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Overview

• Why care about timing and dynamics in music?

• Previous approaches to measuring timing and 
dynamics

• Models which predict something about expression

• Working without musical scores

• A correlation-based approach for constructing 
metrical trees
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Note-level measures (MIDI)

• Pitch

• Velocity

• Duration

• IOI (inter-onset interval)

• KOT (key overlap time)

• Pedaling (piano)
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Example: 
Chopin Etude 
Opus 10 No 3





Example: 
Chopin Etude 
Opus 10 No 3

Deadpan 
(no expressive timing or dynamics)

Human performance 
(Recorded on Boesendorfer ZEUS)

Differences limited to:
•timing (onset, length)
•velocity (seen as red)
•pedaling (blue shading)
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What can we measure?
• Repp (1989) measured note IOIs in 19 famous recordings of a 

Beethoven minuet (Sonata op 31 no 3)

7

o 

u 

R 

T 

! 

0 

N 

! 

N 

1ooo 

?00 

600 

500. 

9cq•- 

880- 

70•- 

600. 

100•* 

900. 

800- 

7•. 

600. 

MINUET 

! I I I [ I I [ I I I I I • I I I E: 3 q 5 6 7 8 9 18 t! 1• 13 ,tq t5 16 
BRR NO. 

TRIO 

I I I I I I I I I I I I I t7 18 19 aO Et EE E3 Eq •5 g6 •7 a8 •9 30 
31 3E 33 3q 35 36 37 38 

BRR NO. 

CODA 

I I I I I I I 
39 qa qt qE q3 qq q5 

BRR ND. 

FIG. 3. Grandaveragetimingpatternof15human •fformances, withre•atsplott• separately. Thel•ton•t-on•tintervalintheCoda(arrow)is1538 ms. 

I. Repeats 

It is evident, first, that repeats of the same material had 
extremely similar timing patterns. This consistency of pro- 
fessional keyboard players with respect to detailed timing 
patterns has been noted many times in the literature, begin- 
ning with Seashore ( 1938, p. 244). The only systematic de- 
viations occurred in bar 1 and at phrase endings (bars 8, 15- 
16, and 23/37-24/38), where the music was, in fact, not 
identical across repeats (see Fig. 1): In bar 1, Beethoven 
added an ornament (a turn on E-flat) in the repeat (bar 1B), 
which was slightly drawn out by most pianists. In bar 8A, 

which led back to the beginning of the Minuet, the upbeat 
was prolonged, but in bar 8B, which led into the second 
section of the Minuet, an additional ritard occurred on the 
phrase-final (second) beat. Similarly, a uniform ritard was 
produced in bar 16A, which led back to the beginning of the 
second Minuet section, and an even stronger ritard occurred 
on the phrase-final (first and second) notes of bar 16B, 
which constituted the end of the Minuet, whereas the third 
note constituted the upbeat to the Trio and was taken 
shorter. Bar 15 anticipated these changes, which were more 
pronounced in the second playing of the Minuet, following 
the Trio. Similarly, bar 37 anticipated the large ritard in bar 

628 J. Acoust. Sec. Am., Vol. 88, No. 2, August 1990 Bruno H. Repp: Expressive timing in a Beethoven minuet 628 

Grand average timing patterns of performances with repeats plotted separately. 
(From B. Repp “Patterns of expressive timing in performances of a Beethoven 
minuet by nineteen famous pianists”,1990)
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What can we measure?

• PCA analysis yields 2 major 
components

• Phrase final lengthening
• Phrase internal variation

• Simply taking mean IOIs yields can 
yield pleasing performance

• Reconstructing using principal 
component(s) can yield pleasing 
performance

• Concluded that timing underlies 
musical structure
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were quite rare in the present composition. Eighth-notes 
were common but provided less information, since they re- 

duced the four-beat pulse to a two-beat pulse. Some mea- 
surement problems were also encountered. Nevertheless, 

some data were obtained about the temporal microstructure 
at this level. 

