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Abstract

A method is presented for aligning a polyphonic mu-
sical score to an audio performance of that score. The
method is based on a graphical model containing both
discrete hidden variables, corresponding to score po-
sition, and continuous hidden variables, corresponding
to tempo. The data interpretation is defined to be the
most likely configuration of the hidden variables and the
computation of this configuration is developed. Appli-
cations to digital music libraries and musical accompa-
niment systems are presented.

Introduction
We address an audio recognition problem in which we de-
velop a correspondence between a musical score and an au-
dio performance of that score. There are two versions of
this problem which we call “on-line” and “off-line” parsing.
Off-line parsing uses the complete performance to estimate
the onset time for each score note. Applications of off-line
parsing include editing and post-processing of digital audio,
as well as allowing “random access” to music — playback
starting at arbitrary musical location. Our personal interest
in this problem is motivated by work in musical accompani-
ment systems which spawns another application of off-line
parsing. This application as well as work done for the Vari-
ations2 Digital Libary Project are discussed in the “Applica-
tions” section.

On-line parsing processes the data in real-time, so no
“look ahead” is possible. The goal here is to identify the mu-
sical events depicted in the score with as little latency as pos-
sible. Musical accompaniment systems must perform this
task with the live soloist’s input. Other applications include
the automatic coordination of audio-visual equipment with
musical performance, such as opera supertitles and real-time
score-based audio enhancement e.g. pitch correction. We
will treat the off-line problem in this work, however exten-
sions to on-line parsing are possible.

Many researches have treated on-line and off-line mu-
sical score alignment including (Dannenberg 1984), (Ver-
coe 1984), (Puckette 1995), (Grubb & Dannenberg 1997),
(Raphael 1999), (Orio & Dechelle 2001), (Turetsky & El-
lis 2003), (Soulez, Rodet, & Schwarz 2003). While many
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variations exist, the predominant approach develops an ob-
jective function measuring the quality of a particular match
between score and data. Then the best possible match is
sought using dynamic programming. Without doubt, these
efforts contain many notable successes, however, the prob-
lem is still open. Our personal experience indicates that one
needn’t look far (e.g. complex polyphony, varied instrumen-
tal texture, fast notes, rearticulations and octave slurs, etc.),
to find audio data that confounds any particular algorithm.
The need for a more robust and widely applicable algorithm
is the motivation for the current work.

An “Achilles’ heel,” common to all past approaches we
know, is the modeling of length for the individual notes. If
the issue is treated at all, note lengths are either constrained
to some range or modeled as random, with the range or dis-
tribution depending on a global tempo or learned from past
examples. Either implicitly or explicitly, the note lengths are
treated as independent variables. However, note lengths are
anything but independent. Our belief, bolstered by conven-
tional musical wisdom, is that the lion’s share of note length
variation can be explained in terms of a time-varying tempo
process. This work explicitly models tempo as a real-valued
process, hoping that the more powerful model will be able
explain what the data model cannot.

While the remaining discussion is directed entirely to-
ward our particular application, we believe that the basic
technique we introduce is generally applicable to time se-
ries analyses in which periodic state-conditional observa-
tions are made on a process whose state-change times follow
linear dynamics.

The Model
In the case of monophonic (single voice) music, a musical
score can be represented as a sequence of score positions,
expressed in beats, with associated pitches. Polyphonic mu-
sic can be viewed, similarly, as a sequence of score positions
with associated chords (pitch collections). In the polyphonic
case, the score positions would be created by sorting the
union of score positions over all musical parts, and discard-
ing duplicate positions. Each score position would then be
associated with the collection of pitches that sound until the
next musical event. Thus our score does not represent which
notes come from which instruments. We notate this score by�������	�
����
�����������������������
�������	�����

where the � th event be-



gins at
���

beats and contains pitches
�
������� �� �������������! � �

.
By convention,

���"�$#
and

���
is a 0-note “chord” corre-

sponding to the silence at the end of the audio.
Let % � ��������� % � be the sequence of times, in seconds, at

which the chord onsets occur. If the music were performed
strictly in time, then % ���'&�����( % � and the score match-
ing problem would reduce to estimating the two parame-
ters,

