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1

Signal Processing Basics

The following chapter describes how to begin using MATLAB® and the Signal Processing Toolbox for 
your signal processing applications. It is assumed that you have basic knowledge and understanding 
of signals and systems, including such topics as filter and linear system theory and basic Fourier 
analysis.

What Is the Signal Processing Toolbox? 
(p. 1-2)

Major features and key areas of the toolbox

Representing Signals (p. 1-5) Vector and matrix represtation of signals

Waveform Generation: Time Vectors 
and Sinusoids (p. 1-7)

Periodic and aperiodic waveforms, sequences (impulse, 
step, ramp), multichannel signals, pulse trains, sinc and 
Dirichlet functions

Working with Data (p. 1-14) Methods of inputting and importing data

Filter Implementation and Analysis 
(p. 1-15)

Filtering discrete signals

The filter Function (p. 1-18) Mathemetical information on the filter function

Other Functions for Filtering (p. 1-20) Other types of filter functions available in the toolbox

Impulse Response (p. 1-24) Impulse response details

Frequency Response (p. 1-26) Frequency response details

Zero-Pole Analysis (p. 1-32) Z-plane poles and zeros

Linear System Models (p. 1-34) Discrete-time and continuous-time linear system models 
and transformations

Discrete Fourier Transform (p. 1-46) DFT details

Selected Bibliography (p. 1-49) Sources for additional information
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What Is the Signal Processing Toolbox?
The Signal Processing Toolbox is a collection of tools built on the MATLAB 

numeric computing environment. The toolbox supports a wide range of signal 
processing operations, from waveform generation to filter design and 
implementation, parametric modeling, and spectral analysis. The toolbox 
provides two categories of tools:

Command line functions in the following categories: 

• Analog and digital filter analysis 

• Digital filter implementation 

• FIR and IIR digital filter design 

• Analog filter design 

• Filter discretization 

• Spectral Windows Transforms 

• Cepstral analysis 

• Statistical signal processing and spectral analysis 

• Parametric modeling 

• Linear Prediction 

• Waveform generation 

A suite of interactive graphical user interfaces for 

• Filter design and analysis 

• Window design and analysis 

• Signal plotting and analysis 

• Spectral analysis 

• Filtering signals 

Signal Processing Toolbox Central Features
The Signal Processing Toolbox functions are algorithms, expressed mostly in 
M-files, that implement a variety of signal processing tasks. These toolbox 
functions are a specialized extension of the MATLAB computational and 
graphical environment.



What Is the Signal Processing Toolbox?
Filtering and FFTs
Two of the most important functions for signal processing are not in the Signal 
Processing Toolbox at all, but are built-in MATLAB functions:

• filter applies a digital filter to a data sequence.

• fft calculates the discrete Fourier transform of a sequence.

The operations these functions perform are the main computational 
workhorses of classical signal processing. Both are described in this chapter. 
The Signal Processing Toolbox uses many other standard MATLAB functions 
and language features, including polynomial root finding, complex arithmetic, 
matrix inversion and manipulation, and graphics tools.

Signals and Systems
The basic entities that toolbox functions work with are signals and systems. 
The functions emphasize digital, or discrete, signals and filters, as opposed to 
analog, or continuous, signals. The principal filter type the toolbox supports is 
the linear, time-invariant digital filter with a single input and a single output. 
You can represent linear time-invariant systems using one of several models 
(such as transfer function, state-space, zero-pole-gain, and second-order 
section) and convert between representations. 

Key Areas: Filter Design and Spectral Analysis
In addition to its core functions, the toolbox provides rich, customizable support 
for the key areas of filter design and spectral analysis. It is easy to implement 
a design technique that suits your application, design digital filters directly, or 
create analog prototypes and discretize them. Toolbox functions also estimate 
power spectral density and cross spectral density, using either parametric or 
nonparametric techniques. Chapter 2, “Filter Design and Implementation” and 
Chapter 3, “Statistical Signal Processing,” respectively detail toolbox functions 
for filter design and spectral analysis.

Some filter design and spectral analysis functions included in the toolbox are

• Computation and graphical display of frequency response

• System identification

• Generating signals

• Discrete cosine, chirp-z, and Hilbert transforms
1-3
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• Lattice filters

• Resampling

• Time-frequency analysis

• Basic communication systems simulation

Interactive Tools
The power of the Signal Processing Toolbox is greatly enhanced by its 
easy-to-use interactive tools. SPTool provides a rich graphical environment for 
signal viewing, filter design, and spectral analysis. The Filter Design and 
Analysis Tool (FDATool) provides a more comprehensive collection of features 
for addressing the problem of filter design. The FDATool also offers seamless 
access to the additional filter design methods and quantization features of the 
Filter Design Toolbox when that product is installed. The Window Design and 
Analysis Tool (WinTool) provides an environment for designing and comparing 
spectral windows.

Extensibility
Perhaps the most important feature of the MATLAB environment is that it is 
extensible. MATLAB lets you create your own M-files to meet numeric 
computation needs for research, design, or engineering of signal processing 
systems. Simply copy the M-files provided with the Signal Processing Toolbox 
and modify them as needed, or create new functions to expand the functionality 
of the toolbox.



Representing Signals
Representing Signals
The central data construct in MATLAB is the numeric array, an ordered 
collection of real or complex numeric data with two or more dimensions. The 
basic data objects of signal processing (one-dimensional signals or sequences, 
multichannel signals, and two-dimensional signals) are all naturally suited to 
array representation.

Vector Representation
MATLAB represents ordinary one-dimensional sampled data signals, or 
sequences, as vectors. Vectors are 1-by-n or n-by-1 arrays, where n is the 
number of samples in the sequence. One way to introduce a sequence into 
MATLAB is to enter it as a list of elements at the command prompt. The 
statement

x = [4 3 7 -9 1]

creates a simple five-element real sequence in a row vector. Transposition 
turns the sequence into a column vector

x = x'

resulting in

x =
4
3
7

-9
1

Column orientation is preferable for single channel signals because it extends 
naturally to the multichannel case. For multichannel data, each column of a 
matrix represents one channel. Each row of such a matrix then corresponds to 
a sample point. A three-channel signal that consists of x, 2x, and x/π is

y = [x 2*x x/pi]
1-5
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This results in

y =
4.0000 8.0000 1.2732
3.0000 6.0000 0.9549
7.0000 14.0000 2.2282

-9.0000 -18.0000 -2.8648
1.0000 2.0000 0.3183



Waveform Generation: Time Vectors and Sinusoids
Waveform Generation: Time Vectors and Sinusoids
A variety of toolbox functions generate waveforms. Most require you to begin 
with a vector representing a time base. Consider generating data with a 1000 
Hz sample frequency, for example. An appropriate time vector is

t = (0:0.001:1)';

where the MATLAB colon operator creates a 1001-element row vector that 
represents time running from zero to one second in steps of one millisecond. 
The transpose operator (') changes the row vector into a column; the 
semicolon (;) tells MATLAB to compute but not display the result.

Given t you can create a sample signal y consisting of two sinusoids, one at 50 
Hz and one at 120 Hz with twice the amplitude.

y = sin(2*pi*50*t) + 2*sin(2*pi*120*t);

The new variable y, formed from vector t, is also 1001 elements long. You can 
add normally distributed white noise to the signal and graph the first fifty 
points using

randn('state',0);
yn = y + 0.5*randn(size(t));
plot(t(1:50),yn(1:50))
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Common Sequences: Unit Impulse, Unit Step, and 
Unit Ramp
Since MATLAB is a programming language, an endless variety of different 
signals is possible. Here are some statements that generate several commonly 
used sequences, including the unit impulse, unit step, and unit ramp functions:

t = (0:0.001:1)';
y = [1; zeros(99,1)]; % impulse
y = ones(100,1); % step (filter assumes 0 initial cond.)
y = t; % ramp
y = t.^2;
y = square(4*t);

All of these sequences are column vectors. The last three inherit their shapes 
from t.

Multichannel Signals
Use standard MATLAB array syntax to work with multichannel signals. For 
example, a multichannel signal consisting of the last three signals generated 
above is 

z = [t t.^2 square(4*t)];

You can generate a multichannel unit sample function using the outer product 
operator. For example, a six-element column vector whose first element is one, 
and whose remaining five elements are zeros, is

a = [1 zeros(1,5)]';

To duplicate column vector a into a matrix without performing any 
multiplication, use the MATLAB colon operator and the ones function:

c = a(:,ones(1,3));



Waveform Generation: Time Vectors and Sinusoids
Common Periodic Waveforms
The toolbox provides functions for generating widely used periodic waveforms:

• sawtooth generates a sawtooth wave with peaks at ±1 and a period of . An 
optional width parameter specifies a fractional multiple of  at which the 
signal’s maximum occurs.

• square generates a square wave with a period of . An optional parameter 
specifies duty cycle, the percent of the period for which the signal is positive.

To generate 1.5 seconds of a 50 Hz sawtooth wave with a sample rate of 10 kHz 
and plot 0.2 seconds of the generated waveform, use

fs = 10000;
t = 0:1/fs:1.5;
x = sawtooth(2*pi*50*t);
plot(t,x), axis([0 0.2 -1 1])

2π
2π

2π
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Common Aperiodic Waveforms
The toolbox also provides functions for generating several widely used 
aperiodic waveforms:

• gauspuls generates a Gaussian-modulated sinusoidal pulse with a specified 
time, center frequency, and fractional bandwidth. Optional parameters 
return in-phase and quadrature pulses, the RF signal envelope, and the 
cutoff time for the trailing pulse envelope.

• chirp generates a linear swept-frequency cosine signal. An optional 
parameter specifies alternative sweep methods. An optional parameter phi 
allows initial phase to be specified in degrees.

To compute 2 seconds of a linear chirp signal with a sample rate of 1 kHz, that 
starts at DC and crosses 150 Hz at 1 second, use

t = 0:1/1000:2;
y = chirp(t,0,1,150);

To plot the spectrogram, use

spectrogram(y,256,250,256,1000,'yaxis')
0



Waveform Generation: Time Vectors and Sinusoids
The pulstran Function
The pulstran function generates pulse trains from either continuous or 
sampled prototype pulses. The following example generates a pulse train 
consisting of the sum of multiple delayed interpolations of a Gaussian pulse. 
The pulse train is defined to have a sample rate of 50 kHz, a pulse train length 
of 10 ms, and a pulse repetition rate of 1 kHz; D specifies the delay to each pulse 
repetition in column 1 and an optional attenuation for each repetition in 
column 2. The pulse train is constructed by passing the name of the gauspuls 
function to pulstran, along with additional parameters that specify a 10 kHz 
Gaussian pulse with 50% bandwidth:

T = 0:1/50E3:10E-3;
D = [0:1/1E3:10E-3;0.8.^(0:10)]';
Y = pulstran(T,D,'gauspuls',10E3,0.5);
plot(T,Y)
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The Sinc Function
The sinc function computes the mathematical sinc function for an input vector 
or matrix x. The sinc function is the continuous inverse Fourier transform of 
the rectangular pulse of width  and height 1.

The sinc function has a value of 1 where x is zero, and a value of

for all other elements of x. 

To plot the sinc function for a linearly spaced vector with values ranging from 
-5 to 5, use the following commands:

x = linspace(-5,5);
y = sinc(x);
plot(x,y)
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Waveform Generation: Time Vectors and Sinusoids
The Dirichlet Function
The toolbox function diric computes the Dirichlet function, sometimes called 
the periodic sinc or aliased sinc function, for an input vector or matrix x. The 
Dirichlet function is

where n is a user-specified positive integer. For n odd, the Dirichlet function 
has a period of ; for n even, its period is . The magnitude of this function 
is (1/n) times the magnitude of the discrete-time Fourier transform of the 
n-point rectangular window.

To plot the Dirichlet function over the range 0 to 4π for n = 7 and n = 8, use

x = linspace(0,4*pi,300);
plot(x,diric(x,7)); axis tight;
plot(x,diric(x,8)); axis tight;

diric x( )
1– k n 1–( ) x 2πk k 0 1± 2± …, , ,=,=

nx 2⁄( )sin
n x 2⁄( )sin
---------------------------- otherwise

⎩
⎪
⎨
⎪
⎧

=

2π 4π
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Working with Data
The examples in the preceding sections obtain data in one of two ways:

• By direct input, that is, entering the data manually at the keyboard

• By using a MATLAB or toolbox function, such as sin, cos, sawtooth, square, 
or sinc

Some applications, however, may need to import data from outside MATLAB. 
Depending on your data format, you can do this in the following ways:

• Load data from an ASCII file or MAT-file with the MATLAB load command.

• Read the data into MATLAB with a low-level file I/O function, such as fopen, 
fread, and fscanf.

• Develop a MEX-file to read the data.

Other resources are also useful, such as a high-level language program (in 
Fortran or C, for example) that converts your data into MAT-file format – see 
the MATLAB External Interfaces/API Reference documentation for details. 
MATLAB reads such files using the load command.

Similar techniques are available for exporting data generated within 
MATLAB. See the MATLAB documentation for more details on importing and 
exporting data.

Note  All Signal Processing Toolbox functions accept double-precision inputs. 
The Filter Design Toolbox, along with the Fixed-Point Toolbox, enables 
single-precision floating-point and fixed-point support for most dfilt 
structures.
4



Filter Implementation and Analysis
Filter Implementation and Analysis
This section describes how to filter discrete signals using the MATLAB filter 
function and other functions in the Signal Processing Toolbox. It also discusses 
how to use the toolbox functions to analyze filter characteristics, including 
impulse response, magnitude and phase response, group delay, and zero-pole 
locations.

Convolution and Filtering
The mathematical foundation of filtering is convolution. The MATLAB conv 
function performs standard one-dimensional convolution, convolving one 
vector with another:

conv([1 1 1],[1 1 1])

ans =

     1     2     3     2     1

Note  Convolve rectangular matrices for two-dimensional signal processing 
using the conv2 function.

A digital filter’s output y(k) is related to its input x(k) by convolution with its 
impulse response h(k).

If a digital filter’s impulse response h(k) is finite length, and the input x(k) is 
also finite length, you can implement the filter using conv. Store x(k) in a vector 
x, h(k) in a vector h, and convolve the two:

x = randn(5,1);   % A random vector of length 5
h = [1 1 1 1]/4;  % Length 4 averaging filter
y = conv(h,x);

y k( ) h k( ) x k( )∗ h k l–( )x l( )

l ∞–=

∞

∑= =
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Filters and Transfer Functions
In general, the z-transform Y(z) of a digital filter’s output y(n) is related to the 
z-transform X(z) of the input by

where H(z) is the filter’s transfer function. Here, the constants b(i) and a(i) are 
the filter coefficients and the order of the filter is the maximum of n and m. 

Note  The filter coefficients start with subscript 1, rather than 0. This reflects 
the standard indexing scheme used for vectors in MATLAB.

MATLAB stores the coefficients in two vectors, one for the numerator and one 
for the denominator. By convention, MATLAB uses row vectors for filter 
coefficients.

Filter Coefficients and Filter Names
Many standard names for filters reflect the number of a and b coefficients 
present:

• When n = 0 (that is, b is a scalar), the filter is an Infinite Impulse Response 
(IIR), all-pole, recursive, or autoregressive (AR) filter.

• When m = 0 (that is, a is a scalar), the filter is a Finite Impulse Response 
(FIR), all-zero, nonrecursive, or moving-average (MA) filter.

• If both n and m are greater than zero, the filter is an IIR, pole-zero, recursive, 
or autoregressive moving-average (ARMA) filter.

The acronyms AR, MA, and ARMA are usually applied to filters associated 
with filtered stochastic processes.

Y z( ) H z( )X z( )
b 1( ) b 2( )z 1– b n 1+( )z n–+ + +
a 1( ) a 2( )z 1– a m 1+( )z m–+ + +
----------------------------------------------------------------------------------------X z( )= =
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Filter Implementation and Analysis

)

Filtering with the filter Function
It is simple to work back to a difference equation from the z-transform relation 
shown earlier. Assume that a(1) = 1. Move the denominator to the left-hand 
side and take the inverse z-transform.

In terms of current and past inputs, and past outputs, y(n) is

This is the standard time-domain representation of a digital filter, computed 
starting with y(1) and assuming zero initial conditions. This representation’s 
progression is

A filter in this form is easy to implement with the filter function. For 
example, a simple single-pole filter (lowpass) is

b = 1;          % Numerator
a = [1 -0.9];   % Denominator

where the vectors b and a represent the coefficients of a filter in transfer 
function form. To apply this filter to your data, use

y = filter(b,a,x);

filter gives you as many output samples as there are input samples, that is, 
the length of y is the same as the length of x. If the first element of a is not 1, 
filter divides the coefficients by a(1) before implementing the difference 
equation.

y k( ) a2y k 1–( ) am 1+ y k m–( )+ + + b1x k( ) b2x k 1–( ) bn 1+ x k m–(+ + +=

y k( ) b1x k( ) b2x k 1–( ) bn 1+ x k n–( ) a2y k 1–( )– am 1+ y k n–( )––+ + +=

y 1( ) b1x 1( )=

y 2( ) b1x 2( ) b2x 1( ) a2y 1( )–+=

y 3( ) b1x 3( ) b2x 2( ) b3x 1( ) a2y 2( ) a3y 1( )––+ +=

=
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The filter Function 
filter is implemented as the transposed direct-form II structure, where n-1 is 
the filter order. This is a canonical form that has the minimum number of delay 
elements.

At sample m, filter computes the difference equations

In its most basic form, filter initializes the delay outputs zi(1), i = 1, ..., n-1 
to 0. This is equivalent to assuming both past inputs and outputs are zero. Set 
the initial delay outputs using a fourth input parameter to filter, or access 
the final delay outputs using a second output parameter:

[y,zf] = filter(b,a,x,zi)

Access to initial and final conditions is useful for filtering data in sections, 
especially if memory limitations are a consideration. Suppose you have 
collected data in two segments of 5000 points each:

x1 = randn(5000,1);  % Generate two random data sequences.
x2 = randn(5000,1); 

Perhaps the first sequence, x1, corresponds to the first 10 minutes of data and 
the second, x2, to an additional 10 minutes. The whole sequence is x = [x1;x2]. 
If there is not sufficient memory to hold the combined sequence, filter the 

Σ Σ Σz -1 z -1

x(m)

y(m)

b(3) b(2) b(1)

– a(3) – a(2)

z1(m)z2(m)
Σ z -1

b(n)

–a(n)

zn -1(m)

...

...

...

y m( ) b 1( )x m( ) z1 m 1–( )+=

z1 m( ) b 2( )x m( ) z2 m 1–( ) a 2( )y m( )–+=

=

zn 2– m( ) b n 1–( )x m( ) zn 1– m 1–( ) a n 1–( )y m( )–+=

zn 1– m( ) b n( )x m( ) a n( )y m( )–=
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The filter Function
subsequences x1 and x2 one at a time. To ensure continuity of the filtered 
sequences, use the final conditions from x1 as initial conditions to filter x2:

[y1,zf] = filter(b,a,x1);
y2 = filter(b,a,x2,zf);

The filtic function generates initial conditions for filter. filtic computes 
the delay vector to make the behavior of the filter reflect past inputs and 
outputs that you specify. To obtain the same output delay values zf as above 
using filtic, use

zf = filtic(b,a,flipud(y1),flipud(x1));

This can be useful when filtering short data sequences, as appropriate initial 
conditions help reduce transient startup effects.
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Other Functions for Filtering
In addition to filter, several other functions in the Signal Processing Toolbox 
perform the basic filtering operation. These functions include upfirdn, which 
performs FIR filtering with resampling, filtfilt, which eliminates phase 
distortion in the filtering process, fftfilt, which performs the FIR filtering 
operation in the frequency domain, and latcfilt, which filters using a lattice 
implementation.

Multirate Filter Bank Implementation
The function upfirdn alters the sampling rate of a signal by an integer ratio
P/Q. It computes the result of a cascade of three systems that performs the 
following tasks: 

• Upsampling (zero insertion) by integer factor p

• Filtering by FIR filter h

• Downsampling by integer factor q

 

For example, to change the sample rate of a signal from 44.1 kHz to 48 kHz, we 
first find the smallest integer conversion ratio p/q. Set

d = gcd(48000,44100);
p = 48000/d;
q = 44100/d;

In this example, p = 160 and q = 147. Sample rate conversion is then 
accomplished by typing 

y = upfirdn(x,h,p,q)

This cascade of operations is implemented in an efficient manner using 
polyphase filtering techniques, and it is a central concept of multirate filtering 
(see reference [1] for details on multirate filter theory). Note that the quality of 
the resampling result relies on the quality of the FIR filter h.

Px(n) y(n)
FIR
H Q
0



Other Functions for Filtering
Filter banks may be implemented using upfirdn by allowing the filter h to be 
a matrix, with one FIR filter per column. A signal vector is passed 
independently through each FIR filter, resulting in a matrix of output signals.

Other functions that perform multirate filtering (with fixed filter) include 
resample, interp, and decimate.

Anti-Causal, Zero-Phase Filter Implementation
In the case of FIR filters, it is possible to design linear phase filters that, when 
applied to data (using filter or conv), simply delay the output by a fixed 
number of samples. For IIR filters, however, the phase distortion is usually 
highly nonlinear. The filtfilt function uses the information in the signal at 
points before and after the current point, in essence “looking into the future,” 
to eliminate phase distortion.

To see how filtfilt does this, recall that if the z-transform of a real sequence 
x(n) is X(z), the z-transform of the time reversed sequence x(n) is X(1/z). 
Consider the processing scheme.

When |z| = 1, that is z = ejω, the output reduces to X(ejω)|H(ejω)|2. Given all 
the samples of the sequence x(n), a doubly filtered version of x that has 
zero-phase distortion is possible.

For example, a 1-second duration signal sampled at 100 Hz, composed of two 
sinusoidal components at 3 Hz and 40 Hz, is 

fs = 100;
t = 0:1/fs:1;
x = sin(2*pi*t*3)+.25*sin(2*pi*t*40);

Now create a 10-point averaging FIR filter, and filter x using both filter and 
filtfilt for comparison:

b = ones(1,10)/10;  % 10 point averaging filter
y = filtfilt(b,1,x);  % Noncausal filtering
yy = filter(b,1,x);   % Normal filtering

H(z)X(z)

X(z)H(z) X(1/z)H(1/z) X(1/z)H(1/z)H(z)

X(z)H(1/z)H(z)H(z)Time
Reverse

Time
Reverse
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plot(t,x,t,y,'--',t,yy,':')

Both filtered versions eliminate the 40 Hz sinusoid evident in the original, 
solid line. The plot also shows how filter and filtfilt differ; the dashed 
(filtfilt) line is in phase with the original 3 Hz sinusoid, while the dotted 
(filter) line is delayed by about five samples. Also, the amplitude of the 
dashed line is smaller due to the magnitude squared effects of filtfilt.

filtfilt reduces filter startup transients by carefully choosing initial 
conditions, and by prepending onto the input sequence a short, reflected piece 
of the input sequence. For best results, make sure the sequence you are 
filtering has length at least three times the filter order and tapers to zero on 
both edges.
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Other Functions for Filtering
Frequency Domain Filter Implementation
Duality between the time domain and the frequency domain makes it possible 
to perform any operation in either domain. Usually one domain or the other is 
more convenient for a particular operation, but you can always accomplish a 
given operation in either domain.

To implement general IIR filtering in the frequency domain, multiply the 
discrete Fourier transform (DFT) of the input sequence with the quotient of the 
DFT of the filter:

n = length(x);
y = ifft(fft(x).*fft(b,n)./fft(a,n));

This computes results that are identical to filter, but with different startup 
transients (edge effects). For long sequences, this computation is very 
inefficient because of the large zero-padded FFT operations on the filter 
coefficients, and because the FFT algorithm becomes less efficient as the 
number of points n increases.

For FIR filters, however, it is possible to break longer sequences into shorter, 
computationally efficient FFT lengths. The function

y = fftfilt(b,x)

uses the overlap add method (see reference [1] at the end of this chapter) to 
filter a long sequence with multiple medium-length FFTs. Its output is 
equivalent to filter(b,1,x).
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Impulse Response
The impulse response of a digital filter is the output arising from the unit 
impulse input sequence defined as

In MATLAB, you can generate an impulse sequence a number of ways; one 
straightforward way is

imp = [1; zeros(49,1)];

The impulse response of the simple filter b = 1 and a = [1 -0.9] is

h = filter(b,a,imp);

A simple way to display the impulse response is with the Filter Visualization 
Tool (fvtool):

fvtool(b,a)

Then click the Impulse Response button  on the toolbar or select Impulse 
Response from the Analysis menu. This plot shows the exponential decay 
h(n) = 0.9n of the single pole system:

x n( )
1 n 1=,
0 n 1≠,⎩

⎨
⎧

=
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Frequency Response
The Signal Processing Toolbox enables you to perform frequency domain 
analysis of both analog and digital filters.

Digital Domain
freqz uses an FFT-based algorithm to calculate the z-transform frequency 
response of a digital filter. Specifically, the statement

[h,w] = freqz(b,a,p)

returns the p-point complex frequency response, , of the digital filter.

In its simplest form, freqz accepts the filter coefficient vectors b and a, and an 
integer p specifying the number of points at which to calculate the frequency 
response. freqz returns the complex frequency response in vector h, and the 
actual frequency points in vector w in rad/s. 

freqz can accept other parameters, such as a sampling frequency or a vector of 
arbitrary frequency points. The example below finds the 256-point frequency 
response for a 12th-order Chebyshev Type I filter. The call to freqz specifies a 
sampling frequency fs of 1000 Hz:

[b,a] = cheby1(12,0.5,200/500);
[h,f] = freqz(b,a,256,1000);

Because the parameter list includes a sampling frequency, freqz returns a 
vector f that contains the 256 frequency points between 0 and fs/2 used in the 
frequency response calculation.

H ejω( )

H ejω( ) b 1( ) b 2( )e j– ω b n 1+( )e j– ω n( )+ + +

a 1( ) a 2( )e j– ω a m 1+( )e j– ω m( )+ + +
---------------------------------------------------------------------------------------------------=
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Frequency Response
Note  This toolbox uses the convention that unit frequency is the Nyquist 
frequency, defined as half the sampling frequency. The cutoff frequency 
parameter for all basic filter design functions is normalized by the Nyquist 
frequency. For a system with a 1000 Hz sampling frequency, for example, 
300 Hz is 300/500 = 0.6. To convert normalized frequency to angular frequency 
around the unit circle, multiply by π. To convert normalized frequency back to 
hertz, multiply by half the sample frequency.

If you call freqz with no output arguments, it plots both magnitude versus 
frequency and phase versus frequency. For example, a ninth-order 
Butterworth lowpass filter with a cutoff frequency of 400 Hz, based on a 2000 
Hz sampling frequency, is

[b,a] = butter(9,400/1000);

To calculate the 256-point complex frequency response for this filter, and plot 
the magnitude and phase with freqz, use

freqz(b,a,256,2000)

or to display the magnitude and phase responses in fvtool, which provides 
additional analysis tools, use

fvtool(b,a)

and click the Magnitude and Phase Response button  on the toolbar or select 
Magnitude and Phase Response from the Analysis menu. 
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freqz can also accept a vector of arbitrary frequency points for use in the 
frequency response calculation. For example,

w = linspace(0,pi);
h = freqz(b,a,w);

calculates the complex frequency response at the frequency points in w for the 
filter defined by vectors b and a. The frequency points can range from 0 to . 
To specify a frequency vector that ranges from zero to your sampling frequency, 
include both the frequency vector and the sampling frequency value in the 
parameter list.

Analog Domain
freqs evaluates frequency response for an analog filter defined by two input 
coefficient vectors, b and a. Its operation is similar to that of freqz; you can 
specify a number of frequency points to use, supply a vector of arbitrary 
frequency points, and plot the magnitude and phase response of the filter.

2π
8



Frequency Response
Magnitude and Phase
MATLAB provides functions to extract magnitude and phase from a frequency 
response vector h. The function abs returns the magnitude of the response; 
angle returns the phase angle in radians. To extract the magnitude and phase 
of a Butterworth filter:

[b,a] = butter(9,400/1000);
fvtool(b,a)

and click the Magnitude and Phase Response button  on the toolbar or select 
Magnitude and Phase Response from the Analysis menu to display the plot.

The unwrap function is also useful in frequency analysis. unwrap unwraps the 
phase to make it continuous across 360° phase discontinuities by adding 
multiples of ±360°, as needed. To see how unwrap is useful, design a 25th-order 
lowpass FIR filter:

h = fir1(25,0.4);
1-29



1 Signal Processing Basics

1-3
Obtain the filter’s frequency response with freqz, and plot the phase in 
degrees:

[H,f] = freqz(h,1,512,2);
plot(f,angle(H)*180/pi); grid

It is difficult to distinguish the 360° jumps (an artifact of the arctangent 
function inside angle) from the 180° jumps that signify zeros in the frequency 
response. 

unwrap eliminates the 360° jumps:

plot(f,unwrap(angle(H))*180/pi);

or you can use phasez to see the unwrapped phase.

Delay
The group delay of a filter is a measure of the average delay of the filter as a 
function of frequency. It is defined as the negative first derivative of a filter’s 
phase response. If the complex frequency response of a filter is , then 
the group delay is
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Frequency Response
where θ is the phase angle of . Compute group delay with

[gd,w] = grpdelay(b,a,n)

which returns the n-point group delay, , of the digital filter specified by b 
and a, evaluated at the frequencies in vector w.

The phase delay of a filter is the negative of phase divided by frequency:

To plot both the group and phase delays of a system on the same FVTool graph, 
type

[b,a] = butter(10,200/1000); 
hFVT = fvtool(b,a,'Analysis','grpdelay'); 
set(hFVT,'NumberofPoints',128,'OverlayedAnalysis','phasedelay'); 
legend(hFVT)

H ejω( )

τg ω( )

τp ω( ) θ ω( )
ω

-----------–=
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Zero-Pole Analysis
The zplane function plots poles and zeros of a linear system. For example, a 
simple filter with a zero at -1/2 and a complex pole pair at  and 

 is

zer = -0.5; 
pol = 0.9*exp(j*2*pi*[-0.3 0.3]');

To view the pole-zero plot for this filter you can use

zplane(zer,pol)

or, for access to additional tools, use fvtool. First convert the poles and zeros 
to transfer function form, then call fvtool,

[b,a] = zp2tf(zer,pol,1);
fvtool(b,a)

and click the Pole/Zero Plot toolbar button  on the toolbar or select 
Pole/Zero Plot from the Analysis menu to see the plot.

0.9ej2π 0.3( )

0.9e j– 2π 0.3( )
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Zero-Pole Analysis
For a system in zero-pole form, supply column vector arguments z and p to 
zplane:

zplane(z,p)

For a system in transfer function form, supply row vectors b and a as 
arguments to zplane:

zplane(b,a)

In this case zplane finds the roots of b and a using the roots function and plots 
the resulting zeros and poles.

See “Linear System Models” on page 1-34 for details on zero-pole and transfer 
function representation of systems.
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Linear System Models
The Signal Processing Toolbox provides several models for representing linear 
time-invariant systems. This flexibility lets you choose the representational 
scheme that best suits your application and, within the bounds of numeric 
stability, convert freely to and from most other models. This section provides a 
brief overview of supported linear system models and describes how to work 
with these models in MATLAB.

Discrete-Time System Models
The discrete-time system models are representational schemes for digital 
filters. MATLAB supports several discrete-time system models, which are 
described in the following sections:

• “Transfer Function”

• “Zero-Pole-Gain”

• “State-Space”

• “Partial Fraction Expansion (Residue Form)”

• “Second-Order Sections (SOS)”

• “Lattice Structure”

• “Convolution Matrix”

Transfer Function
The transfer function is a basic z-domain representation of a digital filter, 
expressing the filter as a ratio of two polynomials. It is the principal 
discrete-time model for this toolbox. The transfer function model description 
for the z-transform of a digital filter’s difference equation is

Here, the constants b(i) and a(i) are the filter coefficients, and the order of the 
filter is the maximum of n and m. In MATLAB, you store these coefficients in 
two vectors (row vectors by convention), one row vector for the numerator and 
one for the denominator. See “Filters and Transfer Functions” on page 1-16 for 
more details on the transfer function form.

Y z( )
b 1( ) b 2( )z 1– b n 1+( )z n–+ + +
a 1( ) a 2( )z 1– a m 1+( )z m–+ + +
----------------------------------------------------------------------------------------X z( )=
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Zero-Pole-Gain
The factored or zero-pole-gain form of a transfer function is

By convention, MATLAB stores polynomial coefficients in row vectors and 
polynomial roots in column vectors. In zero-pole-gain form, therefore, the zero 
and pole locations for the numerator and denominator of a transfer function 
reside in column vectors. The factored transfer function gain k is a MATLAB 
scalar.

The poly and roots functions convert between polynomial and zero-pole-gain 
representations. For example, a simple IIR filter is

b = [2 3 4];
a = [1 3 3 1];

The zeros and poles of this filter are

q = roots(b)

q =
-0.7500 + 1.1990i
-0.7500 - 1.1990i

p = roots(a)

p =
-1.0000
-1.0000 + 0.0000i
-1.0000 - 0.0000i

k = b(1)/a(1)

k =
2

H z( ) q z( )
p z( )
---------- k z q 1( )–( ) z q 2( )–( ) z q n( )–( )

z p 1( )–( ) z p 2( )–( ) z p n( )–( )
--------------------------------------------------------------------------------= =
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Returning to the original polynomials,

bb = k*poly(q)

bb =
2.0000 3.0000 4.0000

aa = poly(p)

aa =
1.0000 3.0000 3.0000 1.0000

Note that b and a in this case represent the transfer function:

For b = [2 3 4], the roots function misses the zero for z equal to 0. In fact, it 
misses poles and zeros for z equal to 0 whenever the input transfer function has 
more poles than zeros, or vice versa. This is acceptable in most cases. To 
circumvent the problem, however, simply append zeros to make the vectors the 
same length before using the roots function; for example, b = [b 0].

State-Space
It is always possible to represent a digital filter, or a system of difference 
equations, as a set of first-order difference equations. In matrix or state-space 
form, you can write the equations as

where u is the input, x is the state vector, and y is the output. For 
single-channel systems, A is an m-by-m matrix where m is the order of the filter, 
B is a column vector, C is a row vector, and D is a scalar. State-space notation is 
especially convenient for multichannel systems where input u and output y 
become vectors, and B, C, and D become matrices.

State-space representation extends easily to the MATLAB environment. In 
MATLAB, A, B, C, and D are rectangular arrays; MATLAB treats them as 
individual variables.

H z( ) 2 3z 1– 4z 2–+ +

1 3z 1– 3z 2– z 3–+ + +
------------------------------------------------------ 2z3 3z2 4z+ +

z3 3z2 3z 1+ + +
--------------------------------------------= =

x n 1+( ) Ax n( ) Bu n( )+=

y n( ) Cx n( ) Du n( )+=
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Taking the z-transform of the state-space equations and combining them shows 
the equivalence of state-space and transfer function forms:

Don’t be concerned if you are not familiar with the state-space representation 
of linear systems. Some of the filter design algorithms use state-space form 
internally but do not require any knowledge of state-space concepts to use them 
successfully. If your applications use state-space based signal processing 
extensively, however, consult the Contr ol System Toolbox for a comprehensive 
library of state-space tools.

Partial Fraction Expansion (Residue Form)
Each transfer function also has a corresponding partial fraction expansion or 
residue form representation, given by

provided H(z) has no repeated poles. Here, n is the degree of the denominator 
polynomial of the rational transfer function b(z)/a(z). If r is a pole of multiplicity 
sr, then H(z) has terms of the form:

The residuez function in the Signal Processing Toolbox converts transfer 
functions to and from the partial fraction expansion form. The “z” on the end of 
residuez stands for z-domain, or discrete domain. residuez returns the poles 
in a column vector p, the residues corresponding to the poles in a column 
vector r, and any improper part of the original transfer function in a row 
vector k. residuez determines that two poles are the same if the magnitude of 
their difference is smaller than 0.1 percent of either of the poles’ magnitudes.

Y z( ) H z( )U z( )= where H z( ) C zI A–( ) 1– B D+=,

b z( )
a z( )
---------- r 1( )

1 p 1( )z 1––
---------------------------- r n( )

1 p n( )z 1––
----------------------------- k 1( ) k 2( )z 1– k m n 1+–( )z m n–( )–+ + + + + +=

r j( )

1 p j( )z 1––
--------------------------- r j 1+( )

1 p j( )z 1––( )2
-----------------------------------

r j sr 1–+( )

1 p j( )z 1––( )sr
------------------------------------+ + +
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Partial fraction expansion arises in signal processing as one method of finding 
the inverse z-transform of a transfer function. For example, the partial fraction 
expansion of

is

b = [-4 8];
a = [1 6 8];
[r,p,k] = residuez(b,a)

r =
-12
8

p =
-4
-2

k =
[]

which corresponds to

To find the inverse z-transform of H(z), find the sum of the inverse z-transforms 
of the two addends of H(z), giving the causal impulse response:

To verify this in MATLAB, type

imp = [1 0 0 0 0];
resptf = filter(b,a,imp)

resptf =
-4 32 -160 704 -2944

respres = filter(r(1),[1 -p(1)],imp) + filter(r(2),[1 -p(2)],imp)

respres =
-4 32 -160 704 -2944

H z( ) 4– 8z 1–+
1 6z 1– 8z 2–+ +
----------------------------------------=

H z( ) 12–
1 4z 1–+
--------------------- 8

1 2z 1–+
---------------------+=

h n( ) 12– 4–( )n 8 2–( )n+ n 0 1 2 …, , ,=,=
8
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Second-Order Sections (SOS)
Any transfer function H(z) has a second-order sections representation

where L is the number of second-order sections that describe the system. 
MATLAB represents the second-order section form of a discrete-time system as 
an L-by-6 array sos. Each row of sos contains a single second-order section, 
where the row elements are the three numerator and three denominator 
coefficients that describe the second-order section.

There are many ways to represent a filter in second-order section form. 
Through careful pairing of the pole and zero pairs, ordering of the sections in 
the cascade, and multiplicative scaling of the sections, it is possible to reduce 
quantization noise gain and avoid overflow in some fixed-point filter 
implementations. The functions zp2sos and ss2sos, described in “Linear 
System Transformations” on page 1-44, perform pole-zero pairing, section 
scaling, and section ordering.

Note  In the Signal Processing Toolbox, all second-order section 
transformations apply only to digital filters.

Lattice Structure
For a discrete Nth order all-pole or all-zero filter described by the polynomial 
coefficients a(n), n = 1, 2, …, N+1, there are N corresponding lattice structure 
coefficients k(n), n = 1, 2, …, N. The parameters k(n) are also called the 
reflection coefficients of the filter. Given these reflection coefficients, you can 
implement a discrete filter as shown below.