A. Sixteenth-notes 

1. Measurement procedures 

Sequences of two sixteenth-notes occur in several places 
(bars 7, 20, and 34), but proved very difficult to measure; the 

onset of the second note could usually not be found in the 
acoustic waveform. Therefore, the measurements were re- 

stricted to single sixteenth-notes following a dotted eighth- 
note. Such notes occur in bars 0/8A, 1, 4, and 8B/16A of the 

Minuet, in bar 23/37 of the Trio, and throughout the Coda. 
With four repeats of the Minuet and two of the Trio in most 

performances, there were generally four independent mea- 
sures available for each of the four sixteenth-note occur- 

rences in the Minuet and for the single occurrence in the Trio 

(the latter really being two similar occurrences, each repeat- 
ed twice). For the Coda, of course, only a single set of mea- 
surements was available for each artist, but there were 11 
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Timing versus expressive dynamics

• Repp (1997; experiment 2):  generated MIDI from audio for 15 famous 
performances of Chopin’s op. 10 No 3;  Added 9 graduate student 
performances

• Retained only timing (no expressive dynamics)

• Judges ranked the average timing profile of the expert pianists (EA) 
highest, followed by E11, S1, S3, S9, S2, and SA.

• Conclusions:
• EA, SA sound better than average but “lack individuality” (Repp)
• Something is lost in discarding non-temporal expressive dynamics. 
• Timing and expressive dynamics may be inter-dependent
• However, interesting that EA, SA sound good at all
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KTH Model

• Johan Sundberg, Anders Friberg, many others

• Models performance of Western music

• Rule-based system built using 
• analysis-by-synthesis: assess impact of individual rules by listening
• analysis-by-measurement:  fit rules to performance data

• Incorporates wide range of music perception research (e.g. 
meter perception, pitch perception, motor control 
constraints)

10
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Anders Friberg, Roberto Bresin, and Johan Sundberg 

1994; Desain & Honing, 1994; Honing, 2005a). For most 

of the rules, our starting point has been to implement 

expressive deviations relative to the tempo, i.e. analo-

gous to Weber’s law2. This approach works well within a 

tempo range when note durations are not too short3. The 

most notable exceptions are the rules Duration contrast 

and Swing ensemble, described below. 

The role of performance marks such as accents or 

phrase marks in the score may also be considered. 

These marks are often treated more as a guideline for 

the performance than mandatory ways of performing 

the piece. Furthermore, these marks are often inserted 

by the editor rather than the composer. Therefore, we 

have in general avoided incorporating such marks in 

the score, thus, mainly trying to model the perform-

ance from the “raw” score. One exception is the set of 

rules for notated staccato/legato.

 Certain aspects of musical structure must be pro-

vided manually by the user because they are not 

readily evident from surface properties. For example, 

automatic extraction of phrase structure and harmonic 

structure is a difficult process (Temperley, 2001; 

Ahlbäck, 2004), but these analyses are essential for 

the phrasing and tonal tension rules respectively. Thus, 

these structural characteristics must be added to the 

score manually by the user so that they can trigger the 

phrasing and tonal tension rules. One exception is the 

rule for musical punctuation, which automatically finds

the melodic grouping structure on a lower level.

Because the rules act upon a range of structural 

characteristics of music, they provide an expressive 

interpretation of musical structure. An analogous func-

tion is observed in speech prosody, which introduces 

variation in a range of acoustic features (intensity, 

Phrasing

Phrase arch Create arch-like tempo and sound level changes over phrases

Final ritardando Apply a ritardando in the end of the piece

High loud Increase sound level in proportion to pitch height

Micro-level timing

Duration contrast Shorten relatively short notes and lengthen relatively long notes

Faster uphill Increase tempo in rising pitch sequences

Metrical patterns and grooves

Double duration Decrease duration ratio for two notes with a nominal value of 2:1

Inégales Introduce long-short patterns for equal note values (swing)

Articulation

Punctuation Find short melodic fragments and mark them with a final micropause

Score legato/staccato Articulate legato/staccato when marked in the score

Repetition articulation Add articulation for repeated notes.