&
and % � . However, such robotic precision is seldom

desired and never achieved in actual human performance.
More typically the onset times are the product of numer-
ous interpretative issues as well as the inevitable inaccura-
cies of human performance. We model here what we be-
lieve to be the most important factors governing musical tim-
ing: time-varying tempo as well as note-by-note deviations.
More precisely, we define random variables ) � ��������� ) � and* �+��������� * �

through* � � * �
,-� (/. �
) �0� ) �
,1�2(43�� * �5(/6��

for � ��78���������	9
where

3��/�:���<;=���
,1�
is the length,

in beats, of the � th chord, and > * ��� ) ��?A@ > .B�C�D6��C? ��E-� are
independent normal random variables with the > . � �	6 � ? � �E-�
variables further assumed to be 0-mean.

* � ��������� * �
is our

tempo process, modeled as a random walk, where
* �

is
the local beat length (secs. per beat) at the � th chord. The) � ��������� ) � are the actual note onset times which depend
on the tempo process as well as the deviations > 6 � ? � ��E-� .
We view the actual times % �+��������� % � as a realization of the
random variables ) ����������� ) � . The dependency structure of
these variables is expressed as a directed acyclic graph in the
top of Figure 1.

Letting
&F�G�H&+�+���������I&
���

and % �G� % �J��������� % �K� , this
model leads to a simple factorization of the joint probability
density, L �M&�� % � , as

L �H&N� % �2� L �M&+��� L � % ���
�O�E-� L �M&
�!P &��
,-��� L � % �!P % �
,-�+�I&��+�

The factors in this equation are, more explicitly,

L �H&+���Q� R/�M&��+SDTVUDW+�	. �UDW �
L � % ���Q� R/� % ��SDT1XHW+�	. �XHW �L �H&��8P &��
,-���Q� R/�M&
�8S�&��
,1�J�	. �U  �L � % � P % �
,-� �I& � �Q� R/� % � S % �
,-� (43 � & � �	. �X  �

� �Y7Z��������9 , where
R/�\[]�DT^��. � �

denotes the univariate nor-
mal density function with mean

T
and variance

. �
. The

model parameters
T_UDW���. �U W �DT1XHW���. �X W

and > . �U  �	. �X  ? � �EV� are
assumed known.

Our data come from a sampled audio signal which we
partition into a sequence of frames, `Na � ` � ������� `�b ,1� , each
corresponding to c seconds of sound ( c�dfe # ms. in our
experiments). For each frame, g �h#i����������R';kj , we let lnm
denote the index of the chord that is sounding for the frame.
For example, the sequence of values:

loa � l � � l � �����C�p#N#q�����\#r st uvxw j�j2�����jr s�t uv W 7N7Z�����	7r st uvxy �����
(1)
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Figure 1: The dependency structure of the model variables
expressed as a directed acyclic graph (DAG). Circles denote
continuous variables, while squares denote discrete vari-
ables. Darkened circles represent observed variables.

would signify that the first note begins at z a c seconds, the
second note begins at

� z�a ( z � � c seconds, etc. We model
both l �$� l a ��������� l b ,-��� and ` �{� ` a ��������� ` b ,1��� as real-
izations of random processes | and } . In particular, given| � l , } a ��������� } b ,-� are conditionally independent ran-
dom vectors with local dependence on the | process. That
is, the conditional density for } given | � l is

L � ` P l �2� b
,1�O
m E a L

� `�m P lom �
The | and } processes are depicted in the bottom of Figure
1.

We are interested in specifying a joint model on the vec-
tors

* � ) � | � } . The key observation here is that, up to a
discretization error, ) and | contain identical information:
the partitioning of the audio signal into chords. Thus we
can eliminate % from the model and write L �M&N� % � l � ` �4�L �H&N� l � ` � where

L �M&N� l � ` �~� L �H&+��� L � % ���
�O�EV� L �H&��8P &��
,-��� L � % �iP % ��,1�J��&��J�

� b ,1�O
m E a L

� ` m P l m � (2)

While the right hand side of Eqn. 2 appears to depend on % ,
we interpret % � % � l � , i.e.

% �8� l ���p�<��� >
g��Nlom � � ? c (3)

The Data Model
Our data model gives L � `Nm P lom � where `�m is the g th frame of
audio data and l m is an index into the score. Suppose first
that lom indexes a single-note chord, whose frequency is

�
.