H z( ) Hk z( )

k 1=

L

∏
b0k b1kz 1– b2kz 2–+ +

a0k a1kz 1– a2kz 2–+ +
----------------------------------------------------------

k 1=

L

∏= =

sos

b01 b11 b21 a01 a11 a21

b02 b12 b22 a02 a12 a22

b0L b1L b2L a0L a1L a2L

=
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For a general pole-zero IIR filter described by polynomial coefficients a and b, 
there are both lattice coefficients k(n) for the denominator a and ladder 
coefficients v(n) for the numerator b. The lattice/ladder filter may be 
implemented as

The toolbox function tf2latc accepts an FIR or IIR filter in polynomial form 
and returns the corresponding reflection coefficients. An example FIR filter in 
polynomial form is 

b = [1.0000   0.6149   0.9899   0.0000   0.0031  -0.0082];
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Linear System Models
This filter’s lattice (reflection coefficient) representation is

k = tf2latc(b)

k =
    0.3090

0.9801
0.0031
0.0081

-0.0082

For IIR filters, the magnitude of the reflection coefficients provides an easy 
stability check. If all the reflection coefficients corresponding to a polynomial 
have magnitude less than 1, all of that polynomial’s roots are inside the unit 
circle. For example, consider an IIR filter with numerator polynomial b from 
above and denominator polynomial:

a = [1 1/2 1/3];

The filter’s lattice representation is

[k,v] = tf2latc(b,a)

k =
    0.3750
    0.3333
         0
         0
         0

v =
    0.6252
    0.1212
    0.9879
   -0.0009
    0.0072
   -0.0082

Because abs(k) < 1 for all reflection coefficients in k, the filter is stable.
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The function latc2tf calculates the polynomial coefficients for a filter from its 
lattice (reflection) coefficients. Given the reflection coefficient vector k(above), 
the corresponding polynomial form is

b = latc2tf(k)

b =
    1.0000    0.6149    0.9899 -0.0000    0.0031  -0.0082

The lattice or lattice/ladder coefficients can be used to implement the filter 
using the function latcfilt.

Convolution Matrix
In signal processing, convolving two vectors or matrices is equivalent to 
filtering one of the input operands by the other. This relationship permits the 
representation of a digital filter as a convolution matrix.

Given any vector, the toolbox function convmtx generates a matrix whose inner 
product with another vector is equivalent to the convolution of the two vectors. 
The generated matrix represents a digital filter that you can apply to any 
vector of appropriate length; the inner dimension of the operands must agree 
to compute the inner product. 

The convolution matrix for a vector b, representing the numerator coefficients 
for a digital filter, is

b = [1 2 3]; x = randn(3,1);
C = convmtx(b',3)

C =
1 0 0
2 1 0
3 2 1
0 3 2
0 0 3

Two equivalent ways to convolve b with x are as follows.

y1 = C*x;
y2 = conv(b,x);
2



Linear System Models
Continuous-Time System Models
The continuous-time system models are representational schemes for analog 
filters. Many of the discrete-time system models described earlier are also 
appropriate for the representation of continuous-time systems:

• State-space form

• Partial fraction expansion

• Transfer function

• Zero-pole-gain form

It is possible to represent any system of linear time-invariant differential 
equations as a set of first-order differential equations. In matrix or state-space 
form, you can express the equations as

where u is a vector of nu inputs, x is an nx-element state vector, and y is a vector 
of ny outputs. In MATLAB, store A, B, C, and D in separate rectangular arrays.

An equivalent representation of the state-space system is the Laplace 
transform transfer function description

where

For single-input, single-output systems, this form is given by 

Given the coefficients of a Laplace transform transfer function, residue 
determines the partial fraction expansion of the system. See the description of 
residue in the MATLAB documentation for details.

The factored zero-pole-gain form is

x· Ax Bu+=

y Cx Du+=

Y s( ) H s( )U s( )=

H s( ) C sI A–( ) 1– B D+=

H s( ) b s( )
a s( )
---------- b 1( )sn b 2( )sn 1– b n 1+( )+ + +

a 1( )sm a 2( )sm 1– a m 1+( )+ + +
------------------------------------------------------------------------------------------= =

H s( ) z s( )
p s( )
---------- k s z 1( )–( ) s z 2( )–( ) s z n( )–( )

s p 1( )–( ) s p 2( )–( ) s p n( )–( )
--------------------------------------------------------------------------------= =
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As in the discrete-time case, MATLAB stores polynomial coefficients in row 
vectors in descending powers of s. MATLAB stores polynomial roots, or zeros 
and poles, in column vectors.

Linear System Transformations
The Signal Processing Toolbox provides a number of functions that convert 
between the various linear system models. You can use the following chart to 
find an appropriate transfer function: find the row of the model to convert from 
on the left side of the chart and the column of the model to convert to on the top 
of the chart and read the function name(s) at the intersection of the row and 
column.

.

Note  Converting from one filter structure or model to another may produce a 
result with different characteristics than the original. This is due to the 
computer’s finite-precision arithmetic and the variations in the conversion’s 
round-off computations.

Transfer 
Function

State- 
Space

Zero-
Pole-
Gain

Partial 
Fraction

Lattice 
Filter

Second-
Order 
Sections

Convolution
Matrix

Transfer 
Function

tf2ss tf2zp 
roots

residuez tf2latc none convmtx

State-Space ss2tf ss2zp none none ss2sos none

Zero-Pole- 
Gain

zp2tf 
poly

zp2ss none none zp2sos none

Partial 
Fraction

residuez none none none none none

Lattice Filter latc2tf none none none none none

SOS sos2tf sos2ss sos2zp none none none
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Many of the toolbox filter design functions use these functions internally. For 
example, the zp2ss function converts the poles and zeros of an analog 
prototype into the state-space form required for creation of a Butterworth, 
Chebyshev, or elliptic filter. Once in state-space form, the filter design function 
performs any required frequency transformation, that is, it transforms the 
initial lowpass design into a bandpass, highpass, or bandstop filter, or a 
lowpass filter with the desired cutoff frequency. 

Note  In the Signal Processing Toolbox, all second-order section 
transformations apply only to digital filters.
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Discrete Fourier Transform
The discrete Fourier transform, or DFT, is the primary tool of digital signal 
processing. The foundation of the Signal Processing Toolbox is the fast Fourier 
transform (FFT), a method for computing the DFT with reduced execution 
time. Many of the toolbox functions (including z-domain frequency response, 
spectrum and cepstrum analysis, and some filter design and implementation 
functions) incorporate the FFT.

MATLAB provides the functions fft and ifft to compute the discrete Fourier 
transform and its inverse, respectively. For the input sequence x and its 
transformed version X (the discrete-time Fourier transform at equally spaced 
frequencies around the unit circle), the two functions implement the 
relationships

In these equations, the series subscripts begin with 1 instead of 0 because of 
the MATLAB vector indexing scheme, and

Note  MATLAB uses a negative j for the fft function. This is an engineering 
convention; physics and pure mathematics typically use a positive j.

fft, with a single input argument x, computes the DFT of the input vector or 
matrix. If x is a vector, fft computes the DFT of the vector; if x is a rectangular 
array, fft computes the DFT of each array column.

X k 1+( ) x n 1+( )WN
kn

n 0=

N 1–

∑=

x n 1+( )
1
N
---- X k 1+( )WN

kn–

k 0=

N 1–

∑=

WN e
j–

2π
N
-------⎝ ⎠

⎛ ⎞

=

6



Discrete Fourier Transform
For example, create a time vector and signal:

t = (0:1/100:10-1/100); % Time vector
x = sin(2*pi*15*t) + sin(2*pi*40*t); % Signal

The DFT of the signal, and the magnitude and phase of the transformed 
sequence, are then

y = fft(x); % Compute DFT of x
m = abs(y); p = unwrap(angle(y)); % Magnitude and phase

To plot the magnitude and phase, type the following commands:

f = (0:length(y)-1)*99/length(y); % Frequency vector
plot(f,m); title('Magnitude');
set(gca,'XTick',[15 40 60 85]);
figure; plot(f,p*180/pi); title('Phase');
set(gca,'XTick',[15 40 60 85]);

A second argument to fft specifies a number of points n for the transform, 
representing DFT length:

y = fft(x,n);

In this case, fft pads the input sequence with zeros if it is shorter than n, or 
truncates the sequence if it is longer than n. If n is not specified, it defaults to 
the length of the input sequence. Execution time for fft depends on the 
length, n, of the DFT it performs; see the fft reference page in the MATLAB 
documentation for details about the algorithm.
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Note  The resulting FFT amplitude is A*n/2, where A is the original 
amplitude and n is the number of FFT points. This is true only if the number 
of FFT points is greater than or equal to the number of data samples. If the 
number of FFT points is less, the FFT amplitude is lower than the original 
amplitude by the above amount.

The inverse discrete Fourier transform function ifft also accepts an input 
sequence and, optionally, the number of desired points for the transform. Try 
the example below; the original sequence x and the reconstructed sequence are 
identical (within rounding error).

t = (0:1/255:1);
x = sin(2*pi*120*t);
y = real(ifft(fft(x)));

This toolbox also includes functions for the two-dimensional FFT and its 
inverse, fft2 and ifft2. These functions are useful for two-dimensional signal 
or image processing. The goertzel function, which is another algorithm to 
compute the DFT, also is included in the toolbox. This function is efficient for 
computing the DFT of a portion of a long signal. 

It is sometimes convenient to rearrange the output of the fft or fft2 function 
so the zero frequency component is at the center of the sequence. The MATLAB 
function fftshift moves the zero frequency component to the center of a vector 
or matrix.
8
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Filter Design and 
Implementation

Filter design is the process of creating the filter coefficients to meet specific filtering requirements. 
Filter implementation involves choosing and applying a particular filter structure to those 
coefficients. Only after both design and implementation have been performed can data be filtered. 
The following chapter describes filter design and implementation in the Signal Processing Toolbox.

Filter Requirements and Specification 
(p. 2-2)

Overview of filter design

IIR Filter Design (p. 2-4) Infinite impulse reponse filters (Butterworth, Chebyshev, 
elliptic, Bessel, Yule-Walker, and parametric methods)

FIR Filter Design (p. 2-17) Finite impulse reponse filters (windowing, multiband, 
least squares, nonlinear phase, complex filters, raised 
cosine)

Special Topics in IIR Filter Design 
(p. 2-41)

Analog design, frequency transformation, filter 
discretization

Filter Implementation (p. 2-50) Filtering with your filter

Selected Bibliography (p. 2-52) Sources for additional information
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Filter Requirements and Specification
The goal of filter design is to perform frequency dependent alteration of a data 
sequence. A possible requirement might be to remove noise above 30 Hz from 
a data sequence sampled at 100 Hz. A more rigorous specification might call for 
a specific amount of passband ripple, stopband attenuation, or transition 
width. A very precise specification could ask to achieve the performance goals 
with the minimum filter order, or it could call for an arbitrary magnitude 
shape, or it might require an FIR filter.

Filter design methods differ primarily in how performance is specified. For 
“loosely specified” requirements, as in the first case above, a Butterworth IIR 
filter is often sufficient. To design a fifth-order 30 Hz lowpass Butterworth 
filter and apply it to the data in vector x:

[b,a] = butter(5,30/50);
Hd = dfilt.df2t(b,a); %Direct-form II transposed structure
y = filter(Hd,x);

The second input argument to butter specifies the cutoff frequency, 
normalized to half the sampling frequency (the Nyquist frequency).

All of the filter design functions operate with normalized frequencies, so they 
do not require the system sampling rate as an extra input argument. This 
toolbox uses the convention that unit frequency is the Nyquist frequency, 
defined as half the sampling frequency. The normalized frequency, therefore, 
is always in the interval 0 ≤ f ≤ 1. For a system with a 1000 Hz sampling 
frequency, 300 Hz is 300/500 = 0.6. To convert normalized frequency to angular 
frequency around the unit circle, multiply by π. To convert normalized 
frequency back to hertz, multiply by half the sample frequency.

More rigorous filter requirements traditionally include passband ripple (Rp, in 
decibels), stopband attenuation (Rs, in decibels), and transition width (Ws-Wp, 
in hertz).



Filter Requirements and Specification
You can design Butterworth, Chebyshev Type I, Chebyshev Type II, and 
elliptic filters that meet this type of performance specification. The toolbox 
order selection functions estimate the minimum filter order that meets a given 
set of requirements.

To meet specifications with more rigid constraints like linear phase or 
arbitrary filter shape, use the FIR and direct IIR filter design routines.
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IIR Filter Design
The primary advantage of IIR filters over FIR filters is that they typically meet 
a given set of specifications with a much lower filter order than a corresponding 
FIR filter. Although IIR filters have nonlinear phase, data processing within 
MATLAB is commonly performed “off-line,” that is, the entire data sequence is 
available prior to filtering. This allows for a noncausal, zero-phase filtering 
approach (via the filtfilt function), which eliminates the nonlinear phase 
distortion of an IIR filter.

The classical IIR filters, Butterworth, Chebyshev Types I and II, elliptic, and 
Bessel, all approximate the ideal “brick wall” filter in different ways. This 
toolbox provides functions to create all these types of classical IIR filters in both 
the analog and digital domains (except Bessel, for which only the analog case 
is supported), and in lowpass, highpass, bandpass, and bandstop 
configurations. For most filter types, you can also find the lowest filter order 
that fits a given filter specification in terms of passband and stopband 
attenuation, and transition width(s).

The direct filter design function yulewalk finds a filter with magnitude 
response approximating a desired function. This is one way to create a 
multiband bandpass filter.

You can also use the parametric modeling or system identification functions to 
design IIR filters. These functions are discussed in “Parametric Modeling” on 
page 4-15.

The generalized Butterworth design function maxflat is discussed in the 
section “Generalized Butterworth Filter Design” on page 2-15.

The following table summarizes the various filter methods in the toolbox and 
lists the functions available to implement these methods.



IIR Filter Design
Filter Method Description Filter Functions

Analog 
Prototyping

Using the poles and zeros of 
a classical lowpass 
prototype filter in the 
continuous (Laplace) 
domain, obtain a digital 
filter through frequency 
transformation and filter 
discretization.

Complete design functions:

besself, butter, cheby1, cheby2, ellip

Order estimation functions:

buttord, cheb1ord, cheb2ord, ellipord

Lowpass analog prototype functions:

besselap, buttap, cheb1ap, cheb2ap, ellipap

Frequency transformation functions:

lp2bp, lp2bs, lp2hp, lp2lp

Filter discretization functions:

bilinear, impinvar

Direct Design Design digital filter directly 
in the discrete time-domain 
by approximating a 
piecewise linear magnitude 
response.

yulewalk

Generalized 
Butterworth 
Design

Design lowpass 
Butterworth filters with 
more zeros than poles.

maxflat

Parametric 
Modeling 

Find a digital filter that 
approximates a prescribed 
time or frequency domain 
response. (See the System 
Identification Toolbox 
documentation for an 
extensive collection of 
parametric modeling tools.)

Time-domain modeling functions:

lpc, prony, stmcb

Frequency-domain modeling functions:

invfreqs, invfreqz
2-5
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Classical IIR Filter Design Using Analog Prototyping
The principal IIR digital filter design technique this toolbox provides is based 
on the conversion of classical lowpass analog filters to their digital equivalents. 
The following sections describe how to design filters and summarize the 
characteristics of the supported filter types. See “Special Topics in IIR Filter 
Design” on page 2-41 for detailed steps on the filter design process.

Complete Classical IIR Filter Design
You can easily create a filter of any order with a lowpass, highpass, bandpass, 
or bandstop configuration using the filter design functions.

By default, each of these functions returns a lowpass filter; you need only 
specify the desired cutoff frequency Wn in normalized frequency (Nyquist 
frequency = 1 Hz). For a highpass filter, append the string 'high' to the 
function’s parameter list. For a bandpass or bandstop filter, specify Wn as a 
two-element vector containing the passband edge frequencies, appending the 
string 'stop' for the bandstop configuration. 

Filter Type Design Function

Bessel (analog only) [b,a] = besself(n,Wn,options)
[z,p,k] = besself(n,Wn,options)
[A,B,C,D] = besself(n,Wn,options)

Butterworth [b,a] = butter(n,Wn,options)
[z,p,k] = butter(n,Wn,options)
[A,B,C,D] = butter(n,Wn,options)

Chebyshev Type I [b,a] = cheby1(n,Rp,Wn,options)
[z,p,k] = cheby1(n,Rp,Wn,options)
[A,B,C,D] = cheby1(n,Rp,Wn,options)

Chebyshev Type II [b,a] = cheby2(n,Rs,Wn,options)
[z,p,k] = cheby2(n,Rs,Wn,options)
[A,B,C,D] = cheby2(n,Rs,Wn,options)

Elliptic [b,a] = ellip(n,Rp,Rs,Wn,options)
[z,p,k] = ellip(n,Rp,Rs,Wn,options)
[A,B,C,D] = ellip(n,Rp,Rs,Wn,options)



IIR Filter Design
Here are some example digital filters:

[b,a] = butter(5,0.4); % Lowpass Butterworth
[b,a] = cheby1(4,1,[0.4 0.7]); % Bandpass Chebyshev Type I
[b,a] = cheby2(6,60,0.8,'high'); % Highpass Chebyshev Type II
[b,a] = ellip(3,1,60,[0.4 0.7],'stop'); % Bandstop elliptic

To design an analog filter, perhaps for simulation, use a trailing 's' and 
specify cutoff frequencies in rad/s:

[b,a] = butter(5,.4,'s'); % Analog Butterworth filter

All filter design functions return a filter in the transfer function, 
zero-pole-gain, or state-space linear system model representation, depending 
on how many output arguments are present.

Note  All classical IIR lowpass filters are ill-conditioned for extremely low 
cut-off frequencies. Therefore, instead of designing a lowpass IIR filter with a 
very narrow passband, it can be better to design a wider passband and 
decimate the input signal.

Designing IIR Filters to Frequency Domain Specifications
This toolbox provides order selection functions that calculate the minimum 
filter order that meets a given set of requirements.

These are useful in conjunction with the filter design functions. Suppose you 
want a bandpass filter with a passband from 1000 to 2000 Hz, stopbands 
starting 500 Hz away on either side, a 10 kHz sampling frequency, at most 1 dB 

Filter Type Order Estimation Function

Butterworth [n,Wn] = buttord(Wp,Ws,Rp,Rs)

Chebyshev Type I [n,Wn] = cheb1ord(Wp, Ws, Rp, Rs)

Chebyshev Type II [n,Wn] = cheb2ord(Wp, Ws, Rp, Rs)

Elliptic [n,Wn] = ellipord(Wp, Ws, Rp, Rs)
2-7
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of passband ripple, and at least 60 dB of stopband attenuation. You can meet 
these specifications by using the butter function as follows.

[n,Wn] = buttord([1000 2000]/5000,[500 2500]/5000,1,60)

n =
    12
Wn =
    0.1951    0.4080

[b,a] = butter(n,Wn);

An elliptic filter that meets the same requirements is given by

[n,Wn] = ellipord([1000 2000]/5000,[500 2500]/5000,1,60)

n =
    5
Wn =
    0.2000    0.4000

[b,a] = ellip(n,1,60,Wn);

These functions also work with the other standard band configurations, as well 
as for analog filters.



IIR Filter Design
Comparison of Classical IIR Filter Types
The toolbox provides five different types of classical IIR filters, each optimal in 
some way. This section shows the basic analog prototype form for each and 
summarizes major characteristics.

Butterworth Filter
The Butterworth filter provides the best Taylor Series approximation to the 
ideal lowpass filter response at analog frequencies  and ; for any 
order N, the magnitude squared response has 2N-1 zero derivatives at these 
locations (maximally flat at  and ). Response is monotonic 
overall, decreasing smoothly from  to .  at 
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Chebyshev Type I Filter
The Chebyshev Type I filter minimizes the absolute difference between the 
ideal and actual frequency response over the entire passband by incorporating 
an equal ripple of Rp dB in the passband. Stopband response is maximally flat. 
The transition from passband to stopband is more rapid than for the 
Butterworth filter.  at .H jΩ( ) 10 Rp 20⁄–

= Ω 1=
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IIR Filter Design
Chebyshev Type II Filter
The Chebyshev Type II filter minimizes the absolute difference between the 
ideal and actual frequency response over the entire stopband by incorporating 
an equal ripple of Rs dB in the stopband. Passband response is maximally flat.

The stopband does not approach zero as quickly as the type I filter (and does 
not approach zero at all for even-valued filter order n). The absence of ripple in 
the passband, however, is often an important advantage.  
at .
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Elliptic Filter
Elliptic filters are equiripple in both the passband and stopband. They 
generally meet filter requirements with the lowest order of any supported filter 
type. Given a filter order n, passband ripple Rp in decibels, and stopband ripple 
Rs in decibels, elliptic filters minimize transition width.  at 
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IIR Filter Design
Bessel Filter
Analog Bessel lowpass filters have maximally flat group delay at zero 
frequency and retain nearly constant group delay across the entire passband. 
Filtered signals therefore maintain their waveshapes in the passband 
frequency range. Frequency mapped and digital Bessel filters, however, do not 
have this maximally flat property; this toolbox supports only the analog case 
for the complete Bessel filter design function.

Bessel filters generally require a higher filter order than other filters for 
satisfactory stopband attenuation.  at  and decreases as 
filter order n increases.

Note  The lowpass filters shown above were created with the analog 
prototype functions besselap, buttap, cheb1ap, cheb2ap, and ellipap. These 
functions find the zeros, poles, and gain of an order n analog filter of the 
appropriate type with cutoff frequency of 1 rad/s. The complete filter design 
functions (besself, butter, cheby1, cheby2, and ellip) call the prototyping 
functions as a first step in the design process. See ““Special Topics in IIR 
Filter Design” on page 2-41” for details.
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To create similar plots, use n = 5 and, as needed, Rp = 0.5 and Rs = 20. For 
example, to create the elliptic filter plot:

[z,p,k] = ellipap(5,0.5,20);
w = logspace(-1,1,1000);
h = freqs(k*poly(z),poly(p),w);
semilogx(w,abs(h)), grid

Direct IIR Filter Design
This toolbox uses the term direct methods to describe techniques for IIR design 
that find a filter based on specifications in the discrete domain. Unlike the 
analog prototyping method, direct design methods are not constrained to the 
standard lowpass, highpass, bandpass, or bandstop configurations. Rather, 
these functions design filters with an arbitrary, perhaps multiband, frequency 
response. This section discusses the yulewalk function, which is intended 
specifically for filter design; “Parametric Modeling” on page 4-15 discusses 
other methods that may also be considered direct, such as Prony’s method, 
Linear Prediction, the Steiglitz-McBride method, and inverse frequency 
design.

The yulewalk function designs recursive IIR digital filters by fitting a specified 
frequency response. yulewalk’s name reflects its method for finding the filter’s 
denominator coefficients: it finds the inverse FFT of the ideal desired power 
spectrum and solves the “modified Yule-Walker equations” using the resulting 
autocorrelation function samples. The statement

[b,a] = yulewalk(n,f,m)

returns row vectors b and a containing the n+1 numerator and denominator 
coefficients of the order n IIR filter whose frequency-magnitude characteristics 
approximate those given in vectors f and m. f is a vector of frequency points 
ranging from 0 to 1, where 1 represents the Nyquist frequency. m is a vector 
containing the desired magnitude response at the points in f. f and m can 
describe any piecewise linear shape magnitude response, including a 
multiband response. The FIR counterpart of this function is fir2, which also 
designs a filter based on an arbitrary piecewise linear magnitude response. See 
““FIR Filter Design” on page 2-17” for details.

Note that yulewalk does not accept phase information, and no statements are 
made about the optimality of the resulting filter.
4



IIR Filter Design
Design a multiband filter with yulewalk, and plot the desired and actual 
frequency response:

m = [0 0 1 1 0 0 1 1 0 0];
f = [0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1];
[b,a] = yulewalk(10,f,m);
[h,w] = freqz(b,a,128)
plot(f,m,w/pi,abs(h))

Generalized Butterworth Filter Design
The toolbox function maxflat enables you to design generalized Butterworth 
filters, that is, Butterworth filters with differing numbers of zeros and poles. 
This is desirable in some implementations where poles are more expensive 
computationally than zeros. maxflat is just like the butter function, except 
that it you can specify two orders (one for the numerator and one for the 
denominator) instead of just one. These filters are maximally flat. This means 
that the resulting filter is optimal for any numerator and denominator orders, 
with the maximum number of derivatives at 0 and the Nyquist frequency ω = π 
both set to 0.
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For example, when the two orders are the same, maxflat is the same as butter:

[b,a] = maxflat(3,3,0.25)

b =
    0.0317    0.0951    0.0951    0.0317

a =
    1.0000   -1.4590    0.9104   -0.1978

[b,a] = butter(3,0.25)

b =
    0.0317    0.0951    0.0951    0.0317

a =
    1.0000   -1.4590    0.9104   -0.1978

However, maxflat is more versatile because it allows you to design a filter with 
more zeros than poles:

[b,a] = maxflat(3,1,0.25)

b =
    0.0950    0.2849    0.2849    0.0950

a =
    1.0000   -0.2402

The third input to maxflat is the half-power frequency, a frequency between 
0 and 1 with a desired magnitude response of . 

You can also design linear phase filters that have the maximally flat property 
using the 'sym' option:

maxflat(4,'sym',0.3)

ans =
    0.0331    0.2500    0.4337    0.2500    0.0331

 For complete details of the maxflat algorithm, see Selesnick and Burrus [2].

1 2⁄
6



FIR Filter Design
FIR Filter Design
Digital filters with finite-duration impulse response (all-zero, or FIR filters) 
have both advantages and disadvantages compared to infinite-duration 
impulse response (IIR) filters. 

FIR filters have the following primary advantages:

• They can have exactly linear phase.

• They are always stable.

• The design methods are generally linear.

• They can be realized efficiently in hardware.

• The filter startup transients have finite duration.

The primary disadvantage of FIR filters is that they often require a much 
higher filter order than IIR filters to achieve a given level of performance. 
Correspondingly, the delay of these filters is often much greater than for an 
equal performance IIR filter.

Filter Design 
Method

Description Filter Functions

Windowing Apply window to truncated 
inverse Fourier transform of 
desired “brick wall” filter

fir1, fir2, 
kaiserord

Multiband with 
Transition 
Bands

Equiripple or least squares 
approach over sub-bands of the 
frequency range

firls, firpm, 
firpmord

Constrained 
Least Squares

Minimize squared integral 
error over entire frequency 
range subject to maximum 
error constraints

fircls, fircls1
2-17



2 Filter Design and Implementation

2-1
Linear Phase Filters
Except for cfirpm, all of the FIR filter design functions design linear phase 
filters only. The filter coefficients, or “taps,” of such filters obey either an even 
or odd symmetry relation. Depending on this symmetry, and on whether the 
order n of the filter is even or odd, a linear phase filter (stored in length n+1 
vector b) has certain inherent restrictions on its frequency response.

The phase delay and group delay of linear phase FIR filters are equal and 
constant over the frequency band. For an order n linear phase FIR filter, the 
group delay is n/2, and the filtered signal is simply delayed by n/2 time steps 
(and the magnitude of its Fourier transform is scaled by the filter’s magnitude 
response). This property preserves the wave shape of signals in the passband; 
that is, there is no phase distortion.

The functions fir1, fir2, firls, firpm, fircls, fircls1, and firrcos all 
design type I and II linear phase FIR filters by default. Both firls and firpm 
design type III and IV linear phase FIR filters given a 'hilbert' or 
'differentiator' flag. cfirpm can design any type of linear phase filter, and 
nonlinear phase filters as well.

Arbitrary 
Response

Arbitrary responses, including 
nonlinear phase and complex 
filters

cfirpm

Raised Cosine Lowpass response with 
smooth, sinusoidal transition

firrcos

Filter Design 
Method

Description Filter Functions

Linear Phase 
Filter Type

Filter 
Order Symmetry of Coefficients

Response H(f), 
f = 0

Response H(f), 
f = 1 (Nyquist)

Type I Even even: No restriction No restriction

Type II Odd No restriction H(1) = 0

Type III Even odd: H(0) = 0 H(1) = 0

Type IV Odd H(0) = 0 No restriction

b k( ) b n 2 k–+( ) k 1= … n 1+, , ,=

b k( ) b– n 2 k–+( ) k 1= … n 1+, , ,=
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FIR Filter Design
Note  Because the frequency response of a type II filter is zero at the Nyquist 
frequency (“high” frequency), fir1 does not design type II highpass and 
bandstop filters. For odd-valued n in these cases, fir1 adds 1 to the order and 
returns a type I filter. 

Windowing Method
Consider the ideal, or “brick wall,” digital lowpass filter with a cutoff frequency 
of ω0 rad/s. This filter has magnitude 1 at all frequencies with magnitude less 
than ω0, and magnitude 0 at frequencies with magnitude between ω0 and π. Its 
impulse response sequence h(n) is

This filter is not implementable since its impulse response is infinite and 
noncausal. To create a finite-duration impulse response, truncate it by 
applying a window. By retaining the central section of impulse response in this 
truncation, you obtain a linear phase FIR filter. For example, a length 51 filter 
with a lowpass cutoff frequency ω0 of  rad/s is

b = 0.4*sinc(0.4*(-25:25));

The window applied here is a simple rectangular window. By Parseval’s 
theorem, this is the length 51 filter that best approximates the ideal lowpass 
filter, in the integrated least squares sense. The following command displays 
the filter’s frequency response in FVTool:

fvtool(b,1)

Note that the y-axis shown in the figure below is in Magnitude Squared. You 
can set this by right-clicking on the axis label and selecting Magnitude 
Squared from the menu.
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Ringing and ripples occur in the response, especially near the band edge. This 
“Gibbs effect” does not vanish as the filter length increases, but a 
nonrectangular window reduces its magnitude. Multiplication by a window in 
the time domain causes a convolution or smoothing in the frequency domain. 
Apply a length 51 Hamming window to the filter and display the result using 
FVTool:

b = 0.4*sinc(0.4*(-25:25));
b = b.*hamming(51)';
fvtool(b,1)

Note that the y-axis shown in the figure below is in Magnitude Squared. You 
can set this by right-clicking on the axis label and selecting Magnitude 
Squared from the menu.
0



FIR Filter Design
Using a Hamming window greatly reduces the ringing. This improvement is at 
the expense of transition width (the windowed version takes longer to ramp 
from passband to stopband) and optimality (the windowed version does not 
minimize the integrated squared error). 

The functions fir1 and fir2 are based on this windowing process. Given a 
filter order and description of an ideal desired filter, these functions return a 
windowed inverse Fourier transform of that ideal filter. Both use a Hamming 
window by default, but they accept any window function. See the “Windows” on 
page 4-2 for an overview of windows and their properties.

Standard Band FIR Filter Design: fir1
fir1 implements the classical method of windowed linear phase FIR digital 
filter design. It resembles the IIR filter design functions in that it is formulated 
to design filters in standard band configurations: lowpass, bandpass, highpass, 
and bandstop.
2-21
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The statements

n = 50;
Wn = 0.4;
b = fir1(n,Wn);

create row vector b containing the coefficients of the order n 
Hamming-windowed filter. This is a lowpass, linear phase FIR filter with cutoff 
frequency Wn. Wn is a number between 0 and 1, where 1 corresponds to the 
Nyquist frequency, half the sampling frequency. (Unlike other methods, here 
Wn corresponds to the 6 dB point.) For a highpass filter, simply append the 
string 'high' to the function’s parameter list. For a bandpass or bandstop 
filter, specify Wn as a two-element vector containing the passband edge 
frequencies; append the string 'stop' for the bandstop configuration.

b = fir1(n,Wn,window) uses the window specified in column vector window for 
the design. The vector window must be n+1 elements long. If you do not specify 
a window, fir1 applies a Hamming window.

Kaiser Window Order Estimation. The kaiserord function estimates the filter 
order, cutoff frequency, and Kaiser window beta parameter needed to meet a 
given set of specifications. Given a vector of frequency band edges and a 
corresponding vector of magnitudes, as well as maximum allowable ripple, 
kaiserord returns appropriate input parameters for the fir1 function. 

Multiband FIR Filter Design: fir2
The fir2 function also designs windowed FIR filters, but with an arbitrarily 
shaped piecewise linear frequency response. This is in contrast to fir1, which 
only designs filters in standard lowpass, highpass, bandpass, and bandstop 
configurations.
2



FIR Filter Design
The commands

n = 50;
f = [0 .4 .5 1];
m = [1  1  0 0];
b = fir2(n,f,m);

return row vector b containing the n+1 coefficients of the order n FIR filter 
whose frequency-magnitude characteristics match those given by vectors f 
and m. f is a vector of frequency points ranging from 0 to 1, where 1 represents 
the Nyquist frequency. m is a vector containing the desired magnitude response 
at the points specified in f. (The IIR counterpart of this function is yulewalk, 
which also designs filters based on arbitrary piecewise linear magnitude 
responses. See “IIR Filter Design” on page 2-4 for details.)

Multiband FIR Filter Design with Transition Bands
The firls and firpm functions provide a more general means of specifying the 
ideal desired filter than the fir1 and fir2 functions. These functions design 
Hilbert transformers, differentiators, and other filters with odd symmetric 
coefficients (type III and type IV linear phase). They also let you include 
transition or “don’t care” regions in which the error is not minimized, and 
perform band dependent weighting of the minimization.

The firls function is an extension of the fir1 and fir2 functions in that it 
minimizes the integral of the square of the error between the desired frequency 
response and the actual frequency response.

The firpm function implements the Parks-McClellan algorithm, which uses 
the Remez exchange algorithm and Chebyshev approximation theory to design 
filters with optimal fits between the desired and actual frequency responses. 
The filters are optimal in the sense that they minimize the maximum error 
between the desired frequency response and the actual frequency response; 
they are sometimes called minimax filters. Filters designed in this way exhibit 
an equiripple behavior in their frequency response, and hence are also known 
as equiripple filters. The Parks-McClellan FIR filter design algorithm is 
perhaps the most popular and widely used FIR filter design methodology.

The syntax for firls and firpm is the same; the only difference is their 
minimization schemes. The next example shows how filters designed with 
firls and firpm reflect these different schemes. 
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Basic Configurations
The default mode of operation of firls and firpm is to design type I or type II 
linear phase filters, depending on whether the order you desire is even or odd, 
respectively. A lowpass example with approximate amplitude 1 from 0 to 
0.4 Hz, and approximate amplitude 0 from 0.5 to 1.0 Hz is

n = 20; % Filter order
f = [0 0.4 0.5 1]; % Frequency band edges
a = [1  1  0 0]; % Desired amplitudes
b = firpm(n,f,a);

From 0.4 to 0.5 Hz, firpm performs no error minimization; this is a transition 
band or “don’t care” region. A transition band minimizes the error more in the 
bands that you do care about, at the expense of a slower transition rate. In this 
way, these types of filters have an inherent trade-off similar to FIR design by 
windowing.

To compare least squares to equiripple filter design, use firls to create a 
similar filter. Type

bb = firls(n,f,a);

and compare their frequency responses using FVTool:

fvtool(b,1,bb,1)

Note that the y-axis shown in the figure below is in Magnitude Squared. You 
can set this by right-clicking on the axis label and selecting Magnitude 
Squared from the menu.
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The filter designed with firpm exhibits equiripple behavior. Also note that the 
firls filter has a better response over most of the passband and stopband, but 
at the band edges (f = 0.4 and f = 0.5), the response is further away from the 
ideal than the firpm filter. This shows that the firpm filter’s maximum error 
over the passband and stopband is smaller and, in fact, it is the smallest 
possible for this band edge configuration and filter length.
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Think of frequency bands as lines over short frequency intervals. firpm and 
firls use this scheme to represent any piecewise linear desired function with 
any transition bands. firls and firpm design lowpass, highpass, bandpass, 
and bandstop filters; a bandpass example is

f = [0 0.3  0.4  0.7  0.8  1];  % Band edges in pairs
a = [0 0   1 1   0  0];  % Bandpass filter amplitude

Technically, these f and a vectors define five bands:

• Two stopbands, from 0.0 to 0.3 and from 0.8 to 1.0

• A passband from 0.4 to 0.7

• Two transition bands, from 0.3 to 0.4 and from 0.7 to 0.8

Example highpass and bandstop filters are

f = [0 0.7  0.8  1];  % Band edges in pairs
a = [0 0   1  1];  % Highpass filter amplitude

f = [0 0.3  0.4  0.5  0.8  1];  % Band edges in pairs
a = [1 1   0   0   1  1];  % Bandstop filter amplitude

An example multiband bandpass filter is 

f = [0 0.1 0.15 0.25 0.3 0.4 0.45 0.55 0.6 0.7 0.75 0.85 0.9 1];
a = [1  1  0   0   1  1  0   0   1  1   0   0  1 1];

Another possibility is a filter that has as a transition region the line connecting 
the passband with the stopband; this can help control “runaway” magnitude 
response in wide transition regions:

f = [0 0.4 0.42 0.48 0.5  1];
a = [1  1  0.8  0.2  0  0]; % Passband,linear transition,stopband
6
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The Weight Vector
Both firls and firpm allow you to place more or less emphasis on minimizing 
the error in certain frequency bands relative to others. To do this, specify a 
weight vector following the frequency and amplitude vectors. An example 
lowpass equiripple filter with 10 times less ripple in the stopband than the 
passband is

n = 20;            % Filter order
f = [0 0.4 0.5 1];   % Frequency band edges
a = [1  1  0 0];   % Desired amplitudes
w = [1 10];        % Weight vector
b = firpm(n,f,a,w);

A legal weight vector is always half the length of the f and a vectors; there must 
be exactly one weight per band.

Anti-Symmetric Filters / Hilbert Transformers
When called with a trailing 'h' or 'Hilbert' option, firpm and firls design 
FIR filters with odd symmetry, that is, type III (for even order) or type IV (for 
odd order) linear phase filters. An ideal Hilbert transformer has this 
anti-symmetry property and an amplitude of 1 across the entire frequency 
range. Try the following approximate Hilbert transformers and plot them 
using FVTool:

b = firpm(21,[0.05 1],[1 1],'h');    % Highpass Hilbert
bb = firpm(20,[0.05 0.95],[1 1],'h'); % Bandpass Hilbert
fvtool(b,1,bb,1)
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You can find the delayed Hilbert transform of a signal x by passing it through 
these filters.

fs = 1000; % Sampling frequency
t = (0:1/fs:2)'; % Two second time vector
x = sin(2*pi*300*t); % 300 Hz sine wave example signal
xh = filter(bb,1,x); % Hilbert transform of x

The analytic signal corresponding to x is the complex signal that has x as its 
real part and the Hilbert transform of x as its imaginary part. For this FIR 
method (an alternative to the hilbert function), you must delay x by half the 
filter order to create the analytic signal:

xd = [zeros(10,1); x(1:length(x)-10)]; % Delay 10 samples
xa = xd + j*xh; % Analytic signal

This method does not work directly for filters of odd order, which require a 
noninteger delay. In this case, the hilbert function, described in “Specialized 
8
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Transforms” on page 4-42, estimates the analytic signal. Alternatively, use the 
resample function to delay the signal by a noninteger number of samples.