Overall articulation Add articulation for all notes except very short ones

Tonal tension

Melodic charge Emphasize the melodic tension of notes relatively the current chord

Harmonic charge Emphasize the harmonic tension of chords relatively the key

Chromatic charge Emphasize regions of small pitch changes

Intonation

High sharp Stretch all intervals in proportion to size

Melodic intonation Intonate according to melodic context

Harmonic intonation Intonate according to harmonic context

Mixed intonation Intonate using a combination of melodic and harmonic intonation

Ensemble timing

Melodic sync Synchronize using a new voice containing all relevant onsets

Ensemble swing Introduce metrical timing patterns for the instruments in a jazz ensemble

Performance noise

Noise control Simulate inaccuracies in motor

Table 1. 

An overview of the rule system

From: A. Friberg, R. Bresin & J. 
Sundberg (2006). Overview of the 
KTH rule system for musical 
performance. Advances in Cognitive 
Psychology, 2(2-3):145-161. 



From: A. Friberg, R. Bresin 
& J. Sundberg (2006). 
Overview of the KTH 
rule system for musical 
performance. Advances in 
Cognitive Psychology, 2(2-3):
145-161. 

Overview of the KTH rule system for musical performance
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fects. For example, when several rules that act upon 

note durations are combined, a note might be length-

ened too much. Some of these possible rule conflicts

have been solved in the rule context definitions. A mi-

cro-timing rule and a phrasing rule, although acting on 

the same notes, work on different time scales and will 

not interfere with each other. Figure 2 illustrates the 

effect of IOI variations resulting from six rules applied 

to a melody.

How to shape a performance: 
Using the rules for modeling 
semantic performance 
descriptions.

It can be rather difficult to generate a specific perform-

ance with the rule system, given the many degrees-

of-freedom of the whole rule system with a total of 

about 30-40 parameters to change. This procedure is 

greatly simplified if mappings are used that translate

descriptions of specific expressive musical characters

to corresponding rule parameters. Overall descriptions 

of the desired expressive character are often found at 

the top of the score. They may refer to direct tempo 

indications (lento, veloce, adagio) but also to mo-

tional aspects (andante, corrente, danzando, fermo, 

con moto) or emotional aspects (furioso, con fuoco, 

giocoso, vivace, tenero). These semantic descriptions 

of the expressive character can be modeled by select-

ing an appropriate set of rules and rule parameters 

in a rule palette.  Research on emotional expression in 

music performance has shown that there tends to be 

agreement among Western listeners and performers 

about how to express certain emotions in terms of 

performance parameters (Juslin, 2000). Using these 

results as a starting point, we modeled seven differ-

ent emotional expressions using the KTH rule system 

(Bresin & Friberg, 2000; Bresin, 2000). In addition 

to the basic rule system, we also manipulated overall 

tempo, sound level and articulation. A listener test 

confirmed the emotional expression resulting from

the defined set of rule parameters (rule palettes) for

two different music examples. Table 2 suggests some 

Figure 2. 

The resulting IOI deviations by applying Phrase arch, Duration contrast, Melodic charge, and Punctuation to the Swedish nursery tune 
“Ekorr’n satt i granen”. All rules were applied with the rule quantity k=1 except the Melodic charge rule that was applied with k=2.
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Widmer et al. performance model

• Automatic deduction of rules for music performance

• Rich feature set (29 attributes including local melodic contour, 
scale degree, duration, etc)

• Performance is matched to score (metrical position).

• PLCG: Partition Learn Cluster Generalize (Widmer, 2003)
• Discovery of simple partial rules-based models
• Inspired by ensemble learning

• PLCG compares favorably to rule learning algorithm RIPPER

• Rules learned by PLCG similar to some KTH rules (Widmer

13
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Fig. 5. Mozart Sonata K.331, 1st movement, 1st part, as played by pianist and learner. The curve plots the relative

tempo at each note—notes above the 1.0 line are shortened relative to the tempo of the piece, notes below 1.0

are lengthened. A perfectly regular performance with no timing deviations would correspond to a straight line at

y = 1.0.

simple rules (one for note lengthening (ritardando), one for shortening (accelerando)) that

produce the system’s timing curve.4

The next question concerns the generality of the discovered rules. How well do they

transfer to other pieces and other performers? To assess the degree of performer-specificity

of the rules, they were tested on performances of the same pieces, but by a different

artist. The test pieces in this case were the Mozart sonatas K.282, K283 (complete) and

K.279, K.280, K.281, K.284, and K.333 (second movements), performed by the renowned

conductor and pianist Philippe Entremont, again on a Bösendorfer SE290. The results are

given in Table 3.