Since musical pitches are nearly periodic, we would expect
the power spectrum of ` m to concentrate energy primarily at
the integral multiples

�+��7��+� e �J������� . Thus we build a proba-
bility density on frequency by

� ���5S	���2����� E_� L � R/���5SM���+�	6
�� �



where � �� E�� L � ��j . The number of harmonics considered,�
, their widths, > 6 �� ? �� E�� , and the way in which they decay,L �+��������� L � , are parameters of our model. This can be ex-

tended to an arbitrary chord,
������� � ���������	� � �

, by mixing
the one-note distributions (and adding a background noise
term)

� ���5S����2��� a j�� a�� �N�!�H�	� ( �
�� �� � E_� � ���5�	�
�
�

where
� a �	� � are weights with

� a (4� � ��j .
Suppose our observed power spectrum is   �   � `�m �¡��   �+���������  
¢ � . Imagining for a moment that the values of  

are integral, we can view   as the histogram of a random
sample of size £ � �h¤   ¤ from our model distribution � �� � �+��������� � ¢ � where � is a discretization of � ���5S	��� . Thus

L �   P �+� £ ��� £C¥¦ ¤   ¤ ¥
¢O
¤ E_� �i§D¨¤ (4)

To complete the data model we would need a marginal dis-
tribution on £ , L � £ � . However, since the data,   , will be fixed
in our computations, L � £ � , or any other factor not depend-
ing on � amounts to a multiplicative constant as

�
varies in

Eqn. 4. Thus or model is

L � `�m P lom �2� L �   P ���2��©<�   �	ª«� ¢O¤ E_� � § ¨�¬I¤
where we have dropped the requirement that   be integral
and added a scaling parameter

ª
.

The parameters of our model,
� � >	L � �D6 �� ? �� E_� �	ª®�	� a ���
�

should ideally be learned from training data, although they
were set by hand in the present case.

Computing the MAP Estimate
Our goal is now phrased as follows: Given the observed
data, ` , we seek the most likely configuration of the unob-
served variables,

&
and l :��¯&N�C¯l �2�p°J±�²2�"°+³U � ´ L �H&N� l � ` � (5)

If all variables were discrete, this problem would be solvable
through traditional dynamic programming techniques, how-
ever, note that the

&
process is continuous. We describe here

a method for approximating the global solution to Eqn. 5.
Consider the tree of Figure 2, which describes an enumer-

ation of all possible realizations of the labeling process l .
First, the root of the tree is labeled 0. Then, any node in the
tree with label �4µ 9 will have two children labeled by �
and � (Yj , while a node labeled

9
will have a single child

labeled
9

. The labels
#

and
9

correspond to the silence
at the beginning and end of the audio data. Note that any
path from the root of the tree to a node at depth g traverses
a sequences of labels corresponding to a possible realization
of the l!a ��������� l m ; clearly all possible realizations are con-
tained in the tree.

Traversing a partial path through the tree (fixingl a ��������� lom ) implicitly determines the first several variables

0
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Figure 2: The search tree associated with optimization. The
label of a tree node is the score index describing the current
chord.

% ����������� % � through Eqn. 3. (Here � also depends on the
path l a ������� lom although we suppress this in our notation.)
For this partial path, the probability density for the vari-
ables | ma �Q� |�a ��������� | m � , } ma �¶� }oa ��������� } m � , * �� �� * �+��������� * �+�

is

L �H& � � � l ma � ` ma �Q� L �M&+��� L � % ��� (6)

� �O
· E-� L �H& · P & · ,1��� L � % · P % · ,1�+��& · � (7)

� mO
¸ E a L

� ` ¸ P l ¸ �
In interpreting this equation, if � �'# then the lines num-
bered 6 and 7 are unity while if � �¹j

only the line num-
bered 7 is unity.

