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Abstract

A computer system is described that
provides a real-time musical accom-
paniment for a live soloist in a piece
of non-improvised music. A Bayesian
belief network is developed that rep-
resents the joint distribution on the
times at which the solo and accom-
paniment notes are played as well
as many hidden variables. The net-
work models several important sources
of information including the informa-
tion contained in the score and the
rhythmic interpretations of the soloist
and accompaniment which are learned
from examples. The network is used
to provide a computationally e�cient
decision-making engine that utilizes all
available information while producing
a exible and musical accompaniment.

1 Introduction

Our ongoing work, \Music Plus One," develops
a computer system that plays the role of musi-
cal accompanist in a piece of non-improvisatory
music for soloist and accompaniment. The sys-
tem takes as input the acoustic signal generated
by the live player and constructs the accompa-
niment around this signal using musical inter-
pretations for both the solo and accompaniment
parts learned from examples. When our e�orts
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succeed, the accompaniment played by our sys-
tem responds both exibly and expressively to
the soloist's musical interpretation.

We have partitioned the accompaniment prob-
lem into two components, \Listen" and \Play."
Listen takes as input the acoustic signal of the
soloist and, using a hidden Markov model, per-
forms a real-time analysis of the signal. The
output of Listen is essentially a running com-
mentary on the acoustic input which identi�es
note boundaries in the solo part and commu-
nicates these events with variable latency. The
strengths of our HMM-based framework include
automatic trainability, which allows our sys-
tem automatically adapt to changes in solo in-
strument and acoustic environment; the com-
putational e�ciency that comes with dynamic
programming recognition algorithms; and accu-
racy, due in part to Listen's ability to delay the
identi�cation of an event until the local ambi-
guity is resolved. Our work on the Listen com-
ponent is documented in [1].

The Play component develops a Bayesian belief
network consisting of hundreds of Gaussian ran-
dom variables including both observable quanti-
ties, such as note onset times, and unobservable
quantities, such as local tempo. The belief net-
work can be trained during a rehearsal phase to
model both the soloist's and accompanist's in-
terpretations of a speci�c piece of music. This
model can then be used in performance to com-
pute in real time the optimal course of action
given the currently available data. We focus
here on the Play component which is the most



challenging part of our system. A more detailed
treatment of some aspects of this work is given
in [2].

2 Knowledge Sources

As with the human musical accompanist, the
music produced by our system must depend on
a number of di�erent knowledge sources. From
a modeling point of view, the primary task is
to develop a model in which these disparate
knowledge sources can be expressed in terms of
some common denominator. We describe here
the three knowledge sources we use.

We work with non-improvisatory music so nat-
urally the musical score, which gives the pitches
and relative durations of the various notes, as
well as points of synchronization between the
soloist and accompaniment, must �gure promi-
nently in our model. The score should not be
thought of as a rigid grid prescribing the precise
times at which musical events will occur; rather,
the score gives the basic elastic material which
will be stretched in various ways to to produce
the actual performance. The score simply does
not address most interpretive aspects of perfor-
mance.

Since our accompanist must follow the soloist,
the output of the Listen component, which iden-
ti�es note boundaries in the solo part, consti-
tutes our second knowledge source. While most
musical events, such as changes between neigh-
boring diatonic pitches, can be detected very
shortly after the change of note, some events,
such as rearticulations and octave slurs, are
much less obvious and can only be precisely lo-
cated with the bene�t of longer term hindsight.
With this in mind, we feel that any success-
ful accompaniment system cannot synchronize
in a purely responsive manner. Rather it must
be able to predict the future using the past and
base its synchronization on these predictions, as
human musicians do.

While the same player's performance of a par-
ticular piece will vary from rendition to rendi-
tion, many aspects of musical interpretation are

clearly established with only a few repeated ex-
amples. These examples, both of solo perfor-
mances and human renditions of the accompani-
ment part constitute the third knowledge source
for our system. The solo data is used primarily
to teach the system how to predict the future
evolution of the solo part (and to know what can
and cannot be predicted reliably). The accom-
paniment data is used to learn the musicality
necessary to bring the accompaniment to life.

We have developed a probabilistic model, a
Bayesian belief network, that represents all of
these knowledge sources through a jointly Gaus-
sian distribution that contains hundreds of ran-
dom variables. The observable variables in this
model are the estimated soloist note onset times
produced by Listen and the directly observ-
able times for the accompaniment notes. Be-
tween these observable variables lie several lay-
ers of hidden variables that describe unobserv-
able quantities such as local tempo, change in
tempo, and rhythmic stress.