Differentiators
Differentiation of a signal in the time domain is equivalent to multiplication of 
the signal’s Fourier transform by an imaginary ramp function. That is, to 
differentiate a signal, pass it through a filter that has a response H(ω) = jω. 
Approximate the ideal differentiator (with a delay) using firpm or firls with 
a 'd' or 'differentiator' option:

b = firpm(21,[0 1],[0 pi],'d');

For a type III filter, the differentiation band should stop short of the Nyquist 
frequency, and the amplitude vector must reflect that change to ensure the 
correct slope:

bb = firpm(20,[0 0.9],[0 0.9*pi],'d');

In the 'd' mode, firpm weights the error by 1/ω in nonzero amplitude bands to 
minimize the maximum relative error. firls weights the error by (1/ω)2 in 
nonzero amplitude bands in the 'd' mode.
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The following plots show the magnitude responses for the differentiators 
above.

fvtool(b,1,bb,1)

Constrained Least Squares FIR Filter Design
The Constrained Least Squares (CLS) FIR filter design functions implement a 
technique that enables you to design FIR filters without explicitly defining the 
transition bands for the magnitude response. The ability to omit the 
specification of transition bands is useful in several situations. For example, it 
may not be clear where a rigidly defined transition band should appear if noise 
and signal information appear together in the same frequency band. Similarly, 
it may make sense to omit the specification of transition bands if they appear 
only to control the results of Gibbs phenomena that appear in the filter’s 
response. See Selesnick, Lang, and Burrus [2] for discussion of this method.
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Instead of defining passbands, stopbands, and transition regions, the CLS 
method accepts a cutoff frequency (for the highpass, lowpass, bandpass, or 
bandstop cases), or passband and stopband edges (for multiband cases), for the 
desired response. In this way, the CLS method defines transition regions 
implicitly, rather than explicitly.

The key feature of the CLS method is that it enables you to define upper and 
lower thresholds that contain the maximum allowable ripple in the magnitude 
response. Given this constraint, the technique applies the least square error 
minimization technique over the frequency range of the filter’s response, 
instead of over specific bands. The error minimization includes any areas of 
discontinuity in the ideal, “brick wall” response. An additional benefit is that 
the technique enables you to specify arbitrarily small peaks resulting from 
Gibbs’ phenomena.

There are two toolbox functions that implement this design technique.

For details on the calling syntax for these functions, see their reference 
descriptions in the Function Reference.

Basic Lowpass and Highpass CLS Filter Design
The most basic of the CLS design functions, fircls1, uses this technique to 
design lowpass and highpass FIR filters. As an example, consider designing a 
filter with order 61 impulse response and cutoff frequency of 0.3 (normalized). 
Further, define the upper and lower bounds that constrain the design process 
as:

• Maximum passband deviation from 1 (passband ripple) of 0.02.

• Maximum stopband deviation from 0 (stopband ripple) of 0.008.

Description Function

Constrained least square multiband FIR filter design fircls

Constrained least square filter design for lowpass and 
highpass linear phase filters

fircls1
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To approach this design problem using fircls1, use the following commands:

n = 61;
wo = 0.3;
dp = 0.02;
ds = 0.008;
h = fircls1(n,wo,dp,ds);
fvtool(h,1)

Note that the y-axis shown below is in Magnitude Squared. You can set this by 
right-clicking on the axis label and selecting Magnitude Squared from the 
menu.

0 ds = 0.0081
dp = 0.02
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Multiband CLS Filter Design
fircls uses the same technique to design FIR filters with a desired piecewise 
constant magnitude response. In this case, you can specify a vector of band 
edges and a corresponding vector of band amplitudes. In addition, you can 
specify the maximum amount of ripple for each band.

For example, assume the specifications for a filter call for:

• From 0 to 0.3 (normalized): amplitude 0, upper bound 0.005, lower 
bound -0.005

• From 0.3 to 0.5: amplitude 0.5, upper bound 0.51, lower bound 0.49

• From 0.5 to 0.7: amplitude 0, upper bound 0.03, lower bound -0.03

• From 0.7 to 0.9: amplitude 1, upper bound 1.02, lower bound 0.98

• From 0.9 to 1: amplitude 0, upper bound 0.05, lower bound -0.05

Design a CLS filter with impulse response order 129 that meets these 
specifications:

n = 129;
f = [0 0.3 0.5 0.7 0.9 1];
a = [0 0.5 0 1 0];
up = [0.005 0.51 0.03 1.02 0.05];
lo = [-0.005 0.49 -0.03 0.98 -0.05];
h = fircls(n,f,a,up,lo);
fvtool(h,1)

Note that the y-axis shown below is in Magnitude Squared. You can set this by 
right-clicking on the axis label and selecting Magnitude Squared from the 
menu.
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Weighted CLS Filter Design
Weighted CLS filter design lets you design lowpass or highpass FIR filters with 
relative weighting of the error minimization in each band. The fircls1 
function enables you to specify the passband and stopband edges for the least 
squares weighting function, as well as a constant k that specifies the ratio of 
the stopband to passband weighting.

For example, consider specifications that call for an FIR filter with impulse 
response order of 55 and cutoff frequency of 0.3 (normalized). Also assume 
maximum allowable passband ripple of 0.02 and maximum allowable stopband 
ripple of 0.004. In addition, add weighting requirements:

• Passband edge for the weight function of 0.28 (normalized)

• Stopband edge for the weight function of 0.32

• Weight error minimization 10 times as much in the stopband as in the 
passband
4
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To approach this using fircls1, type

n = 55;
wo = 0.3;
dp = 0.02;
ds = 0.004;
wp = 0.28;
ws = 0.32;
k = 10;
h = fircls1(n,wo,dp,ds,wp,ws,k);
fvtool(h,1)

Note that the y-axis shown below is in Magnitude Squared. You can set this by 
right-clicking on the axis label and selecting Magnitude Squared from the 
menu.
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Arbitrary-Response Filter Design
The cfirpm filter design function provides a tool for designing FIR filters with 
arbitrary complex responses. It differs from the other filter design functions in 
how the frequency response of the filter is specified: it accepts the name of a 
function which returns the filter response calculated over a grid of frequencies. 
This capability makes cfirpm a highly versatile and powerful technique for 
filter design.

This design technique may be used to produce nonlinear-phase FIR filters, 
asymmetric frequency-response filters (with complex coefficients), or more 
symmetric filters with custom frequency responses.

The design algorithm optimizes the Chebyshev (or minimax) error using an 
extended Remez-exchange algorithm for an initial estimate. If this exchange 
method fails to obtain the optimal filter, the algorithm switches to an 
ascent-descent algorithm that takes over to finish the convergence to the 
optimal solution.

Multiband Filter Design
Consider a multiband filter with the following special frequency-domain 
characteristics. 

A linear-phase multiband filter may be designed using the predefined 
frequency-response function multiband, as follows:

b = cfirpm(38, [-1 -0.5 -0.4 0.3 0.4 0.8], ...
               {'multiband', [5 1 2 2 2 1]}, [1 10 5]);

Band Amplitude Optimization 
Weighting

[-1 -0.5] [5 1] 1

[-0.4 +0.3] [2 2] 10

[+0.4 +0.8] [2 1] 5
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For the specific case of a multiband filter, we can use a shorthand filter design 
notation similar to the syntax for firpm:

b = cfirpm(38,[-1 -0.5 -0.4 0.3 0.4 0.8], ...
              [5 1 2 2 2 1], [1 10 5]);

As with firpm, a vector of band edges is passed to cfirpm. This vector defines 
the frequency bands over which optimization is performed; note that there are 
two transition bands, from -0.5 to -0.4 and from 0.3 to 0.4. 

In either case, the frequency response is obtained and plotted using linear scale 
in FVTool:

fvtool(b,1)

Note that the range of data shown below is (-Fs/2,Fs/2). You can set this 
range by changing the x-axis units to Frequency (Fs = 1 Hz).
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The filter response for this multiband filter is complex, which is expected 
because of the asymmetry in the frequency domain. The impulse response, 
which you can select from the FVTool toolbar, is shown below.

Filter Design with Reduced Delay
Consider the design of a 62-tap lowpass filter with a half-Nyquist cutoff. If we 
specify a negative offset value to the lowpass filter design function, the group 
delay offset for the design is significantly less than that obtained for a standard 
linear-phase design. This filter design may be computed as follows:

b = cfirpm(61,[0 0.5 0.55 1],{'lowpass',-16});

The resulting magnitude response is

fvtool(b,1)
8
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Note that the range of data in this plot is (-Fs/2,Fs/2), which you can set 
changing the x-axis units to Frequency. The y-axis is in Magnitude Squared, 
which you can set by right-clicking on the axis label and selecting Magnitude 
Squared from the menu.

The group delay of the filter reveals that the offset has been reduced from N/2 
to N/2-16 (i.e., from 30.5 to 14.5). Now, however, the group delay is no longer 
flat in the passband region. To create this plot, click the Group Delay button 
on the toolbar.
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If we compare this nonlinear-phase filter to a linear-phase filter that has 
exactly 14.5 samples of group delay, the resulting filter is of order 2*14.5, or 29. 
Using b = cfirpm(29,[0 0.5 0.55 1],'lowpass'), the passband and 
stopband ripple is much greater for the order 29 filter. These comparisons can 
assist you in deciding which filter is more appropriate for a specific application.
0
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Special Topics in IIR Filter Design
The classic IIR filter design technique includes the following steps.

1 Find an analog lowpass filter with cutoff frequency of 1 and translate this 
“prototype” filter to the desired band configuration

2 Transform the filter to the digital domain. 

3 Discretize the filter.

The toolbox provides functions for each of these steps.

Alternatively, the butter, cheby1, cheb2ord, ellip, and besself functions 
perform all steps of the filter design and the buttord, cheb1ord, cheb2ord, and 
ellipord functions provide minimum order computation for IIR filters. These 
functions are sufficient for many design problems, and the lower level functions 
are generally not needed. But if you do have an application where you need to 
transform the band edges of an analog filter, or discretize a rational transfer 
function, this section describes the tools with which to do so.

Design Task Available functions

Analog lowpass prototype buttap, cheb1ap, besselap, ellipap, cheb2ap

Frequency 
transformation

lp2lp, lp2hp, lp2bp, lp2bs

Discretization bilinear, impinvar
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Analog Prototype Design
This toolbox provides a number of functions to create lowpass analog prototype 
filters with cutoff frequency of 1, the first step in the classical approach to IIR 
filter design. The table below summarizes the analog prototype design 
functions for each supported filter type; plots for each type are shown in “IIR 
Filter Design” on page 2-4.

Frequency Transformation
The second step in the analog prototyping design technique is the frequency 
transformation of a lowpass prototype. The toolbox provides a set of functions 
to transform analog lowpass prototypes (with cutoff frequency of 1 rad/s) into 
bandpass, highpass, bandstop, and lowpass filters of the desired cutoff 
frequency.

Filter Type Analog Prototype Function

Bessel [z,p,k] = besselap(n)

Butterworth [z,p,k] = buttap(n)

Chebyshev Type I [z,p,k] = cheb1ap(n,Rp)

Chebyshev Type II [z,p,k] = cheb2ap(n,Rs)

Elliptic [z,p,k] = ellipap(n,Rp,Rs)
2
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As shown, all of the frequency transformation functions can accept two linear 
system models: transfer function and state-space form. For the bandpass and 
bandstop cases

and

where ω1 is the lower band edge and ω2 is the upper band edge.

The frequency transformation functions perform frequency variable 
substitution. In the case of lp2bp and lp2bs, this is a second-order 

Freq. Transformation Transformation Function

Lowpass to lowpass [numt,dent] = lp2lp(num,den,Wo)
[At,Bt,Ct,Dt] = lp2lp(A,B,C,D,Wo)

Lowpass to highpass [numt,dent] = lp2hp(num,den,Wo)
[At,Bt,Ct,Dt] = lp2hp(A,B,C,D,Wo)

Lowpass to bandpass [numt,dent] = lp2bp(num,den,Wo,Bw)
[At,Bt,Ct,Dt] = lp2bp(A,B,C,D,Wo,Bw)

Lowpass to bandstop [numt,dent] = lp2bs(num,den,Wo,Bw)
[At,Bt,Ct,Dt] = lp2bs(A,B,C,D,Wo,Bw)
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substitution, so the output filter is twice the order of the input. For lp2lp and 
lp2hp, the output filter is the same order as the input.

To begin designing an order 10 bandpass Chebyshev Type I filter with a value 
of 3 dB for passband ripple, enter

[z,p,k] = cheb1ap(5,3);

Outputs z, p, and k contain the zeros, poles, and gain of a lowpass analog filter 
with cutoff frequency Ωc equal to 1 rad/s. Use the lp2bp function to transform 
this lowpass prototype to a bandpass analog filter with band edges  
and . First, convert the filter to state-space form so the lp2bp function 
can accept it:

[A,B,C,D] = zp2ss(z,p,k); % Convert to state-space form.

Now, find the bandwidth and center frequency, and call lp2bp:

u1 = 0.1*2*pi;  u2 = 0.5*2*pi; % In radians per second
Bw = u2-u1;
Wo = sqrt(u1*u2);
[At,Bt,Ct,Dt] = lp2bp(A,B,C,D,Wo,Bw);

Finally, calculate the frequency response and plot its magnitude:

[b,a] = ss2tf(At,Bt,Ct,Dt); % Convert to TF form.
w = linspace(0.01,1,500)*2*pi; % Generate frequency vector.
h = freqs(b,a,w); % Compute frequency response.
semilogy(w/2/pi,abs(h)), grid % Plot log magnitude vs. freq.
xlabel('Frequency (Hz)');

Ω1 π 5⁄=
Ω2 π=
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Filter Discretization
The third step in the analog prototyping technique is the transformation of the 
filter to the discrete-time domain. The toolbox provides two methods for this: 
the impulse invariant and bilinear transformations. The filter design functions 
butter, cheby1, cheby2, and ellip use the bilinear transformation for 
discretization in this step.

Impulse Invariance
The toolbox function impinvar creates a digital filter whose impulse response 
is the samples of the continuous impulse response of an analog filter. This 
function works only on filters in transfer function form. For best results, the 
analog filter should have negligible frequency content above half the sampling 
frequency, because such high frequency content is aliased into lower bands 

Analog to Digital 
Transformation

Transformation Function

Impulse invariance [numd,dend] = impinvar(num,den,fs)

Bilinear transform [zd,pd,kd] = bilinear(z,p,k,fs,Fp)
[numd,dend] = bilinear(num,den,fs,Fp)
[Ad,Bd,Cd,Dd] = bilinear(At,Bt,Ct,Dt,fs,Fp)
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upon sampling. Impulse invariance works for some lowpass and bandpass 
filters, but is not appropriate for highpass and bandstop filters.

Design a Chebyshev Type I filter and plot its frequency and phase response 
using FVTool:

[bz,az] = impinvar(b,a,2);
fvtool(bz,az)

Click on the Magnitude and Phase Response toolbar button.

Impulse invariance retains the cutoff frequencies of 0.1 Hz and 0.5 Hz. 
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Bilinear Transformation
The bilinear transformation is a nonlinear mapping of the continuous domain 
to the discrete domain; it maps the s-plane into the z-plane by

Bilinear transformation maps the -axis of the continuous domain to the unit 
circle of the discrete domain according to

The toolbox function bilinear implements this operation, where the frequency 
warping constant k is equal to twice the sampling frequency (2*fs) by default, 
and equal to  if you give bilinear a trailing argument that 
represents a “match” frequency Fp. If a match frequency Fp (in hertz) is 
present, bilinear maps the frequency  (in rad/s) to the same 
frequency in the discrete domain, normalized to the sampling rate: 

 (in rad/sample). 

The bilinear function can perform this transformation on three different 
linear system representations: zero-pole-gain, transfer function, and 
state-space form. Try calling bilinear with the state-space matrices that 
describe the Chebyshev Type I filter from the previous section, using a 
sampling frequency of 2 Hz, and retaining the lower band edge of 0.1 Hz:

[Ad,Bd,Cd,Dd] = bilinear(At,Bt,Ct,Dt,2,0.1);

The frequency response of the resulting digital filter is

[bz,az] = ss2tf(Ad,Bd,Cd,Dd); % convert to TF
fvtool(bz,az)

Click on the Magnitude and Phase Response toolbar button.
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The lower band edge is at 0.1 Hz as expected. Notice, however, that the upper 
band edge is slightly less than 0.5 Hz, although in the analog domain it was 
exactly 0.5 Hz. This illustrates the nonlinear nature of the bilinear 
transformation. To counteract this nonlinearity, it is necessary to create analog 
domain filters with “prewarped” band edges, which map to the correct locations 
upon bilinear transformation. Here the prewarped frequencies u1 and u2 
generate Bw and Wo for the lp2bp function:

fs = 2; % Sampling frequency (hertz)
u1 = 2*fs*tan(0.1*(2*pi/fs)/2); % Lower band edge (rad/s)
u2 = 2*fs*tan(0.5*(2*pi/fs)/2); % Upper band edge (rad/s)
Bw = u2 - u1; % Bandwidth
Wo = sqrt(u1*u2); % Center frequency
8
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[At,Bt,Ct,Dt] = lp2bp(A,B,C,D,Wo,Bw);

A digital bandpass filter with correct band edges 0.1 and 0.5 times the Nyquist 
frequency is

[Ad,Bd,Cd,Dd] = bilinear(At,Bt,Ct,Dt,fs);

The example bandpass filters from the last two sections could also be created 
in one statement using the complete IIR design function cheby1. For instance, 
an analog version of the example Chebyshev filter is

[b,a] = cheby1(5,3,[0.1 0.5]*2*pi,'s');

Note that the band edges are in rad/s for analog filters, whereas for the digital 
case, frequency is normalized:

[bz,az] = cheby1(5,3,[0.1 0.5]);

All of the complete design functions call bilinear internally. They prewarp the 
band edges as needed to obtain the correct digital filter. 
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Filter Implementation
After the filter design process has generated the filter coefficient vectors, b and 
a, two functions are available in the Signal Processing Toolbox for 
implementing your filter:

• dfilt—lets you specify the filter structure and creates a digital filter object.

• filter—for b and a coefficient input, implements a direct-form II transposed 
structure and filters the data. For dfilt input, filter uses the structure 
specified with dfilt and filters the data.

Note  Using filter on b and a coefficients normalizes the filter by forcing the 
a0 coefficient to be equal to 1. Using filter on a dfilt object does not 
normalize the filter.

Choosing the best filter structure depends on the task the filter will perform. 
Some structures are more suited to or may be more computationally efficient 
for particular tasks. For example, often it is not possible to build recursive (IIR) 
filters to run at very high speeds and instead, you would use a nonrecursive 
(FIR) filter. FIR filters are always stable and have well-behaved roundoff noise 
characteristics. Direct-form IIR filters are usually realized in 
second-order-sections because they are sensitive to roundoff noise.

Using dfilt
Implementing your digital filter using dfilt lets you specify the filter 
structure and creates a single filter object from the filter coefficient vectors. 
dfilt objects have many predefined methods which can provide information 
about the filter that is not easily obtained directly from the filter coefficients 
alone. For a complete list of these methods and for more information, see dfilt.
0



Filter Implementation
After you have created a dfilt object, you can use filter to apply your 
implemented filter to data. The complete process of designing, implementing, 
and applying a filter using a dfilt object is described below:

1 Generate the filter coefficients using any IIR or FIR filter design function.

2 Create the filter object from the filter coefficients and the specified filter 
structure using dfilt.

3 Apply the dfilt filter object to the data, x using filter.

For example, to design, implement as a direct-form II transposed structure, 
and apply a Butterworth filter to the data in x:

[b,a] = butter(5,0.4);
Hd = dfilt.df2t(b,a); %Implement direct-form II transposed
filter(Hd,x)

Another way to implement a direct-form II structure is with filter:

[b,a] = butter(5,0.4);
filter(b,a,x)

Note  filter implements only a direct-form II structure and does not create 
a filter object.
2-51



2 Filter Design and Implementation

2-5
Selected Bibliography
[1] Karam, L.J., and J.H. McClellan. “Complex Chebyshev Approximation for 
FIR Filter Design.” IEEE Trans. on Circuits and Systems II. March 1995.

[2] Selesnick, I.W., and C.S. Burrus. “Generalized Digital Butterworth Filter 
Design.” Proceedings of the IEEE Int. Conf. Acoust., Speech, Signal Processing. 
Vol. 3 (May 1996).

[3] Selesnick, I.W., M. Lang, and C.S. Burrus. “Constrained Least Square 
Design of FIR Filters without Specified Transition Bands.” Proceedings of the 
IEEE Int. Conf. Acoust., Speech, Signal Processing. Vol. 2 (May 1995). 
Pgs. 1260-1263.
2



3

Statistical Signal 
Processing

The following chapter discusses statistical signal processing tools and applications, including 
correlations, covariance, and spectral estimation.

Correlation and Covariance (p. 3-2) Correlation and covariance background information and 
toolbox functions

Spectral Analysis (p. 3-5) Spectral estimation techniques and toolbox functions
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Correlation and Covariance
The functions xcorr and xcov estimate the cross-correlation and 
cross-covariance sequences of random processes. They also handle 
autocorrelation and autocovariance as special cases.

The true cross-correlation sequence is a statistical quantity defined as

where xn and yn are stationary random processes, , and E{⋅} is the 
expected value operator. The covariance sequence is the mean-removed 
cross-correlation sequence

or, in terms of the cross-correlation,

In practice, you must estimate these sequences, because it is possible to access 
only a finite segment of the infinite-length random process. A common estimate 
based on N samples of xn and yn is the deterministic cross-correlation sequence 
(also called the time-ambiguity function)

where we assume for this discussion that xn and yn are indexed from 0 to N-1, 

and  from -(N-1) to N-1. The xcorr function evaluates this sum with an 
efficient FFT-based algorithm, given inputs xn and yn stored in length N 
vectors x and y. Its operation is equivalent to convolution with one of the two 
subsequences reversed in time. 

Rxy m( ) E{xn m+ y*n} E{xny*n m– } ==

∞– n ∞< <

Cxy m( ) E{ xn m+ µx–( ) yn µy–( )*}=

Cxy m( ) Rxy m( ) µxµ*y–=

R
ˆ

xy m( )
xn m+ yn

*

n 0=

N m– 1–

∑ m 0≥

R
ˆ

yx
*

m–( ) m 0<⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

R
ˆ

xy m( )



Correlation and Covariance
For example:

x = [1 1 1 1 1]';
y = x;
xyc = xcorr(x,y)

xyc =

    1.0000
    2.0000
    3.0000
    4.0000
    5.0000
    4.0000
    3.0000
    2.0000
    1.0000

Notice that the resulting sequence length is one less than twice the length of 
the input sequence. Thus, the Nth element is the correlation at lag 0. Also 
notice the triangular pulse of the output that results when convolving two 
square pulses.

The xcov function estimates autocovariance and cross-covariance sequences. 
This function has the same options and evaluates the same sum as xcorr, but 
first removes the means of x and y.

Bias and Normalization
An estimate of a quantity is biased if its expected value is not equal to the 
quantity it estimates. The expected value of the output of xcorr is

xcorr provides the unbiased estimate, dividing by N-|m|, when you specify an 
'unbiased' flag after the input sequences.

xcorr(x,y,'unbiased')

E{R
ˆ

xy m( )} E{xn m+ y*n}

n 0=

N m– 1–

∑ N m–( )Rxy m( )= =
3-3



3 Statistical Signal Processing

3-4
Although this estimate is unbiased, the end points (near -(N-1) and N-1) suffer 
from large variance because xcorr computes them using only a few data points. 
A possible trade-off is to simply divide by N using the 'biased' flag:

xcorr(x,y,'biased')

With this scheme, only the sample of the correlation at zero lag (the Nth output 
element) is unbiased. This estimate is often more desirable than the unbiased 
one because it avoids random large variations at the end points of the 
correlation sequence.

xcorr provides one other normalization scheme. The syntax

xcorr(x,y,'coeff')

divides the output by norm(x)*norm(y) so that, for autocorrelations, the 
sample at zero lag is 1.

Multiple Channels
For a multichannel signal, xcorr and xcov estimate the autocorrelation and 
cross-correlation and covariance sequences for all of the channels at once. If S 
is an M-by-N signal matrix representing N channels in its columns, xcorr(S) 
returns a (2M-1)-by-N2 matrix with the autocorrelations and cross-correlations 
of the channels of S in its N2 columns. If S is a three-channel signal

S = [s1 s2 s3]

then the result of xcorr(S) is organized as

R = [Rs1s1 Rs1s2 Rs1s3 Rs2s1 Rs2s2 Rs2s3 Rs3s1 Rs3s2 Rs3s3]

Two related functions, cov and corrcoef, are available in the standard 
MATLAB environment. They estimate covariance and normalized covariance 
respectively between the different channels at lag 0 and arrange them in a 
square matrix.



Spectral Analysis
Spectral Analysis
The goal of spectral estimation is to describe the distribution (over frequency) 
of the power contained in a signal, based on a finite set of data. Estimation of 
power spectra is useful in a variety of applications, including the detection of 
signals buried in wide-band noise.

The power spectrum of a stationary random process xn is mathematically 
related to the correlation sequence by the discrete-time Fourier transform. In 
terms of normalized frequency, this is given by

This can be written as a function of physical frequency f (e.g., in hertz) by using 
the relation ω = 2πf/fs, where fs is the sampling frequency.

The correlation sequence can be derived from the power spectrum by use of the 
inverse discrete-time Fourier transform:

The average power of the sequence xn over the entire Nyquist interval is 
represented by

Sxx ω( ) Rxx m( )e jωm–

m ∞–=

∞

∑=

Sxx f( ) Rxx m( )e 2πjfm– fs⁄

m ∞–=

∞

∑=

Rxx m( )
Sxx ω( )ejωm

2π
------------------------------ ωd

π–

π

∫
Sxx f( )e2πjfm fs⁄

fs
--------------------------------------- fd

fs 2⁄–

fs 2⁄

∫= =

Rxx 0( )
Sxx ω( )

2π
----------------- ωd

π–

π

∫
Sxx f( )

fs
--------------- fd

fs 2⁄–

fs 2⁄

∫= =
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The quantities 

from the above expression are defined as the power spectral density (PSD) of 
the stationary random signal xn.

The average power of a signal over a particular frequency band , 
, can be found by integrating the PSD over that band:

You can see from the above expression that Pxx(ω) represents the power content 
of a signal in an infinitesimal frequency band, which is why it is called the 
power spectral density.

The units of the PSD are power (e.g., watts) per unit of frequency. In the case 
of Pxx(ω), this is watts/radian/sample or simply watts/radian. In the case of 
Pxx(f), the units are watts/hertz. Integration of the PSD with respect to 
frequency yields units of watts, as expected for the average power .

For real signals, the PSD is symmetric about DC, and thus Pxx(ω) for  
is sufficient to completely characterize the PSD. However, to obtain the 
average power over the entire Nyquist interval, it is necessary to introduce the 
concept of the one-sided PSD.

The one-sided PSD is given by 

The average power of a signal over the frequency band , , 
can be computed using the one-sided PSD as

Pxx ω( )
Sxx ω( )

2π
-----------------= Pxx f( )

Sxx f( )
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---------------=and
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0 ω1 ω2 π≤<≤
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Spectral Analysis
Spectral Estimation Method
The various methods of spectrum estimation available in the Signal Processing 
Toolbox are categorized as follows:

• Nonparametric methods

• Parametric methods

• Subspace methods

Nonparametric methods are those in which the PSD is estimated directly from 
the signal itself. The simplest such method is the periodogram. An improved 
version of the periodogram is Welch’s method [8]. A more modern 
nonparametric technique is the multitaper method (MTM).

Parametric methods are those in which the PSD is estimated from a signal that 
is assumed to be output of a linear system driven by white noise. Examples are 
the Yule-Walker autoregressive (AR) method and the Burg method. These 
methods estimate the PSD by first estimating the parameters (coefficients) of 
the linear system that hypothetically “generates” the signal. They tend to 
produce better results than classical nonparametric methods when the data 
length of the available signal is relatively short.

Subspace methods, also known as high-resolution methods or super-resolution 
methods, generate frequency component estimates for a signal based on an 
eigenanalysis or eigendecomposition of the correlation matrix. Examples are 
the multiple signal classification (MUSIC) method or the eigenvector (EV) 
method. These methods are best suited for line spectra — that is, spectra of 
sinusoidal signals — and are effective in the detection of sinusoids buried in 
noise, especially when the signal to noise ratios are low.

All three categories of methods are listed in the table below with the 
corresponding toolbox function and spectrum object names. See “Parametric 
Modeling” on page 4-15 for details about lpc and other parametric estimation 
functions.
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Method Description Functions

Periodogram Power spectral density 
estimate

spectrum.periodogram, 
periodogram

Welch Averaged periodograms of 
overlapped, windowed signal 
sections

spectrum.welch, 
pwelch, cpsd, 
tfestimate, mscohere

Multitaper) Spectral estimate from 
combination of multiple 
orthogonal windows (or 
“tapers”)

spectrum.mtm, pmtm

Yule-Walker 
AR

Autoregressive (AR) spectral 
estimate of a time-series from 
its estimated autocorrelation 
function

spectrum.yulear, 
pyulear

Burg Autoregressive (AR) spectral 
estimation of a time-series by 
minimization of linear 
prediction errors

spectrum.burg, pburg

Covariance Autoregressive (AR) spectral 
estimation of a time-series by 
minimization of the forward 
prediction errors 

spectrum.cov, pcov

Modified 
Covariance

Autoregressive (AR) spectral 
estimation of a time-series by 
minimization of the forward 
and backward prediction 
errors

spectrum.mcov, pmcov



Spectral Analysis
Nonparametric Methods
The following sections discuss the periodogram, modified periodogram, Welch, 
and multitaper methods of nonparametric estimation, along with the related 
CPSD function, transfer function estimate, and coherence function.

Periodogram
One way of estimating the power spectrum of a process is to simply find the 
discrete-time Fourier transform of the samples of the process (usually done on 
a grid with an FFT) and take the magnitude squared of the result. This 
estimate is called the periodogram. 

The periodogram estimate of the PSD of a length-L signal xL[n] is

where

The actual computation of XL(f) can be performed only at a finite number of 
frequency points, N, and usually employs the FFT. In practice, most 
implementations of the periodogram method compute the N-point PSD 
estimate

MUSIC Multiple signal classification spectrum.music, 
pmusic

Eigenvector Pseudospectrum estimate spectrum.eigenvector, 
peig

Method Description Functions

P̂xx f( )
XL f( ) 2

fsL
--------------------=

XL f( ) xL n[ ]e
2πjfn– fs⁄

n 0=

L 1–

∑=

P̂xx fk[ ]
XL fk[ ] 2

fsL
-----------------------,= fk

kfs
N

--------,= k 0 1 … N 1–, , ,=
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where

It is wise to choose N > L so that N is the next power of two larger than L. To 
evaluate XL[fk], we simply pad xL[n] with zeros to length N. If L > N, we must 
wrap xL[n] modulo-N prior to computing XL[fk].

As an example, consider the following 1001-element signal xn, which consists 
of two sinusoids plus noise:

randn('state',0);
fs = 1000; % Sampling frequency
t = (0:fs)/fs; % One second worth of samples
A = [1 2]; % Sinusoid amplitudes (row vector)
f = [150;140]; % Sinusoid frequencies (column vector)
xn = A*sin(2*pi*f*t) + 0.1*randn(size(t));

Note  The three last lines illustrate a convenient and general way to express 
the sum of sinusoids. Together they are equivalent to

xn = sin(2*pi*150*t) + 2*sin(2*pi*140*t) + 0.1*randn(size(t));

The periodogram estimate of the PSD can be computed by creating a 
periodogram object

Hs = spectrum.periodogram('Hamming');

and a plot of the estimate can be displayed with the psd method:

psd(Hs,xn,'Fs',fs,'NFFT',1024,'SpectrumType','twosided')

XL fk[ ] xL n[ ]e 2πjkn– N⁄

n 0=

N 1–

∑=
0



Spectral Analysis
The average power can be computed by approximating the integral with the 
following sum:

Hdsp2= psd(Hs,xn,'Fs',fs,'NFFT',1024,'SpectrumType','twosided');
Pow = avgpower(Hdsp2)

Pow =
    2.5059

You can also compute the average power from the one-sided PSD estimate:

Hdsp3= psd(Hs,xn,'Fs',fs,'NFFT',1024,'SpectrumType','onesided');
Pow = avgpower(Hdsp3)

Pow =
    2.5059

Performance of the Periodogram
The following sections discuss the performance of the periodogram with regard 
to the issues of leakage, resolution, bias, and variance.
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Spectral Leakage. Consider the power spectrum or PSD of a finite-length signal 
xL[n], as discussed in the “Periodogram” on page 3-9. It is frequently useful to 
interpret xL[n] as the result of multiplying an infinite signal, x[n], by a 
finite-length rectangular window, wR[n]:

Because multiplication in the time domain corresponds to convolution in the 
frequency domain, the Fourier transform of the expression above is

The expression developed earlier for the periodogram, 

illustrates that the periodogram is also influenced by this convolution. 

The effect of the convolution is best understood for sinusoidal data. Suppose 
that x[n] is composed of a sum of M complex sinusoids:

Its spectrum is

which for a finite-length sequence becomes

xL n[ ] x n[ ] wR n[ ]⋅=

XL f( ) 1
fs
---- X ρ( )WR f ρ–( ) ρd

fs 2⁄–

fs 2⁄
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fsL
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jωkn
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Spectral Analysis
So in the spectrum of the finite-length signal, the Dirac deltas have been 
replaced by terms of the form , which corresponds to the frequency 
response of a rectangular window centered on the frequency fk.

The frequency response of a rectangular window has the shape of a sinc signal, 
as shown below.

The plot displays a main lobe and several side lobes, the largest of which is 
approximately 13.5 dB below the mainlobe peak. These lobes account for the 
effect known as spectral leakage. While the infinite-length signal has its power 
concentrated exactly at the discrete frequency points fk, the windowed (or 
truncated) signal has a continuum of power “leaked” around the discrete 
frequency points fk.

Because the frequency response of a short rectangular window is a much poorer 
approximation to the Dirac delta function than that of a longer window, 
spectral leakage is especially evident when data records are short. Consider the 
following sequence of 100 samples:

randn('state',0)
fs = 1000; % Sampling frequency
t = (0:fs/10)/fs; % One-tenth of a second worth of samples
A = [1 2]; % Sinusoid amplitudes
f = [150;140]; % Sinusoid frequencies
xn = A*sin(2*pi*f*t) + 0.1*randn(size(t));
Hs = spectrum.periodogram;

WR f fk–( )
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psd(Hs,xn,'Fs',fs,'NFFT',1024)

It is important to note that the effect of spectral leakage is contingent solely on 
the length of the data record. It is not a consequence of the fact that the 
periodogram is computed at a finite number of frequency samples.

Resolution. Resolution refers to the ability to discriminate spectral features, and 
is a key concept on the analysis of spectral estimator performance.

In order to resolve two sinusoids that are relatively close together in frequency, 
it is necessary for the difference between the two frequencies to be greater than 
the width of the mainlobe of the leaked spectra for either one of these sinusoids. 
The mainlobe width is defined to be the width of the mainlobe at the point 
where the power is half the peak mainlobe power (i.e., 3 dB width). This width 
is approximately equal to fs / L.

In other words, for two sinusoids of frequencies f1 and f2, the resolvability 
condition requires that 
4



Spectral Analysis
In the example above, where two sinusoids are separated by only 10 Hz, the 
data record must be greater than 100 samples to allow resolution of two 
distinct sinusoids by a periodogram. 

Consider a case where this criterion is not met, as for the sequence of 67 
samples below:

randn('state',0)
fs = 1000; % Sampling frequency
t = (0:fs/15)./fs; % 67 samples
A = [1 2]; % Sinusoid amplitudes
f = [150;140]; % Sinusoid frequencies
xn = A*sin(2*pi*f*t) + 0.1*randn(size(t));
Hs=spectrum.periodogram;
psd(Hs,xn,'Fs',fs,'NFFT',1024)

∆f f1 f2–( )
fs
L
---->=
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The above discussion about resolution did not consider the effects of noise since 
the signal-to-noise ratio (SNR) has been relatively high thus far. When the 
SNR is low, true spectral features are much harder to distinguish, and noise 
artifacts appear in spectral estimates based on the periodogram. The example 
below illustrates this:

randn('state',0)
fs = 1000; % Sampling frequency
t = (0:fs/10)./fs; % One-tenth of a second worth of samples
A = [1 2]; % Sinusoid amplitudes
f = [150;140]; % Sinusoid frequencies
xn = A*sin(2*pi*f*t) + 2*randn(size(t));
Hs=spectrum.periodogram;
psd(Hs,xn,'Fs',fs,'NFFT',1024)

Bias of the Periodogram. The periodogram is a biased estimator of the PSD. Its 
expected value can be shown to be
6



Spectral Analysis
which is similar to the first expression for XL(f) in “Spectral Leakage” on 
page 3-12, except that the expression here is in terms of average power rather 
than magnitude. This suggests that the estimates produced by the 
periodogram correspond to a leaky PSD rather than the true PSD.

Note that  essentially yields a triangular Bartlett window (which 
is apparent from the fact that the convolution of two rectangular pulses is a 
triangular pulse). This results in a height for the largest sidelobes of the leaky 
power spectra that is about 27 dB below the mainlobe peak; i.e., about twice the 
frequency separation relative to the non-squared rectangular window.

The periodogram is asymptotically unbiased, which is evident from the earlier 
observation that as the data record length tends to infinity, the frequency 
response of the rectangular window more closely approximates the Dirac delta 
function (also true for a Bartlett window). However, in some cases the 
periodogram is a poor estimator of the PSD even when the data record is long. 
This is due to the variance of the periodogram, as explained below.

Variance of the Periodogram. The variance of the periodogram can be shown to be 
approximately

which indicates that the variance does not tend to zero as the data length L 
tends to infinity. In statistical terms, the periodogram is not a consistent 
estimator of the PSD. Nevertheless, the periodogram can be a useful tool for 
spectral estimation in situations where the SNR is high, and especially if the 
data record is long.