For each partial path l ma define¯L ´�ºw �M&��J�2� �"°+³U W�»¼»¼» � U  I½ W L �M&
� � � l ma � ` ma � (8)

In right side of Eqn. 8, all variables are fixed except& � ���������I& �
. Due to the Gaussian assumptions, L �M& � � � l ma � ` ma �

is clearly the exponential of a quadratic function of the&��+���������I&
�
. Thus, after maximizing over

&+�¾�������I&
��,1�
, we

can represent
¯L ´ ºw �H&��J� as a function of the parametric form94�M&NS�¿V�D�À�DÁ8�2��¿   , Wy � U�,BÂ � y ¬�Ã (9)

for some
�H¿V�D�À�DÁ8�

.
It is a simple matter to compute the parameters of this rep-

resentation recursively. Suppose l m ,1�a �Ä� l a ��������� lom ,1���
is such that lBm ,1� � � ;Åj

and
¯L ´ º ½ Ww �H&��
,-���Æ�



94�M&��
,1�+S�¿V�D�À�DÁ8�
. There are two cases. First, if lBm ,-�A� lom

then ¯L ´ ºw �M&��
,1���~� ¯L ´ º ½ Ww �H&��
,-��� L � `Nm P lBm �� 9k�H&��
,-��S�¿ L � `�m P lom ���D�À�DÁ8�
Otherwise, a straightforward but somewhat lengthy calcula-
tion gives¯Lo´ ºw �H& � �~� �"°J³U  I½ W ¯L ´ º ½ Ww �H& �
,1� � L �H& � P & �
,1� � L � % � P % �
,1� ��& � �� L � ` m P l m � (10)� 9k�H& � SI¿!ÇH�D��Ç��	Á�ÇÈ�
where

¿ Ç � ¿ L � `Nm P lBm �7JÉ-. �U  . �X   
, Wy-Ê¼Ë  ½ Ë  I½ W ½NÌ  ÍVÎ yÌ y  Ê¼Ï	ÐNÑ yÒ  Î Ð�Ñ yË  

� Ç � ��. �X  (/3��i� % �Ó; % �
,1������ÁÔ(4. �U  �3 �� ��ÁÓ(4. �U  �-(4. �X  Á Ç � ��ÁK(/. �U  �\. �X  3 �� ��Á�(4. �U  �_(/. �X  
In the sequel we will use the notation

¯Ln´�ºw �M& � � �94�M&��CS�¿_� l ma ��D�Õ� l ma ��	ÁB� l ma �D� . Thus for any complete pathl � l b ,1�a with l b ,1�q��9 , we can compute�"°J³U L �M&N� l � ` �2�Ö�"°+³U\× ¯L ´�Ø ½ Ww �H& � �2�h¿V� l b ,1�a �
We now discuss maximizing L �H&N� l � ` � over l as well as

&
.

Controlling the Search Tree’s Growth
Clearly the number of tree nodes is exponential in the tree’s
depth making it impossible to explore the tree thoroughly
without additional insight. The key observation here is the
the tree can be pruned without sacrificing the search for the
optimal path.

Examination of Eqn. 2 reveals that our joint probability
model has a Markov structure and can hence be factored into
“past” and “future” probabilities. That is, if l1m � � we have

L �M&�� l � ` �~� L �M& � � � l ma � ` ma �� L �M& � �Ù_� � l b ,-�m Ù_� � ` b ,1�m Ù_� P & � � % � � l ma �D�
where � ��&+��� % � plays the role of the “state.” Maximizing
both sides over

&
yields�"°+³U L �H&N� l � ` �~� �"°+³U × ¯L ´ ºw �M&��J�
� L �M& � ��Ù_� � l b ,1�m Ù�� � ` b ,1�m Ù_� P & � � % � � l ma �D�

Now consider two paths in the tree, l ma and Úl ma , both be-
ginning the � th note on the g th frame, as depicted in Fig-
ure 2, so that % � � l ma �h� % � � Úl ma �h� gVc . Suppose that¯L ´ ºw �H&��J�ÓÛÜ¯L�Ý´ ºw �M&��J� for all

&��
. Then for any possible future

evolution of the path: l b ,-�m Ù_� ,�"°J³U L �H&N� l ma � l b ,-�m Ù_� � ` �®ÛÞ�"°+³U L �H&N� Úl ma � l b ,1�m Ù_� � ` �

Figure 3: Top: The set of functions > ¯Ln´ ºw �M& � �ß�94�H&���SI¿V� l ma ���D�Õ� l ma ��DÁn� l ma �D� ��l maáà z ? (i.e. before thin-
ning). Bot: The functions > ¯L ´ ºw �H&��J� �Jl ma à�âZã �]�V� z �I?
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Figure 4: Each point in figure represents the number of hy-
potheses, both before and after the thinning operation. The
resulting number of hypotheses (y) seems independent of the
number thinned (x).