Comparing this to Table 2, we find no significant degradation in coverage and precision

(except in category diminuendo). On the contrary, for some categories (ritardando,

crescendo, staccato) the coverage is higher than on the original training set. The

discriminative power of the rules —the precision—remains roughly at the same level. This

(surprising?) result testifies to the generality of the discovered principles; PLCG seems to

have successfully avoided overfitting the training data.

Another experiment tested the generality of the discovered rules with respect to musical

style. They were applied to pieces of a very different style (Romantic pianomusic), namely,

the Etude Op.10, No.3 in E major (first 20 bars) and the Ballade Op.38, F major (first 45

bars) by Frédéric Chopin, and the results were compared to performances of these pieces

by 22 Viennese pianists. The melodies of these 44 performances amount to 6,088 notes.

Table 4 gives the results.

This result is even more surprising. Diminuendo and legato turn out to be basically

unpredictable, and the rules for crescendo are rather imprecise. But the results for the

other classes are extremely good, better in fact than on the original (Mozart) data which

4 To be more precise: the rules predict whether a note should be lengthened or shortened; the precise numeric

amount of lengthening/shortening is predicted by a k-nearest-neighbor algorithm (with k = 3) that uses only

instances for prediction that are covered by the matching rule, as proposed in [26] and [27].
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4. Musical discoveries made by PLCG

Let us first look at some of PLCG’s discoveries from a musical perspective. Section 5

below we will then take a more systematic experimental look at PLCG’s behaviour relative

to more ‘direct’ rule learning.

4.1. Performance principles discovered

When run on the complete Mozart performance data set (41,116 notes) for each of

the six target concepts defined above,3 PLCG (with parameter settings MPPLCG = .7,

MCPLCG = .02,MPRL = .9,MCRL = .01) selected a final set of 17 performance rules (from

a total of 383 specialized rules)—6 rules for tempo changes, 6 rules for local dynamics, and

5 rules for articulation. (Two rules were selected manually for musical interest, although

they did not quite reach the required coverage and precision, respectively.) Some of these

rules turn out to be discoveries of significant musicological interest. We lack the space to

list all of them here (see [32]). Let us illustrate the types of patterns found by looking at

just one of the learned rules:

RULE TL2:

abstract_duration_context = equal-longer

& metr_strength ! 1

⇒ ritardando

“Given two notes of equal duration followed by a longer note, lengthen the note (i.e.,

play it more slowly) that precedes the final, longer one, if this note is in a metrically

weak position (‘metrical strength’ ! 1).”

This is an extremely simple principle that turns out to be surprisingly general and

precise: rule TL2 correctly predicts 1,894 cases of local note lengthening, which is 14.12%

of all the instances of significant lengthening observed in the training data. The number of

incorrect predictions is 588 (2.86% of all the counterexamples). Together with a second,

similar rule relating to the same type of phenomenon, TL2 covers 2,964 of the positive

examples of note lengthening in our performance data set, which is more than one fifth

(22.11%)! It is highly remarkable that one simple principle like this is sufficient to predict

such a large proportion of observed note lengthenings in a complex corpus such as Mozart

sonatas. This is a truly novel (and surprising) discovery; none of the existing theories of

expressive performance were aware of this simple pattern.

3 In this experiment, the data were not split into subsets randomly; rather, 10 subsets were created according

to global tempo (fast or slow) and time signature (3/4, 4/4, etc.) of the sonata sections the notes belonged to. We

chose these two dimensions for splitting because it is known (and has been shown experimentally [28]) that global

tempo and time signature strongly affect expressive performance patterns. As a result, we can expect models that

tightly fit (overfit?) these data partitions to be quite different, and diversity should be beneficial to an ensemble

method like PLCG.