The Modified Periodogram
The modified periodogram windows the time-domain signal prior to computing 
the FFT in order to smooth the edges of the signal. This has the effect of 
reducing the height of the sidelobes or spectral leakage. This phenomenon 
gives rise to the interpretation of sidelobes as spurious frequencies introduced 
into the signal by the abrupt truncation that occurs when a rectangular 
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window is used. For nonrectangular windows, the end points of the truncated 
signal are attenuated smoothly, and hence the spurious frequencies introduced 
are much less severe. On the other hand, nonrectangular windows also broaden 
the mainlobe, which results in a net reduction of resolution.

The periodogram function allows you to compute a modified periodogram by 
specifying the window to be used on the data. For example, compare a default 
rectangular window and a Hamming window:

randn('state',0)
fs = 1000; % Sampling frequency
t = (0:fs/10)./fs; % One-tenth of a second worth of samples
A = [1 2]; % Sinusoid amplitudes
f = [150;140]; % Sinusoid frequencies
xn = A*sin(2*pi*f*t) + 0.1*randn(size(t));
Hrect = spectrum.periodogram;
psd(Hrect,xn,'Fs',fs,'NFFT',1024);

Hhamm = spectrum.periodogram('Hamming');
psd(Hhamm,xn,'Fs',fs,'NFFT',1024);
8



Spectral Analysis
You can verify that although the sidelobes are much less evident in the 
Hamming-windowed periodogram, the two main peaks are wider. In fact, the 
3 dB width of the mainlobe corresponding to a Hamming window is 
approximately twice that of a rectangular window. Hence, for a fixed data 
length, the PSD resolution attainable with a Hamming window is 
approximately half that attainable with a rectangular window. The competing 
interests of mainlobe width and sidelobe height can be resolved to some extent 
by using variable windows such as the Kaiser window.

Nonrectangular windowing affects the average power of a signal because some 
of the time samples are attenuated when multiplied by the window. To 
compensate for this, the periodogram function normalizes the window to have 
an average power of unity. This way the choice of window does not affect the 
average power of the signal.

The modified periodogram estimate of the PSD is 

P̂xx f( )
XL f( ) 2

fsLU
--------------------=
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where U is the window normalization constant

which is independent of the choice of window. The addition of U as a 
normalization constant ensures that the modified periodogram is 
asymptotically unbiased.

Welch’s Method
An improved estimator of the PSD is the one proposed by Welch [8]. The 
method consists of dividing the time series data into (possibly overlapping) 
segments, computing a modified periodogram of each segment, and then 
averaging the PSD estimates. The result is Welch’s PSD estimate.

Welch’s method is implemented in the Signal Processing Toolbox by the 
spectrum.welch object or pwelch function. By default, the data is divided into 
eight segments with 50% overlap between them. A Hamming window is used 
to compute the modified periodogram of each segment.

The averaging of modified periodograms tends to decrease the variance of the 
estimate relative to a single periodogram estimate of the entire data record. 
Although overlap between segments tends to introduce redundant information, 
this effect is diminished by the use of a nonrectangular window, which reduces 
the importance or weight given to the end samples of segments (the samples 
that overlap).

However, as mentioned above, the combined use of short data records and 
nonrectangular windows results in reduced resolution of the estimator. In 
summary, there is a tradeoff between variance reduction and resolution. One 
can manipulate the parameters in Welch’s method to obtain improved 
estimates relative to the periodogram, especially when the SNR is low. This is 
illustrated in the following example.

Consider an original signal consisting of 301 samples:

randn('state',1)
fs = 1000; % Sampling frequency
t = (0:0.3*fs)./fs; % 301 samples
A = [2 8]; % Sinusoid amplitudes (row vector)
f = [150;140]; % Sinusoid frequencies (column vector)

U 1
L
---- w n( ) 2

n 0=

L 1–

∑=
0



Spectral Analysis
xn = A*sin(2*pi*f*t) + 5*randn(size(t));
Hs = spectrum.periodogram('rectangular')
psd(Hs,xn,'Fs',fs,'NFFT',1024);
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We can obtain Welch’s spectral estimate for 3 segments with 50% overlap with

Hs = spectrum.welch('rectangular',150,50);
psd(Hs,xn,'Fs',fs,'NFFT',512);

In the periodogram above, noise and the leakage make one of the sinusoids 
essentially indistinguishable from the artificial peaks. In contrast, although 
the PSD produced by Welch’s method has wider peaks, you can still distinguish 
the two sinusoids, which stand out from the “noise floor.” 

However, if we try to reduce the variance further, the loss of resolution causes 
one of the sinusoids to be lost altogether:

Hs = spectrum.welch('rectangular',100,75);
psd(Hs,xn,'Fs',fs,'NFFT',512);
2
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For a more detailed discussion of Welch’s method of PSD estimation, see 
Kay [2] and Welch [8].

Bias and Normalization in Welch’s Method
Welch’s method yields a biased estimator of the PSD. The expected value can 
be found to be 

where Ls is the length of the data segments and U is the same normalization 
constant present in the definition of the modified periodogram. As is the case 
for all periodograms, Welch’s estimator is asymptotically unbiased. For a fixed 
length data record, the bias of Welch’s estimate is larger than that of the 
periodogram because Ls < L.

The variance of Welch’s estimator is difficult to compute because it depends on 
both the window used and the amount of overlap between segments. Basically, 

E P̂welch{ } 1
fsLsU
---------------- Pxx ρ( ) W f ρ–( ) 2 ρd

fs 2⁄–

fs 2⁄

∫=
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the variance is inversely proportional to the number of segments whose 
modified periodograms are being averaged.

Multitaper Method
The periodogram can be interpreted as filtering a length L signal, xL[n], 
through a filter bank (a set of filters in parallel) of L FIR bandpass filters. The 
3 dB bandwidth of each of these bandpass filters can be shown to be 
approximately equal to fs / L. The magnitude response of each one of these 
bandpass filters resembles that of the rectangular window discussed in 
“Spectral Leakage” on page 3-12. The periodogram can thus be viewed as a 
computation of the power of each filtered signal (i.e., the output of each 
bandpass filter) that uses just one sample of each filtered signal and assumes 
that the PSD of xL[n] is constant over the bandwidth of each bandpass filter.

As the length of the signal increases, the bandwidth of each bandpass filter 
decreases, making it a more selective filter, and improving the approximation 
of constant PSD over the bandwidth of the filter. This provides another 
interpretation of why the PSD estimate of the periodogram improves as the 
length of the signal increases. However, there are two factors apparent from 
this standpoint that compromise the accuracy of the periodogram estimate. 
First, the rectangular window yields a poor bandpass filter. Second, the 
computation of the power at the output of each bandpass filter relies on a single 
sample of the output signal, producing a very crude approximation.

Welch’s method can be given a similar interpretation in terms of a filter bank. 
In Welch’s implementation, several samples are used to compute the output 
power, resulting in reduced variance of the estimate. On the other hand, the 
bandwidth of each bandpass filter is larger than that corresponding to the 
periodogram method, which results in a loss of resolution. The filter bank 
model thus provides a new interpretation of the compromise between variance 
and resolution.

Thompson’s multitaper method (MTM) builds on these results to provide an 
improved PSD estimate. Instead of using bandpass filters that are essentially 
rectangular windows (as in the periodogram method), the MTM method uses a 
bank of optimal bandpass filters to compute the estimate. These optimal FIR 
filters are derived from a set of sequences known as discrete prolate spheroidal 
sequences (DPSSs, also known as Slepian sequences). 

In addition, the MTM method provides a time-bandwidth parameter with 
which to balance the variance and resolution. This parameter is given by the 
4
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time-bandwidth product, NW and it is directly related to the number of tapers 
used to compute the spectrum. There are always 2*NW-1 tapers used to form 
the estimate. This means that, as NW increases, there are more estimates of 
the power spectrum, and the variance of the estimate decreases. However, the 
bandwidth of each taper is also proportional to NW, so as NW increases, each 
estimate exhibits more spectral leakage (i.e., wider peaks) and the overall 
spectral estimate is more biased. For each data set, there is usually a value for 
NW that allows an optimal trade-off between bias and variance.

The Signal Processing Toolbox function that implements the MTM method is 
pmtm and the object that implements it is spectrum.mtm. Use spectrum.mtm to 
compute the PSD of xn from the previous examples:

randn('state',0)
fs = 1000; % Sampling frequency
t = (0:fs)/fs; % One second worth of samples
A = [1 2]; % Sinusoid amplitudes
f = [150;140]; % Sinusoid frequencies
xn = A*sin(2*pi*f*t) + 0.1*randn(size(t));
Hs1 = spectrum.mtm(4,'adapt');
psd(Hs1,xn,'Fs',fs,'NFFT',1024)
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By lowering the time-bandwidth product, you can increase the resolution at the 
expense of larger variance:

Hs2 = spectrum.mtm(3/2,'adapt');
psd(Hs2,xn,'Fs',fs,'NFFT',1024)

Note that the average power is conserved in both cases:

Hs1p = psd(Hs1,xn,'Fs',fs,'NFFT',1024);
Pow1 = avgpower(Hs1p)

Pow1 =

    2.4926

Hs2p = psd(Hs2,xn,'Fs',fs,'NFFT',1024);
Pow2 = avgpower(Hs2p)

Pow2 =

    2.4927
6
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This method is more computationally expensive than Welch’s method due to 
the cost of computing the discrete prolate spheroidal sequences. For long data 
series (10,000 points or more), it is useful to compute the DPSSs once and save 
them in a MAT-file. The M-files dpsssave, dpssload, dpssdir, and dpssclear 
are provided to keep a database of saved DPSSs in the MAT-file dpss.mat.

Cross-Spectral Density Function
The PSD is a special case of the cross spectral density (CPSD) function, defined 
between two signals xn and yn as

As is the case for the correlation and covariance sequences, the toolbox 
estimates the PSD and CPSD because signal lengths are finite. 

To estimate the cross-spectral density of two equal length signals x and y using 
Welch’s method, the cpsd function forms the periodogram as the product of the 
FFT of x and the conjugate of the FFT of y. Unlike the real-valued PSD, the 
CPSD is a complex function. cpsd handles the sectioning and windowing of x 
and y in the same way as the pwelch function:

Sxy = cpsd(x,y,nwin,noverlap,nfft,fs)

Transfer Function Estimate
One application of Welch’s method is nonparametric system identification. 
Assume that H is a linear, time invariant system, and x(n) and y(n) are the 
input to and output of H, respectively. Then the power spectrum of x(n) is 
related to the CPSD of x(n) and y(n) by

An estimate of the transfer function between x(n) and y(n) is

This method estimates both magnitude and phase information. The 
tfestimate function uses Welch’s method to compute the CPSD and power 

Sxy ω( ) Rxy m( )e jωm–

m ∞–=

∞

∑=

Sxy ω( ) H ω( )Sxx ω( )=

Ĥ ω( )
Sˆ xy ω( )

Sˆ xx ω( )
-----------------=
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spectrum, and then forms their quotient for the transfer function estimate. Use 
tfestimate the same way that you use the cpsd function.

Filter the signal xn with an FIR filter, then plot the actual magnitude response 
and the estimated response:

h = ones(1,10)/10; % Moving-average filter
yn = filter(h,1,xn);
[HEST,f] = tfestimate(xn,yn,256,128,256,fs);
H = freqz(h,1,f,fs);

subplot(2,1,1); plot(f,abs(H)); 
title('Actual Transfer Function Magnitude'); 

subplot(2,1,2); plot(f,abs(HEST));
title('Transfer Function Magnitude Estimate'); 
xlabel('Frequency (Hz)');

Coherence Function
The magnitude-squared coherence between two signals x(n) and y(n) is

This quotient is a real number between 0 and 1 that measures the correlation 
between x(n) and y(n) at the frequency ω.
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The mscohere function takes sequences x and y, computes their power spectra 
and CPSD, and returns the quotient of the magnitude squared of the CPSD and 
the product of the power spectra. Its options and operation are similar to the 
cpsd and tfestimate functions.

The coherence function of xn and the filter output yn versus frequency is

mscohere(xn,yn,256,128,256,fs)

If the input sequence length nfft, window length window, and the number of 
overlapping data points in a window numoverlap, are such that mscohere 
operates on only a single record, the function returns all ones. This is because 
the coherence function for linearly dependent data is one.
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The following example shows how to use spectral analysis functions to compute 
the coherence: 

randn('state',0) 
fs = 1000; % Sampling frequency 
t = (0:fs)/fs; % One second worth of samples 
A = [1 2]; % Sinusoid amplitudes
f = [150;140]; % Sinusoid frequencies 
xn = A*sin(2*pi*f*t) + 0.1*randn(size(t));
h = ones(1,10)/10; % Moving average filter 
yn = filter(h,1,xn);

% Parameters common to both CPSD and MSCOHERE:
nfft = 256;
noverlap = 128;
nwin = hanning(256);
CxyCohere = mscohere(xn,yn,nwin,noverlap,nfft,fs);

% Compute the PSDs using Welch's method, which is similar to the
% MSCOHERE function
[Sxx,F] = pwelch(xn,nwin,noverlap,nfft,fs);
[Syy,F] = pwelch(yn,nwin,noverlap,nfft,fs);

% Convert one-sided PSDs to Power Spectrums
Sxx = [Sxx(1); (Sxx(2:end-1)/2); Sxx(end)].*fs;
Syy = [Syy(1); (Syy(2:end-1)/2); Syy(end)].*fs;

% Call CPSD function with similar arguments as the MSCOHERE 
function
% from above.
[Sxy,F] = cpsd(xn,yn,nwin,noverlap,nfft,fs);
Cxy = (abs(Sxy).^2)./(Sxx.*Syy);
plot(1:length(Cxy), [CxyCohere Cxy]); % Compare the estimates
0
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Parametric Methods
Parametric methods can yield higher resolutions than nonparametric methods 
in cases when the signal length is short. These methods use a different 
approach to spectral estimation; instead of trying to estimate the PSD directly 
from the data, they model the data as the output of a linear system driven by 
white noise, and then attempt to estimate the parameters of that linear 
system.

The most commonly used linear system model is the all-pole model, a filter 
with all of its zeroes at the origin in the z-plane. The output of such a filter for 
white noise input is an autoregressive (AR) process. For this reason, these 
methods are sometimes referred to as AR methods of spectral estimation. 
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The AR methods tend to adequately describe spectra of data that is “peaky,” 
that is, data whose PSD is large at certain frequencies. The data in many 
practical applications (such as speech) tends to have “peaky spectra” so that AR 
models are often useful. In addition, the AR models lead to a system of linear 
equations which is relatively simple to solve. 

The Signal Processing Toolbox offers the following AR methods for spectral 
estimation:

• Yule-Walker AR method (autocorrelation method)

• Burg method

• Covariance method

• Modified covariance method

All AR methods yield a PSD estimate given by

The different AR methods estimate the AR parameters ap(k) slightly 
differently, yielding different PSD estimates. The following table provides a 
summary of the different AR methods.

P̂AR f( ) 1
fs
----

εp

1 âp k( )e
2πjkf– fs⁄

k 1=

p

∑+

2
-------------------------------------------------------------------=

Burg Covariance Modified Covariance Yule-Walker

Characteristics Does not apply window 
to data

Does not apply window 
to data

Does not apply window 
to data

Applies window to data

Minimizes the forward 
and backward prediction 
errors in the least squares 
sense, with the AR 
coefficients constrained 
to satisfy the L-D 
recursion

Minimizes the forward 
prediction error in the 
least squares sense

Minimizes the forward 
and backward prediction 
errors in the least squares 
sense

Minimizes the forward 
prediction error in the 
least squares sense
(also called 
“Autocorrelation 
method”)
2
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Advantages High resolution for short 
data records

Better resolution than 
Y-W for short data 
records (more accurate 
estimates)

High resolution for short 
data records

Performs as well as other 
methods for large data 
records

Always produces a stable 
model

Able to extract 
frequencies from data 
consisting of p or more 
pure sinusoids

Able to extract 
frequencies from data 
consisting of p or more 
pure sinusoids

Always produces a stable 
model

Does not suffer spectral 
line-splitting

Disadvantages Peak locations highly 
dependent on initial 
phase

May produce unstable 
models

May produce unstable 
models

Performs relatively 
poorly for short data 
records

May suffer spectral 
line-splitting for 
sinusoids in noise, or 
when order is very large

Frequency bias for 
estimates of sinusoids in 
noise

Peak locations slightly 
dependent on initial 
phase

Frequency bias for 
estimates of sinusoids in 
noise

Frequency bias for 
estimates of sinusoids in 
noise

Minor frequency bias for 
estimates of sinusoids in 
noise

Conditions for 
Nonsingularity

Order must be less than 
or equal to half the input 
frame size

Order must be less than 
or equal to 2/3 the input 
frame size

Because of the biased 
estimate, the 
autocorrelation matrix is 
guaranteed to 
positive-definite, hence 
nonsingular

Burg Covariance Modified Covariance Yule-Walker
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Yule-Walker AR Method
The Yule-Walker AR method of spectral estimation computes the AR 
parameters by forming a biased estimate of the signal’s autocorrelation 
function, and solving the least squares minimization of the forward prediction 
error. This results in the Yule-Walker equations.

The Yule-Walker AR method produces the same results as a maximum entropy 
estimator. For more information, see page 155 of item [2] in the “Selected 
Bibliography” on page 3-45.

The use of a biased estimate of the autocorrelation function ensures that the 
autocorrelation matrix above is positive definite. Hence, the matrix is 
invertible and a solution is guaranteed to exist. Moreover, the AR parameters 
thus computed always result in a stable all-pole model. The Yule-Walker 
equations can be solved efficiently via Levinson’s algorithm, which takes 
advantage of the Toeplitz structure of the autocorrelation matrix.

The toolbox object spectrum.yulear and function pyulear implement the 
Yule-Walker AR method.

For example, compare the spectrum of a speech signal using Welch’s method 
and the Yule-Walker AR method:

load mtlb
Hwelch = spectrum.welch('hamming',256,50);
psd(Hwelch,mtlb,'Fs',Fs,'NFFT',1024)

r 1( ) r 2( )
* r p( )

*

r 2( ) r 1( ) r p 1–( )
*

r p( ) r 2( ) r 1( )

a 2( )

a 3( )

a p 1+( )

r 2( )–

r 3( )–

r p 1+( )–
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Hyulear = spectrum.yulear(14);
psd(Hyulear,mtlb,'Fs',Fs,'NFFT',1024)
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The Yule-Walker AR spectrum is smoother than the periodogram because of 
the simple underlying all-pole model.

Burg Method
The Burg method for AR spectral estimation is based on minimizing the 
forward and backward prediction errors while satisfying the Levinson-Durbin 
recursion (see Marple [3], Chapter 7, and Proakis [6], Section 12.3.3). In 
contrast to other AR estimation methods, the Burg method avoids calculating 
the autocorrelation function, and instead estimates the reflection coefficients 
directly. 

The primary advantages of the Burg method are resolving closely spaced 
sinusoids in signals with low noise levels, and estimating short data records, in 
which case the AR power spectral density estimates are very close to the true 
values. In addition, the Burg method ensures a stable AR model and is 
computationally efficient. 

The accuracy of the Burg method is lower for high-order models, long data 
records, and high signal-to-noise ratios (which can cause line splitting, or the 
6
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generation of extraneous peaks in the spectrum estimate). The spectral density 
estimate computed by the Burg method is also susceptible to frequency shifts 
(relative to the true frequency) resulting from the initial phase of noisy 
sinusoidal signals. This effect is magnified when analyzing short data 
sequences. 

The toolbox object spectrum.burg and function pburg implement the Burg 
method. Compare the spectrum of the speech signal generated by both the 
Burg method and the Yule-Walker AR method. They are very similar for large 
signal lengths:

load mtlb
Hburg = spectrum.burg(14); % 14th order model
psd(Hburg,mtlb(1:512),'Fs',Fs,'NFFT',1024)

Hyulear = spectrum.yulear(14); % 14th order model
psd(Hyulear,mtlb(1:512),'Fs',Fs,'NFFT',1024)
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Compare the spectrum of a noisy signal computed using the Burg method and 
the Welch method:

randn('state',0)
fs = 1000; % Sampling frequency
t = (0:fs)/fs; % One second worth of samples
A = [1 2]; % Sinusoid amplitudes
f = [150;140]; % Sinusoid frequencies
xn = A*sin(2*pi*f*t) + 0.1*randn(size(t));

Hwelch = spectrum.welch('hamming',256,50);
psd(Hwelch,xn,'Fs',fs,'NFFT',1024)
8
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Hburg = spectrum.burg(14);
psd(Hburg,xn,'Fs',fs,'NFFT',1024)
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Note that, as the model order for the Burg method is reduced, a frequency shift 
due to the initial phase of the sinusoids will become apparent. 
0
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Covariance and Modified Covariance Methods
The covariance method for AR spectral estimation is based on minimizing the 
forward prediction error. The modified covariance method is based on 
minimizing the forward and backward prediction errors. The toolbox object 
spectrum.cov and function pcov, and object spectrum.mcov and function 
pmcov implement the respective methods. 

Compare the spectrum of the speech signal generated by both the covariance 
method and the modified covariance method. They are nearly identical, even 
for a short signal length:

load mtlb
Hcov = spectrum.cov(14); % 14th order model
psd(Hcov,mtlb(1:64),'Fs',Fs,'NFFT',1024)

Hmcov = spectrum.mcov(14); % 14th order model
psd(Hmcov,mtlb(1:64),'Fs',Fs,'NFFT',1024)
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MUSIC and Eigenvector Analysis Methods
The spectrum.music object and pmusic function, and spectrum.eigenvector 
object and peig function provide two related spectral analysis methods:

• spectrum.music and pmusic provide the multiple signal classification 
(MUSIC) method developed by Schmidt

• spectrum.eigenvector and peig provides the eigenvector (EV) method 
developed by Johnson

See Marple [3] (pgs. 373-378) for a summary of these methods.

Both of these methods are frequency estimator techniques based on 
eigenanalysis of the autocorrelation matrix. This type of spectral analysis 
categorizes the information in a correlation or data matrix, assigning 
information to either a signal subspace or a noise subspace. 
2
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Eigenanalysis Overview
Consider a number of complex sinusoids embedded in white noise. You can 
write the autocorrelation matrix R for this system as the sum of the signal 
autocorrelation matrix (S) and the noise autocorrelation matrix (W):

There is a close relationship between the eigenvectors of the signal 
autocorrelation matrix and the signal and noise subspaces. The eigenvectors v 
of S span the same signal subspace as the signal vectors. If the system contains 
M complex sinusoids and the order of the autocorrelation matrix is p, 
eigenvectors vM+1 through vp+1 span the noise subspace of the autocorrelation 
matrix.

Frequency Estimator Functions. To generate their frequency estimates, 
eigenanalysis methods calculate functions of the vectors in the signal and noise 
subspaces. Both the MUSIC and EV techniques choose a function that goes to 
infinity (denominator goes to zero) at one of the sinusoidal frequencies in the 
input signal. Using digital technology, the resulting estimate has sharp peaks 
at the frequencies of interest; this means that there might not be infinity 
values in the vectors.

The MUSIC estimate is given by the formula

where N is the size of the eigenvectors and e(f) is a vector of complex sinusoids.

v represents the eigenvectors of the input signal’s correlation matrix; vk is the 
kth eigenvector. H is the conjugate transpose operator. The eigenvectors used 
in the sum correspond to the smallest eigenvalues and span the noise subspace 
(p is the size of the signal subspace). 

The expression  is equivalent to a Fourier transform (the vector e(f) 
consists of complex exponentials). This form is useful for numeric computation 
because the FFT can be computed for each vk and then the squared magnitudes 
can be summed.
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The EV method weights the summation by the eigenvalues of the correlation 
matrix:

The pmusic and peig functions in this toolbox use the svd (singular value 
decomposition) function in the signal case and the eig function for analyzing 
the correlation matrix and assigning eigenvectors to the signal or noise 
subspaces. When svd is used, pmusic and peig never compute the correlation 
matrix explicitly, but the singular values are the eigenvalues.
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Special Topics

The following chapter describes specialized techniques and applications provided in the Signal 
Processing Toolbox.

Windows (p. 4-2) Window background information and toolbox functions 
and GUIs

Parametric Modeling (p. 4-15) Mathemical techniques for modeling systems

Resampling (p. 4-26) Functions for resampling a signal at a different sampling 
rate

Cepstrum Analysis (p. 4-28) Functions for performing cepstrum analysis

FFT-Based Time-Frequency Analysis 
(p. 4-33)

Spectrograms

Median Filtering (p. 4-34) Applying a sliding window to a sequence

Communications Applications (p. 4-35) Functions for communications simulations

Deconvolution (p. 4-41) Deconvolution information

Specialized Transforms (p. 4-42) Chirp Z, discrete-cosine, and Hilbert transforms

Selected Bibliography (p. 4-48) Sources of additional information
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Windows
In both digital filter design and power spectrum estimation, the choice of a 
windowing function can play an important role in determining the quality of 
overall results. The main role of the window is to damp out the effects of the 
Gibbs phenomenon that results from truncation of an infinite series.

The toolbox window functions are shown in the table below.

Window Function

Bartlett-Hann window barthannwin

Bartlett window bartlett

Blackman window blackman

Blackman-Harris window blackmanharris

Bohman window bohmanwin

Chebyshev window chebwin

Flat Top window flattopwin

Gaussian window gausswin

Hamming window hamming

Hann window hann

Kaiser window kaiser

Nuttall’s Blackman-Harris window nuttallwin

Parzen (de la Valle-Poussin) window parzenwin

Rectangular window rectwin

Tapered cosine window tukeywin

Triangular window triang



Windows
Graphical User Interface Tools
Two graphical user interface tools are provided for working with windows in 
the Signal Processing toolbox:

• Window Design and Analysis Tool (wintool) 

• Window Visualization Tool (wvtool) 

Basic Shapes
The basic window is the rectangular window, a vector of ones of the appropriate 
length. A rectangular window of length 50 is

n = 50;
w = rectwin(n);

This toolbox stores windows in column vectors by convention, so an equivalent 
expression is

w = ones(50,1);

To use the Window Design and Analysis Tool to create this window, type

wintool

wintool opens with a default Hamming window. In the Current Window 
Information panel, set Type = Rectangular and Length = 50 and then press 
Apply.
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The Bartlett (or triangular) window is the convolution of two rectangular 
windows. The functions bartlett and triang compute similar triangular 
windows, with three important differences. The bartlett function always 
returns a window with two zeros on the ends of the sequence, so that for n odd, 
the center section of bartlett(n+2) is equivalent to triang(n):

bartlett(7)

ans =
         0
    0.3333
    0.6667
    1.0000
    0.6667



Windows
    0.3333
         0

triang(5)

ans =

    0.3333
    0.6667
    1.0000
    0.6667
    0.3333

For n even, bartlett is still the convolution of two rectangular sequences. 
There is no standard definition for the triangular window for n even; the slopes 
of the line segments of the triang result are slightly steeper than those of 
bartlett in this case: 

w = bartlett(8); 
[w(2:7)  triang(6)]

ans =

    0.2857    0.1667
    0.5714    0.5000
    0.8571    0.8333
    0.8571    0.8333
    0.5714    0.5000
    0.2857    0.1667

You can see the difference between odd and even Bartlett windows in WinTool.
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The final difference between the Bartlett and triangular windows is evident in 
the Fourier transforms of these functions. The Fourier transform of a Bartlett 
window is negative for n even. The Fourier transform of a triangular window, 
however, is always nonnegative. The following figure, which is a zoomed 
version of the Frequency domain plot of 8-point Bartlett and Triangular 
windows with the y-axis set to Zerophase, illustrates this difference.
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This difference can be important when choosing a window for some spectral 
estimation techniques, such as the Blackman-Tukey method. Blackman-Tukey 
forms the spectral estimate by calculating the Fourier transform of the 
autocorrelation sequence. The resulting estimate might be negative at some 
frequencies if the window’s Fourier transform is negative (see Kay [1], pg. 80).

Generalized Cosine Windows
Blackman, Flat Top, Hamming, Hann, and rectangular windows are all special 
cases of the generalized cosine window. These windows are combinations of 
sinusoidal sequences with frequencies 0, , and , where 
N is the window length. One way to generate them is

ind = (0:n-1)'*2*pi/(n-1);
w = A - B*cos(ind) + C*cos(2*ind);

where A, B, and C are constants you define. The concept behind these windows 
is that by summing the individual terms to form the window, the low frequency 
peaks in the frequency domain combine in such a way as to decrease sidelobe 
height. This has the side effect of increasing the mainlobe width.

The Hamming and Hann windows are two-term generalized cosine windows, 
given by A = 0.54, B = 0.46 for Hamming and A = 0.5, B = 0.5 for Hann (C = 0 
in both cases). The hamming and hann functions, respectively, compute these 
windows.

2π N 1–( )⁄ 4π N 1–( )⁄
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Note that the definition of the generalized cosine window shown in the earlier 
MATLAB code yields zeros at samples 1 and n for A = 0.5 and B = 0.5. 

The Blackman window is a popular three-term window, given by A = 0.42, 
B = 0.5, C = 0.08. The blackman function computes this window.

The Flat Top window is a five-term window and is used for calibration. It is 
given by A = 1, B = 1.93, C = 1.29, D =0.388, and E = 0.322.

This WinTool compares Blackman, Hamming, Hann, and Flat Top windows.
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Kaiser Window
The Kaiser window is an approximation to the prolate-spheroidal window, for 
which the ratio of the mainlobe energy to the sidelobe energy is maximized. For 
a Kaiser window of a particular length, the parameter β controls the sidelobe 
height. For a given β, the sidelobe height is fixed with respect to window length. 
The statement kaiser(n,beta) computes a length n Kaiser window with 
parameter beta. 

Examples of Kaiser windows with length 50 and beta parameters of 1, 4, and 
9 are shown in this wintool example.
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To create these Kaiser windows using the MATLAB command line,

n = 50;
w1 = kaiser(n,1);
w2 = kaiser(n,4);
w3 = kaiser(n,9);
[W1,f] = freqz(w1/sum(w1),1,512,2);
[W2,f] = freqz(w2/sum(w2),1,512,2);
[W3,f] = freqz(w3/sum(w3),1,512,2);
plot(f,20*log10(abs([W1 W2 W3]))); grid;
legend('beta = 1','beta = 4','beta = 9',3)

As β increases, the sidelobe height decreases and the mainlobe width increases. 
This wintool shows how the sidelobe height stays the same for a fixed β 
parameter as the length is varied.
0



Windows
To create these Kaiser windows using the MATLAB command line:

w1 = kaiser(50,4);
w2 = kaiser(20,4);
w3 = kaiser(101,4);
[W1,f] = freqz(w1/sum(w1),1,512,2);
[W2,f] = freqz(w2/sum(w2),1,512,2);
[W3,f] = freqz(w3/sum(w3),1,512,2);
plot(f,20*log10(abs([W1 W2 W3]))); grid;
legend('length = 50','length = 20','length = 101')
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Kaiser Windows in FIR Design
There are two design formulas that can help you design FIR filters to meet a 
set of filter specifications using a Kaiser window. To achieve a sidelobe height 
of −α dB, the beta parameter is

For a transition width of ∆ω rad/s, use the length

Filters designed using these heuristics will meet the specifications 
approximately, but you should verify this. To design a lowpass filter with cutoff 
frequency rad/s, transition width rad/s, and 40 dB of attenuation in 
the stopband, try

[n,wn,beta] = kaiserord([0.4 0.6]*pi,[1 0],[0.01 0.01],2*pi);
h = fir1(n,wn,kaiser(n+1,beta),'noscale');

The kaiserord function estimates the filter order, cutoff frequency, and Kaiser 
window beta parameter needed to meet a given set of frequency domain 
specifications.

The ripple in the passband is roughly the same as the ripple in the stopband. 
As you can see from the frequency response, this filter nearly meets the 
specifications:

fvtool(h,1);

β
0.1102 α 8.7–( ), α 50>

0.5842 α 21–( )0.4 0.07886 α 21–( )+ , 50 α 21≥ ≥
0, α 21<⎩

⎪
⎨
⎪
⎧

=

n α 8–
2.285 ω∆
----------------------- 1+=

0.5π 0.2π
2
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Chebyshev Window
The Chebyshev window minimizes the mainlobe width, given a particular 
sidelobe height. It is characterized by an equiripple behavior, that is, its 
sidelobes all have the same height. 

As shown in the Time Domain plot, the Chebyshev window has large spikes at 
its outer samples. 

For a detailed discussion of the characteristics and applications of the various 
window types, see Oppenheim and Schafer [3], pgs. 444-462, and Parks and 
Burrus [4], pgs. 71-73.
4
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Parametric Modeling
Parametric modeling techniques find the parameters for a mathematical model 
describing a signal, system, or process. These techniques use known 
information about the system to determine the model. Applications for 
parametric modeling include speech and music synthesis, data compression, 
high-resolution spectral estimation, communications, manufacturing, and 
simulation.

The toolbox parametric modeling functions operate with the rational transfer 
function model. Given appropriate information about an unknown system 
(impulse or frequency response data, or input and output sequences), these 
functions find the coefficients of a linear system that models the system.

One important application of the parametric modeling functions is in the 
design of filters that have a prescribed time or frequency response. These 
functions provide a data-oriented alternative to the IIR and FIR filter design 
functions discussed in Chapter 2, “Filter Design and Implementation.”
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Here is a summary of the parametric modeling functions in this toolbox. Note 
that the System Identification Toolbox provides a more extensive collection of 
parametric modeling functions.

Because yulewalk is geared explicitly toward ARMA filter design, it is 
discussed in Chapter 2, “Filter Design and Implementation”. 

pburg and pyulear are discussed in Chapter 3, “Statistical Signal Processing” 
along with the other (nonparametric) spectral estimation methods.

Domain Functions Description

Time arburg Generate all-pole filter coefficients that model an input data 
sequence using the Levinson-Durbin algorithm.

arcov Generate all-pole filter coefficients that model an input data 
sequence by minimizing the forward prediction error.

armcov Generate all-pole filter coefficients that model an input data 
sequence by minimizing the forward and backward prediction 
errors.

aryule Generate all-pole filter coefficients that model an input data 
sequence using an estimate of the autocorrelation function.

lpc, 
levinson

Linear Predictive Coding. Generate all-pole recursive filter whose 
impulse response matches a given sequence.

prony Generate IIR filter whose impulse response matches a given 
sequence.

stmcb Find IIR filter whose output, given a specified input sequence, 
matches a given output sequence.

Frequency invfreqz, 
invfreqs

Generate digital or analog filter coefficients given complex 
frequency response data.
6
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Time-Domain Based Modeling
The lpc, prony, and stmcb functions find the coefficients of a digital rational 
transfer function that approximates a given time-domain impulse response. 
The algorithms differ in complexity and accuracy of the resulting model.

Linear Prediction
Linear prediction modeling assumes that each output sample of a signal, x(k), 
is a linear combination of the past n outputs (that is, it can be “linearly 
predicted” from these outputs), and that the coefficients are constant from 
sample to sample:

An nth-order all-pole model of a signal x is

a = lpc(x,n)

To illustrate lpc, create a sample signal that is the impulse response of an 
all-pole filter with additive white noise:

randn('state',0);
x = impz(1,[1 0.1 0.1 0.1 0.1],10) + randn(10,1)/10;

The coefficients for a fourth-order all-pole filter that models the system are

a = lpc(x,4)

a = 
1.0000    0.2574    0.1666    0.1203    0.2598

lpc first calls xcorr to find a biased estimate of the correlation function of x, 
and then uses the Levinson-Durbin recursion, implemented in the levinson 
function, to find the model coefficients a. The Levinson-Durbin recursion is a 
fast algorithm for solving a system of symmetric Toeplitz linear equations. 
lpc’s entire algorithm for n = 4 is

r = xcorr(x);
r(1:length(x)-1) = []; % Remove corr. at negative lags
a = levinson(r,4)

a =
    1.0000    0.2574    0.1666    0.1203    0.2598

x k( ) a 2( )x k 1–( )– a 3( )x k 2–( )– …– a n 1+( )x k n–( )–=
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You could form the linear prediction coefficients with other assumptions by 
passing a different correlation estimate to levinson, such as the biased 
correlation estimate:

r = xcorr(x,'biased');
r(1:length(x)-1) = []; % Remove corr. at negative lags
a = levinson(r,4)

a =
    1.0000    0.2574    0.1666    0.1203    0.2598

Prony’s Method (ARMA Modeling)
The prony function models a signal using a specified number of poles and zeros. 
Given a sequence x and numerator and denominator orders n and m, 
respectively, the statement

[b,a] = prony(x,n,m)

finds the numerator and denominator coefficients of an IIR filter whose 
impulse response approximates the sequence x.

The prony function implements the method described in [4] Parks and Burrus 
(pgs. 226-228). This method uses a variation of the covariance method of AR 
modeling to find the denominator coefficients a, and then finds the numerator 
coefficients b for which the resulting filter’s impulse response matches exactly 
the first n + 1 samples of x. The filter is not necessarily stable, but it can 
potentially recover the coefficients exactly if the data sequence is truly an 
autoregressive moving-average (ARMA) process of the correct order.

Note  The functions prony and stmcb (described next) are more accurately 
described as ARX models in system identification terminology. ARMA 
modeling assumes noise only at the inputs, while ARX assumes an external 
input. prony and stmcb know the input signal: it is an impulse for prony and 
is arbitrary for stmcb.
8
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A model for the test sequence x (from the earlier lpc example) using a 
third-order IIR filter is

[b,a] = prony(x,3,3)

b =
    0.9567   -0.3351    0.1866   -0.3782

a =
    1.0000   -0.0716    0.2560   -0.2752

The impz command shows how well this filter’s impulse response matches the 
original sequence:

format long
[x impz(b,a,10)]

ans =

   0.95674351884718   0.95674351884718
  -0.26655843782381  -0.26655843782381
  -0.07746676935252  -0.07746676935252
  -0.05223235796415  -0.05223235796415
  -0.18754713506815  -0.05726777015121
   0.15348154656430  -0.01204969926150
   0.13986742016521  -0.00057632797226
   0.00609257234067  -0.01271681570687
   0.03349954614087  -0.00407967053863
   0.01086719328209   0.00280486049427

Notice that the first four samples match exactly. For an example of exact 
recovery, recover the coefficients of a Butterworth filter from its impulse 
response:

[b,a] = butter(4,.2);
h = impz(b,a,26);
[bb,aa] = prony(h,4,4);

Try this example; you’ll see that bb and aa match the original filter coefficients 
to within a tolerance of 10-13.
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Steiglitz-McBride Method (ARMA Modeling)
The stmcb function determines the coefficients for the system b(z)/a(z) given an 
approximate impulse response x, as well as the desired number of zeros and 
poles. This function identifies an unknown system based on both input and 
output sequences that describe the system’s behavior, or just the impulse 
response of the system. In its default mode, stmcb works like prony.