Thus any path beginning with Úl ma can always be beaten by a
path beginning with l ma and we can prune the former branch
no danger of losing the optimal path.

More generally, suppose that z is some collection of paths
such that for l ma ��� l a ��������� lom � à z , lom ,-�¡� � ;Yj andlom � � . Define the set âZã ���_� z � as the smallest subset of z
such that �"°+³´ ºwCäJåoæ�ç è � v � ¯L ´ ºw �H&��J�2���"°+³´ ºw ä v ¯L ´ ºw �H&��J�
as in Figure 3. Reasoning as above, we can prune any partial
path l maYéà z without loss of optimality. Due to the simple
parametric form of the

¯LB´
ºw �H& � � functions, the thinning pro-
cedure can be computed with a computational cost that is
quadratic in

P z P . An algorithm for the thinning operation is
discussed in (Raphael 2002).

Suppose z�b ,1� is the set of branches, l � l b ,1�a , surviv-
ing through the final iteration

R';Þj
. Then�"°J³U � ´ L �M&N� l � ` �~� �"°+³´�Ø ½ Ww ä v Ø ½ W
�"°+³U × ¯L ´ Ø ½ Ww �H&
�K�

� �"°+³´ Ø ½ Ww ä v Ø ½ W
¿_� l b ,-�a �

Thus the maximizing path is
¯l �°J±�²2�"°+³ ´ Ø ½ Ww ä v Ø ½ W ¿V� l b

,1�a �
and the maximizing se-

quence of tempos can be found by letting
¯&+�ê�¶�À�
¯l �

and tracing the optimal tempos
¯&��Ó,-�_��������¯&+�

backward by
recursively substituting

°J±�²^�"°+³
for
�"°J³

in Eqn. 10.

Computational Complexity and Pruning
We examine here the computational complexity of comput-
ing a global optimum.

Suppose that

1. The thinning algorithm reduces any set of branches to
most ) branches.

2. The number of chords in the score is
9

.

3. Each note can last no longer than ë frames.

Then at the beginning each iteration, g , the number of sur-
viving branches is at most

9 )ìë since each chord could
have begun at frames g ;�jN������� g ; ë with each (chord,
onset position) pair associated with at most ) branches. The
basic iteration extends the surviving branches and thins each
subset of children that begin chord � , � �{j����������	9 . Thus
the cost of an iteration is

9 )Aë (Ö9k� )Aë � � since the thin-
ning operation is quadratic in the number of branches to be
thinned. Thus the overall computational complexity of the
algorithm is

R�94� )Aë � � .
As a coarse approximation the first assumption seems jus-

tifiable in practice. Figure 4 shows a scatter plot where each
point is the number of hypotheses both before and after thin-
ning. The “after”numbers seem to be independent of the
“before” numbers and very rarely does thinning result in
more than 50 branches. In fact, the number would be less
at coarser frame discretization. However, as the algorithm
progresses, the number of (chord, onset position) hypothe-
ses entertained in any frame increases monotonically since
thinning happens only within a (chord, onset position) col-
lection. Eventually this creates an overwhelming number of
hypotheses, so global optimization is only possible for short
scores containing 30 or so notes.

While global optimization may not be possible, we
strongly doubt that it is necessary. Human listeners cer-
tainly lose sight of the distant past while following musi-
cal scores, yet have no trouble maintaining an accurate cor-
respondence between score and sound. We proceed analo-
gously by pruning our search tree. Recall that the basic it-
eration computes

¯LB´ ºw �H& � �Ô�í9k�H& � SI¿V� l ma ��	�À� l ma ���DÁn� l ma �D� .
One possibility is to prune the branches after sorting on¿V� l ma �A���"°+³!U  L ´
ºw �H&��J� . The problem with this method is
that the number of chords encountered, � varies from branch
to branch so the resulting scores are products of different
numbers of factors. In particular, in experimenting with this
pruning method, we have observed that branches already ex-
ceeding a reasonable amount of time for the current chord
avoid being pruned by delaying the chord change and the as-
sociated note length factor L � % �Ù_�NP % �C��&��J� . This phenomenon
is analogous to the “horizon effect” of computer chess in
which hypotheses receive falsely inflated scores by postpon-
ing an inevitable end beyond the search horizon. We address
this issue by sorting instead onÚ¿V� l ma ��� �"°+³U  � X  Ð WIî mJï L ´ ºw �H&��J� L � % ��Ù_��P % �C�I&
���
We still are comparing apples and oranges to some extent,
but the actual results are much improved. The results of the
next section were produced keeping a total of several hun-
dred hypotheses for each frame.