From: G. Widmer (2003).  
Discovering simple rules in 
complex data:  A meta-
learning algorithm and some 
surprising musical 
discoveries. Artificial 
Intelligence 146:129-148. 
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Music Plus One (C. Raphael)

Inputs: 

• sampled acoustic signal 

• musical score

Output:  

• Time at which notes occur

Inputs: 

• output from Listen module

• musical score

• rehearsal data from musician

• performances of accompaniment

Output:

• Music accompaniment in real time 
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Task I : Listen

Task 2 : Play

t1 t2 t3 t4 t5 t6 t7 t8 t9

4
4

Text and graphics on following pages from slide 
presentation by Chris Raphael.Thanks Chris!

4
4

t1 t2 t3 t4 t5

Solo

Accompaniment
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Five performances of same musical phrase

Intuition: there are regularities to be learned
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Composite

Accomp

Listen

Update

tn = time in secs of nth note
sn = rate (secs/meas) at nth note

(
tn+1

sn+1

)
=

(
1 lengthn

0 1

) (
tn
sn

)
+

(
τn

σn

)

Listen and Accomp modeled 
as noisy observations of true 

note time

Graphical model for “Play” component
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Composite

Accomp

Listen

Update

Inference: Model trained using 
EM, first on accompaniment 

data then solo data.

Inference and generation in “Play” component
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Real time accompaniment: 
Each time new info observed 
recompute marginal for next 
accomp. note and schedule.

Composite

Accomp

Listen

Update

Process  frame Play pending note

Signal handler

reschedule next unplayed note
If solo note detected, Schedule next unplayed note
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KCCA (Dorard, Hardoon & Shawe-Taylor)

• Want to fit specific performer style 
(unlike, e.g., Widmer et.al.)

• Correlate musical score to performance

• Score features: melody and chords
projected into vector using Paiement 
et.al. 
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Yesterday’s talk so I’ll keep it short...

In our approach we confine ourselves to expressive music with continuous upper part
melody and accompaniment2, as we believe this type of music to be simpler to analyse
for the purpose of performance. It may be interesting to consider scores that make use of
rubato as this implies important variations in tempo, at the discretion of the performer. It
would make it easier to see whether our technique yields good results. ‘Etude 3 Opus 10’
by Chopin (Figure 3) is a prime example of the kind of music we consider as it has all the
characteristics mentioned above.

For such music we can easily extract the melody, and then the harmonies: we assign to each
note of the melody the chord made up of the notes played in the accompaniment while the
note of the melody stays on. Thus we create a sequence of (note, chord) pairs occurring
one after another, which we call ‘feature representation’.
This is musically relevant as it captures both the ’vertical’ and the ’horizontal’ dimensions
of music. Figure 4 shows an example of the extracted feature representation of a musical
score. We will use our learning algorithms with these feature representations instead of
scores in the note matrix format. The principal advantage of the feature representation is
that, unlike the score, no event can occur while another event is already on.

Figure 3: First two bars of Etude 3 Opus
10 by Chopin

Beat Melody Chord
1 B3 B3
2 E3 [E2 B2 G#3 B3 E4]
3 D#3 [E2 B2 G#3 D#3]
... ... ...

Figure 4: Feature representation of
the score in Figure 3

The audio recordings used initially are all chosen from the same performer, which style we
try to learn, and there is only one recording per score. Hence, the data used in our system
is a paired data-set containing first, score feature representations and second, performance
worms. The system learns how a famous pianist performs by relating the worm to the struc-
ture of the music as it is written on the score, and then perform new pieces of music using
the learned style. We use KCCA to correlate the two views and to learn the common “se-
mantic space” in which they are to be projected. When dealing with a new score, we seek
to generate a worm sequence that maximises the similarity with the score in the common
semantic space (i.e. the inner product in that space). The worm coordinates are then used
to set the timing of notes and their velocity, thus generating a performance – limited, since
the attack of a key on the piano cannot be summarised with just one value for the velocity.

In order to apply KCCA to our data, we first need to design a kernel that applies to sec-
tions of worm and a kernel that applies to sections of musical score, which we call ’Music
Kernel’ and we present in this paper.