[b,a] = stmcb(x,3,3)

b =
    0.9567   -0.5181    0.5702   -0.5471

a =
    1.0000   -0.2384    0.5234   -0.3065

stmcb also finds systems that match given input and output sequences:

y = filter(1,[1 1],x);  % Create an output signal.
[b,a] = stmcb(y,x,0,1)

b = 
     1.0000

a =
     1     1

In this example, stmcb correctly identifies the system used to create y from x.

The Steiglitz-McBride method is a fast iterative algorithm that solves for the 
numerator and denominator coefficients simultaneously in an attempt to 
minimize the signal error between the filter output and the given output 
signal. This algorithm usually converges rapidly, but might not converge if the 
model order is too large. As for prony, stmcb’s resulting filter is not necessarily 
stable due to its exact modeling approach.

stmcb provides control over several important algorithmic parameters; modify 
these parameters if you are having trouble modeling the data. To change the 
number of iterations from the default of five and provide an initial estimate for 
the denominator coefficients:

n = 10;            % Number of iterations
a = lpc(x,3);      % Initial estimates for denominator
[b,a] = stmcb(x,3,3,n,a);
0
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The function uses an all-pole model created with prony as an initial estimate 
when you do not provide one of your own.

To compare the functions lpc, prony, and stmcb, compute the signal error in 
each case:

a1 = lpc(x,3);
[b2,a2] = prony(x,3,3);
[b3,a3] = stmcb(x,3,3);
[x-impz(1,a1,10)  x-impz(b2,a2,10)  x-impz(b3,a3,10)]

ans =

   -0.0433         0   -0.0000
   -0.0240         0    0.0234
   -0.0040         0   -0.0778
   -0.0448   -0.0000    0.0498
   -0.2130   -0.1303   -0.0742
    0.1545    0.1655    0.1270
    0.1426    0.1404    0.1055
    0.0068    0.0188    0.0465
    0.0329    0.0376    0.0530
    0.0108    0.0081   -0.0162

sum(ans.^2)

ans =

    0.0953    0.0659    0.0471

In comparing modeling capabilities for a given order IIR model, the last result 
shows that for this example, stmcb performs best, followed by prony, then lpc. 
This relative performance is typical of the modeling functions.
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Frequency-Domain Based Modeling
The invfreqs and invfreqz functions implement the inverse operations of 
freqs and freqz; they find an analog or digital transfer function of a specified 
order that matches a given complex frequency response. Though the following 
examples demonstrate invfreqz, the discussion also applies to invfreqs. 

To recover the original filter coefficients from the frequency response of a 
simple digital filter:

[b,a] = butter(4,0.4)    % Design Butterworth lowpass

b =
    0.0466    0.1863    0.2795    0.1863    0.0466

a =
    1.0000   -0.7821    0.6800   -0.1827    0.0301

[h,w] = freqz(b,a,64);         % Compute frequency response
[b4,a4] = invfreqz(h,w,4,4)    % Model: n = 4, m = 4

b4 =

    0.0466    0.1863    0.2795    0.1863    0.0466

a4 =

    1.0000   -0.7821    0.6800   -0.1827    0.0301

The vector of frequencies w has the units in rad/sample, and the frequencies 
need not be equally spaced. invfreqz finds a filter of any order to fit the 
frequency data; a third-order example is

[b4,a4] = invfreqz(h,w,3,3)   % Find third-order IIR

b4 =

    0.0464    0.1785    0.2446    0.1276

a4 =

    1.0000   -0.9502    0.7382   -0.2006

Both invfreqs and invfreqz design filters with real coefficients; for a data 
point at positive frequency f, the functions fit the frequency response at both f 
and -f.
2
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By default invfreqz uses an equation error method to identify the best model 
from the data. This finds b and a in

by creating a system of linear equations and solving them with the MATLAB 
\ operator. Here A(w(k)) and B(w(k)) are the Fourier transforms of the 
polynomials a and b respectively at the frequency w(k), and n is the number of 
frequency points (the length of h and w). wt(k) weights the error relative to the 
error at different frequencies. The syntax

invfreqz(h,w,n,m,wt)

includes a weighting vector. In this mode, the filter resulting from invfreqz is 
not guaranteed to be stable.

invfreqz provides a superior (“output-error”) algorithm that solves the direct 
problem of minimizing the weighted sum of the squared error between the 
actual frequency response points and the desired response

To use this algorithm, specify a parameter for the iteration count after the 
weight vector parameter:

wt = ones(size(w));    % Create unity weighting vector
[b30,a30] = invfreqz(h,w,3,3,wt,30)  % 30 iterations

b30 =

    0.0464    0.1829    0.2572    0.1549

a30 =

    1.0000   -0.8664    0.6630   -0.1614

The resulting filter is always stable. 

min
b a,

wt k( ) h k( )A w k( )( ) B w k( )( )– 2

k 1=

n

∑

min
b a,

wt k( ) h k( ) B w k( )( )
A w k( )( )
--------------------–

2

k 1=

n

∑
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Graphically compare the results of the first and second algorithms to the 
original Butterworth filter with FVTool (and select the Magnitude and Phase 
Responses):

fvtool(b,a,b4,a4,b30,a30)

To verify the superiority of the fit numerically, type

sum(abs(h-freqz(b4,a4,w)).^2)   % Total error, algorithm 1

ans =

    0.0200
4
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sum(abs(h-freqz(b30,a30,w)).^2) % Total error, algorithm 2

ans =

    0.0096
4-25



4 Special Topics

4-2
Resampling
The toolbox provides a number of functions that resample a signal at a higher 
or lower rate.

The resample function changes the sampling rate for a sequence to any rate 
that is a ratio of two integers. The basic syntax for resample is

y = resample(x,p,q)

where the function resamples the sequence x at p/q times the original 
sampling rate. The length of the result y is p/q times the length of x.

One resampling application is the conversion of digitized audio signals from 
one sampling rate to another, such as from 48 kHz (the digital audio tape 
standard) to 44.1 kHz (the compact disc standard). 

The example file contains a length 4001 vector of speech sampled at 7418 Hz:

clear
load mtlb
whos

Name Size Bytes Class
  Fs 1x1 8 double array
  mtlb 4001x1 32008 double array

Grand total is 4002 elements using 32016 bytes

Fs

Operation Function

Apply FIR filter with resampling upfirdn

Cubic spline interpolation spline

Decimation decimate

Interpolation interp

Other 1-D interpolation interp1

Resample at new rate resample
6



Resampling
Fs =
        7418

To play this speech signal on a workstation that can only play sound at 
8192 Hz, use the rat function to find integers p and q that yield the correct 
resampling factor:

[p,q] = rat(8192/Fs,0.0001) 

p =
   127
q =
   115

Since p/q*Fs = 8192.05 Hz, the tolerance of 0.0001 is acceptable; to resample 
the signal at very close to 8192 Hz:

y = resample(mtlb,p,q);

resample applies a lowpass filter to the input sequence to prevent aliasing 
during resampling. It designs this filter using the firls function with a Kaiser 
window. The syntax 

resample(x,p,q,l,beta)

controls the filter’s length and the beta parameter of the Kaiser window. 
Alternatively, use the function intfilt to design an interpolation filter b and 
use it with 

resample(x,p,q,b)

The decimate and interp functions do the same thing as resample with p = 1 
and q = 1, respectively. These functions provide different anti-alias filtering 
options, and they incur a slight signal delay due to filtering. The interp 
function is significantly less efficient than the resample function with q = 1.

The toolbox also contains a function, upfirdn, that applies an FIR filter to an 
input sequence and outputs the filtered sequence at a sample rate different 
than its original. See “Multirate Filter Bank Implementation” on page 1-20.

The standard MATLAB environment contains a function, spline, that works 
with irregularly spaced data. The MATLAB function interp1 performs 
interpolation, or table lookup, using various methods including linear and 
cubic interpolation.
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Cepstrum Analysis
Cepstrum analysis is a nonlinear signal processing technique with a variety of 
applications in areas such as speech and image processing. The Signal 
Processing Toolbox provides three functions for cepstrum analysis.

The complex cepstrum for a sequence x is calculated by finding the complex 
natural logarithm of the Fourier transform of x, then the inverse Fourier 
transform of the resulting sequence.

The toolbox function cceps performs this operation, estimating the complex 
cepstrum for an input sequence. It returns a real sequence the same size as the 
input sequence:

xhat = cceps(x)

For sequences that have roots on the unit circle, cepstrum analysis has 
numerical problems. See Oppenheim and Schafer [2] for information.

The complex cepstrum transformation is central to the theory and application 
of homomorphic systems, that is, systems that obey certain general rules of 
superposition. See Oppenheim and Schafer [3] for a discussion of the complex 
cepstrum and homomorphic transformations, with details on speech processing 
applications.

Try using cceps in an echo detection application. First, create a 45 Hz sine 
wave sampled at 100 Hz:

t = 0:0.01:1.27;
s1 = sin(2*pi*45*t);

Operation Function

Complex cepstrum cceps

Inverse complex cepstrum icceps

Real cepstrum rceps

x̂ 1
2π
------ X ejω( )[ ]log ejωn ωd

π–

π

∫=
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Add an echo of the signal, with half the amplitude, 0.2 seconds after the 
beginning of the signal.

s2 = s1 + 0.5*[zeros(1,20) s1(1:108)];

The complex cepstrum of this new signal is

c = cceps(s2);
plot(t,c)

Note that the complex cepstrum shows a peak at 0.2 seconds, indicating the 
echo.

The real cepstrum of a signal x, sometimes called simply the cepstrum, is 
calculated by determining the natural logarithm of magnitude of the Fourier 
transform of x, then obtaining the inverse Fourier transform of the resulting 
sequence.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-1.5
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2π
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The toolbox function rceps performs this operation, returning the real 
cepstrum for a sequence x. The returned sequence is a real-valued vector the 
same size as the input vector:

y = rceps(x)

By definition, you cannot reconstruct the original sequence from its real 
cepstrum transformation, as the real cepstrum is based only on the magnitude 
of the Fourier transform for the sequence (see Oppenheim and Schafer [3]). The 
rceps function also returns a unique minimum-phase sequence that 
has the same real cepstrum as x.. To obtain both the real cepstrum and 
the minimum phase reconstruction for a sequence, use

[y,ym] = rceps(x)

where y is the real cepstrum and ym is the minimum phase reconstruction of x. 
The following example shows that one output of rceps is a unique 
minimum-phase sequence with the same real cepstrum as x.

y = [4 1 5]; % Non-minimum phase sequence
[xhat,yhat] = rceps(y);
xhat2= rceps(yhat); 
[xhat' xhat2'] 

ans =
    1.6225    1.6225
    0.3400    0.3400
    0.3400    0.3400

Inverse Complex Cepstrum
To invert the complex cepstrum, use the icceps function. Inversion is 
complicated by the fact that the cceps function performs a data dependent 
phase modification so that the unwrapped phase of its input is continuous at 
zero frequency. The phase modification is equivalent to an integer delay. This 
delay term is returned by cceps if you ask for a second output. For example:

x = 1:10;
[xhat,delay] = cceps(x)

xhat =
  Columns 1 through 7 
    2.2428   -0.0420   -0.0210    0.0045    0.0366    0.0788    0.1386
0
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  Columns 8 through 10 
    0.2327    0.4114    0.9249

delay =
     1
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To invert the complex cepstrum, use icceps with the original delay parameter:

icc = icceps(xhat,2)

ans =
  Columns 1 through 7 
    2.0000    3.0000    4.0000    5.0000    6.0000    7.0000    8.0000
  Columns 8 through 10 
    9.0000    10.0000   1.0000

As shown in the above example, with any modification of the complex 
cepstrum, the original delay term may no longer be valid. You will not be able 
to invert the complex cepstrum exactly.
2
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FFT-Based Time-Frequency Analysis
The Signal Processing Toolbox provides a function, spectrogram, that returns 
the time-dependent Fourier transform for a sequence, or displays this 
information as a spectrogram. The Toolbox also inclues a spectrogram demo. 
The time-dependent Fourier transform is the discrete-time Fourier transform 
for a sequence, computed using a sliding window. This form of the Fourier 
transform, also known as the short-time Fourier transform (STFT), has 
numerous applications in speech, sonar, and radar processing. The 
spectrogram of a sequence is the magnitude of the time-dependent Fourier 
transform versus time. 

To display the spectrogram of a linear FM signal:

fs = 10000;
t = 0:1/fs:2;
x = vco(sawtooth(2*pi*t,.75),[0.1 0.4]*fs,fs);
spectrogram(x,kaiser(256,5),220,512,fs,'yaxis')

Note that the spectrogram display is an image, not a plot.
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Median Filtering
The function medfilt1 implements one-dimensional median filtering, a 
nonlinear technique that applies a sliding window to a sequence. The median 
filter replaces the center value in the window with the median value of all the 
points within the window [5]. In computing this median, medfilt1 assumes 
zeros beyond the input points.

When the number of elements n in the window is even, medfilt1 sorts the 
numbers, then takes the average of the (n-1)/2 and (n-1)/2 + 1 elements.

Two simple examples with fourth- and third-order median filters are

medfilt1([4 3 5 2 8 9 1],4)

ans =

    1.500 3.500 3.500 4.000 6.500 5.000 4.500

medfilt1([4 3 5 2 8 9 1],3)

ans =

     3     4     3     5     8     8     1

See the medfilt2 function in the Image Processing Toolbox documentation for 
information on two-dimensional median filtering.
4



Communications Applications
Communications Applications
The toolbox provides three functions for communications simulation.

Modulation varies the amplitude, phase, or frequency of a carrier signal with 
reference to a message signal. The modulate function modulates a message 
signal with a specified modulation method.

The basic syntax for the modulate function is

y = modulate(x,fc,fs,'method',opt)

where:

• x is the message signal.

• fc is the carrier frequency.

• fs is the sampling frequency.

• method is a flag for the desired modulation method.

• opt is any additional argument that the method requires. (Not all 
modulation methods require an option argument.) 

The table below summarizes the modulation methods provided; see the 
documentation for modulate, demod, and vco for complete details on each.

Operation Function

Modulation modulate

Demodulation demod

Voltage controlled oscillation vco

Method Description

amdsb-sc or 
am

Amplitude modulation, double side-band, suppressed 
carrier

amdsb-tc Amplitude modulation, double side-band, transmitted 
carrier
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If the input x is an array rather than a vector, modulate modulates each 
column of the array.

To obtain the time vector that modulate uses to compute the modulated signal, 
specify a second output parameter:

[y,t] = modulate(x,fc,fs,'method',opt)

The demod function performs demodulation, that is, it obtains the original 
message signal from the modulated signal:

The syntax for demod is 

x = demod(y,fc,fs,'method',opt)

demod uses any of the methods shown for modulate, but the syntax for 
quadrature amplitude demodulation requires two output parameters:

[X1,X2] = demod(y,fc,fs,'qam')

If the input y is an array, demod demodulates all columns.

Try modulating and demodulating a signal. A 50 Hz sine wave sampled at 
1000 Hz is

t = (0:1/1000:2);
x = sin(2*pi*50*t);

amssb Amplitude modulation, single side-band

fm Frequency modulation

pm Phase modulation

ppm Pulse position modulation

pwm Pulse width modulation

qam Quadrature amplitude modulation

Method Description
6



Communications Applications
With a carrier frequency of 200 Hz, the modulated and demodulated versions 
of this signal are

y = modulate(x,200,1000,'am');
z = demod(y,200,1000,'am');

To plot portions of the original, modulated, and demodulated signal:

figure; plot(t(1:150),x(1:150)); title('Original Signal');
figure; plot(t(1:150),y(1:150)); title('Modulated Signal');
figure; plot(t(1:150),z(1:150)); title('Demodulated Signal');
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Communications Applications
Note  The demodulated signal is attenuated because demodulation includes 
two steps: multiplication and lowpass filtering. The multiplication produces a 
component with frequency centered at 0 Hz and a component with frequency 
at twice the carrier frequency. The filtering removes the higher frequency 
component of the signal, producing the attenuated result.

The voltage controlled oscillator function vco creates a signal that oscillates at 
a frequency determined by the input vector. The basic syntax for vco is

y = vco(x,fc,fs)

where fc is the carrier frequency and fs is the sampling frequency. 

To scale the frequency modulation range, use

y = vco(x,[Fmin Fmax],fs)
4-39



4 Special Topics

4-4
In this case, vco scales the frequency modulation range so values of x on the 
interval [-1 1] map to oscillations of frequency on [Fmin Fmax].

If the input x is an array, vco produces an array whose columns oscillate 
according to the columns of x.

See “FFT-Based Time-Frequency Analysis” on page 4-33 for an example using 
the vco function.
0



Deconvolution
Deconvolution
Deconvolution, or polynomial division, is the inverse operation of convolution. 
Deconvolution is useful in recovering the input to a known filter, given the 
filtered output. This method is very sensitive to noise in the coefficients, 
however, so use caution in applying it.

The syntax for deconv is

[q,r] = deconv(b,a)

where b is the polynomial dividend, a is the divisor, q is the quotient, and r is 
the remainder. 

To try deconv, first convolve two simple vectors a and b (see Chapter 1, “Signal 
Processing Basics” for a description of the convolution function):

a = [1 2 3];
b = [4 5 6];
c = conv(a,b)

c = 
4 13 28 27 18

Now use deconv to deconvolve b from c:

[q,r] = deconv(c,a)

q = 
4 5 6

r = 
0 0 0 0 0
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Specialized Transforms
In addition to the discrete Fourier transform (see fft), the Signal Processing 
Toolbox and the MATLAB environment together provide the following 
transform functions:

• The chirp z-transform (CZT), useful in evaluating the z-transform along 
contours other than the unit circle. The chirp z-transform is also more 
efficient than the DFT algorithm for the computation of prime-length 
transforms, and it is useful in computing a subset of the DFT for a sequence.

• The discrete cosine transform (DCT), closely related to the DFT. The DCT’s 
energy compaction properties are useful for applications like signal coding.

• The Hilbert transform, which facilitates the formation of the analytic signal. 
The analytic signal is useful in the area of communications, particularly in 
bandpass signal processing.

Chirp z-Transform
The chirp z-transform, or CZT, computes the z-transform along spiral contours 
in the z-plane for an input sequence. Unlike the DFT, the CZT is not 
constrained to operate along the unit circle, but can evaluate the z-transform 
along contours described by

where A is the complex starting point, W is a complex scalar describing the 
complex ratio between points on the contour, and M is the length of the 
transform. 

One possible spiral is

A = 0.8*exp(j*pi/6);
W = 0.995*exp(-j*pi*.05);
M = 91;
z = A*(W.^(-(0:M-1)));
zplane([],z.')

zl AW l– l 0 … M 1–, ,=,=
2



Specialized Transforms
czt(x,M,W,A) computes the z-transform of x on these points.

An interesting and useful spiral set is m evenly spaced samples around the unit 
circle, parameterized by A = 1 and W = exp(-j*pi/M). The z-transform on this 
contour is simply the DFT, obtained by

y = czt(x)

czt may be faster than the fft function for computing the DFT of sequences 
with certain odd lengths, particularly long prime-length sequences. 
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Discrete Cosine Transform
The toolbox function dct computes the unitary discrete cosine transform, or 
DCT, for an input vector or matrix. Mathematically, the unitary DCT of an 
input sequence x is

where 

The DCT is closely related to the discrete Fourier transform; the DFT is 
actually one step in the computation of the DCT for a sequence. The DCT, 
however, has better energy compaction properties, with just a few of the 
transform coefficients representing the majority of the energy in the sequence. 
The energy compaction properties of the DCT make it useful in applications 
such as data communications.

The function idct computes the inverse DCT for an input sequence, 
reconstructing a signal from a complete or partial set of DCT coefficients. The 
inverse discrete cosine transform is

where
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Specialized Transforms
Because of the energy compaction mentioned above, it is possible to reconstruct 
a signal from only a fraction of its DCT coefficients. For example, generate a 
25 Hz sinusoidal sequence, sampled at 1000 Hz:

t = (0:1/999:1);
x = sin(2*pi*25*t);

Compute the DCT of this sequence and reconstruct the signal using only those 
components with value greater than 0.1 (64 of the original 1000 DCT 
coefficients):

y = dct(x) % Compute DCT
y2 = find(abs(y) < 0.9); % Use 17 coefficients
y(y2) = zeros(size(y2)); % Zero out points < 0.9
z = idct(y); % Reconstruct signal using inverse DCT

Plot the original and reconstructed sequences:

subplot(2,1,1); plot(t,x);
title('Original Signal')
subplot(2,1,2); plot(t,z), axis([0 1 -1 1])
title('Reconstructed Signal')

One measure of the accuracy of the reconstruction is 

norm(x-z)/norm(x)
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that is, the norm of the difference between the original and reconstructed 
signals, divided by the norm of the original signal. In this case, the relative 
error of reconstruction is 0.1443. The reconstructed signal retains 
approximately 85% of the energy in the original signal.

Hilbert Transform
The toolbox function hilbert computes the Hilbert transform for a real input 
sequence x and returns a complex result of the same length

y = hilbert(x)

where the real part of y is the original real data and the imaginary part is the 
actual Hilbert transform. y is sometimes called the analytic signal, in reference 
to the continuous-time analytic signal. A key property of the discrete-time 
analytic signal is that its z-transform is 0 on the lower half of the unit circle. 
Many applications of the analytic signal are related to this property; for 
example, the analytic signal is useful in avoiding aliasing effects for bandpass 
sampling operations. The magnitude of the analytic signal is the complex 
envelope of the original signal.

The Hilbert transform is related to the actual data by a 90° phase shift; sines 
become cosines and vice versa. To plot a portion of data (solid line) and its 
Hilbert transform (dotted line):

t = (0:1/1023:1);
x = sin(2*pi*60*t);
y = hilbert(x);
plot(t(1:50),real(y(1:50))), hold on
plot(t(1:50),imag(y(1:50)),':'), hold off
6



Specialized Transforms
The analytic signal is useful in calculating instantaneous attributes of a time 
series, the attributes of the series at any point in time. The instantaneous 
amplitude of the input sequence is the amplitude of the analytic signal. The 
instantaneous phase angle of the input sequence is the (unwrapped) angle of 
the analytic signal; the instantaneous frequency is the time rate of change of 
the instantaneous phase angle. You can calculate the instantaneous frequency 
using the MATLAB function, diff.
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FDATool: A Filter Design 
and Analysis GUI

The following chapter describes the Filter Design and Analysis Tool (FDATool) and provides a 
detailed example showing how to use this Graphical User Interface. 

Overview (p. 5-2) Introduction to the tool

Opening FDATool (p. 5-7) How to start the tool

Choosing a Response Type (p. 5-8) Setting the filter response type

Choosing a Filter Design Method (p. 5-9) Selecting a design method

Setting the Filter Design Specifications (p. 5-10) Setting the filter parameters

Computing the Filter Coefficients (p. 5-14) Calculating the filter

Analyzing the Filter (p. 5-15) Tools for analyzing the filter

Editing the Filter Using the Pole/Zero Editor 
(p. 5-22)

Changing the filter by changing poles or zeros

Converting the Filter Structure (p. 5-26) Changing the filter structure

Importing a Filter Design (p. 5-29) Bringing a filter design into the tool

Exporting a Filter Design (p. 5-32) Sending the filter design outside the tool

Generating a C Header File (p. 5-40) Create C code of the filter design

Generating an M-File (p. 5-43) Creating MATLAB code of the filter design

Managing Filters in the Current Session (p. 5-44) Working with multiple filters

Saving and Opening Filter Design Sessions 
(p. 5-46)

Working with tool sessions
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Overview
The Filter Design and Analysis Tool (FDATool) is a powerful user interface for 
designing and analyzing filters quickly. FDATool enables you to design digital 
FIR or IIR filters by setting filter specifications, by importing filters from your 
MATLAB workspace, or by adding, moving or deleting poles and zeros. 
FDATool also provides tools for analyzing filters, such as magnitude and phase 
response and pole-zero plots. FDATool seamlessly integrates additional 
functionality from other MathWorks products as described in the following 
table.

Product Added Features

Embedded Target for Texas 
Instruments C6000™ DSP

Download code to C6000 DSP target 
board

Filter Design HDL Coder Generate synthesizable VHDL or 
Verilog for fixed-point filters

Filter Design Toolbox - Advanced FIR and IIR design 
techniques (see “Advanced Filter 
Design Methods” on page 5-3)
- Filter transformations
- Multirate filters
- Fixed-point filters (available only 
with the Fixed-Point Toolbox)

Link for Code Composer Studio™ 
Development Tools

Export code usable by Code Composer 
Studio

Signal Processing Blockset Generate equivalent Signal 
Processing Blockset block for the 
filter

Simulink Generate filters from atomic 
Simulink blocks



Overview
Filter Design Methods
FDATool gives you access to the following filter design methods in the Signal 
Processing Toolbox.

When using the window method in FDATool, all window functions in the Signal 
toolbox are available, and you can specify a user-defined window by entering 
its function name and input parameter.

Advanced Filter Design Methods
The following advanced filter design methods are available if you have the 
Filter Design Toolbox.

Design Method Function

Butterworth butter

Chebyshev Type I cheby1

Chebyshev Type II cheby2

Elliptic ellip

Maximally Flat maxflat

Equiripple firpm

Least-squares firls

Constrained least-squares fircls

Complex equiripple cfirpm

Window fir1

Design Method Function

Constrained equiripple FIR firceqrip

Constrained-band equiripple FIR fircband

Generalized remez FIR firgr
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Using the Filter Design and Analysis Tool
There are different ways that you can design filters using the Filter Design and 
Analysis Tool. For example:

• You can first choose a response type, such as bandpass, and then choose from 
the available FIR or IIR filter design methods.

• You can specify the filter by its type alone, along with certain frequency- or 
time-domain specifications such as passband frequencies and stopband 
frequencies. The filter you design is then computed using the default filter 
design method and filter order.

Analyzing Filter Responses
Once you have designed your filter, you can display the filter coefficients and 
detailed filter information, export the coefficients to the MATLAB workspace, 
and create a C header file containing the coefficients, and analyze different 
filter responses in FDATool or in a separate Filter Visualization Tool (fvtool). 
See “Analyzing the Filter” on page 5-15 for more information. The following 
filter responses are available:

Equripple halfband FIR firhalfband

Least P-norm optimal FIR firlpnorm

Equiripple Nyquist FIR firnyquist

Interpolated FIR ifir

 IIR comb notching or peaking iircomb

Allpass filter (given group delay) iirgrpdelay

Least P-norm optimal IIR iirlpnorm

Constrained least P-norm IIR iirlpnormc

Second-order IIR notch iirnotch

Second-order IIR peaking (resonator) iirpeak

Design Method Function



Overview
• Magnitude response (freqz)

• Phase response (phasez)

• Group delay (grpdelay)

• Phase delay (phasedelay)

• Impulse response (impz)

• Step response (stepz)

• Pole-zero plots (zplane)

• Zero-phase response (zerophase)

Filter Design and Analysis Tool Panels
The Filter Design and Analysis Tool has sidebar buttons that display 
particular panels in the lower half of the tool. The panels are

• Design Filter. See “Choosing a Filter Design Method” on page 5-9 for more 
information. You use this panel to

- Design filters from scratch.

- Modify existing filters designed in FDATool.

- Analyze filters.

• Import filter. See “Importing a Filter Design” on page 5-29 for more 
information. You use this panel to

- Import previously saved filters or filter coefficients that you have stored in 
the MATLAB workspace.

- Analyze imported filters.

• Pole/Zero Editor. See “Editing the Filter Using the Pole/Zero Editor” on 
page 5-22. You use this panel to add, delete, and move poles and zeros in your 
filter design.
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If you also have the Filter Design Toolbox installed, additional panels are 
available:

• Set quantization parameters — Use this panel to quantize 
double-precision filters that you design in FDATool, quantize 
double-precision filters that you import into FDATool, and analyze 
quantized filters.

• Transform filter — Use this panel to change a filter from one response type 
to another.

• Multirate filter design — Use this panel to create a multirate filter from 
your existing FIR design, create CIC filters, and and linear and hold 
interpolators. 

If you have Simulink® installed, this panel is available:

• Realize Model — Use this panel to create a Simulink block containing the 
filter structure. See “Exporting to Simulink” on page 5-36 for information.

Getting Help
At any time, you can right-click or click the What’s this? button, , to get 
information on the different parts of the tool. You can also use the Help menu 
to see complete Help information.



Opening FDATool
Opening FDATool
To open the Filter Design and Analysis Tool (FDATool), type 

fdatool

The Filter Design and Analysis Tool opens with the Design Filter panel 
displayed.

Note  If you are viewing this online, click in the figure below to jump to a 
description of the procedure for that area of the figure.
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Choosing a Response Type
You can choose from several response types:

• Lowpass

• Raised cosine

• Highpass

• Bandpass

• Bandstop

• Differentiator 

• Multiband 

• Hilbert transformer 

• Arbitrary magnitude 

Additional response types are available if you have the Filter Design Toolbox 
installed.

To design a bandpass filter, select the radio button next to Bandpass in the 
Response Type region of the GUI.

Note  Not all filter design methods are available for all response types. Once 
you choose your response type, this may restrict the filter design methods 
available to you. Filter design methods that are not available for a selected 
response type are removed from the Design Method region of the GUI.



Choosing a Filter Design Method
Choosing a Filter Design Method
You can use the default filter design method for the response type that you’ve 
selected, or you can select a filter design method from the available FIR and IIR 
methods listed in the GUI.

To select the Remez algorithm to compute FIR filter coefficients, select the FIR 
radio button and choose Equiripple from the list of methods.
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Setting the Filter Design Specifications
The filter design specifications that you can set vary according to response type 
and design method. For example, to design a bandpass filter, you can enter

• “Filter Order” on page 5-10

• “Options” on page 5-11

• “Bandpass Filter Frequency Specifications” on page 5-12

• “Bandpass Filter Magnitude Specifications” on page 5-13

The display region illustrates filter specifications when you select Filter 
Specifications from the Analysis menu or when you click the Filter 
Specifications toolbar button.

You can also view the filter specifications on the Magnitude plot of a designed 
filter by selecting Specification Mask from the View menu.

Filter Order
You have two mutually exclusive options for determining the filter order when 
you design an equiripple filter:

• Specify order: You enter the filter order in a text box.

• Minimum order: The filter design method determines the minimum order 
filter.

Select the Minimum order radio button for this example.
0



Setting the Filter Design Specifications
Note that filter order specification options depend on the filter design method 
you choose. Some filter methods may not have both options available.

Options
The available options depend on the selected filter design method. Only the 
FIR Equiripple and FIR Window design methods have settable options. For 
FIR Equiripple, the option is a Density Factor. See firpm for more 
information. For FIR Window the options are Scale Passband, Window 
selection, and for the following windows, a settable parameter

You can view the window in the Window Visualization Tool (wvtool) by clicking 
the View button.

For this example, set the Density factor to 16. 

Window Parameter

Chebyshev (chebwin) Sidelobe attenuation

Gaussian (gausswin) Alpha

Kaiser (kaiser) Beta

Tukey (tukeywin) Alpha

User Defined Function Name, Parameter
5-11



5 FDATool: A Filter Design and Analysis GUI

5-1
Bandpass Filter Frequency Specifications
For a bandpass filter, you can set

• Units of frequency:

- Hz

- kHz

- MHz

- Normalized (0 to 1)

• Sampling frequency

• Passband frequencies

• Stopband frequencies

You specify the passband with two frequencies. The first frequency determines 
the lower edge of the passband, and the second frequency determines the upper 
edge of the passband.

Similarly, you specify the stopband with two frequencies. The first frequency 
determines the upper edge of the first stopband, and the second frequency 
determines the lower edge of the second stopband. 

For this example:

• Keep the units in Hz (default).

• Set the sampling frequency (Fs) to 2000 Hz.

• Set the end of the first stopband (Fstop1) to 200 Hz.

• Set the beginning of the passband (Fpass1) to 300 Hz.

• Set the end of the passband (Fpass2) to 700 Hz.

• Set the beginning of the second stopband (Fstop2) to 800 Hz.
2



Setting the Filter Design Specifications
Bandpass Filter Magnitude Specifications
For a bandpass filter, you can specify the following magnitude response 
characteristics:

• Units for the magnitude response (dB or linear)

• Passband ripple

• Stopband attenuation 

For this example:

• Keep Units in dB (default).

• Set the passband ripple (Apass) to 0.1 dB.

• Set the stopband attenuation for both stopbands (Astop1, Astop2) to 75 dB.
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Computing the Filter Coefficients
Now that you’ve specified the filter design, click the Design Filter button to 
compute the filter coefficients.

Notice that the Design Filter button is disabled once you’ve computed the 
coefficients for your filter design. This button is enabled again once you make 
any changes to the filter specifications.
4
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Analyzing the Filter
Once you’ve designed the filter, you can view the following filter response 
characteristics in the display region or in a separate window (see “Displaying 
the Response in FVTool” on page 5-20):

• Magnitude response

• Phase response

• Magnitude and Phase responses 

• Group delay response

• Phase delay response

• Impulse response

• Step response

• Pole-zero plot

• Zero-phase response—available from the y-axis context menu in a 
Magnitude or Magnitude and Phase response plot.

You can display two responses in the same plot by selecting Overlay Analysis 
from the Analysis menu and selecting an available response. A second y-axis 
is added to the right side of the response plot. (Note that not all responses can 
be overlaid on each other.)

You can also display the filter coefficients and detailed filter information in this 
region.

For all the analysis methods, except zero-phase response, you can access them 
from the Analysis menu, the Analysis Parameters dialog box from the context 
menu, or by using the toolbar buttons. For zero-phase, right-click on the y-axis 
of the plot and select Zero-phase from the context menu.
 

For example, to look at the filter’s magnitude response, select the Magnitude 
Response button on the toolbar.
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You can also overlay the filter specifications on the Magnitude plot by selecting 
Specification Mask from the View menu. 

Note  You can use specification masks in FVTool only if FVTool was launched 
from FDATool. 
6



Analyzing the Filter
Using Data Markers
You can click on the response to add plot data markers that display information 
about particular points on the response. 

To move a data marker, grab its black square at the corner of the marker. 
Dragging the marker with your mouse changes the Frequency and Magnitude 
values. 

To change the properties of a data marker, right-click on the marker to display 
the properties menu:

• Alignment—Change the position of the marker. Available options are 
top-right, top-left, bottom-right, and bottom-left. 

• Font Size—Change the font size.

• Movable—Allow the marker to be moved on the response.

• Interpolation—Select Nearest to force the marker to snap to nearest point 
along the plotted curve. Select Linear to interpolate between points along 
the plotted curve.

• Track Mode—Restrict the marker to be movable in the x, y, or xy 
direction.

• Delete—Delete the selected marker. 

• Delete all—Delete all markers.
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Drawing Spectral Masks
To add spectral masks or rejection area lines to your magnitude plot, click 
User-defined Spectral Mask from the View menu.

The mask is defined by a frequency vector and a magnitude vector. These 
vectors must be the same length. 

• Enable Mask — Select to turn on the mask display.

• Normalized Frequency — Select to normalize the frequency between 0 and 
1 across the displayed frequency range.

• Frequency Vector — Enter a vector of x-axis frequency values.

• Magnitude Units — Select the desired magnitude units. These units should 
match the units used in the magnitude plot.

• Magnitude Vector — Enter a vector of y-axis magnitude values.
8



Analyzing the Filter
The magnitude reponse below shows a spectral mask.

Changing the Sampling Frequency
To change the sampling frequency of your filter, right-click any filter response 
plot and select Sampling Frequency from the context menu.

To change the filter name, type the new name in Filter name. (In fvtool, if 
you have multiple filters, select the desired filter and then enter the new 
name.)

To change the sampling frequency, select the desired unit from Units and enter 
the sampling frequency in Fs. (For each filter in fvtool, you can specify a 
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different sampling frequency or you can apply the sampling frequency to all 
filters.)

To save the displayed parameters as the default values to use when FDATool 
or FVTool is opened, click Save as Default.

To restore the MATLAB defined default values, click Restore Original 
Defaults.

Displaying the Response in FVTool
To display the filter response characteristics in a separate window, select 
Filter Visualization Tool from the View menu (available if any analysis, 
except the filter specifications, is in the display region) or click the Full View 
Analysis button:

This launches the Filter Visualization Tool (fvtool).

Note  If Filter Specifications are shown in the display region, clicking the 
Full View Analysis toolbar button launches a MATLAB figure window 
instead of FVTool. The associated menu item is Print to figure, which is 
enabled only if the filter specifications are displayed.

You can use this tool to annotate your design, view other filter characteristics, 
and print your filter response. You can link FDATool and FVTool so that 
changes made in FDATool are immediately reflected in FVTool. See fvtool for 
more information.
0
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Editing the Filter Using the Pole/Zero Editor

Note  You cannot generate an M-file (File->Generate M-file) if your filter 
was designed or edited with the Pole/Zero Editor.

You can edit a designed or imported filter’s coefficients by moving, deleting, or 
adding poles and/or zeros using the Pole/Zero Editor panel. Click the Pole/Zero 
Editor button in the sidebar or select Pole/Zero Editor from the Edit menu to 
display this panel.

Poles are shown using x symbols and zeros are shown using o symbols.

Plot mode buttons. Plot mode buttons are located to the left of the pole/zero plot. 
Select one of the buttons to change the mode of the pole/zero plot.

Pole/Zero 
Editor
2



Editing the Filter Using the Pole/Zero Editor
The following plot parameters and controls are located to the left of the 
pole/zero plot and below the plot mode buttons.

• Filter gain—factor to compensate for the filter’s pole(s) and zero(s) gains

• Coordinates—units (Polar or Rectangular) of the selected pole or zero 

• Magnitude—if polar coordinates is selected, magnitude of the selected pole 
or zero

• Angle—if polar coordinates is selected, angle of selected pole(s) or zero(s)

• Real—if rectangular coordinates is selected, real component of selected 
pole(s) or zero(s)

• Imaginary—if rectangular coordinates is selected, imaginary component of 
selected pole or zero

• Section—for multisection filters, number of the current section

• Conjugate—creates a corresponding conjugate pole or zero or automatically 
selects the conjugate pole or zero if it already exists.

• Auto update—immediately updates the displayed magnitude response 
when poles or zeros are added, moved, or deleted.