Applications
Part of our interest in this problem stems from a collabo-
ration with the Variations2 Digital Music Library Project at



Indiana University. One of the many aims of this project is to
allow listeners, in particular students in their School of Mu-
sic, new tools for learning and studying music, interleaving
sound, text, music notation, and graphics. One specific goal
is to give the user “random access” to a recording allowing
playback to begin at any time, expressed in musical units,
e.g. the third beat of measure 47. Clearly such a task re-
quires an “index” into the audio recording labeling the times
of the many musical events, such as that produced by our
algorithm.

We construct the score corresponding to an audio file au-
tomatically by analyzing a MIDI file of the same composi-
tion. MIDI is a symbolic representation of music specify-
ing, among other things, the start time, end time, and pitch
for each note in the musical score. From many MIDI files,
such as those generated from score-writing programs, it is
possible to reconstruct the musical times (in beats or mea-
sures) of these events in a straight-forward manner. Further
processing leads to our score representation as a sequence
of labeled chords

�����J�	������
�����J�	�����n�����
. The MIDI file also

provides approximate tempos for the various sections of the
composition, as well as meter changes.

Our score matching technique was first applied separately
to the Adagio Sostenuto and Vivace from the 1st movement
of Beethoven’s 7th Symphony. A formal evaluation of the
results requires tedious and error-prone hand-marking of a
large amount of music, and is beyond the scope of our cur-
rent research goals. Rather, to informally evaluate the re-
sults, we have superimposed clicks identifying important
musical positions on the audio files. These were placed on
every bar line and half-measure in the Adagio and on ev-
ery bar line in the Vivace. The audio files can be heard at
http://fafner.math.umass.edu/aaai04. With the exception
of two momentary problems caused by the two fermati in the
Vivace, we believe the correspondence is quite accurate, and
certainly good enough for the needs of the application.

The second, and much more challenging, example is the
Sacrificial Dance from Stravinsky’s Le Sacre du Printemps.
This composition challenges the score-following abilities of
many educated musicians with its frequent meter changes
and complicated relationship between barring and musical
content. We prepared our score in a fully automatic way
from a MIDI file of a piano reduction involving many sim-
plifications of the original score. The composition contains
several sudden tempo changes which were handled by re-
setting our tempo to the value indicated in the MIDI file at
the appropriate location (and letting it vary according to the
model elsewhere), thus allowing us to parse the entire Sac-
rificial Dance as a single section. This example can also be
heard at the referenced web page with a more complicated
regimen for adding clicks: the 3/16, 1/8, and 3/8 bars get 1
loud click on the downbeat; 5/16 bars are treated as 3+2 with
one loud click on the downbeat and one weaker click on the
4th 16th; 1/4 bars are treated similarly as 2+2; 2/4, 3/4, and
5/4 bars get 1 one loud click on the downbeat and weaker
clicks on the other quarter note pulses. The web page also
contains a piano score for comparison. Careful study and fa-
miliarity with the piece are necessary to evaluate the results,
however, we believe they are also rarely off by more than a

fraction of a beat. Our own experience informally evaluat-
ing these results leads us to conclude that the music index
we develop is quite useful for learning a difficult score.

The current work was motivated by a different applica-
tion, namely our efforts in building a musical accompani-
ment system. Our system generates a full orchestral ac-
companiment that follows a live player in real time, as in
a concerto. While an overview of this work is beyond the
present scope, one fundamental task is to create an index
into an audio recording of the accompaniment, to be used
in the real-time resynthesis of the audio. The web location
referenced above contains a click file showing the alignment
achieved by our algorithm on a section of the Brahms Vio-
lin Concerto (without the soloist). For this application it is
still necessary to occasionally adjust occasional onset times
given by our algorithm; the Brahms example shows the re-
sults before any hand-tuning takes place. A recording of
a live performance of part of the work, with the orches-
tra played by our accompaniment system, can be heard at
http://fafner.math.umass.edu/music plus one.
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