative to the total
number of existing onsets) and percentage of false positives (i.e.,
erroneous detections relative to the number of detected onsets).
All peak-picking parameters (e.g., filter’s cutoff frequency, )
were held constant, except for the threshold which was varied
to trace out the performance curve. Better performance is indi-
cated by a shift of the curve upwards and to the left. The optimal
point on a particular curve can be defined as the closest point to
the top-left corner of the axes, where the error is at its minimum.

By reading the different optimal points we can retrieve the
best set of results for each onset detection method. For the com-
plete database, the negative log-likelihood (90.6%, 4.7%) per-
forms the best, followed by the HFC (90%, 7%), spectral dif-
ference (83.0%, 4.1%), phase deviation (81.8%, 5.6%), and the
wavelet regularity modulus (79.9%, 8.3%).

However, optimal points are just part of the story. The shape
of each curve is also important to analyze, as it contains useful
information about the properties of each method that may be
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Fig. 7. Comparison of onset detection algorithms: spectral difference, phase deviation, wavelet regularity modulus, negative log-likelihood, and high-frequency
content.

relevant to a number of applications. For example, certain ap-
plications (e.g., tempo estimation) may require high confidence
in the events actually detected even at the expense of under-de-
tecting, while other applications (e.g., time-stretching) require
a maximum percentage of detected onsets, regardless of an in-
crease in false detections.

In this context, the negative log-likelihood shows appeal for a
number of applications by remaining close to the top-left corner
of the axes ([100% TP, 0% FP] point). The method successfully
characterizes all types of onsets while producing little unrelated
noise.

The HFC is able to retrieve a large proportion of the existing
onsets for relatively few false positives, reaching 95% true pos-
itives for 10% false positives. However, there is a drop in the
number of correctly detected onsets as the rate of false positives
is brought below 5%. This is similar to the performance of the
wavelet regularity modulus, although the corresponding perfor-
mance curve rises more slowly as the percentage of false posi-
tives increases. Both measures generate sharply defined peaks
in their detection functions, and are therefore well-suited for
precise time-localization of onsets. This also means that both
methods are susceptible to producing identifiable peaks even
when no onsets are present.

On the other hand, methods that take information from a
number of temporal frames into consideration (e.g., spectral
difference, phase deviation) present a smoother detection func-
tion profile, minimizing the amount of spurious detections. The
cost of this is a reduced ability to resolve all onsets as distinct
detectable features. This is reflected in a performance curve
that manages relatively high correct onset detection rates for
low numbers of false positives, while obtaining comparatively
fewer good detections for high rates of false positives (more
than 25%). These methods are also less precise in their time
localization.

C. Discussion: Dependency on the Type of Onsets

The above analysis emphasizes the dependency of the results
on the characteristics of each tested method. In Table I, results
are categorized according to the different types of onsets in the
database. The idea is to illustrate the dependency of the results
on the type of analysis signals. The results in the table corre-
spond to the methods’ optimal points for each subset of the
database.

The selection of a particular method depends on the type and
the quality of the input signal. For example, the phase devia-
tion performs successfully for pitched sounds (both percussive
and nonpercussive) where tonal information is key to the detec-
tion of onsets, while returning poor results for purely percussive
sounds and complex mixtures (where it is affected by phase dis-
tortions and the artifacts introduced by speech utterances). On
the other hand, the HFC performs better for highly percussive
sounds and complex mixtures (with drums) than for music with
softer onsets. The spectral difference sits in the middle, slightly
below phase deviation for pitched sounds and just under-per-
forming HFC for more percussive and complex sounds.

The wavelet regularity modulus performance is at its best
when dealing with simple percussive sounds, otherwise per-
forming poorly with respect to the other methods. Notably, the
negative log-likelihood performs relatively well for almost all
types of music. This shows the method’s effectiveness when
fitted with an appropriate model.

These results, while depicting a general trend in the behavior
of these approaches, are not absolute. As confirmed by the re-
sults in Table I, detection results are strongly signal-dependent,
and therefore the plots in Fig. 7 might have been significantly
different had a different database been used. In addition, the
hand-labeling of onsets is in some rare cases (e.g., in the pop
signal) ambiguous and subjective. Finally, for the sake of a fair
comparison between the detection functions, we opted to use
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TABLE I
ONSET DETECTION RESULTS. COLUMNS SHOW THE PERCENTAGE OF

TRUE POSITIVES (TP%) AND PERCENTAGE OF FALSE POSITIVES (FP%)
FOR EACH METHOD

a common post-processing and peak-picking technique. How-
ever, performance can be improved for each detection function
by fine tuning the peak-picking algorithm for specific tasks.

VI. CONCLUSIONS

In this paper, we have described and compared a variety of
commonly used techniques and emerging methods for the de-
tection of note onsets in audio signals. Given the scope of the
paper, we have not mentioned methods that are not explicitly de-
vised for this task but that may nevertheless hold some relevance
(e.g., matching pursuits and time-frequency adaptive tiling).

Direct comparisons of performance such as those in Sec-
tion V have to be carefully considered with respect to the dif-
ferent requirements that a given application may have and the
type of used audio signals. Generally speaking, a set of guide-
lines can be drawn to help find the appropriate method for a
specific task.

A. Guidelines for Choosing the Right Detection Function

The general rule of thumb is that one should choose the
method with minimal complexity that satisfies the require-
ments of the application. More precisely, good practice usually
requires a balance of complexity between preprocessing, con-
struction of the detection function, and peak-picking.

• If the signal is very percussive (e.g., drums), then time-
domain methods are usually adequate.

• On the other hand, spectral methods such as those based
on phase distributions and spectral difference perform
relatively well on strongly pitched transients.

• The complex-domain spectral difference seems to be a
good choice in general, at the cost of a slight increase in
computational complexity.

• If very precise time localization is required, then wavelet
methods can be useful, possibly in combination with an-
other method.

• If a high computational load is acceptable, and a suitable
training set is available, then statistical methods give the
best overall results, and are less dependent on a partic-
ular choice of parameters.

A more detailed description of relative merits can be found in
Section III-C and Section V.

B. Perspectives

In this paper, we have only covered the basic principles of
each large class of methods. Each one of these methods needs
a precise fine-tuning, as described in the relevant papers (refer-
enced in Section III). However, it is not expected that a single
method will ever be able to perform perfectly well for all audio
signals, due to the intrinsically variable nature of the beginning
of sound events, especially between percussive (when transients
are related to short bursts of energy) and sustained-note instru-
ments (when transients are related to changes in the spectral
content, possibly on a longer time-scale). In fact, we believe that
the most promising developments for onset detection schemes
lie in the combination of cues from different detection functions
[6], [26], which is most likely the way human perception works
[40]. More generally, there is a need for the development of
analysis tools specifically designed for strongly nonstationary
signals, which are now recognized to play an important part in
the perceived timbre of most musical instruments [41].
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