The Pole-zero Editor on the Edit menu has items for selecting multiple 
poles/zeros, for inverting and mirroring poles/zeros, and for deleting, scaling 
and rotating poles/zeros.

Move 
pole

Delete pole 
or zero

Add 
zero

Add 
pole
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Moving one of the zeros on the vertical axis produces the following result: 

These items are enabled only 
when one or more poles/zeros 
are selected.
4



Editing the Filter Using the Pole/Zero Editor
• The selected zero pair is shown in green. 

• When you select one of the zeros from a conjugate pair, the Conjugate check 
box and the conjugate are automatically selected.

• The Magnitude Response plot updates immediately because Auto update 
is active.
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Converting the Filter Structure

Converting to a New Structure
You can use Edit > Convert Structure to convert the current filter to a new 
structure. All filters can be converted to the following representations:

• Direct-form I

• Direct-form II

• Direct-form I transposed

• Direct-form II transposed

• Lattice ARMA

Note  If you have installed the Filter Design Toolbox you will see additional 
structures in the Convert structure dialog box.

In addition, the following conversions are available for particular classes of 
filters:

• Minimum phase FIR filters can be converted to Lattice minimum phase

• Maximum phase FIR filters can be converted to Lattice maximum phase

• Allpass filters can be converted to Lattice allpass

• IIR filters can be converted to Lattice ARMA

Note  Converting from one filter structure to another may produce a result 
with different characteristics than the original. This is due to the computer’s 
finite-precision arithmetic and the variations in the conversion’s round-off 
computations.

For example:

• Select Convert Structure from the Edit menu to open the Convert 
structure dialog box.

• Select Direct-form I in the list of filter structures.
6
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Converting to Second-Order Sections
You can use Convert to Second-order Sections on the Edit menu to store the 
converted filter structure as a collection of second-order sections rather than as 
a monolithic higher-order structure. 

Note  The following options are also used for the Edit menu Order and Scale 
SOS, which you use to modify an SOS filter structure.

The following Scale options are available when converting a direct-form II 
structure only:

• None (default)

• L-2 (L2 norm)

• L-infinity (L∞ norm) 

The Direction (Up or Down) determines the ordering of the second-order 
sections. The optimal ordering changes depending on the Scale option selected.

For example:

• Select Convert to Second-order Sections from the Edit menu to open the 
Convert to SOS dialog box.

• Select L-infinity from the Scale menu for L∞ norm scaling.

• Leave Up as the Direction option.
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Note  To convert from second-order sections back to a single section, use 
Convert to Single Section on the Edit menu.
8
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Importing a Filter Design
The Import Filter panel allows you to import a filter. You can access this region 
by clicking the Import Filter button in the sidebar.

The imported filter can be in any of the representations listed in the Filter 
Structure pull-down menu and described in “Filter Structures” on page 5-30. 
You can import a filter as second-order sections by selecting the check box.

Specify the filter coefficients in Numerator and Denominator, either by 
entering them explicitly or by referring to variables in the MATLAB 
workspace.

Select the frequency units from the following options in the Units menu, and 
for any frequency unit other than Normalized, specify the value or MATLAB 
workspace variable of the sampling frequency in the Fs field.

To import the filter, click the Import Filter button. The display region is 
automatically updated when the new filter has been imported.

You can edit the imported filter using the Pole/Zero Editor panel (see “Editing 
the Filter Using the Pole/Zero Editor” on page 5-22).
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Filter Structures
The available filter structures are:

• Direct-form, which includes direct-form I, direct-form II, direct-form I 
transposed, direct-form II transposed, and direc-form FIR

• Lattice, which includes lattice allpass, lattice MA min phase, lattice MA max 
phase, and lattice ARMA

• Discrete-time filter (dfilt object)

The structure that you choose determines the type of coefficients that you need 
to specify in the text fields to the right.

Direct-form
For direct-form I, direct-form II, direct-form I transposed, and direct-form II 
transposed, specify the filter by its transfer function representation

• The Numerator field specifies a variable name or value for the numerator 
coefficient vector b, which contains m+1 coefficients in descending powers of z.

• The Denominator field specifies a variable name or value for the 
denominator coefficient vector a, which contains n+1 coefficients in 
descending powers of z. For FIR filters, the Denominator is 1.

Filters in transfer function form can be produced by all of the Signal Processing 
Toolbox filter design functions (such as fir1, fir2, firpm, butter, yulewalk). 
See “Transfer Function” on page 1-34 for more information.

Importing as second-order sections . For all direct-form structures, except 
Direct-form FIR, you an import the filter in its second-order section 
representation:

The Gain field specifies a variable name or a value for the gain g, and the SOS 
Matrix field specifies a variable name or a value for the L-by-6 SOS matrix

H z( ) B z( )
A z( )
----------- b 1( ) b 2( )z 1– b m 1+( )z m–+ + +

a 1( ) a 2( )z 1– a n 1+( )z n–+ + +
---------------------------------------------------------------------------------------= =

H z( ) g Hk z( )

k 1=

L

∏ g
b0k b1kz 1– b2kz 2–+ +

1 a1kz 1– a2kz 2–+ +
----------------------------------------------------------

k 1=

L

∏= =
0



Importing a Filter Design
whose rows contain the numerator and denominator coefficients bik and aik of 
the second-order sections of H(z).

Filters in second-order section form can be produced by functions such as 
tf2sos, zp2sos, ss2sos, and sosfilt. See “Second-Order Sections (SOS)” on 
page 1-39 for more information.

Lattice
For lattice allpass, lattice minimum and maximum phase, and lattice ARMA 
filters, specify the filter by its lattice representation: 

• For lattice allpass, the Lattice coeff field specifies the lattice (reflection) 
coefficients, k(1) to k(N), where N is the filter order.

• For lattice MA (minimum or maximum phase), the Lattice coeff field 
specifies the lattice (reflection) coefficients, k(1) to k(N), where N is the filter 
order. 

• For lattice ARMA, the Lattice coeff field specifies the lattice (reflection) 
coefficients, k(1) to k(N), and the Ladder coeff field specifies the ladder 
coefficients, v(1) to v(N+1), where N is the filter order.

Filters in lattice form can be produced by tf2latc. See “Lattice Structure” on 
page 1-39 for more information.

Discrete-time Filter (dfilt object)
For Discrete-time filter, specify the name of the dfilt object. See dfilt for 
more information.

Multirate Filter (mfilt object)
For Multirate filter, specify the name of the mfilt object. See mfilt in the 
Filter Design Toolbox for more information.

SOS

b01 b11 b21 1 a11 a21

b02 b12 b22 1 a12 a22

b0L b1L b2L 1 a1L a2L

=

5-31



5 FDATool: A Filter Design and Analysis GUI

5-3
Exporting a Filter Design
You can save your filter design by

• “Exporting Coefficients or Objects to the Workspace” on page 5-32

• “Exporting Coefficients to an ASCII File” on page 5-34

• “Exporting Coefficients or Objects to a MAT-File” on page 5-34

• “Exporting to SPTool” on page 5-35

• “Exporting to Simulink” on page 5-36

You can also send your filter to a C header file or generate an M-file. The M-file 
contains code that replicates the filter you designed. See the following sections: 

• “Generating a C Header File” on page 5-40

• “Generating an M-File” on page 5-43

Exporting Coefficients or Objects to the Workspace
You can save the filter either as filter coefficients variables or as a dfilt or 
mfilt filter object variable. (Note that you must have the Filter Design Toolbox 
installed to save as an mfilt.) To save the filter to the MATLAB workspace:

1 Select Export from the File menu. The Export dialog box appears.

2 Select Workspace from the Export To menu.

3 Select Coefficients from the Export As menu to save the filter coefficients 
or select Objects to save the filter in a filter object.

4 For coefficients, assign variable names using the Numerator (for FIR 
filters) or Numerator and Denominator (for IIR filters), or SOS Matrix and 
Scale Values (for IIR filters in second-order section form) text boxes in the 
Variable Names region. 

For objects, assign the variable name in the Discrete Filter (or Quantized 
Filter) text box. If you have variables with the same names in your 
workspace and you want to overwrite them, select the Overwrite Variables 
check box.

5 Click the Export button.
2
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Exporting Coefficients to an ASCII File
To save filter coefficients to a text file,

1 Select Export from the File menu. The Export dialog box appears.

2 Select Coefficients File (ASCII) from the Export To menu.

3 Click the Export button. The Export Filter Coefficients to .FCF File 
dialog box appears.

4 Choose or enter a filename and click the Save button.

The coefficients are saved in the text file that you specified, and the MATLAB 
Editor opens to display the file. The text file also contains comments with the 
MATLAB version number, the Signal Processing Toolbox version number, and 
filter information.

Exporting Coefficients or Objects to a MAT-File
To save filter coefficients or a filter object as variables in a MAT-file:

1 Select Export from the File menu. The Export dialog box appears.

2 Select MAT-file from the Export To menu.

3 Select Coefficients from the Export As menu to save the filter coefficients 
or select Objects to save the filter in a filter object.

4 For coefficients, assign variable names using the Numerator (for FIR 
filters) or Numerator and Denominator (for IIR filters), or SOS Matrix and 
Scale Values (for IIR filters in second-order section form) text boxes in the 
Variable Names region. 

For objects, assign the variable name in the Discrete Fitler (or Quantized 
Filter) text box. If you have variables with the same names in your 
workspace and you want to overwrite them, select the Overwrite Variables 
check box.

5 Click the Export button. The Export to a MAT-File dialog box appears.

6 Choose or enter a filename and click the Save button.
4



Exporting a Filter Design
See also “Saving and Opening Filter Design Sessions” on page 5-46.

Exporting to SPTool
You may want to use your designed filter in SPTool to do signal processing and 
analysis.

Note  The magnitude response you see in SPTool will differ from the one in 
FDATool because the sampling frequency is preset at Fs = 2 when a filter is 
exported from FDATool to SPTool.

1 Select Export from the File menu. The Export dialog box appears.

2 Select SPTool from the Export To menu.

3 Select Coefficients from the Export As menu to save the filter coefficients 
or select Objects to save the filter in a filter object.

4 Assign the variable name in the Discrete Filter (or Quantized Filter) text 
box. If you have variables with the same names in your workspace and you 
want to overwrite them, select the Overwrite Variables check box.

5 Click the Export button.

SPTool opens and the current FDATool filter appears in the Filter area list 
as the specified variable name followed by (Imported).

Note  If you are using the Filter Design Toolbox and export a quantized filter, 
only the values of its quantized coefficients are exported. The reference 
coefficients are not exported. SPTool does not restrict the coefficient values, so 
if you edit them in SPTool by moving poles or zeros, the filter will no longer be 
in quantized form.
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Exporting to Simulink
If you have Simulink installed, you can export a Simulink block of your filter 
design and insert it into a new or existing Simulink model. 

You can export a filter designed using any filter design method available in 
FDATool. 

Note  If you have the Filter Design Toolbox, you can export a CIC filter to 
Simulink, if you also have these toolboxes and blocksets installed in addition 
to Simulink: the Fixed-Point Toolbox and the Signal Processing Blockset.

1 After designing your filter, click the Realize Model sidebar button or select 
Export to Simulink Model from the File menu. The Realize Model panel is 
displayed.

2 Specify the name to use for your block in Block name.

3 Select the Destination — Current to insert the block into the current (most 
recently selected) Simulink model or New to open a new model.

4 If you want to overwrite a block previously created from this panel, check 
Overwrite generated ‘Filter’ block.
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Exporting a Filter Design
Note  If you have the Signal Processing Blockset installed, a Build model 
using basic elements check box is included. If you deselect it, a Digital Filter 
block is created instead of a subsystem block, which uses separate 
subelements. See the Filter Realization Wizard and Choosing Between Filter 
Design Blocks in the Signal Processing Blockset documentation for 
information.

5 Select the desired optimization(s) for your block:

• Optimize for zero gains — removes zero-valued gain paths from the filter 
structure.

• Optimize for unity gains — substitutes a wire (short circuit) for gains equal 
to 1 in the filter structure.

• Optimize for negative gains — substitutes a wire (short circuit) for gains 
equal to -1 and changes corresponding additions to substractions in the filter 
structure.

• Optimize delay chains — substitutes delay chains composed of n unit 
delays with a single delay of n.
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The following illustration shows the effects of each optimization:

6 Click the Realize Model button to create the filter block. The filter is 
implemented as a subsytem block using Sum, Gain, and Integer Delay 
blocks. 

Optimize delay chains

Optimize for negative gains

Optimize for zero gains

Optimize for unity gains
8



Exporting a Filter Design
If you double-click the Filter block in Simulink, the filter structure is displayed. 
The following figure shows the first section of the default four-section, direct 
form II filter.
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Generating a C Header File
You may want to include filter information in an external C program. To create 
a C header file with variables that contain filter parameter data, follow this 
procedure:

1 Select Generate C Header from the Targets menu. The Generate C 
Header dialog box appears. 
0



Generating a C Header File
2 Enter the variable names to be used in the C header file. The particular filter 
structure determines the variables that are created in the file

*length variables contain the total number of coefficients of that type.

Note  Variable names cannot be C language reserved words, such as “for.” 

3 Select Export Suggested to use the suggested data type or select Export As 
and select the desired data type from the pull-down. 

Note  If you do not have the Filter Design Toolbox installed, selecting any 
data type other than double-precision floating point results in a filter that 
does not exactly match the one you designed in the FDATool. This is due to 
rounding and truncating differences.

Filter Structure Variable Parameter

Direct-form I
Direct-form II
Direct-form I transposed
Direct-form II transposed

Numerator, Numerator length*, 
Denominator, Denominator length*, and 
Number of sections (inactive if filter has 
only one section)

Lattice ARMA Lattice coeffs, Lattice coeffs length*, 
Ladder coeffs, Ladder coeffs length*, 
Number of sections (inactive if filter has 
only one section)

Lattice MA Lattice coeffs, Lattice coeffs length*, and 
Number of sections (inactive if filter has 
only one section)

Direct-form FIR 
Direct-form FIR transposed

Numerator, Numerator length*, and 
Number of sections (inactive if filter has 
only one section)
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4 Click OK to save the file and close the dialog box or click Apply to save the 
file, but leave the dialog box open for additional C header file definitions. 
2



Generating an M-File
Generating an M-File
You can generate an M-file that contains all the code used to create the filter 
you designed in FDATool. Select Generate M-file from the File menu and 
specify the filename in the Generate M-file dialog box. 

Note  You cannot generate an M-file (File > Generate M-file) if your filter 
was designed or edited with the Pole/Zero Editor.

The following is a sample generated M-file of the default FDATool filter.

function Hd = untitled
%UNTITLED Returns a discrete-time filter object
%
% M-file generated by MATLAB(R) 6.5 and the Signal Processing
% Toolbox 6.0.
%
% Generated on: 24-Oct-2002 09:46:59
%
% Remez FIR Lowpass filter designed using the firpm function.
% All frequency values are in Hz.
Fs = 48000;  % Sampling Frequency

Fpass = 9600;            % Passband Frequency
Fstop = 12000;           % Stopband Frequency
Dpass = 0.057501127785;  % Passband Ripple
Dstop = 0.0001;          % Stopband Attenuation
dens  = 16;              % Density Factor

% Calculate the order from the parameters using firpmord.
[N, Fo, Ao, W] = firpmord([Fpass, Fstop]/(Fs/2), [1 0], ...
[Dpass, Dstop]);

% Calculate the coefficients using the firpm function.
b  = firpm(N, Fo, Ao, W, {dens});
Hd = dfilt.dffir(b);

% [EOF]
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Managing Filters in the Current Session
You can store filters designed in the current FDATool session for cascading 
together, exporting to FVTool or for recalling later in the same or future 
FDATool sessions. 

You store and access saved filters with the Store filter and Filter Manager 
buttons, respectively, in the Current Filter Information pane.

Store Filter — displays the Store Filter dialog box in which you specify the 
filter name to use when storing the filter in the Filter Manager. The default 
name is the type of the filter.
4



Managing Filters in the Current Session
Filter Manager — opens the Filter Manager

The current filter is listed below the listbox. To change the current filter, 
highlight the desired filter. If you select Edit current filter, FDATool displays 
the currently selected filter specifications. If you make any changes to the 
specifications, the stored filter is updated immediately. 

To cascade two or more filters, highlight the desired filters and press Cascade. 
A new cascaded filter is added to the Filter Manager.

To change the name of a stored filter, press Rename. The Rename filter dialog 
box is displayed.

To remove a stored filter from the Filter Manager, press Delete. 

To export one or more filters to FVTool, highlight the filter(s) and press 
FVTool. 
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Saving and Opening Filter Design Sessions
You can save your filter design session as a MAT-file and return to the same 
session another time. 

Select the Save session button  to save your session as a MAT-file. The first 
time you save a session, a Save Filter Design File browser opens, prompting 
you for a session name.

For example, save this design session as TestFilter.fda in your current 
working directory by typing TestFilter in the File name field. 

The .fda extension is added automatically to all filter design sessions you save.

Note  You can also use the Save session and Save session as menu items in 
the File menu to save a session. This dialog opens every time you select the 
Save As menu item.

You can load existing sessions into the Filter Design and Analysis Tool by 
selecting the Open session button,  or Open Session from the File menu. 
A Load Filter Design File browser opens that allows you to select from your 
previously saved filter design sessions. 
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SPTool: A Signal 
Processing GUI Suite

The following chapter describes the Signal Processing Tool (SPTool) and provides a detailed example 
showing how to use this Graphical User Interface.

SPTool: An Interactive Signal Processing 
Environment (p. 6-3)

Overview of the tool

Opening SPTool (p. 6-5) How to start the tool

Getting Context-Sensitive Help (p. 6-7) How to get help

Signal Browser (p. 6-8) Viewing signals

Filter Designer (p. 6-11) Designing filters

Filter Visualization Tool (p. 6-14) Viewing and analyzing filters

Spectrum Viewer (p. 6-18) Viewing spectra

Filtering and Analysis of Noise (p. 6-21) Full example using the tool

Exporting Signals, Filters, and Spectra (p. 6-33) Sending data out of the tool

Accessing Filter Parameters (p. 6-35) Using MATLAB to access saved filter parameters

Importing Filters and Spectra into SPTool 
(p. 6-40)

Bringing data into the tool

Loading Variables from the Disk (p. 6-44) Bringing data from a disk into the tool

Selecting Signals, Filters, and Spectra in 
SPTool (p. 6-45)

Selecting data

Editing Signals, Filters, or Spectra in SPTool 
(p. 6-46)

Editing data

Designing a Filter with the Pole/Zero Editor 
(p. 6-47)

Using the Pole/Zero Editor
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Redesigning a Filter Using the Magnitude Plot 
(p. 6-50)

Changing the filter design using Magnitude plot

Setting Preferences (p. 6-51) Customizing the tool

Making Signal Measurements with Markers 
(p. 6-53)

Measuring signals



SPTool: An Interactive Signal Processing Environment
SPTool: An Interactive Signal Processing Environment
SPTool is an interactive GUI for digital signal processing that can be used to

• Analyze signals

• Design filters

• Analyze (view) filters

• Filter signals

• Analyze signal spectra

You can accomplish these tasks using four GUIs that you access from within 
SPTool:

• The Signal Browser is for analyzing signals. You can also play portions of 
signals using your computer’s audio hardware.

• The Filter Designer is for designing or editing FIR and IIR digital filters. 
Most of the Signal Processing Toolbox filter design methods available at the 
command line are also available in the Filter Designer. Additionally, you can 
design a filter by using the Pole/Zero Editor to graphically place poles and 
zeros on the z-plane.

• The Filter Visualization Tool is for analyzing filter characteristics. See 
“Filter Visualization Tool” on page 6-14.

• The Spectrum Viewer is for spectral analysis. You can use the Signal 
Processing Toolbox spectral estimation methods to estimate the power 
spectral density of a signal. See “Spectrum Viewer” on page 6-18.

SPTool Data Structures
You can use SPTool to analyze signals, filters, or spectra that you create at the 
MATLAB command line. 

You can bring signals, filters, or spectra from the MATLAB workspace into the 
SPTool workspace using the Import item under the File menu. Signals, filters, 
or spectra that you create in (or import into) the SPTool workspace exist as 
MATLAB structures. See the MATLAB documentation for more information on 
MATLAB structures.
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When you use the Export item under the File menu to save signals, filters, and 
spectra that you create or modify in SPTool, these are also saved as MATLAB 
structures.



Opening SPTool
Opening SPTool
To open SPTool, type

sptool

When you first open SPTool, it contains a collection of default signals, filters, 
and spectra. You can specify your own preferences for what signals, filters, and 
spectra you want to see when SPTool opens. See “Designing a Filter with the 
Pole/Zero Editor” on page 6-47 for more details.

You can access these three GUIs from SPTool by selecting a signal, filter, or 
spectrum and pressing the appropriate View button: 

• Signal Browser

• Filter Visualization Tool

• Spectrum Viewer
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You can access the Filter Designer GUI by pressing the New button to create 
a new filter or the Edit button to edit a selected filter. The Apply button applies 
a selected filter to a selected signal.

The Create button opens the Spectrum Viewer and creates the power spectral 
density of the selected signal. The Update button opens the Spectrum Viewer 
for the selected spectrum.



Getting Context-Sensitive Help
Getting Context-Sensitive Help
To find information on a particular region of the Signal Browser, Filter 
Designer, or Spectrum Viewer:

1 Press the What’s this? button, .

2 Click on the region of the GUI you want information on.

You can also use the What’s this? menu item in the Help menu to launch 
context-sensitive help.
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Signal Browser
You can use the Signal Browser to display and analyze signals listed in the 
Signals list box in SPTool.

Using the Signal Browser you can:

• Analyze and compare vector or array (matrix) signals.

• Zoom in on portions of signal data.

• Measure a variety of characteristics of signal data.

• Compare multiple signals.

• Play portions of signal data on audio hardware.

• Print signal plots.

Opening the Signal Browser
To open the Signal Browser from SPTool:

1 Select one or more signals in the Signals list in SPTool

2 Press the View button under the Signals list



Signal Browser
The Signal Browser has the following components:

• A display region for analyzing signals, including markers for measuring, 
comparing, or playing signals

• A “panner” that displays the entire signal length, highlighting the portion 
currently active in the display region

• A marker measurements area

• A toolbar with buttons for convenient access to frequently used functions

Icon Description

Print and print preview

Play an audio signal

Display array and complex signals
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Zoom the signal in and out

Select one of several loaded signals

Set the display color and line style of a signal

Toggle the markers on and off

Set marker types 
(See “Making Signal Measurements with 
Markers” on page 6-53)

Turn on the What’s This help

Icon Description
0



Filter Designer
Filter Designer
The Filter Designer provides an interactive graphical environment for the 
design of digital IIR and FIR filters based on specifications that you enter on a 
magnitude or pole-zero plot. 

Note  You can also use the Filter Design and Analysis Tool (FDATool) 
described in Chapter 5, “FDATool: A Filter Design and Analysis GUI” for filter 
design and analysis. 

Filter Types
You can design filters of the following types using the Filter Designer:

• Bandpass

• Lowpass

• Bandstop

• Highpass

FIR Filter Methods 
You can use the following filter methods to design FIR filters:

• Equiripple 

• Least squares 

• Window

IIR Filter Methods
You can use the following filter methods to design IIR filters:

• Butterworth

• Chebyshev Type I

• Chebyshev Type II

• Elliptic
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Pole/Zero Editor
You can use the Pole/Zero Editor to design arbitrary FIR and IIR filters by 
placing and moving poles and zeros on the complex z-plane.

Spectral Overlay Feature
You can also superimpose spectra on a filter’s magnitude response to see if the 
filtering requirements are met.

Opening the Filter Designer
Open the Filter Designer from SPTool by either:

• Pressing the New button in the Filters list in SPTool

• Selecting a filter you want to edit from the Filters list in SPTool, and then 
pressing the Edit button

The Filter Designer has the following components:
2



Filter Designer
• A pull-down Filter menu for selecting a filter from the list in SPTool

• A Sampling Frequency text box

• A pull-down Algorithm menu for selecting a filter design method or a 
pole-zero plot display

• A Specifications area for viewing or modifying a filter’s design parameters 
or pole-zero locations

• A plot display region for graphically adjusting filter magnitude responses or 
the pole-zero locations

• A Measurements area for viewing the response characteristics and stability 
of the current filter

• A toolbar with the following buttons

Icon Description

Print and print preview

Zoom in and out

Passband view

Overlay spectrum

Turn on the What’s This help
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Filter Visualization Tool
You can use the Filter Visualization Tool (fvtool) to analyze the following 
response characteristics of selected filters:

• Magnitude response

• Phase response

• Impulse response

• Step response

• Group delay

• Phase delay

• Pole and zero locations

• Detailed filter information

FVTool also provides features for

• Overlaying filter responses

• Zooming

• Measuring filter responses

• Modifying display parameters such as frequency ranges or magnitude units

If you start FVTool by clicking the SPTool Filter View button, that FVTool is 
linked to SPTool. Any changes made in SPTool to the filter are immediately 
reflected in FVTool. The FVTool title bar includes “SPTool” to indicate the link.

If you start an FVTool by clicking the New button or by selecting File > New 
from within FVTool, that FVTool is a stand-alone version and is not linked to 
SPTool. 

Note  Every time you click the Filter View button a new, linked FVTool 
starts. This allows you to view multiple analyses simultaneously.

Opening the Filter Visualization Tool
You open FVTool from SPTool as follows.
4



Filter Visualization Tool
1 Select one or more filters in the Filters list in SPTool.

2 Click the View button under the Filters list.

When you first open FVTool, it displays the selected filter’s magnitude plot.

Filter Visualization Tool Components
FVTool has the following components:
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• Figure toolbar with the following icons.

• Analysis toolbar with the following icons

• A display area for analyzing one or more frequency response plots for the 
selected filter(s)

Icon Description

Start a new unlinked FVTool 

Print file and print preview

Toggle plot editing, add  text, add arrow, and add line

Zoom in, zoom in x only, zoom in y only, and return to 
full view

Toggle legend

Toggle grid

Icon Description

Display Magnitude plot

Display Phase plot

Display Magnitude and Phase plot

Display Group Delay plot

Display Phase Delay plot

Display Impulse Response

Display Step Response

Display Pole-Zero plot

Display filter coefficients

Display filter information
6
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Using Data Markers
In FVTool, you can use data markers to display information on particular 
points in the response plot(s). See “Data Markers” in the FDATool online help 
more information.

Analysis Parameters
In the plot area of any filter response plot, right-click and select Analysis 
Parameters to display details about the displayed plot. See “Analysis 
Parameters” in the FDATool online help for more information.

You can change any parameter in a linked FVTool, except the sampling 
frequency. You can only change the sampling frequency using Sampling 
Frequency in the SPTool Edit menu or the SPTool Filters Edit button. 
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Spectrum Viewer
You can use the Spectrum Viewer for estimating and analyzing a signal’s 
power spectral density (PSD). You can use the PSD estimates to understand a 
signal’s frequency content.

The Spectrum Viewer provides the following functionality.

• Analyze and compare spectral density plots.

• Use different spectral estimation methods to create spectra:

- Burg (pburg)

- Covariance (pcov)

- FFT (fft)

- Modified covariance (pmcov)

- MTM (multitaper method) (pmtm)

- MUSIC (pmusic)

- Welch (pwelch)

- Yule-Walker AR (pyulear)

• Modify power spectral density parameters such as FFT length, window type, 
and sample frequency.

• Print spectral plots.

Opening the Spectrum Viewer
To open the Spectrum Viewer and create a PSD estimate from SPTool: 

1 Select a signal from the Signal list box in SPTool.

2 Press the Create button in the Spectra list.

3 Press the Apply button in the Spectrum Viewer.

To open the Spectrum Viewer with a PSD estimate already listed in SPTool: 

1 Select a PSD estimate from the Spectra list box in SPTool.

2 Press the View button in the Spectra list.
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Spectrum Viewer
For example:

1 Select mtlb in the default Signals list in SPTool.

2 Press the Create button in SPTool to open the Spectrum Viewer.

3 Press the Apply button in the Spectrum Viewer to plot the spectrum.

The Spectrum Viewer has the following components:

• A signal identification region that provides information about the signal 
whose power spectral density estimate is displayed

• A Parameters region for modifying the PSD parameters

• A display region for analyzing spectra and an Options menu for modifying 
display characteristics

• Spectrum management controls 

- Inherit from menu to inherit PSD specifications from another PSD object 
listed in the menu

- Revert button to revert to the named PSD’s original specifications
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- Apply button for creating or updating PSD estimates

• A toolbar with buttons for convenient access to frequently used functions

Icon Description

Print and print preview

Zoom the signal in and out

Select one of several loaded signals

Set the display color and line style of a signal

Toggle the markers on and off

Set marker types

Turn on the What’s This help
0



Filtering and Analysis of Noise
Filtering and Analysis of Noise
The following sections provide an example of using the GUI-based interactive 
tools to:

• Design and implement an FIR bandpass digital filter

• Apply the filter to a noisy signal

• Analyze signals and their spectra

The steps include:

1 Creating a noisy signal in the MATLAB workspace and importing it into 
SPTool

2 Designing a bandpass filter using the Filter Designer

3 Applying the filter to the original noise signal to create a bandlimited noise 
signal

4 Comparing the time domain information of the original and filtered signals 
using the Signal Browser

5 Comparing the spectra of both signals using the Spectrum Viewer

Step 1: Importing a Signal into SPTool
To import a signal into SPTool from the workspace or disk, the signal must be 
either:

• A special MATLAB signal structure, such as that saved from a previous 
SPTool session

• A signal created as a variable (vector or matrix) in the MATLAB workspace 

For this example, create a new signal at the command line and then import it 
as a structure into SPTool:

1 Create a random signal in the MATLAB workspace by typing

randn('state',0);
x = randn(5000,1);

2 If SPTool is not already open, open SPTool by typing
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sptool

The SPTool window is displayed.

3 Select Import from the File menu in SPTool. The Import to SPTool dialog 
opens.

The variable x is displayed in the Workspace Contents list. (If it is not, 
select the From Workspace radio button to display the contents of the 
workspace.)

4 Select the signal and import it into the Data field:

a Make sure that Signal is selected in the Import As pull-down menu.

b Select the signal variable x in the Workspace Contents list.

c Click on the arrow to the left of the Data field or type x in the Data field. 

d Type 5000 in the Sampling Frequency field.

e Name the signal by typing noise in the Name field.

f Press OK.

At this point, the signal noise[vector] is selected in SPTool’s Signals list.
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Filtering and Analysis of Noise
Note  You can import filters and spectra into SPTool in much the same way as 
you import signals. See “Importing Filters and Spectra into SPTool” on 
page 6-40 for specific details.

You can also import signals from MAT-files on your disk, rather than from the 
workspace. See “Loading Variables from the Disk” on page 6-44 for more 
information.

Type help sptool for information about importing from the command line.

Step 2: Designing a Filter
You can import an existing filter into SPTool, or you can design and edit a new 
filter using the Filter Designer. 

In this example:

1 Open a default filter in the Filter Designer.

2 Specify an equiripple bandpass FIR filter. 

Opening the Filter Designer
To open the Filter Designer, press the New button in SPTool. This opens the 
Filter Designer with a default filter named filt1. 

Specifying the Bandpass Filter
Design an equiripple bandpass FIR filter with the following characteristics:

• Sampling frequency of 5000 Hz

• Stopband frequency ranges of [0 500] Hz and [1500 2500] Hz

• Passband frequency range of [750 1250] Hz

• Ripple in the passband of 0.01 dB

• Stopband attenuation of 75 dB

To modify your filter in the Filter Designer to meet these specifications:
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1 Change the filter sampling frequency to 5000 by entering this value in the 
Sampling Frequency text box.

2 Select Equiripple FIR from the Algorithm list.

3 Select bandpass from the Type list.

4 Set the passband edge frequencies by entering 750 for Fp1 and 1250 for Fp2.

5 Set the stopband edge frequencies by entering 500 for Fs1 and 1500 for Fs2.

6 Type 0.01 into the Rp field and 75 into the Rs field.

Rp sets the maximum passband ripple and Rs sets the stopband attenuation 
for the filter.

7 Press the Apply button to design the new filter.When the new filter is 
designed, the magnitude response of the filter is displayed with a solid line 
in the display region.
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Filtering and Analysis of Noise
The resulting filter is an order-78 bandpass equiripple filter.

Note  You can use the solid line in the plot to modify your filter design. See 
“Redesigning a Filter Using the Magnitude Plot” on page 6-50 for more 
information.

Step 3: Applying a Filter to a Signal
When you apply a filter to a signal, you create a new signal in SPTool 
representing the filtered signal. 

To apply the filter filt1 you just created to the signal noise:

1 Select SPTool from the Window menu in the Filter Designer.
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2 Select the signal noise[vector] from the Signals list and select the filter 
(named filt1[design]) from the Filters list.

Press Apply to apply the filter filt1 to the signal noise. The Apply Filter 
dialog box is displayed
.

3 Keep the default filter structure selected in the Algorithm list. 

4 Name the new signal by typing blnoise in the Output Signal field in this 
dialog box.
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5 Press OK to close the Apply Filter dialog box.

The filter is applied to the selected signal and the filtered signal 
blnoise[vector] is listed in the Signals list in SPTool.

Step 4: Analyzing a Signal
You can analyze and print signals using the Signal Browser. You can also play 
the signals if your computer has audio output capabilities. 

For example, compare the signal noise to the filtered signal blnoise: 

1 Shift+click on the noise and blnoise signals in the Signals list of SPTool to 
select both signals.

2 Press the View button under the Signals list.

The Signal Browser is activated and both signals are displayed in the 
display region. (The names of both signals are shown above the display 
region.) Initially, the original noise signal covers up the bandlimited 
blnoise signal. 

3 Push the selection button on the toolbar, , to select the blnoise signal. 

The display area is updated. Now you can see the blnoise signal 
superimposed on top of the noise signal. The signals are displayed in 
different colors in both the display region and the panner. You can change 
the color of the selected signal using the Line Properties button on the 
toolbar, .
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Playing a Signal
When you press the Play button in the Signal Browser toolbar, , the active 
signal is played on the computer’s audio hardware:

1 To hear a portion of the active (selected) signal 

a Use the vertical markers to select a portion of the signal you want to play. 
Vertical markers are enabled by the  and  buttons.

b Press the Play button.

2 To hear the other signal

a Select the signal as in step 3 above. You can also select the signal directly 
in the display region. 

b Press the Play button again.

Printing a Signal
You can print from the Signal Browser using the Print button, .
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Filtering and Analysis of Noise
You can use the line display buttons to maximize the visual contrast between 
the signals by setting the line color for noise to gray and the line color for blnoise 
to white. Do this before printing two signals together.

Note  You can follow the same rules to print spectra, but you can’t print filter 
responses directly from SPTool. 

Use the Signal Browser region in the Preferences dialog box in SPTool to 
suppress printing of both the panner and the marker settings. 

To print both signals, press the Print button in the Signal Browser toolbar.

Step 5: Spectral Analysis in the Spectrum Viewer
You can analyze the frequency content of a signal using the Spectrum Viewer, 
which estimates and displays a signal’s power spectral density. 

For example, to analyze and compare the spectra of noise and blnoise:

1 Create a power spectral density (PSD) object, spect1, that is associated with 
the signal noise, and a second PSD object, spect2, that is associated with the 
signal blnoise.
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2 Open the Spectrum Viewer to analyze both of these spectra.

3 Print both spectra.

Creating a PSD Object From a Signal

1 Click on SPTool, or select SPTool from the Window menu of any active open 
GUI. SPTool is now the active window.

2 Select the noise[vector] signal in the Signals list of SPTool.

3 Press Create in the Spectra list.

The Spectrum Viewer is activated, and a PSD object (spect1) corresponding 
to the noise signal is created in the Spectra list. The PSD is not computed 
or displayed yet.

4 Press Apply in the Spectrum Viewer to compute and display the PSD 
estimate spect1 using the default parameters. 

The PSD of the noise signal is displayed in the display region. The 
identifying information for the PSD’s associated signal (noise) is displayed 
above the Parameters region. 

The PSD estimate spect1 is within 2 or 3 dB of 0, so the noise has a fairly 
“flat” power spectral density.

5 Follow steps 1 through 4 for the bandlimited noise signal blnoise to create a 
second PSD estimate spect2. 

The PSD estimate spect2 is flat between 750 and 1250 Hz and has 75 dB 
less power in the stopband regions of filt1.

Opening the Spectrum Viewer with Two Spectra

1 Reactivate SPTool again, as in step 1 above.

2 Shift+click on spect1 and spect2 in the Spectra list to select them both.

3 Press View in the Spectra list to reactivate the Spectrum Viewer and 
display both spectra together.
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Printing the Spectra
Before printing the two spectra together, use the color and line style selection 
button, , to differentiate the two plots by line style, rather than by color. 

To print both spectra:

1 Press the Print Preview button, , in the toolbar on the Spectrum 
Viewer.

2 From the Spectrum Viewer Print Preview window, drag the legend out of 
the display region so that it doesn’t obscure part of the plot.

3 Press the Print button in the Spectrum Viewer Print Preview window. 
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Exporting Signals, Filters, and Spectra
You can export SPTool signals, filters, and spectra as structures to the 
MATLAB workspace or to your disk.

In each case you:

1 Select the items in SPTool you want to export.

2 Select Export from the File menu.

Opening the Export Dialog Box
To save the filter filt1 you just created in this example, open the Export 
dialog box with filt1 preselected:

1 Select filt1 in the SPTool Filters list.

2 Select Export from the File menu.

The Export dialog box opens with filt1 preselected.
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Exporting a Filter to the MATLAB Workspace
To export the filter filt1 to the MATLAB workspace:

1 Select filt1 from the Export List and deselect all other items using 
Ctrl+click.

2 Press the Export to Workspace button.
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Accessing Filter Parameters
You can access filter parameters in the following two ways.

• “Accessing Filter Parameters in a Saved Filter”

• “Accessing Parameters in a Saved Spectrum”

Accessing Filter Parameters in a Saved Filter
The MATLAB structures created by SPTool have several associated fields, 
many of which are also MATLAB structures. See the MATLAB documentation 
for general information about MATLAB structures.

For example, after exporting a filter filt1 to the MATLAB workspace, type

filt1

to display the fields of the MATLAB filter structure. The tf, Fs, and specs 
fields of the structure contain the information that describes the filter. 

The tf Field: Accessing Filter Coefficients
The tf field is a structure containing the transfer function representation of 
the filter. Use this field to obtain the filter coefficients; 

• filt1.tf.num contains the numerator coefficients.

• filt1.tf.den contains the denominator coefficients.

The vectors contained in these structures represent polynomials in descending 
powers of z. The numerator and denominator polynomials are used to specify 
the transfer function

where:

• b is a vector containing the coefficients from the tf.num field.