2 Music Kernel

We begin by introducing some notations that will be used throughout the paper. Let s1

denote a sequence of events in time (s1,j)j such that
(j1 < j2)⇒ (s1,j1 happens before s1,j2). (1)

Each event e is characterised by its position in time – also called “onset time” – and its
attributes that we assume to be vectors of real numbers. Events occur one after another,

2Continuous: no rests; Upper part: at any given time, the note with the highest pitch that can be
heard is a note of the melody; Accompaniment: the notes which are not part of the melody and which
are used to create harmonies.
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The audio recordings used initially are all chosen from the same performer, which style we
try to learn, and there is only one recording per score. Hence, the data used in our system
is a paired data-set containing first, score feature representations and second, performance
worms. The system learns how a famous pianist performs by relating the worm to the struc-
ture of the music as it is written on the score, and then perform new pieces of music using
the learned style. We use KCCA to correlate the two views and to learn the common “se-
mantic space” in which they are to be projected. When dealing with a new score, we seek
to generate a worm sequence that maximises the similarity with the score in the common
semantic space (i.e. the inner product in that space). The worm coordinates are then used
to set the timing of notes and their velocity, thus generating a performance – limited, since
the attack of a key on the piano cannot be summarised with just one value for the velocity.

In order to apply KCCA to our data, we first need to design a kernel that applies to sec-
tions of worm and a kernel that applies to sections of musical score, which we call ’Music
Kernel’ and we present in this paper.

2 Music Kernel

We begin by introducing some notations that will be used throughout the paper. Let s1

denote a sequence of events in time (s1,j)j such that
(j1 < j2)⇒ (s1,j1 happens before s1,j2). (1)

Each event e is characterised by its position in time – also called “onset time” – and its
attributes that we assume to be vectors of real numbers. Events occur one after another,

2Continuous: no rests; Upper part: at any given time, the note with the highest pitch that can be
heard is a note of the melody; Accompaniment: the notes which are not part of the melody and which
are used to create harmonies.

2.2 Events of different durations

It does not make much sense to compare events from s1 and s2 when they do not have
the same durations, because events will not happen at the same times within the sequence.
For this reason, we transform one of the two sequences to be compared, say s1, so that its
events happen at the exact same times in the sequence as those of s2, i.e. they have same
durations. We call such an operation a ‘projection’ and denote the resulting sequence by
s(1→2).
Figure 5 shows the behaviour of the projection algorithm on two examples. Each event is
a rectangle, time is represented on a horizontal axis, and the attributes of the events are
represented with the brightness of the rectangles’ colours.

Figure 5: Illustration of the projection algorithm

The sequence s(1→2) can be used instead of s1 in Equation 7 to compute a distance with
s2. However, we may lose events of the original sequence when projecting it, as shown in
Figure 5. In order not to lose the specificities of s1 and s2 when extending our distance to
sequences of events of different durations, we define our new distance to be

dj0(s1, s2) =
√

dj0(s1, s(2→1))2 + dj0(s(1→2), s2)2 (8)

Note that projection also makes a certain error since the durations pattern of s(1→2) is the
same as the one of s2, which is likely to be different from the durations pattern of s1.
A measure of that error, e1→2, can be given by comparing the duration of each event
s(1→2),j with the duration of the event e chosen in s1 it originates from. Errors e1→2

and e2→1 can then both be incorporated into the new distance dj0 defined in Equation 8.

2.3 Application to scores

A score’s feature representation (Figure 4) is a time sequence in which events are (note,
chord) pairs. The performance of the Music Kernel is dependent on the attributes of these
events as the kernel is based on the distance between events which is based on a distance
between the attributes. It is quite natural to consider the pitch, which is an integer, as
the attribute for a note. However it is not obvious which numerical attribute should be
considered for a chord and could account its harmonic characteristics.