3 The Solo Model

We model the time evolution of the solo part
as follows. For each of the solo notes, indexed
by n = 0; : : : ; N , we de�ne a random vector
representing the time, tn, (in seconds) and the
\tempo," sn, (in secs. per beat) for the note. We
model this sequence of random vectors through
a random di�erence equation:
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n = 0; : : : ; N �1, where ln is the musical length
of the nth note in beats and the f(�n; �n)

tg
and (t0; s0)

t are mutually independent Gaussian
random vectors.

The distribution of the f�ng will tend concen-
trate around 0 which expresses the notion that
tempo changes are gradual. The means and
variances of the f�ng show where the soloist
is speeding-up (negative mean), slowing-down
(positive mean), and tell us if these tempo
changes are nearly deterministic (low variance),



or quite variable (high variance). The f�ng vari-
ables describe stretches (positive mean) or com-
pressions (negative mean) in the music that oc-
cur without any actual change in tempo. Thus,
the distributions of the (�n; �n)

t vectors char-
acterize the solo player's rhythmic interpreta-
tion. Both overall tendencies (means) and the
repeatability of these tendencies (covariances)
are expressed by these vectors.

The solo model can be summarized as

xsolon+1 = Anx
solo
n + �solon (2)

for n = 0; : : : ; N � 1 where xsolon = (tn; sn)
t,

�solon = (�n; �n)
t and An is the 2x2 matrix in

Eqn. 1. In Eqn. 2 the f�solon g and xsolo0 are mu-
tually independent Gaussian random vectors.

3.1 Training the Solo Model

The training of the solo distribution revolves
around the estimation of the �solon = (�n; �n)

t

vectors. Since these vectors cannot be observed
directly, we have a missing data problem. Let
xobsn be the nth note estimate produced by Lis-
ten which we assume depends only on the \true"
note time, tn. We model

xobsn = Bxsolon + �obsn (3)

where the matrix B = (1; 0) and the f�obsn g are
independent 0-mean Gaussian variables with
known variances. The fxsolon g, f�solon g and
fxobsn g variables have a dependency structure
expressed in the directed acyclic graph (DAG)
of Figure 1 which qualitatively describes Eqns. 2
and 3; this graphical representation of depen-
dency structure provides the key to the training
algorithm. Suppose we have several solo perfor-
mances of a section of music. Having observed
the times generated by Listen for each perfor-
mance, (the darkened circles in the �gure), we
can use the message passing algorithm to com-
pute posterior distributions on the f�solon g and
xsolo0 variables. With these posterior distribu-
tions in hand, the EM algorithm [3] provides a
simple updating scheme guaranteed to increase
the marginal likelihood of the observations at
each iteration.

Training the solo evolution model allows our
system to predict the future evolution of the
solo part and adjust the accompaniment accord-
ingly. It is in this way that we incorporate the
soloist's rhythmic interpretation and follow the
soloist by anticipating future events. The actual
output of our system is, of course, the accompa-
niment; if the accompaniment is to be played in
a musically satisfying way it must do much more
than merely synchronize with the soloist. We
now describe how we construct the joint prob-
abilistic model on the solo and accompaniment
parts.

4 Adding the Accompaniment

Our accompaniments are generated through the
MIDI (Musical Instrument Digital Interface)
protocol, and thus each accompaniment note is
described by three parameters: An onset time, a
damping time, and an initial velocity (the MIDI
term for volume). The damping times can be
computed as a function of the onset times in
a straight-forward manner: In a legato passage
each note can be damped when the next note
begins; in a staccato passage the notes can be
damped at prescribed intervals after the note
onsets. The MIDI velocities contribute more
signi�cantly to the musical quality of the perfor-
mance so we have elected to learn these from ac-
tual MIDI performance data. While interdepen-
dencies might well exist between musical timing
and dynamics, we have elected to separate our
estimation of velocities from the onset times. To
this end we learn the velocities by partitioning
the accompaniment part into phrases and mod-
eling the velocities on each phrase as a function
of a small number of predictor variables such as
pitch, score position, etc. These velocities are
then used in a deterministic fashion in subse-
quent performances. The MIDI onset times are,
by far, the most important variables since they
completely determine the degree of synchronic-
ity between the solo and accompaniment part
and largely determine the expressive content of
the accompaniment. These are the variables we
model jointly with the solo model variables de-
scribed in the previous section.