• a is a vector containing the coefficients from the tf.den field.

• m is the numerator order.

• n is the denominator order.

H z( ) B z( )
A z( )
----------- b 1( ) b 2( )z 1– b nb 1+( )z m–+ + +

a 1( ) a 2( )z 1– a na 1+( )z n–+ + +
-----------------------------------------------------------------------------------------= =
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You can change the filter representation from the default transfer function to 
another form by using the tf2ss or tf2zp functions.

The Fs Field: Accessing Filter Sample Frequency
The Fs field contains the sampling frequency of the filter in hertz.

The specs Field: Accessing other Filter Parameters
The specs field is a structure containing parameters that you specified for the 
filter design. The first field, specs.currentModule, contains a string 
representing the most recent design method selected from the Filter Designer’s 
Algorithm list before you exported the filter. The possible contents of the 
currentModule field and the corresponding design methods are shown below.

Following the specs.currentModule field, there may be up to seven additional 
fields, with labels such as specs.fdremez, specs.fdfirls, etc. The design 
specifications for the most recently exported filter are contained in the field 
whose label matches the currentModule string. For example, if the specs 
structure is

filt1.specs

ans
currentModule: 'fdremez'
fdremez: [1x1 struct]

Contents of the currentModule field Design Method 

fdbutter Butterworth IIR

fdcheby1 Chebyshev Type I IIR

fdcheby2 Chebyshev Type II IIR

fdellip Elliptic IIR

fdfirls Least Squares FIR

fdkaiser Kaiser Window FIR

fdremez Equiripple FIR
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Accessing Filter Parameters
the filter specifications are contained in the fdremez field, which is itself a data 
structure. 

The specifications include the parameter values from the Specifications 
region of the Filter Designer, such as band edges and filter order. For example, 
the filter above has the following specifications stored in 
filt1.specs.fdremez:

filt1.specs.fdremez

ans = 
    setOrderFlag: 0
            type: 3
               f: [0 0.2000 0.3000 0.5000 0.6000 1]
               m: [6x1 double]
              Rp: 0.0100
              Rs: 75
              wt: [3.2371 1 3.2371]
           order: 78

Because certain filter parameters are unique to a particular design, this 
structure has a different set of fields for each filter design. 

The table below describes the possible fields associated with the filter design 
specification field (the specs field) that can appear in the exported structure.

Parameter Description

Beta Kaiser window β parameter.

f Contains a vector of band-edge frequencies, normalized so 
that 1 Hz corresponds to half the sample frequency.

Fpass Passband cutoff frequencies. Scalar for lowpass and 
highpass designs, two-element vector for bandpass and 
bandstop designs.

Fstop Stopband cutoff frequencies. Scalar for lowpass and 
highpass designs, two-element vector for bandpass and 
bandstop designs.
6-37



6 SPTool: A Signal Processing GUI Suite

6-3
Accessing Parameters in a Saved Spectrum
The following structure fields describe the spectra saved by SPTool. 

m The response magnitudes corresponding to the band-edge 
frequencies in f.

order Filter order.

Rp Passband ripple (dB)

Rs Stopband attenuation (dB)

setOrderFlag Contains 1 if the filter order was specified manually (i.e., 
the Minimum Order box in the Specifications region 
was not selected). Contains 0 if the filter order was 
computed automatically.

type Contains 1 for lowpass, 2 for highpass, 3 for bandpass, or 
4 for bandstop.

w3db -3 dB frequency for Butterworth IIR designs.

wind Vector of Kaiser window coefficients. 

Wn Cutoff frequency for the Kaiser window FIR filter when 
setOrderFlag = 1.

wt Vector of weights, one weight per frequency band.

Field Description

P The spectral power vector.

f The spectral frequency vector.

Parameter Description
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Accessing Filter Parameters
You can access the information in these fields as you do with every MATLAB 
structure. 

For example, if you export an SPTool PSD estimate spect1 to the workspace, 
type 

spect1.P 

to obtain the vector of associated power values.

confid A structure containing the confidence intervals data

• The confid.level field contains the chosen 
confidence level.

• The confid.Pc field contains the spectral power 
data for the confidence intervals. 

• The confid.enable field contains a 1 if confidence 
levels are enabled for the power spectral density.

signalLabel The name of the signal from which the power spectral 
density was generated.

Fs The associated signal’s sample rate.

Field Description
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Importing Filters and Spectra into SPTool
In addition to importing signals into SPTool, you can import filters or spectra 
into SPTool from either the workspace or from a file.

The procedures are very similar to those explained in:

• “Step 1: Importing a Signal into SPTool” on page 6-21 for loading variables 
from the workspace

• “Loading Variables from the Disk” on page 6-44 for loading variables from 
your disk

Importing Filters
When you import filters, first select the appropriate filter form from the Form 
list.

For every filter you specify a variable name or a value for the filter’s sampling 
frequency in the Sampling Frequency field. Each filter form requires different 
variables.

Transfer Function
For Transfer Function, you specify the filter by its transfer function 
representation:
0



Importing Filters and Spectra into SPTool
• The Numerator field specifies a variable name or value for the numerator 
coefficient vector b, which contains m+1 coefficients in descending powers of 
z.

• The Denominator field specifies a variable name or value for the 
denominator coefficient vector a, which contains n+1 coefficients in 
descending powers of z.

State Space
For State Space, you specify the filter by its state-space representation:

The A-Matrix, B-Matrix, C-Matrix, and D-Matrix fields specify a variable 
name or a value for each matrix in this system.

Zeros, Poles, Gain
For Zeros, Poles, Gain, you specify the filter by its zero-pole-gain 
representation:

• The Zeros field specifies a variable name or value for the zeros vector z, 
which contains the locations of m zeros. 

• The Poles field specifies a variable name or value for the zeros vector p, 
which contains the locations of n poles.

• The Gain field specifies a variable name or value for the gain k.

Second Order Sections
For 2nd Order Sections you specify the filter by its second-order section 
representation:

H z( ) B z( )
A z( )
----------- b 1( ) b 2( )z 1– b m 1+( )z m–+ + +

a 1( ) a 2( )z 1– a n 1+( )z n–+ + +
---------------------------------------------------------------------------------------= =

x· Ax Bu+=

y Cx Du+=

H z( ) Z z( )
P z( )
---------- k z z 1( )–( ) z z 2( )–( ) z z m( )–( )

z p 1( )–( ) z p 2( )–( ) z p n( )–( )
------------------------------------------------------------------------------------= =
6-41
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The SOS Matrix field specifies a variable name or a value for the L-by-6 SOS 
matrix

whose rows contain the numerator and denominator coefficients bik and aik of 
the second-order sections of H(z).

Note  If you import a filter that was not created in SPTool, you can only edit 
that filter using the Pole/Zero Editor.

Importing Spectra
When you import a power spectral density (PSD), you specify:

• A variable name or a value for the PSD vector in the PSD field

• A variable name or a value for the frequency vector in the Freq. Vector field

The PSD values in the PSD vector correspond to the frequencies contained in 
the Freq. Vector vector; the two vectors must have the same length.

H z( ) Hk z( )

k 1=

L

∏
b0k b1kz 1– b2kz 2–+ +

1 a1kz 1– a2kz 2–+ +
----------------------------------------------------------

k 1=

L

∏= =

sos

b01 b11 b21 1 a11 a21

b02 b12 b22 1 a12 a22

b0L b1L b2L 1 a1L a2L

=
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Loading Variables from the Disk
To import variables representing signals, filters, or spectra from a MAT-file on 
your disk;

1 Select the From Disk radio button and do either of the following:

- Type the name of the file you want to import into the MAT-file Name field 
and press either the Tab or the Enter key on your keyboard.

- Select Browse, and then find and select the file you want to import using 
the Select File to Open dialog. Press OK to close that dialog.

In either case, all variables in the MAT-file you selected are displayed in the 
File Contents list. 

2 Select the variables to be imported into SPTool.

You can now import one or more variables from the File Contents list into 
SPTool, as long as these variables are scalars, vectors, or matrices.
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Selecting Signals, Filters, and Spectra in SPTool
All signals, filters, or spectra listed in SPTool exist as special MATLAB 
structures. You can bring data representing signals, filters, or spectra into 
SPTool from the MATLAB workspace. In general, you can select one or several 
items in a given list box. An item is selected when it is highlighted.

The Signals list shows all vector and array signals in the current SPTool 
session.

The Filters list shows all designed and imported filters in the current SPTool 
session. 

The Spectra list shows all spectra in the current SPTool session. 

You can select a single data object in a list, a range of data objects in a list, or 
multiple separate data objects in a list. You can also have data objects 
simultaneously selected in different lists:

• To select a single item, click on it. All other items in that list box become 
deselected.

• To add or remove a range of items, Shift+click on the items at the top and 
bottom of the section of the list that you want to add. You can also drag your 
mouse pointer to select these items.

• To add a single data object to a selection or remove a single data object from 
a multiple selection, Ctrl+click on the object. 
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Editing Signals, Filters, or Spectra in SPTool
You can edit selected items in SPTool by:

1 Selecting the names of the signals, filters, or spectra you want to edit.

2 Selecting the appropriate Edit menu item:

- Duplicate to copy an item in an SPTool list

- Clear to delete an item in an SPTool list

- Name to rename an item in an SPTool list

- Sampling Frequency to modify the sampling frequency associated with 
either a signal (and its associated spectra) or filter in an SPTool list

The pull-down menu next to each menu item shows the names of all selected 
items.

You can also edit the following signal characteristics by right-clicking in the 
display region of the Signal Browser, the Filter Visualization Tool, or the 
Spectrum Viewer:

• The signal name

• The sampling frequency

• The line style properties

Note  If you modify the sampling frequency associated with a signal’s 
spectrum using the right-click menu on the Spectrum Viewer display region, 
the sampling frequency of the associated signal is automatically updated.
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Designing a Filter with the Pole/Zero Editor
To design a filter transfer function using the Filter Designer Pole/Zero Editor:

1 Select the Pole/Zero Editor option from the Algorithm list to open the 
Pole/Zero Editor in the Filter Designer display.

2 Enter the desired filter gain in the Gain edit box.

3 Select a pole or zero (or conjugate pair) by selecting one of the  (pole) or  
(zero) symbols on the plot.

4 Choose the coordinates to work in by specifying Polar or Rectangular from 
the Coordinates list.

5 Specify the new location(s) of the selected pole, zero, or conjugate pair by 
typing values into the Mag and Angle fields (for angular coordinates) or X 
and Y (for rectangular coordinates) fields. Alternatively, position the poles 
and zeros by dragging the  and  symbols.

6 Use the Conjugate pair check box to create a conjugate pair from a lone pole 
or zero, or to break a conjugate pair into two individual poles or zeros.

Design a new filter or edit an existing filter in the same way. 

Note  Keep the Filter Visualization Tool (FVTool) open while designing a 
filter with the Pole/Zero Editor. Any changes that you make to the filter 
transfer function in the Pole/Zero Editor are then simultaneously reflected in 
the response plots of FVTool.
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6 SPTool: A Signal Processing GUI Suite

6-4
Positioning Poles and Zeros
You can use your mouse to move poles and zeros around the pole/zero plot and 
modify your filter design.

You can move both members of a conjugate pair simultaneously by 
manipulating just one of the poles or zeros. 

To ungroup conjugates, select the desired pair and clear Conjugate pair in the 
Specifications region on the Filter Designer.

When you place two or more poles (or two or more zeros) directly on top of each 
other, a number is displayed next to the symbols (on the left for poles, and on 
the right for zeros) indicating the number of poles or zeros at that location (e.g., 

 for three zeros). This number makes it easy to keep track of all the poles 
and zeros in the plot area, even when several are superimposed on each other 

Icon Description

Enable moving poles or zeros by dragging on the plot

Add pole

Add zero

Erase poles or zeros
8



Designing a Filter with the Pole/Zero Editor
and are not visually differentiable. Note, however, that this number does not 
indicate the multiplicity of the poles or zeros to which it is attached. 

To detect whether or not a set of poles or zeros are truly multiples, use the zoom 
tools to magnify the region around the poles or zeros in question. Because 
numerical limitations usually prevent any set of poles or zeros from sharing 
exactly the same value, at a high enough zoom level even truly multiple poles 
or zeros appear distinct from each other. 

A common way to assess whether a particular group of poles or zeros contains 
multiples is by comparing the mutual proximity of the group members against 
a selected threshold value. As an example, the residuez function defines a pole 
or zero as being a multiple of another pole or zero if the absolute distance 
separating them is less than 0.1% of the larger pole or zero’s magnitude.
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6 SPTool: A Signal Processing GUI Suite

6-5
Redesigning a Filter Using the Magnitude Plot
After designing a filter in the Filter Designer, you can redesign it by dragging 
the specification lines on the magnitude plot. Use the specification lines to 
change passband ripple, stopband attenuation, and edge frequencies. 

In the following example, create a Chebyshev filter and modify it by dragging 
the specification lines:

1 Select Chebyshev Type I IIR from the Algorithm menu.

2 Select highpass from the Type menu.

3 Type 2000 in the Sampling Frequency field. 

4 Set the following parameters:

- Fp = 800

- Fs = 700

- Rp = 2.5

- Rs = 35

5 Select Minimum Order so the Filter Designer can calculate the lowest filter 
order that produces the desired characteristics.

6 Press Apply to compute the filter and update the response plot.

7 Position the cursor over the horizontal filter specification line for the 
stopband. This is the first (leftmost) horizontal specification line you see.

The cursor changes to the up/down drag indicator.

8 Drag the line until the Rs (stopband attenuation) field reads 100.

Note  The Order value in the Measurements region changes because a 
higher filter order is needed to meet the new specifications.
0



Setting Preferences
Setting Preferences
Use Preferences from the SPTool File menu to customize displays and certain 
parameters for SPTool and its four component GUIs. The new settings are 
saved on disk and are used when you restart SPTool from MATLAB.

In the Preferences regions, you can:

• Select colors and markers for all displays.

• Select colors and line styles for displayed signals.

• Configure labels, and enable/disable markers, panner, and zoom in the 
Signal Browser.

• Configure display parameters, and enable/disable markers and zoom in the 
Spectrum Viewer.

• Specify FFT length, and enable/disable mouse zoom and grid in the Filter 
Designer.

• Enable/disable use of a default session file.

• Export filters for use with the Control System Toolbox.

• Enable/disable search for plug-ins at start-up.

Note  You can set MATLAB preferences that affect the Filter Visualization 
Tool only from within FVTool by selecting Preferences from the File menu. 
You can set FVTool-specific preferences using the Analysis Parameters on 
the Analysis menu.

When you first select Preferences, the Preferences dialog box opens with 
Markers selected by default. 
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6 SPTool: A Signal Processing GUI Suite

6-5
You can:

• Change the settings for markers from this panel of the Preferences dialog.

• Choose any of the other categories listed to customize its settings.

Click once on any listed category in the left pane of the Preferences dialog to 
select it.
2



Making Signal Measurements with Markers
Making Signal Measurements with Markers
You can use the markers on the Signal Browser or the Spectrum Viewer to 
make measurements on either of the following:

• A signal in the Signal Browser

• A power spectral density plotted in the Spectrum Viewer

The following marker buttons are included

.

To make a measurement:

1 Select a line to measure (or play, if you are in the Signal Browser).

2 Select one of the marker buttons to apply a marker to the displayed signal.

3 Position a marker in the main display area by grabbing it with your mouse 
and dragging:

Icon Description

Toggle markers on/off

Vertical markers

Horizontal markers

Vertical markers with tracking

Vertical markers with tracking and slope

Display peaks (local maxima)

Display valleys (local minima)
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6 SPTool: A Signal Processing GUI Suite

6-5
a Select a marker setting. If you choose the Vertical, Track, or Slope 
buttons, you can drag a marker to the right or left. If you choose the 
Horizontal button, you can drag a marker up or down.

b Move the mouse over the marker (1 or 2) that you want to drag.

The hand cursor with the marker number inside it  is displayed when 
your mouse passes over a marker.

c Drag the marker to where you want it on the signal. 

As you drag a marker, the bottom of the Signal Browser shows the current 
position of both markers. Depending on which marker setting you select, 
some or all of the following fields are displayed—x1, y1, x2, y2, dx, dy, m. 
These fields are also displayed when you print from the Signal Browser, 
unless you suppress them. 

You can also position a marker by typing its x1 and x2 or y1 and y2 values in 
the region at the bottom. 
4
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7 Function Reference

7-2
Functions — Categorical List
This section contains brief descriptions of all functions in the Signal Processing 
Toolbox arranged by category.

“FIR Digital Filter Design”

“IIR Digital Filter Design”

“IIR FIlter Order Estimation”

“Filter Analysis”

“Filter Implementation”

“Analog Lowpass Filter Prototypes”

“Analog Filter Design”

“Analog Filter Transformation”

“Filter Discretization”

“Linear System Transformations”

“Windows”

“Transforms”

“Cepstral Analysis”

“Statistical Signal Processing and Spectral Analysis”

“Parametric Modeling”

“Linear Prediction”

“Multirate Signal Processing”

“Waveform Generation”

“Specialized Operations”

“Graphical User Interfaces”



Functions — Categorical List
FIR Digital Filter Design
Function Description

cfirpm Complex and nonlinear-phase equiripple FIR filter design

dfilt Discrete-time filters

fir1 Window-based finite impulse response filter design

fir2 Frequency sampling-based finite impulse response filter 
design

fircls Constrained least square FIR multiband filter design

fircls1 Constrained least square, lowpass and highpass, linear 
phase, FIR filter desig

firls Least square linear-phase FIR filter design

firpm Parks-McClellan optimal FIR filter design

firpmord Parks-McClellan optimal FIR filter order estimation

firrcos Raised cosine FIR filter design

gaussfir Gaussian FIR pulse-shaping filter design

intfilt Interpolation FIR filter design

kaiserord Kaiser window FIR filter design estimation parameters

sgolay Savitzky-Golay filter design
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7-4
IIR Digital Filter Design

IIR FIlter Order Estimation

Function Description

butter Butterworth analog and digital filter design

cheby1 Chebyshev Type I filter design (passband ripple)

cheby2 Chebyshev Type II filter design (stopband ripple)

dfilt Discrete-time filters

ellip Elliptic (Cauer) filter design

filtstates Filter states

maxflat Generalized digital Butterworth filter design

yulewalk Recursive digital filter design

Function Description

buttord Butterworth filter order and cutoff frequency

cheb1ord Chebyshev Type I filter order

cheb2ord Chebyshev Type II filter order

ellipord Minimum order for elliptic filters



Functions — Categorical List
Filter Analysis

Filter Implementation

Function Description

abs Absolute value (magnitude) (This is a MATLAB function.)

angle Phase angle (This is a MATLAB function.)

filternorm 2-norm or infinity-norm of a digital filter

freqs Frequency response of analog filters

freqspace Frequency spacing for frequency response (This is a MATLAB 
function.)

freqz Frequency response of digital filters

fvtool Filter Visualization Tool

grpdelay Average filter delay (group delay)

impz Impulse response of digital filters

phasedelay Phase delay response of digital filters

phasez Phase response of digital filters

stepz Step response of digital filters

unwrap Unwrap phase angles (This is a MATLAB function.)

zerophase Zero-phase reponse of digital filters

zplane Zero-pole plot

Function Description

conv Convolution and polynomial multiplication (This is a 
MATLAB function.)

conv2 Two-dimensional convolution (This is a MATLAB function.)

convmtx Convolution matrix

deconv Deconvolution and polynomial division (This is a MATLAB 
function.)
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7-6
Analog Lowpass Filter Prototypes

fftfilt FFT-based FIR filtering using overlap-add method

filter Filter data with recursive (IIR) or nonrecursive (FIR) filter 
(This is a MATLAB function.)

filter2 Two-dimensional digital filtering (This is a MATLAB 
function.)

filtfilt Zero-phase digital filtering

filtic Iinitial conditions for transposed direct-form II filter 
implementation

latcfilt Lattice and lattice-ladder filter implementation

medfilt1 One-dimensional median filtering

sgolayfilt Savitzky-Golay filtering

sosfilt Second-order (biquadratic) IIR digital filtering

upfirdn Upsample, apply FIR filter, and downsample

Function Description

besselap Bessel analog lowpass filter prototype

buttap Butterworth analog lowpass filter prototype

cheb1ap Chebyshev Type I analog lowpass filter prototype

cheb2ap Chebyshev Type II analog lowpass filter prototype

ellipap Elliptic analog lowpass filter prototype



Functions — Categorical List
Analog Filter Design

Analog Filter Transformation

Filter Discretization

Linear System Transformations

Function Description

besself Bessel analog filter design

butter Butterworth analog and digital filter design

cheby1 Chebyshev Type I filter design (passband ripple)

cheby2 Chebyshev Type II filter design (stopband ripple)

ellip Elliptic (Cauer) filter design

Function Description

lp2bp Transform lowpass analog filters to bandpass

lp2bs Transform lowpass analog filters to bandstop

lp2hp Transform lowpass analog filters to highpass

lp2lp Change cutoff frequency for lowpass analog filter

Function Description

bilinear Bilinear transformation method for analog-to-digital filter 
conversion

impinvar Impulse invariance method for analog-to-digital filter 
conversion

Function Description

latc2tf Convert lattice filter parameters to transfer function form

polystab Stabilize polynomial

polyscale Scale the roots of a polynomial
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7-8
residuez z-transform partial-fraction expansion

sos2ss Convert digital filter second-order section parameters to 
state-space form

sos2tf Convert digital filter second-order section data to transfer 
function form

sos2zp Convert digital filter second-order sections parameters to 
zero-pole-gain form

ss2sos Convert digital filter state-space parameters to second-order 
sections form

ss2tf Convert state-space filter parameters to transfer function 
form

ss2zp Convert state-space filter parameters to zero-pole-gain form

tf2latc Convert transfer function filter parameters to lattice filter 
form

tf2sos Convert digital filter transfer function data to second-order 
sections form

tf2ss Convert transfer function filter parameters to state-space 
form

tf2zp Convert continuous-time transfer function filter parameters 
to zero-pole-gain form 

tf2zpk Convert discrete-time transfer function filter parameters to 
zero-pole-gain form 

zp2sos Convert digital filter zero-pole-gain parameters to 
second-order sections form

zp2ss Convert zero-pole-gain filter parameters to state-space form

zp2tf Convert zero-pole-gain filter parameters to transfer function 
form



Functions — Categorical List
Windows
Function Description

barthannwin Modified Bartlett-Hann window

bartlett Bartlett window

blackman Blackman window

blackmanharris Minimum 4-term Blackman-Harris window

bohmanwin Bohman window

chebwin Chebyshev window

flattopwin Flat top window

gausswin Gaussian window

hamming Hamming window

hann Hann (Hanning) window

kaiser Kaiser window

nuttallwin Nuttall-defined minimum 4-term Blackman-Harris 
window

parzenwin Parzen (de la Valle-Poisson) window

rectwin Rectangular window

sigwin Signal processing windows

triang Triangular window

tukeywin Tukey (tapered cosine) window

window Window function gateway

wvtool Window Visualization Tool
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7-1
Transforms

Cepstral Analysis

Function Description

bitrevorder Permute input into bit-reversed order

czt Chirp z-transform

dct Discrete cosine transform (DCT)

dftmtx Discrete Fourier transform matrix

digitrevorder Permute input into digit-reversed order

fft One-dimensional fast Fourier transform (This is a MATLAB 
function.)

fft2 Two-dimensional fast Fourier transform (This is a MATLAB 
function.)

fftshift Rearrange FFT function outputs (This is a MATLAB 
function.)

goertzel Discrete Fourier transform using second order Goertzel 
algorithm

hilbert Discrete-time analytic signal using Hilbert transform

idct Inverse discrete cosine transform

ifft One-dimensional inverse fast Fourier transform (This is a 
MATLAB function.)

ifft2 Two-dimensional inverse fast Fourier transform (This is a 
MATLAB function.)

Function Description

cceps Complex cepstral analysis

icceps Inverse complex cepstrum

rceps Real cepstrum and minimum phase reconstruction
0



Functions — Categorical List
Statistical Signal Processing and Spectral Analysis
Function Description

corrcoef Correlation coefficient matrix (This is a MATLAB function.)

corrmtx Data matrix for autocorrelation matrix estimation

cov Covariance matrix (This is a MATLAB function.)

cpsd Cross power spectral density

dspdata DSP data parameter information

dspopts Spectral estimation parameter information

mscohere Magnitude squared coherence function

pburg Power spectral density using Burg method

pcov Power spectral density using covariance method

peig Pseudospectrum using eigenvector method

periodogram Power spectral density (PSD) using a periodogram

pmcov Power spectral density using modified covariance method

pmtm Power spectral density using multitaper method (MTM)

pmusic Power spectral density using MUSIC algorithm

pwelch Power spectral density (PSD) using Welch’s method

pyulear Power spectral density using Yule-Walker AR method

rooteig Frequency and power content estimate using eigenvector 
method

rootmusic Frequency and power content estimate using root MUSIC 
algorithm

spectrum Spectral estimation functions

tfestimate Transfer function estimate

xcorr Cross-correlation function
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7-1
Parametric Modeling

Linear Prediction

xcorr2 Two-dimensional cross-correlation

xcov Cross-covariance function (equal to mean-removed 
cross-correlation)

Function Description

arburg Estimate AR model parameters using Burg method

arcov Estimate AR model parameters using covariance method

armcov Estimate AR model parameters using modified covariance 
method

aryule Estimate AR model parameters using Yule-Walker method

ident See the System Identification Toolbox documentation

invfreqs Identify continuous-time filter parameters from frequency 
response data

invfreqz Identify discrete-time filter parameters from frequency 
response data

prony Prony’s method for time domain IIR filter design

stmcb Compute linear model using Steiglitz-McBride iteration

Function Description

ac2poly Convert autocorrelation sequence to prediction polynomial

ac2rc Convert autocorrelation sequence to reflection coefficients

is2rc Convert inverse sine parameters to reflection coefficients

lar2rc Convert log area ratio parameters to reflection coefficients

levinson Levinson-Durbin recursion

lpc Linear prediction filter coefficients
2



Functions — Categorical List
lsf2poly Convert line spectral frequencies to prediction filter 
coefficients

poly2ac Convert prediction filter polynomial to autocorrelation 
sequence

poly2lsf Convert prediction filter coefficients to line spectral 
frequencies

poly2rc Convert prediction filter polynomial to reflection coefficients

rc2ac Convert reflection coefficients to autocorrelation sequence

rc2is Convert reflection coefficients to inverse sine parameters

rc2lar Convert reflection coefficients to log area ratio parameters

rc2poly Convert reflection coefficients to prediction filter polynomial

rlevinson Reverse Levinson-Durbin recursion

schurrc Compute reflection coefficients from autocorrelation sequence
7-13
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7-1
Multirate Signal Processing

Waveform Generation

Specialized Operations

Function Description

decimate Decimation — decrease sampling rate

downsample Decrease sampling rate by integer factor

interp Interpolation — increase sampling rate by integer factor

resample Change sampling rate by rational factor

upfirdn Upsample, apply FIR filter, and downsample

upsample Increase sampling rate by integer factor

Function Description

chirp Swept-frequency cosine

diric Dirichlet or periodic sinc function

gauspuls Gaussian-modulated sinusoidal pulse

gmonopuls Gaussian monopulse

pulstran Pulse train

rectpuls Sampled aperiodic rectangle

sawtooth Sawtooth or triangle wave

sinc Sinc function

square Square wave

tripuls Sampled aperiodic triangle

vco Voltage controlled oscillator

Function Description

buffer Buffer signal vector into matrix of data frames
4



Functions — Categorical List
cell2sos Convert cell array for second-order sections to second-order 
sections matrix

cplxpair Group complex numbers into complex conjugate pairs (This is 
a MATLAB function.)

demod Demodulation for communications simulation

dpss Discrete prolate spheroidal sequences (Slepian sequences)

dpssclear Remove discrete prolate spheroidal sequences from database

dpssdir Discrete prolate spheroidal sequences database directory

dpssload Load discrete prolate spheroidal sequences from database

dpsssave Save discrete prolate spheroidal sequences in database

eqtflength Equalize lengths of transfer function's numerator and 
denominator

modulate Modulation for communications simulation

seqperiod Compute the period of a sequence

sos2cell Convert second-order sections matrix to cell arrays

spectrogram Time-dependent frequency analysis

strips Strip plot

udecode Decode 2n-level quantized integer inputs to floating-point 
outputs

uencode Quantize and encode floating-point inputs to integer outputs
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7-1
Graphical User Interfaces
Function Description

fdatool Filter Design and Analysis Tool

fvtool Filter Visualization Tool

sptool Interactive digital signal processing tool

wintool Window Design and Analysis Tool

wvtool Window Visualization Tool
6



Functions — Alphabetical List
Functions — Alphabetical List 7

This section contains function reference pages listed alphabetically.
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abs
7absPurpose Absolute value (magnitude)

abs is a MATLAB function.

Signal-Specific 
Example

Calculate the magnitude of the FFT of a sequence.

t = (0:99)/100; % Time vector
x = sin(2*pi*15*t) + sin(2*pi*40*t); % Signal
y = fft(x); % Compute DFT of x
m = abs(y); % Magnitude

Plot the magnitude:

f = (0:length(y)-1)'/length(y)*100; % Frequency vector
plot(f,m)
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ac2poly
7ac2polyPurpose Convert autocorrelation sequence to prediction polynomial

Syntax a = ac2poly(r)
[a,efinal] = ac2poly(r)

Description a = ac2poly(r) finds the linear prediction, FIR filter polynomial a 
corresponding to the autocorrelation sequence r. a is the same length as r, and 
a(1) = 1. The prediction filter polynomial represents the coefficients of the 
prediction filter whose output produces a signal whose autocorrelation 
sequence is approximately the same as the given autocorrelation sequence r.

[a,efinal] = ac2poly(r) returns the final prediction error efinal, 
determined by running the filter for length(r) steps.

Remarks You can apply this function to real or complex data.

Examples Consider the autocorrelation sequence:

r = [5.0000 -1.5450 -3.9547 3.9331 1.4681 -4.7500];

The corresponding prediction filter polynomial is

[a,efinal] = ac2poly(r)

a =
    1.0000    0.6147    0.9898    0.0004    0.0034   -0.0077

efinal =

    0.1791

References [1] Kay, S.M. Modern Spectral Estimation. Englewood Cliffs, NJ: 
Prentice-Hall, 1988.

See Also ac2rc, poly2ac, rc2poly
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ac2rc
7ac2rcPurpose Convert autocorrelation sequence to reflection coefficients

Syntax [k,r0] = ac2rc(r)

Description [k,r0] = ac2rc(r) finds the reflection coefficients k corresponding to the 
autocorrelation sequence r. r0 contains the initial zero-lag autocorrelation. 
These reflection coefficients can be used to specify the lattice prediction filter 
that produces a sequence with approximately the same autocorrelation 
sequence as the given sequence r.

Remarks You can apply this function to real or complex data.

References [1] Kay, S.M. Modern Spectral Estimation. Englewood Cliffs, NJ: 
Prentice-Hall, 1988.

See Also ac2poly, poly2rc, rc2ac
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angle
7anglePurpose Phase angle

angle is a MATLAB function.

Signal-specific 
Example

Calculate the phase of the FFT of a sequence.

t = (0:99)/100; % Time vector
x = sin(2*pi*15*t) + sin(2*pi*40*t); % Signal
y = fft(x); % Compute DFT of x
p = unwrap(angle(y)); % Phase

Plot the phase:

f = (0:length(y)-1)'/length(y)*100; % Frequency vector
plot(f,p)
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arburg
7arburgPurpose Estimate AR model parameters using Burg method

Syntax a = arburg(x,p)
[a,e] = arburg(x,p)
[a,e,k] = arburg(x,p)

Description a = arburg(x,p) uses the Burg method to fit a pth order autoregressive (AR) 
model to the input signal, x, by minimizing (least squares) the forward and 
backward prediction errors while constraining the AR parameters to satisfy 
the Levinson-Durbin recursion. x is assumed to be the output of an AR system 
driven by white noise. Vector a contains the normalized estimate of the AR 
system parameters, A(z), in descending powers of z.

Since the method characterizes the input data using an all-pole model, the 
correct choice of the model order p is important.

[a,e] = arburg(x,p) returns the variance estimate, e, of the white noise 
input to the AR model.

[a,e,k] = arburg(x,p) returns a vector, k, of reflection coefficients.

See Also arcov, armcov, aryule, lpc, pburg, prony

H z( ) e
A z( )
------------ e

1 a2z 1– … a p 1+( )z
p–

+ + +
----------------------------------------------------------------------= =
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arcov
7arcovPurpose Estimate AR model parameters using covariance method 

Syntax a = arcov(x,p)
[a,e] = arcov(x,p)

Description a = arcov(x,p) uses the covariance method to fit a pth order autoregressive 
(AR) model to the input signal, x, which is assumed to be the output of an AR 
system driven by white noise. This method minimizes the forward prediction 
error in the least-squares sense. Vector a contains the normalized estimate of 
the AR system parameters, A(z), in descending powers of z.

Because the method characterizes the input data using an all-pole model, the 
correct choice of the model order p is important.

[a,e] = arcov(x,p) returns the variance estimate, e, of the white noise input 
to the AR model.

See Also arburg, armcov, aryule, lpc, pcov, prony

H z( ) e
A z( )
------------ e

1 a2z 1– … a p 1+( )z
p–

+ + +
----------------------------------------------------------------------= =
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armcov
7armcovPurpose Estimate AR model parameters using modified covariance method 

Syntax a = armcov(x,p)
[a,e] = armcov(x,p)

Description a = armcov(x,p) uses the modified covariance method to fit a pth order 
autoregressive (AR) model to the input signal, x, which is assumed to be the 
output of an AR system driven by white noise. This method minimizes the 
forward and backward prediction errors in the least-squares sense. Vector a 
contains the normalized estimate of the AR system parameters, A(z), in 
descending powers of z.

Because the method characterizes the input data using an all-pole model, the 
correct choice of the model order p is important.

[a,e] = armcov(x,p) returns the variance estimate, e, of the white noise 
input to the AR model.

See Also arburg, arcov, aryule, lpc, pmcov, prony

H z( ) e
A z( )
------------ e

1 a2z 1– … a p 1+( )z
p–

+ + +
----------------------------------------------------------------------= =
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aryule
7aryulePurpose Estimate AR model parameters using Yule-Walker method

Syntax a = aryule(x,p)
[a,e] = aryule(x,p)
[a,e,k] = aryule(x,p)

Description a = aryule(x,p) uses the Yule-Walker method, also called the 
autocorrelation method, to fit a pth order autoregressive (AR) model to the 
windowed input signal, x, by minimizing the forward prediction error in the 
least-squares sense. This formulation leads to the Yule-Walker equations, 
which are solved by the Levinson-Durbin recursion. x is assumed to be the 
output of an AR system driven by white noise. Vector a contains the normalized 
estimate of the AR system parameters, A(z), in descending powers of z.

Because the method characterizes the input data using an all-pole model, the 
correct choice of the model order p is important.

[a,e] = aryule(x,p) returns the variance estimate, e, of the white noise 
input to the AR model.

[a,e,k] = aryule(x,p) returns a vector, k, of reflection coefficients.

See Also arburg, arcov, armcov, lpc, prony, pyulear

H z( ) e
A z( )
------------ e

1 a2z 1– … a p 1+( )z
p–

+ + +
----------------------------------------------------------------------= =
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barthannwin
7barthannwinPurpose Modified Bartlett-Hann window

Syntax w = barthannwin(n)

Description w = barthannwin(n) returns an n-point modified Bartlett-Hann window in 
the column vector w. Like Bartlett, Hann, and Hamming windows, this window 
has a mainlobe at the origin and asymptotically decaying sidelobes on both 
sides. It is a linear combination of weighted Bartlett and Hann windows with 
near sidelobes lower than both Bartlett and Hann and with far sidelobes lower 
than both Bartlett and Hamming windows. The mainlobe width of the modified 
Bartlett-Hann window is not increased relative to either Bartlett or Hann 
window mainlobes.

Note  The Hann window is also called the Hanning window.

Examples Create a 64-point Bartlett-Hann window and display the result using WVTool:

N=64;
wvtool(barthannwin(N))
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barthannwin
Algorithm The equation for computing the coefficients of a Modified Bartlett-Hanning 
window is 

where .

References [1] Ha, Y.H., and J.A. Pearce. “A New Window and Comparison to Standard 
Windows.” IEEE Transactions on Acoustics, Speech, and Signal Processing. 
Vol. 37, No. 2, (February 1999). pp. 298-301.

[2] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. 
Upper Saddle River, NJ: Prentice-Hall, 1999, p. 468.

See Also bartlett, blackmanharris, bohmanwin, nuttallwin, parzenwin, rectwin, 
triang, window, wintool, wvtool
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⎛ ⎞– 0.38 2π k
n 1–
------------- 0.5–⎝ ⎠

⎛ ⎞
⎝ ⎠
⎛ ⎞cos+=

0 k n 1–( )≤ ≤
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7bartlettPurpose Bartlett window

Syntax w = bartlett(n)

Description w = bartlett(n) returns an n-point Bartlett window in the column vector w, 
where n must be a positive integer. The coefficients of a Bartlett window are 
computed as follows:

• For n odd

• For n even

The Bartlett window is very similar to a triangular window as returned by the 
triang function. The Bartlett window always ends with zeros at samples 1 and 
n, however, while the triangular window is nonzero at those points. For n odd, 
the center n-2 points of bartlett(n) are equivalent to triang(n-2).

Note  If you specify a one-point window (set n=1), the value 1 is returned.

Examples Create a 64-point Bartlett window and display the result using WVTool:

N=64;
wvtool(bartlett(N))

w k 1+[ ]

2k
n 1–
------------- 0 k n 1–

2
-------------≤ ≤,

2 2 k( )
n 1–
-------------–

n 1–
2

------------- k n 1–≤ ≤,⎩
⎪
⎨
⎪
⎧

=

w k 1+[ ]

2 k( )
n 1–
------------- 0 k n

2
--- 1–≤ ≤,

2 n k– 1–( )
n 1–

------------------------------ n
2
--- k n 1–≤ ≤,⎩

⎪
⎨
⎪
⎧

=
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References [1] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. 
Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 468-471.

See Also barthannwin, blackmanharris, bohmanwin, nuttallwin, parzenwin, rectwin, 
triang, window, wintool, wvtool
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7besselapPurpose  Bessel analog lowpass filter prototype

Syntax [z,p,k] = besselap(n)

Description [z,p,k] = besselap(n) returns the poles and gain of an order n Bessel 
analog lowpass filter prototype. n must be less than or equal to 25. The function 
returns the poles in the length n column vector p and the gain in scalar k. z is 
an empty matrix because there are no zeros. The transfer function is

besselap normalizes the poles and gain so that at low frequency and high 
frequency the Bessel prototype is asymptotically equivalent to the Butterworth 
prototype of the same order [1]. The magnitude of the filter is less than  
at the unity cutoff frequency Ωc = 1. 