[2] developed a 12 dimensional representation of chords
based on psycho-acoustic considerations. When a chord
is played, not only the notes that make up the chord can be
heard but also the harmonics of these notes. For instance,
when a C3 is played, a G4 can be heard as a harmonic,
with a lesser loudness. We first determine the loudnesses
of all audible notes when the chord is sounded. Then,
for each pitch-class (C, C#, D, ...) the loudnesses of
the notes that belong to it are summed, this resulting in a
vector of 12 real values that we consider as the attribute

for the chord. It appears then that if two chords correspond to two different inversions of
the same harmony, their attributes will be similar even though the chords could be made of
different notes (e.g.: [E2 G#3 B3 E4] and [B2 E3 D2 G#2] for E major). The figure
above shows the attribute of the chord [E2 B2 G#3 B3 E4] as a histogram.
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KCCA (Dorard, Hardoon & Shawe-Taylor)

• Audio performance features: 
instantaneous tempo and loudness of 
onsets (“worm”of Dixon et al)

• Use KCCA (a kernel version of 
Canonical Correlation Analysis) to 
correlate these two views.

• Required kernel for score features and 
kernel for audio (worm) features

• Currently only preliminary results.
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and then the machine would just know which notes to play and at which times. The rest
of the parameters of the performance would have to be initialised to default values and
wouldn’t change. This would result in a mechanical and flat performance, allowing no
dynamic nor time delay, and consequently lacking any emotion.
One could argue that the musical score actually gives information on how to perform the
piece, but this information is only qualitative in nature (e.g. p, f, cresc., ral., acc.) and
therefore it cannot be readily implemented in the computer representation of the score.

The purpose of the present work is to use machine learning techniques in order to enable
the computer to perform a piece of music in the way a human would, and preferably in the
style of one particular performer.
Previous work such as [6] presented a technique for machine performance based on an
inductive rule-learning algorithm. Thus, they were able to predict the dynamics of perfor-
mances, as well as the changes of tempo. However their technique was restricted as they did
not consider the specificities of individual performers. They sought commonalities across
all performers in the change in loudness and in tempo, to establish general rules. Besides,
their method did not consider combined changes in loudness and tempo, and harmonies
were not considered in the analysis of scores.
We seek here to achieve machine performance by correlating musical scores with perfor-
mances of these scores. We assume that these two objects are two views of the same
musical semantic content S. Note that there is only one view of S in the form of a symbolic
representation (score) but there can be several views of S in the form of a performance
transcription (MIDI or audio recording for instance), as two different pianists will perform
differently the same piece of music or the same pianist could perform differently at different
moments.

Although it should also be possible to use MIDI recordings as performance transcriptions
(made by the Computer Grand Piano for example), we choose to work with audio
recordings which are more common especially when we look for recordings from famous
pianists. From these audio recordings we extract performance worms as introduced by [3].
Thereafter, a performance will be associated to its worm and we won’t have to consider
audio recordings again.
Worms are sequences of 2 real values that give the evolution of tempo and loudness in time
in the performance. Each (tempo, loudness) pair in the worm corresponds to a beat on the
score. Figure 1 shows a graphical view of a worm as a 2D trajectory on a graph. Pianists’
specificity’s show with characteristic worm shapes, whereas a machine’s performance
worm would be immobile.

Figure 1: Smoothed graphical view of
a worm

Beat Tempo
(bpm)

Loudness
(sone)

1 22.3881 3.2264
2 22.3881 2.3668
3 21.4286 6.7167
4 19.0597 4.2105
5 28.1426 8.3444
6 30.0000 10.2206
7 26.7857 14.1084
8 25.8621 14.0037
9 35.7143 7.8521
... ... ...

Figure 2: Machine representation of a
worm
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Summary

• Important information in timing and dynamics. 

• Artificial expressive performances can be pleasing

• We saw four approaches to automatic performance:
• “classic AI” rules-based system (KTH)
• rules induction (Widmer)
• generative model (Raphael)
• kernel approach (Dorard et. al.)
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But:  these all make use of a musical score.  
(Some less than others....)
Can we get away from that?
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Challenges in score-free expressive performance

• Local information is not sufficient 
for modeling music expression

• Score contains long-timescale 
information about phrasing and 
metrical organization

• Automatic methods exist for 
estimating deep hierarchical 
structure in music from a score

• Without score, this task is more 
difficult
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Graphic from 
AITEC 
Department 
of Future 
Technologies 
(ftp.icot.or.jp)
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Incremental planning in sequence production 101

Event 

Strength    

Sx * Mx(i)

Metrically Strong

Current Event

Event 

Strength

Sx* Mx(i)

Metrically Strong

Current Event

Metrically Weak

Current Event

Fast tempo

Metrically Weak

Current Event

Slow tempo
*

*

Figure 7.