We begin by de�ning a model for the accompa-
niment part alone that is completely analogous
to the solo model. Speci�cally, we de�ne a pro-
cess

xaccomm+1 = Cmx
accom
m + �accomm

for m = 0; : : : ;M � 1 where the fxaccomm g are
(time,tempo) variables for the accompaniment
notes, where xaccom0 and the f�accomm g are mutu-
ally independent Gaussian vectors that express
the accompaniment's rhythmic interpretation,
and where the fCmg are matrices analogous to
the fAng of Eqn. 2. The means and covariances
of the xaccom0 and f�accomm g variables are then
learned from MIDI performances of the accom-
paniment using the EM algorithm as with solo
model. One might think of the xaccom process
as representing the \practice room" distribution
on the accompaniment part | that is, the way
the accompaniment plays when issues of syn-
chronizing with the soloist are not relevant.

We then combine our solo and accompaniment
models into a joint model containing the vari-
ables of both parts. In doing so, the solo and
accompaniment models play asymmetric roles
since we model the notion that the accompa-
niment must follow the soloist. To this end we
begin with the solo model exactly as it has been
trained from examples as in Eqn. 2. We then de-
�ne the conditional distribution of the accom-
paniment part given the solo part in a way that
integrates the rhythmic interpretation of the ac-
companiment as represented in the xaccom pro-
cess and the desire for synchronicity.

Consider a section of the accompaniment part
\sandwiched" between two solo notes as in the
upper left panel of Figure 2. For simplicity we
assume that ml and mr are the indices of the
leftmost and rightmost accompaniment notes
and that n(ml) and n(mr) are the indices of the
coincident solo notes of Figure 2. The accom-
paniment notes xaccomml+1 ; : : : ; x

accom
mr�1 have a condi-

tional distribution given xaccomml
and xaccommr

that
can be represented as follows.

We modify the graph corresponding to the joint
distribution on xaccomml

; : : : ; xaccommr
by dropping

the directions of the edges, adding an edge be-

tween xaccomml
and xaccommr

, and triangulating the
graph as in the upper right panel of Figure 2.
The joint distribution on xaccomml

; : : : ; xaccommr
can

be represented on this modi�ed graph by associ-
ating each potential in the original graph with
a corresponding clique in the modi�ed graph.
Then, after a round of message passing, we ob-
tain the equilibrium representation and from
this equilibrium we write the joint distribution
on xaccomml

; : : : ; xaccommr
byQ
C2C �CQ
S2S �S

where C and S are the cliques and separators
in the clique tree and f�Cg and f�Sg are the
clique and separator potentials corresponding to
the marginal distributions on the indicated vari-
ables. Lauritzen [4] and Lauritzen and Jensen
[5] provides two ways of implementing the mes-
sage passing algorithm in this Gaussian con-
text, although we employ our own method. By
the construction of the graph, there will be a
clique, Croot, containing E = fxaccomml

; xaccommr
g

and hence the joint distribution of the variables
of E can be obtained from the equilibrium rep-
resentation. We denote the Gaussian potential
for this marginal by �E . Then the conditional
distribution on xaccomml+1 ; : : : ; x

accom
mr�1 given xaccomml

and xaccommr
can then be written asQ

C2C �C

�E
Q
S2S �S

A causal representation of this conditional dis-
tribution can be found by regarding Croot as the
root of the tree and letting S(C) be the \root
side" separator for each clique other than Croot;
we let S(Croot) = E. The desired causal repre-
sentation is then Y

C2C

�C

�S(C)
(4)

where each quotient represents the conditional
distribution on C n S(C) given S(C).

We then de�ne our conditional distribution of
the accompaniment, given the solo part, as fol-
lows. Let

xcondml
= xsolo

n(ml)
+ �condml

(5)



xcondmr
= xsolo

n(mr)
+ �condmr

where �condml
and �condmr

are 0-mean random vec-
tors with small covariances. Thus we rep-
resent the idea that the time and tempo
of the accompaniment notes with indices ml

and mr are small perturbations of the time
and tempo for the coincident solo notes.
We then de�ne the variables xcondml+1; : : : ; x

cond
mr�1

given xcondml
and xcondmr

according to the causal
representation of the conditional distribution
of xaccomml+1 ; : : : ; x

accom
mr�1 given xaccomml

and xaccommr

shown in Eqn. 4. A pictorial description of this
construction is given in the lower left panel of
Figure 2.

Situations arise in which accompaniment notes
cannot be sandwiched between a pair of coin-
cident solo notes leading to several other cases
that employ the basic idea described above. We
will not describe these cases here. Figure 3
shows a DAG describing the dependency struc-
ture of a model corresponding to the opening
measure of the Sinfonia of J. S. Bach's Cantata
12. The 2nd and 1st layers of the graph are
the solo process and the output of Listen as de-
scribed by Eqns 2 and 3. The 3rd layer denotes
\phantom" nodes which arise when accompani-
ment notes are sandwiched between solo notes
yet no coincident solo notes exist. The 4th layer
shows the accompaniment notes that are coinci-
dent with solo notes as in Eqn. 5 The 5th layer
shows the sandwiched accompaniment notes as
in Eqn. 4. Finally, for each accompaniment vec-
tor (the 4th and 5th layers) we de�ne a variable
that deterministically \picks o�" the time com-
ponent of the vector. These variable compose
the 6th layer of the graph. Only the top and
bottom layers in this graph are directly observ-
able.