Focus: musical meter

• Meter provides long-timescale 
framework for music

• Meter and performance are 
closely related

• Example: performance errors 
correlate with meter. 
Palmer & Pfordresher (2003)

• Rest of the talk: use meter as 
proxy for musical score to gain 
access to nonlocal information
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Waveform at original 
sampling rate

 Log spectrogram 
with ~10ms frames

Sum of gradient 
yields ~100hz signal 

Audio pre-processing (not necessary for MIDI)
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Autocorrelation value a(k)
for a single lag k is the sum 
of dot-product between 
signal and signal shifted k 
points.

Signal

Signal shifted 
by k

Autocorrelation

100Hz signal 

Computing Autocorrelation
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Store autocorrelation 
information for a single lag 
K in a vector of length K. 

Phase of autocorrelation 
energy is preserved 

spatially in the vector.

points from 
0 to 379

points from 
380 to 759

Preserving phase (example: lag 380)

points from 
k * lag to (k+1)* lag -1

. . .

Signal

Signal shifted 
by k

Dot-product

Σ
lag-380 autocorrelation energy stored mod-380
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la
g 

(m
s)

The Autocorrelation Phase Matrix (APM)

• The autocorrelation phase 
matrix (APM) has a row 
for each lag. 

• Rows are ordered by lag.

• Phase is stored in 
milliseconds.  Thus the 
matrix is triangular (long 
lags take more time before 
they cycle around).
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The Autocorrelation Phase Matrix (APM)

• The APM provides a local 
representation for tempo 
variations and rhythmical 
variations

• Small horizontal changes on APM 
reach near-neighbors in frequency

• Small vertical changes on APM 
reach near-neighbors in phase
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la
g 

(m
s)

Metrical Interpretation

• A metrical tree can be 
specified as a set of 
metrically related points 
on the APM

• Search is thus done in 
space of meter and tempo 
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Finding beat and meter

• Search is done through the space of metrical trees using Viterbi alignment.

• Resulting metrical tree “contracts” and “expands” with changing tempo.

• Details in Eck (2007).
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Expressive performance dynamics	

• Use the APM to identify meter as it 
changes in time.

• Measure expressive dynamics and 
timing with respect to the APM

• Measurements made in milliseconds 
(time) but stored in radians (phase)

• Allows us to generalize to new pieces 
of music with different tempi and 
meter
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Integrate over time the 
winning metrical tree.
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Modest example

• Morph the Chopin etude to 
sound a bit like me playing 
Heart and Soul after a couple 
of beers. 

• Use hill climbing to find nearest 
maxima in target vector.

• Provides rudimentary measure-
level perturbation only 
(preliminary and unrealistic).  

• Timing, velocity, chord spread.
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Collecting performance stats for the piano

• For piano, identify hands using 
clustering 

• Easier than finding leading 
melodic voice. No melodic 
analysis required

• Once hands are identified, 
identify chords 

• Measure duration, velocity, 
legato,chord spread
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Hand-specific statistics for piano

• Hands are somewhat rhythmically independent

• Measurements with respect to single hand are 
different than those for both hands (here: duration)
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Conclusions

• Expressive timing and dynamics are important part of music

• Short overview of approaches

• Discussed task of score-free expressive performance

• Suggest using metrical structure as proxy for musical score

• Related this to APM model

• Future work:

• There remains more future work than completed work!
• So this list would be too long....
• Thank you for your patience. 
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Following are deleted slides
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Chopin Etude 
Opus 10 No 3

Deadpan 
(no expressive timing or dynamics)

Human performance 
(Recorded on Boesendorfer ZEUS)

Differences limited to:
•timing (onset, length)
•velocity (seen as red)
•pedaling (blue shading)

Flat timing
Flat velocity

Expressive timing
Flat velocity

Expressive timing
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Focus: musical meter

• Meter is the measurement of a musical line into 
measures of stressed and unstressed "beats", 
indicated in Western music notation by the time 
signature.

• Many methods for (imperfectly) estimating metrical 
structure in audio and MIDI

•
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