5 Real Time Accompaniment

The methodological key to our real-time accom-
paniment algorithm is the computation of (con-
ditional) marginal distributions facilitated by
the message-passing algorithm. At any point
during the performance some collection of solo

notes and accompaniment notes will have been
observed. Conditioned on this information we
can compute the distribution on the next un-
played accompaniment note by passing a se-
quence of messages as in HUGIN's \Collect Ev-
idence." The real-time computational require-
ment is limited by passing only the messages
necessary to compute the marginal distribution
on the pending accompaniment note. To this
end, every time a model variable is observed
all messages moving \away" from that variable
are marked as \hot." Every time a message is
passed the message is then marked as \cold."
When computing the distribution on the pend-
ing accompaniment note only the \hot" mes-
sages are passed. Usually there are only a few
of these.

Once the marginal of the pending accompani-
ment note is calculated we schedule the note
accordingly. Currently we schedule the note to
be played at the posterior mean time given all
observed information, however other reasonable
choices are possible. Note that this posterior
distribution depends on all of the sources of in-
formation included in our model: The score in-
formation, all currently observed solo and ac-
companiment note times, the predicted evolu-
tion of future solo note times learned during the
training phase, and the learned rhythmic inter-
pretation of the accompaniment part.

The initial scheduling of each accompaniment
note takes place immediately after the previ-
ous accompaniment note is played. It is possi-
ble that a solo note will be detected before the
pending accompaniment is played; in this event
the pending accompaniment note is resched-
uled based on the new available information.
The pending accompaniment note is resched-
uled each time an additional solo note is de-
tected until its current schedule time arrives, at
which time it is �nally played. In this way our
accompaniment makes use of all currently avail-
able information.

Can the computer learn to play expressively?
We presume no more objectivity in answer-
ing this question than we would have in judg-



ing the merits of our children. However, we
believe that the level of musicality attained
by our system is truly surprising. We hope
that the interested reader will form an inde-
pendent opinion, even if di�erent from ours,
and to this end we have made musical exam-
ples available on our web page. In particular,
both a \practice room" accompaniment gener-
ated from our model and a demonstration of our
accompaniment system in action can be heard
at http://fafner.math.umass.edu/reverie.
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Figure 1: The dependency structure of the fxsolon g,f�solon g, and fxobsn g variables. The variables with
no parents, xsolo0 and the f�solon g, are assumed to be mutually independent and are trained using
the EM algorithm. The horizontal placement of graph vertices in the �gure corresponds to their
times, in beats, as indicated by the score.
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Figure 2: Upper Left: A sequence of 5 accompaniment notes, the �rst and last of which, xaccomml

and xaccommr
, coincide with the solo notes xsolo

n(ml)
and xsolo

n(mr)
. The conditional distribution of each

vector given its predecessor is learned during a training phrase. Upper Right: An undirected
graph of the same variables used for computing the joint distribution on xaccomml

and xaccommr
. Lower

Left: A directed graph showing the dependency structure for the conditional distribution of the
xcondml

; : : : ; xcondrl
given xsolo

n(ml)
and xsolo

n(mr)
.



cont.

vla. 2

vla. 1

vln. 2

vln. 1

oboe

I
K

K
G

G

G

222

222

222

222

222

222

S

S

S

S

S

S

� >

� = � � F �

� � � � � �
�

� � �
�

� (� ?

�
� � �

�

� (� ?

� � � � � 6� � �Å ���

� >

� = � � A �

� � � 6� � �
� ¢ � 6�

�

� (� ?

�
� � �

�

� (� ?

tr� � � � � � � � �Ò �1�

Figure 3: Top: The opening measure of the Sinfonia from J.S. Bach's Cantata 12. Bottom: The
graph corresponding to the �rst 7/8 of this measures. The nodes in the 1st (top) layer correspond
to the estimated solo note times that come from the Listen process fxobsn g; the 2nd layer represents
the solo process fxsolon g; the 3rd layer represents the phantom nodes; the 4th layer represents the
coincident accompaniment nodes; the 5th layer represents the sandwiched nodes; the 6th layer
represents the actual accompaniment observation times.