Analog Bessel filters are characterized by a group delay that is maximally flat 
at zero frequency and almost constant throughout the passband. The group 
delay at zero frequency is

Algorithm besselap finds the filter roots from a lookup table constructed using the 
Symbolic Math Toolbox.

References [1] Rabiner, L.R., and B. Gold. Theory and Application of Digital Signal 
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975. Pgs. 228-230.

See Also besself, buttap, cheb1ap, cheb2ap, ellipap

Also see the Symbolic Math Toolbox documentation.

H s( ) k
s p 1( )–( ) s p 2( )–( ) s p n( )–( )

--------------------------------------------------------------------------------=

1 2⁄

2n( )!
2nn!
--------------⎝ ⎠

⎛ ⎞ 1 n⁄
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7besselfPurpose Bessel analog filter design

Syntax [b,a] = besself(n,Wo)
[z,p,k] = besself(...)
[A,B,C,D] = besself(...)

Description besself designs lowpass, analog Bessel filters, which are characterized by 
almost constant group delay across the entire passband, thus preserving the 
wave shape of filtered signals in the passband. besself does not support the 
design of digital Bessel filters.

[b,a] = besself(n,Wo) designs an order n lowpass analog Bessel filter, 
where Wo is the frequency up to which the filter’s group delay is approximately 
constant.  Larger values of the filter order (n) produce a group delay that better 
approximates a constant up to frequency Wo. 

besself returns the filter coefficients in the length n+1 row vectors b and a, 
with coefficients in descending powers of s, derived from this transfer function:

[z,p,k] = besself(...)  returns the zeros and poles in length n or 2*n 
column vectors z and p and the gain in the scalar k. 

[A,B,C,D] = besself(...) returns the filter design in state-space form, 
where A, B, C, and D are

and u is the input, x is the state vector, and y is the output.

Examples Design a fifth-order analog lowpass Bessel filter with an approximate constant 
group delay up to 10,000 rad/s and plot the frequency response of the filter 
using freqs:

[b,a] = besself(5,10000);
freqs(b,a)  % Plot frequency response

H s( ) B s( )
A s( )
----------- b 1( )sn b 2( )sn 1– b n 1+( )+ + +

sn a 2( )sn 1– a n 1+( )+ + +
-------------------------------------------------------------------------------------= =

x· Ax Bu+=

y Cx Du+=
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Limitations Lowpass Bessel filters have a monotonically decreasing magnitude response, 
as do lowpass Butterworth filters. Compared to the Butterworth, Chebyshev, 
and elliptic filters, the Bessel filter has the slowest rolloff and requires the 
highest order to meet an attenuation specification.

For high order filters, the state-space form is the most numerically accurate, 
followed by the zero-pole-gain form. The transfer function coefficient form is 
the least accurate; numerical problems can arise for filter orders as low as 15.

Algorithm besself performs a four-step algorithm:

1 It finds lowpass analog prototype poles, zeros, and gain using the besselap 
function.

2 It converts the poles, zeros, and gain into state-space form.

3 It transforms the lowpass prototype into a lowpass filter that meets the 
design specifications.

4 It converts the state-space filter back to transfer function or zero-pole-gain 
form, as required.

See Also besselap, butter, cheby1, cheby2, ellip
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7bilinearPurpose Bilinear transformation method for analog-to-digital filter conversion

Syntax [zd,pd,kd] = bilinear(z,p,k,fs)
[zd,pd,kd] = bilinear(z,p,k,fs,fp)
[numd,dend] = bilinear(num,den,fs)
[numd,dend] = bilinear(num,den,fs,fp)
[Ad,Bd,Cd,Dd] = bilinear(A,B,C,D,fs)
[Ad,Bd,Cd,Dd] = bilinear(A,B,C,D,fs,fp)

Description The bilinear transformation is a mathematical mapping of variables. In digital 
filtering, it is a standard method of mapping the s or analog plane into the z or 
digital plane. It transforms analog filters, designed using classical filter design 
techniques, into their discrete equivalents.

The bilinear transformation maps the s-plane into the z-plane by

This transformation maps the jΩ axis (from Ω = -∞ to +∞) repeatedly around 
the unit circle ( , from ω = −π to π) by

bilinear can accept an optional parameter Fp that specifies prewarping. fp, in 
hertz, indicates a “match” frequency, that is, a frequency for which the 
frequency responses before and after mapping match exactly. In prewarped 
mode, the bilinear transformation maps the s-plane into the z-plane with

With the prewarping option, bilinear maps the jΩ axis (from Ω = -∞ to +∞) 
repeatedly around the unit circle ( , from ω = −π to π) by

H z( ) H s( )
s 2fs

z 1–
z 1+
------------=

=

ejω

ω 2tan 1– Ω
2fs
--------⎝ ⎠

⎛ ⎞=

H z( ) H s( )
s

2πfp

π
fp

fs
----⎝ ⎠

⎛ ⎞tan
------------------------ z 1–( )

z 1+( )
-----------------=

=

ejω
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bilinear
In prewarped mode, bilinear matches the frequency 2πfp (in radians per 
second) in the s-plane to the normalized frequency 2πfp/fs (in radians per 
second) in the z-plane.

The bilinear function works with three different linear system 
representations: zero-pole-gain, transfer function, and state-space form.

Zero-Pole-Gain

[zd,pd,kd] = bilinear(z,p,k,fs) and 

[zd,pd,kd] = bilinear(z,p,k,fs,fp) convert the s-domain transfer 
function specified by z, p, and k to a discrete equivalent. Inputs z and p are 
column vectors containing the zeros and poles, k is a scalar gain, and fs is the 
sampling frequency in hertz. bilinear returns the discrete equivalent in 
column vectors zd and pd and scalar kd. The optional match frequency, fp is in 
hertz and is used for prewarping.

Transfer Function

[numd,dend] = bilinear(num,den,fs) and

[numd,dend] = bilinear(num,den,fs,fp) convert an s-domain transfer 
function given by num and den to a discrete equivalent. Row vectors num and den 
specify the coefficients of the numerator and denominator, respectively, in 
descending powers of s.

fs is the sampling frequency in hertz. bilinear returns the discrete equivalent 
in row vectors numd and dend in descending powers of z (ascending powers 
of z-1). fp is the optional match frequency, in hertz, for prewarping.

ω 2tan 1–
Ω π

fp
fs
----⎝ ⎠

⎛ ⎞tan

2πfp
-----------------------------

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

num s( )
den s( )
-------------------- num 1( )sn num n( )s num n 1+( )+ + +

den 1( )sm den m( )s den m 1+( )+ + +
-----------------------------------------------------------------------------------------------------------=
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State-Space

[Ad,Bd,Cd,Dd] = bilinear(A,B,C,D,fs) and

[Ad,Bd,Cd,Dd] = bilinear(A,B,C,D,fs,fp) convert the continuous-time 
state-space system in matrices A, B, C, D

to the discrete-time system:

fs is the sampling frequency in hertz. bilinear returns the discrete equivalent 
in matrices Ad, Bd, Cd, Dd. The optional match frequency, fp is in hertz and is 
used for prewarping.

Algorithm bilinear uses one of two algorithms depending on the format of the input 
linear system you supply. One algorithm works on the zero-pole-gain format 
and the other on the state-space format. For transfer function representations, 
bilinear converts to state-space form, performs the transformation, and 
converts the resulting state-space system back to transfer function form.

Zero-Pole-Gain Algorithm
For a system in zero-pole-gain form, bilinear performs four steps:

1 If fp is present, it prewarps:
 fp = 2*pi*fp;
 fs = fp/tan(fp/fs/2)

otherwise, fs = 2*fs.

2 It strips any zeros at ±∞ using
 z = z(finite(z));

x· Ax Bu+=

y Cx Du+=

x n 1+[ ] Adx n[ ] Bdu n[ ]+=

y n[ ] Cdx n[ ] Ddu n[ ]+=
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3 It transforms the zeros, poles, and gain using
 pd = (1+p/fs)./(1-p/fs); %Do bilinear transformation
 zd = (1+z/fs)./(1-z/fs);
 kd = real(k*prod(fs-z)./prod(fs-p));

4 It adds extra zeros at -1 so the resulting system has equivalent numerator 
and denominator order.

State-Space Algorithm
For a system in state-space form, bilinear performs two steps:

1 If fp is present, k = 2*pi*fp/tan(pi*fp/fs); else k = 2*fs.

2 It computes Ad, Bd, Cd, and Dd in terms of A, B, C, and D using

bilinear implements these relations using conventional MATLAB 
statements. The scalar r is arbitrary; bilinear uses  to ensure good 
quantization noise properties in the resulting system.

Diagnostics bilinear requires that the numerator order be no greater than the 
denominator order. If this is not the case, bilinear displays

Numerator cannot be higher order than denominator.

For bilinear to distinguish between the zero-pole-gain and transfer function 
linear system formats, the first two input parameters must be vectors with the 
same orientation in these cases. If this is not the case, bilinear displays

First two arguments must have the same orientation.
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References [1] Parks, T.W., and C.S. Burrus. Digital Filter Design. New York: John Wiley 
& Sons, 1987. Pgs. 209-213.

[2] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. 
Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 450-454. 

See Also impinvar, lp2bp, lp2bs, lp2hp, lp2lp
7-37



bitrevorder
7bitrevorderPurpose Permute data into bit-reversed order

Syntax y = bitrevorder(x)
[y,i] = bitrevorder(x)

Description bitrevorder is useful for pre-arranging filter coefficients so that bit-reversed 
ordering does not have to be performed as part of an fft or inverse FFT (ifft) 
computation. This can improve run-time efficiency for external applications or 
for Simulink Blockset models. Both MATLAB fft and ifft process linear 
input and output. 

Note  Using bitrevorder is equivalent to using digitrevorder with radix 
base 2.

y = bitrevorder(x) returns the input data in bit-reversed order in vector or 
matrix y. The length of x must be an integer power of 2. If x is a matrix, the 
bit-reversal occurs on the first dimension of x with size greater than 1. y is the 
same size as x. 

[y,i] = bitrevorder(x) returns the bit-reversed vector or matrix y and the 
bit-reversed indices i, such that y = x(i). Recall that MATLAB uses 1-based 
indexing, so the first index of y will be 1, not 0.

The following table shows the numbers 0 through 7, the corresponding bits and 
the bit-reversed numbers.

Linear 
Index

Bits Bit-
Reversed

Bit-Reversed Index

0 000 000 0

1 001 100 4

2 010 010 2

3 011 110 6

4 100 001 1
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Examples Obtain the bit-reversed ordered output of a vector:

x=[0:7]'; % Create a column vector
[x,bitrevorder(x)]
ans =
     0     0
     1     4
     2     2
     3     6
     4     1
     5     5
     6     3
     7     7

See Also fft, digitrevorder, ifft

5 101 101 5

6 110 011 3

7 111 111 7

Linear 
Index

Bits Bit-
Reversed

Bit-Reversed Index
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7blackmanPurpose Blackman window

Syntax w = blackman(n)
w = blackman(n,'sflag')

Description w = blackman(n) returns the n-point symmetric Blackman window in the 
column vector w, where n is a positive integer. 

w = blackman(n,'sflag') returns an n-point Blackman window using the 
window sampling specified by 'sflag', which can be either 'periodic' or 
'symmetric' (the default). When 'periodic' is specified, blackman computes a 
length n+1 window and returns the first n points.

Note  If you specify a one-point window (set n=1), the value 1 is returned.

Examples Create a 64-point Blackman window and display the result using WVTool:

N=64;
wvtool(blackman(N))
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Algorithm The equation for computing the coefficients of a Blackman window is

Blackman windows have slightly wider central lobes and less sideband leakage 
than equivalent length Hamming and Hann windows.

See Also flattopwin, hamming, hann, window, wintool, wvtool

References [1] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. 
Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 468-471.
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7blackmanharrisPurpose Minimum 4-term Blackman-Harris window

Syntax w = blackmanharris(n)

Description w = blackmanharris(n) returns an n-point, minimum , 4-term 
Blackman-harris window in the column vector w. The window is minimum in 
the sense that its maximum sidelobes are minimized. 

Examples Create a 32-point Blackman-Harris window and display the result using 
WVTool:

N=32;
wvtool(blackmanharris(N))

Algorithm The equation for computing the coefficients of a minimum 4-term 
Blackman-harris window is 

where .

w k 1+[ ] a0 a1 2π k
n 1–
-------------⎝ ⎠

⎛ ⎞ a2 4π k
n 1–
-------------⎝ ⎠

⎛ ⎞cos a3 6π k
n 1–
-------------⎝ ⎠

⎛ ⎞cos–+cos–=

0 k n 1–( )≤ ≤
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The coefficients for this window are

References [1] Harris, F. J. “On the Use of Windows for Harmonic Analysis with the 
Discrete Fourier Transform.” Proceedings of the IEEE. Vol. 66 (January 1978). 
pp. 51-84.

See Also barthannwin, bartlett, bohmanwin, nuttallwin, parzenwin, rectwin, triang, 
window, wintool, wvtool

a0 = 0.35875

a1 = 0.48829

a2 = 0.14128

a3 = 0.01168
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7bohmanwinPurpose Bohman window

Syntax w = bohmanwin(n)

Description w = bohmanwin(n) returns an n-point Bohman window in column vector w. A 
Bohman window is the convolution of two half-duration cosine lobes. In the 
time domain, it is the product of a triangular window and a single cycle of a 
cosine with a term added to set the first derivative to zero at the boundary. 
Bohman windows fall off as 1/w4.

Examples Compute a 64-point Bohman window and display the result using WVTool:

N=64;
wvtool(bohmanwin(N))

Algorithm The equation for computing the coefficients of a Bohman window is

w k 1+[ ] 1.0
k N

2
----–⎝ ⎠

⎛ ⎞

N
2
----

-------------------– π
k N

2
----–⎝ ⎠
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N
2
----

------------------- 1
π
--- π

k N
2
----–⎝ ⎠
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N
2
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where .

References [1] Harris, F. J. “On the Use of Windows for Harmonic Analysis with the 
Discrete Fourier Transform.” Proceedings of the IEEE. Vol. 66 (January 1978). 
p. 67.

See Also barthannwin, bartlett, blackmanharris, nuttallwin, parzenwin, rectwin, 
triang, window, wintool, wvtool

0 k N≤ ≤
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7bufferPurpose Buffer signal vector into matrix of data frames

Syntax y = buffer(x,n)
y = buffer(x,n,p)
y = buffer(x,n,p,opt)
[y,z] = buffer(...)
[y,z,opt] = buffer(...)

Description y = buffer(x,n) partitions a length-L signal vector x into nonoverlapping 
data segments (frames) of length n. Each data frame occupies one column of 
matrix output y, which has n rows and ceil(L/n) columns. If L is not evenly 
divisible by n, the last column is zero-padded to length n.

y = buffer(x,n,p) overlaps or underlaps successive frames in the output 
matrix by p samples:

• For 0 < p < n (overlap), buffer repeats the final p samples of each frame at 
the beginning of the following frame. For example, if x = 1:30 and n = 7, an 
overlap of p = 3 looks like this.

The first frame starts with p zeros (the default initial condition), and the 
number of columns in y is ceil(L/(n-p)).

• For p < 0 (underlap), buffer skips p samples between consecutive frames. 
For example, if x = 1:30 and n = 7, a buffer with underlap of p = -3 looks like 
this.

y =
     0     2     6    10    14    18    22    26
     0     3     7    11    15    19    23    27
     0     4     8    12    16    20    24    28
     1     5     9    13    17    21    25    29
     2     6    10    14    18    22    26    30
     3     7    11    15    19    23    27     0
     4     8    12    16    20    24    28     0
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The number of columns in y is ceil(L/(n-p)). 

y = buffer(x,n,p,opt) specifies a vector of samples to precede x(1) in an 
overlapping buffer, or the number of initial samples to skip in an underlapping 
buffer:

• For 0 < p < n (overlap), opt specifies a length-p vector to insert before x(1) in 
the buffer. This vector can be considered an initial condition, which is needed 
when the current buffering operation is one in a sequence of consecutive 
buffering operations. To maintain the desired frame overlap from one buffer 
to the next, opt should contain the final p samples of the previous buffer in 
the sequence. See “Continuous Buffering” below.

By default, opt is zeros(p,1) for an overlapping buffer. Set opt to 
'nodelay' to skip the initial condition and begin filling the buffer 
immediately with x(1). In this case, L must be length(p) or longer. For 
example, if x = 1:30 and n = 7, a buffer with overlap of p = 3 looks like this.

• For p < 0 (underlap), opt is an integer value in the range [0,-p] specifying 
the number of initial input samples, x(1:opt), to skip before adding samples 

y =
     1    11    21
     2    12    22
     3    13    23
     4    14    24
     5    15    25
     6    16    26
     7    17    27

8 18 28
9 19 29
10 20 30

skipped

y =
     1     5     9    13    17    21    25
     2     6    10    14    18    22    26
     3     7    11    15    19    23    27
     4     8    12    16    20    24    28
     5     9    13    17    21    25    29
     6    10    14    18    22    26    30
     7    11    15    19    23    27     0
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to the buffer. The first value in the buffer is therefore x(opt+1). By default, 
opt is zero for an underlapping buffer.

This option is especially useful when the current buffering operation is one 
in a sequence of consecutive buffering operations. To maintain the desired 
frame underlap from one buffer to the next, opt should equal the difference 
between the total number of points to skip between frames (p) and the 
number of points that were available to be skipped in the previous input to 
buffer. If the previous input had fewer than p points that could be skipped 
after filling the final frame of that buffer, the remaining opt points need to 
be removed from the first frame of the current buffer. See “Continuous 
Buffering” below for an example of how this works in practice.

[y,z] = buffer(...) partitions the length-L signal vector x into frames of 
length n, and outputs only the full frames in y. If y is an overlapping buffer, it 
has n rows and m columns, where 

m = floor(L/(n-p)) % When length(opt) = p

or

m = floor((L-n)/(n-p))+1 % When opt = 'nodelay'

If y is an underlapping buffer, it has n rows and m columns, where 

m = floor((L-opt)/(n-p)) + (rem((L-opt),(n-p)) >= n)

If the number of samples in the input vector (after the appropriate overlapping 
or underlapping operations) exceeds the number of places available in the 
n-by-m buffer, the remaining samples in x are output in vector z, which for an 
overlapping buffer has length

length(z) = L - m*(n-p) % When length(opt) = p

or

length(z) = L - ((m-1)*(n-p)+n)% When opt = 'nodelay'

and for an underlapping buffer has length

length(z) = (L-opt) - m*(n-p)
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Output z shares the same orientation (row or column) as x. If there are no 
remaining samples in the input after the buffer with the specified overlap or 
underlap is filled, z is an empty vector.

[y,z,opt] = buffer(...) returns the last p samples of a overlapping buffer 
in output opt. In an underlapping buffer, opt is the difference between the total 
number of points to skip between frames (-p) and the number of points in x that 
were available to be skipped after filling the last frame:

• For 0 < p < n (overlap), opt (as an output) contains the final p samples in the 
last frame of the buffer. This vector can be used as the initial condition for a 
subsequent buffering operation in a sequence of consecutive buffering 
operations. This allows the desired frame overlap to be maintained from one 
buffer to the next. See “Continuous Buffering” below.

• For p < 0 (underlap), opt (as an output) is the difference between the total 
number of points to skip between frames (-p) and the number of points in x 
that were available to be skipped after filling the last frame.
opt = m*(n-p) + opt - L % z is the empty vector.

where opt on the right-hand side is the input argument to buffer, and opt 
on the left-hand side is the output argument. Here m is the number of 
columns in the buffer, which is
m = floor((L-opt)/(n-p)) + (rem((L-opt),(n-p))>=n)

Note that for an underlapping buffer output opt is always zero when 
output z contains data.

The opt output for an underlapping buffer is especially useful when the 
current buffering operation is one in a sequence of consecutive buffering 
operations. The opt output from each buffering operation specifies the 
number of samples that need to be skipped at the start of the next buffering 
operation to maintain the desired frame underlap from one buffer to the 
next. If fewer than p points were available to be skipped after filling the final 
frame of the current buffer, the remaining opt points need to be removed 
from the first frame of the next buffer. 

In a sequence of buffering operations, the opt output from each operation 
should be used as the opt input to the subsequent buffering operation. This 
ensures that the desired frame overlap or underlap is maintained from buffer 
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to buffer, as well as from frame to frame within the same buffer. See 
“Continuous Buffering” below for an example of how this works in practice.

Continuous Buffering
In a continuous buffering operation, the vector input to the buffer function 
represents one frame in a sequence of frames that make up a discrete signal. 
These signal frames can originate in a frame-based data acquisition process, or 
within a frame-based algorithm like the FFT. 

As an example, you might acquire data from an A/D card in frames of 64 
samples. In the simplest case, you could rebuffer the data into frames of 16 
samples; buffer with n = 16 creates a buffer of four frames from each 
64-element input frame. The result is that the signal of frame size 64 has been 
converted to a signal of frame size 16; no samples were added or removed.

In the general case where the original signal frame size, L, is not equally 
divisible by the new frame size, n, the overflow from the last frame needs to be 
captured and recycled into the following buffer. You can do this by iteratively 
calling buffer on input x with the two-output-argument syntax:

[y,z] = buffer([z;x],n) % x is a column vector.

[y,z] = buffer([z,x],n) % x is a row vector.

This simply captures any buffer overflow in z, and prepends the data to the 
subsequent input in the next call to buffer. Again, the input signal, x, of frame 
size L, has been converted to a signal of frame size n without any insertion or 
deletion of samples. 

Note that continuous buffering cannot be done with the single-output syntax 
y = buffer(...), because the last frame of y in this case is zero padded, which 
adds new samples to the signal.

Continuous buffering in the presence of overlap and underlap is handled with 
the opt parameter, which is used as both an input and output to buffer. The 
following two examples demonstrate how the opt parameter should be used.
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Examples Example 1: Continuous Overlapping Buffers
First create a buffer containing 100 frames, each with 11 samples:

data = buffer(1:1100,11); % 11 samples per frame

Imagine that the frames (columns) in the matrix called data are the sequential 
outputs of a data acquisition board sampling a physical signal: data(:,1) is 
the first D/A output, containing the first 11 signal samples; data(:,2) is the 
second output, containing the next 11 signal samples, and so on. 

You want to rebuffer this signal from the acquired frame size of 11 to a frame 
size of 4 with an overlap of 1. To do this, you will repeatedly call buffer to 
operate on each successive input frame, using the opt parameter to maintain 
consistency in the overlap from one buffer to the next.

Set the buffer parameters:

n = 4; % New frame size
p = 1; % Overlap
opt = -5; % Value of y(1)
z = []; % Initialize the carry-over vector.

Now repeatedly call buffer, each time passing in a new signal frame from 
data. Note that overflow samples (returned in z) are carried over and 
prepended to the input in the subsequent call to buffer:

for i=1:size(data,2), % Loop over each source frame (column).
   x = data(:,i); % A single frame of the D/A output

[y,z,opt] = buffer([z;x],n,p,opt);

disp(y); % Display the buffer of data.
pause

end
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Here’s what happens during the first four iterations.

Note that the size of the output matrix, y, can vary by a single column from one 
iteration to the next. This is typical for buffering operations with overlap or 
underlap.

[1:11]i=1

5– 3 6
1 4 7
2 5 8
3 6 9

Iteration Input frame [z;x]' opt (input) opt (output) Output buffer (y) Overflow (z)

[10 11]5 9

i=2 [10 11 12:22] 9 21

9 12 15 18
10 13 16 19
11 14 17 20
12 15 18 21

[22]

i=3 [22 23:33] 21 33

21 24 27 30
22 25 28 31
23 26 29 32
24 27 30 33

[]

33 36 39
34 37 40
35 38 41
36 39 42

[43 44]42[34:44]i=4 33
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Example 2: Continuous Underlapping Buffers
Again create a buffer containing 100 frames, each with 11 samples:

data = buffer(1:1100,11); % 11 samples per frame

Again, imagine that data(:,1) is the first D/A output, containing the first 11 
signal samples; data(:,2) is the second output, containing the next 11 signal 
samples, and so on.

You want to rebuffer this signal from the acquired frame size of 11 to a frame 
size of 4 with an underlap of 2. To do this, you will repeatedly call buffer to 
operate on each successive input frame, using the opt parameter to maintain 
consistency in the underlap from one buffer to the next.

Set the buffer parameters:

n = 4; % New frame size
p = -2; % Underlap
opt = 1; % Skip the first input element, x(1).
z = []; % Initialize the carry-over vector.

Now repeatedly call buffer, each time passing in a new signal frame from 
data. Note that overflow samples (returned in z) are carried over and 
prepended to the input in the subsequent call to buffer:

for i=1:size(data,2), % Loop over each source frame (column).
   x = data(:,i); % A single frame of the D/A output

[y,z,opt] = buffer([z;x],n,p,opt);

disp(y);  % Display the buffer of data.
pause

end
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Here’s what happens during the first three iterations.

Diagnostics Error messages are displayed when p ≥ n or length(opt) ≠ length(p) in an 
overlapping buffer case:

Frame overlap P must be less than the buffer size N.
Initial conditions must be specified as a length-P vector.

See Also reshape

[1:11]i=1

2 8
3 9
4 10
5 11

Iteration Input frame [z;x]' opt (input) opt (output) Output buffer (y) Overflow (z)

[]1 2

i=2 [12:22] 2 0

14
15
16
17

[20 21 22]

i=3 [20 21 22 23:33] 0 0

20 26
21 27
22 28
23 29

[32 33]

6 –
7 –

1 –

18
19

12
13

– –

24 30
25 31

skip

skip

skip

skip

skip

skip
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7buttapPurpose Butterworth analog lowpass filter prototype

Syntax [z,p,k] = buttap(n)

Description [z,p,k] = buttap(n) returns the poles and gain of an order n Butterworth analog 
lowpass filter prototype. The function returns the poles in the length n column vector p and 
the gain in scalar k. z is an empty matrix because there are no zeros. The transfer function is

Butterworth filters are characterized by a magnitude response that is 
maximally flat in the passband and monotonic overall. In the lowpass case, the 
first 2n–1 derivatives of the squared magnitude response are zero at ω = 0. The 
squared magnitude response function is

corresponding to a transfer function with poles equally spaced around a circle 
in the left half plane. The magnitude response at the cutoff angular frequency 
ω0 is always  regardless of the filter order. buttap sets ω0 to 1 for a 
normalized result.

Algorithm z = [];
p = exp(sqrt(-1)*(pi*(1:2:2*n-1)/(2*n)+pi/2)).';
k = real(prod(-p));

References [1] Parks, T.W., and C.S. Burrus. Digital Filter Design. New York: John Wiley 
& Sons, 1987. Chapter 7.

See Also besselap, butter, cheb1ap, cheb2ap, ellipap

H s( ) z s( )
p s( )
---------- k

s p 1( )–( ) s p 2( )–( ) s p n( )–( )
--------------------------------------------------------------------------------= =

H ω( ) 2 1
1 ω ω0⁄( )2n+
------------------------------------=

1 2⁄
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7butterPurpose Butterworth analog and digital filter design

Syntax [b,a] = butter(n,Wn)
[b,a] = butter(n,Wn,'ftype')
[b,a] = butter(n,Wn,'s')
[b,a] = butter(n,Wn,'ftype','s')
[z,p,k] = butter(...)
[A,B,C,D] = butter(...)

Description butter designs lowpass, bandpass, highpass, and bandstop digital and analog 
Butterworth filters. Butterworth filters are characterized by a magnitude 
response that is maximally flat in the passband and monotonic overall.

Butterworth filters sacrifice rolloff steepness for monotonicity in the pass- and 
stopbands. Unless the smoothness of the Butterworth filter is needed, an 
elliptic or Chebyshev filter can generally provide steeper rolloff characteristics 
with a lower filter order.

Digital Domain

[b,a] = butter(n,Wn) designs an order n lowpass digital Butterworth filter 
with normalized cutoff frequency Wn. It returns the filter coefficients in length 
n+1 row vectors b and a, with coefficients in descending powers of z.

Cutoff frequency is that frequency where the magnitude response of the filter 
is . For butter, the normalized cutoff frequency Wn must be a number 
between 0 and 1, where 1 corresponds to the Nyquist frequency, π radians per 
sample.

If Wn is a two-element vector, Wn = [w1 w2], butter returns an order 2*n digital 
bandpass filter with passband w1 < ω < w2.

[b,a] = butter(n,Wn,'ftype') designs a highpass, lowpass, or bandstop 
filter, where the string 'ftype' is one of the following.

• 'high' for a highpass digital filter with normalized cutoff frequency Wn

• 'low' for a lowpass digital filter with normalized cutoff frequency Wn

H z( ) B z( )
A z( )
----------- b 1( ) b 2( )z 1– b n 1+( )z n–+ + +

1 a 2( )z 1– a n 1+( )z n–+ + +
------------------------------------------------------------------------------------= =

1 2⁄
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• 'stop' for an order 2*n bandstop digital filter if Wn is a two-element vector, 
Wn = [w1 w2]. The stopband is w1 < ω < w2.

With different numbers of output arguments, butter directly obtains other 
realizations of the filter. To obtain zero-pole-gain form, use three output 
arguments as shown below:

[z,p,k] = butter(n,Wn) or 

[z,p,k] = butter(n,Wn,'ftype') returns the zeros and poles in length n 
column vectors z and p, and the gain in the scalar k.

To obtain state-space form, use four output arguments as shown below:

[A,B,C,D] = butter(n,Wn) or 

[A,B,C,D] = butter(n,Wn,'ftype') where A, B, C, and D are

and u is the input, x is the state vector, and y is the output.

Analog Domain

[b,a] = butter(n,Wn,'s') designs an order n lowpass analog Butterworth 
filter with angular cutoff frequency Wn rad/s. It returns the filter coefficients in 
the length n+1 row vectors b and a, in descending powers of s, derived from this 
transfer function:

butter’s angular cutoff frequency Wn must be greater than 0 rad/s.

If Wn is a two-element vector with w1 < w2, butter(n,Wn,'s') returns an order 
2*n bandpass analog filter with passband w1 < ω < w2.

[b,a] = butter(n,Wn,'ftype','s') designs a highpass, lowpass, or 
bandstop filter. 

x n 1+[ ] Ax n[ ] Bu n[ ]+=

y n[ ] Cx n[ ] Du n[ ]+=

H s( ) B s( )
A s( )
----------- b 1( )sn b 2( )sn 1– b n 1+( )+ + +

sn a 2( )sn 1– a n 1+( )+ + +
-------------------------------------------------------------------------------------= =
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With different numbers of output arguments, butter directly obtains other 
realizations of the analog filter. To obtain zero-pole-gain form, use three output 
arguments as shown below:

[z,p,k] = butter(n,Wn,'s') or

[z,p,k] = butter(n,Wn,'ftype','s') returns the zeros and poles in length 
n or 2*n column vectors z and p and the gain in the scalar k.

To obtain state-space form, use four output arguments as shown below:

[A,B,C,D] = butter(n,Wn,'s') or

[A,B,C,D] = butter(n,Wn,'ftype','s') where A, B, C, and D are

and u is the input, x is the state vector, and y is the output.

Examples Example 1
For data sampled at 1000 Hz, design a 9th-order highpass Butterworth filter 
with cutoff frequency of 300 Hz, which corresponds to a normalized value of 
0.6:

[b,a] = butter(9,300/500,'high');

The filter’s frequency response is

freqz(b,a,128,1000)

x· Ax Bu+=

y Cx Du+=
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Example 2
Design a 10th-order bandpass Butterworth filter with a passband from 100 to 
200 Hz and plot its impulse response, or unit sample response:

n = 5; Wn = [100 200]/500;
[b,a] = butter(n,Wn);
[y,t] = impz(b,a,101);
stem(t,y)
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Limitations For high order filters, the state-space form is the most numerically accurate, 
followed by the zero-pole-gain form. The transfer function coefficient form is 
the least accurate; numerical problems can arise for filter orders as low as 15.

Algorithm butter uses a five-step algorithm:

1 It finds the lowpass analog prototype poles, zeros, and gain using the buttap 
function.

2 It converts the poles, zeros, and gain into state-space form.

3 It transforms the lowpass filter into a bandpass, highpass, or bandstop filter 
with desired cutoff frequencies, using a state-space transformation.

4 For digital filter design, butter uses bilinear to convert the analog filter 
into a digital filter through a bilinear transformation with frequency 
prewarping. Careful frequency adjustment guarantees that the analog 
filters and the digital filters will have the same frequency response 
magnitude at Wn or w1 and w2.

5 It converts the state-space filter back to transfer function or zero-pole-gain 
form, as required.

See Also besself, buttap, buttord, cheby1, cheby2, ellip, maxflat
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7buttordPurpose Butterworth  filter order and cutoff frequency

Syntax [n,Wn] = buttord(Wp,Ws,Rp,Rs)
[n,Wn] = buttord(Wp,Ws,Rp,Rs,'s')

Description buttord calculates the minimum order of a digital or analog Butterworth filter 
required to meet a set of filter design specifications.

Digital Domain

[n,Wn] = buttord(Wp,Ws,Rp,Rs) returns the lowest order, n, of the digital 
Butterworth filter that loses no more than Rp dB in the passband and has at 
least Rs dB of attenuation in the stopband. The scalar (or vector) of 
corresponding cutoff frequencies, Wn, is also returned. Use the output 
arguments n and Wn in butter.

Choose the input arguments to specify the stopband and passband according to 
the following table.

Description of Stopband and Passband Filter Parameters

Parameter Description

Wp Passband corner frequency Wp, the cutoff frequency, is a 
scalar or a two-element vector with values between 0 and 1, 
with 1 corresponding to the normalized Nyquist frequency, 
π radians per sample.

Ws Stopband corner frequency Ws, is a scalar or a two-element 
vector with values between 0 and 1, with 1 corresponding to 
the normalized Nyquist frequency. 

Rp Passband ripple, in decibels. This value is the maximum 
permissible passband loss in decibels. 

Rs Stopband attenuation, in decibels. This value is the number 
of decibels the stopband is down from the passband. 
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Use the following guide to specify filters of different types.

If your filter specifications call for a bandpass or bandstop filter with unequal 
ripple in each of the passbands or stopbands, design separate lowpass and 
highpass filters according to the specifications in this table, and cascade the 
two filters together.

Analog Domain

[n,Wn] = buttord(Wp,Ws,Rp,Rs,'s') finds the minimum order n and cutoff 
frequencies Wn for an analog Butterworth filter. You specify the frequencies Wp 
and Ws similar those described in the Table , Description of Stopband and 
Passband Filter Parameters table above, only in this case you specify the 
frequency in radians per second, and the passband or the stopband can be 
infinite.

Use buttord for lowpass, highpass, bandpass, and bandstop filters as described 
in the Table , Filter Type Stopband and Passband Specifications table above.

Filter Type Stopband and Passband Specifications

Filter Type Stopband and Passband Conditions Stopband Passband

Lowpass Wp < Ws, both scalars (Ws,1) (0,Wp)

Highpass Wp > Ws, both scalars (0,Ws) (Wp,1)

Bandpass The interval specified by Ws contains 
the one specified by Wp 
(Ws(1) < Wp(1) < Wp(2) < Ws(2)).

(0,Ws(1)) 
and 
(Ws(2),1)

(Wp(1),Wp(2))

Bandstop The interval specified by Wp contains 
the one specified by Ws 
(Wp(1) < Ws(1) < Ws(2) < Wp(2)).

(0,Wp(1)) 
and 
(Wp(2),1)

(Ws(1),Ws(2))
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Examples Example 1
For data sampled at 1000 Hz, design a lowpass filter with less than 3 dB of 
ripple in the passband, defined from 0 to 40 Hz, and at least 60 dB of 
attenuation in the stopband, defined from 150 Hz to the Nyquist frequency 
(500 Hz). Plot the filter’s frequency response:

Wp = 40/500; Ws = 150/500;
[n,Wn] = buttord(Wp,Ws,3,60)

n =
     5
Wn =
    0.0810

[b,a] = butter(n,Wn);
freqz(b,a,512,1000); title('n=5 Butterworth Lowpass Filter')
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Example 2
Next design a bandpass filter with passband of 60 Hz to 200 Hz, with less than 
3 dB of ripple in the passband, and 40 dB attenuation in the stopbands that are 
50 Hz wide on both sides of the passband:

Wp = [60 200]/500; Ws = [50 250]/500;
Rp = 3; Rs = 40;
[n,Wn] = buttord(Wp,Ws,Rp,Rs)

n =
    16
Wn =
    0.1198    0.4005

[b,a] = butter(n,Wn);
freqz(b,a,128,1000)
title('n=16 Butterworth Bandpass Filter')
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Algorithm buttord’s order prediction formula is described in [1]. It operates in the analog 
domain for both analog and digital cases. For the digital case, it converts the 
frequency parameters to the s-domain before estimating the order and natural 
frequency, and then converts back to the z-domain.

buttord initially develops a lowpass filter prototype by transforming the 
passband frequencies of the desired filter to 1 rad/s (for lowpass and highpass 
filters) and to -1 and 1 rad/s (for bandpass and bandstop filters). It then 
computes the minimum order required for a lowpass filter to meet the stopband 
specification.

References [1] Rabiner, L.R., and B. Gold. Theory and Application of Digital Signal 
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975. Pg. 227.

See Also butter, cheb1ord, cheb2ord, ellipord, kaiserord
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7ccepsPurpose Complex cepstral analysis

Syntax xhat = cceps(x)
[xhat,nd] = cceps(x)
[xhat,nd,xhat1] = cceps(x)
[...] = cceps(x,n)

Description Cepstral analysis is a nonlinear signal processing technique that is applied 
most commonly in speech processing and homomorphic filtering [1].

Note  cceps only works on real data.

xhat = cceps(x) returns the complex cepstrum of the real data sequence x. 
The input is altered, by the application of a linear phase term, to have no phase 
discontinuity at ±π radians. That is, it is circularly shifted (after zero padding) 
by some samples, if necessary, to have zero phase at π radians.

[xhat,nd] = cceps(x) returns the number of samples nd of (circular) delay 
added to x prior to finding the complex cepstrum.

[xhat,nd,xhat1] = cceps(x) returns a second complex cepstrum, computed 
using an alternate rooting algorithm, in xhat1. The alternate method 
([1] p.795) is useful for short sequences that can be rooted and do not have zeros 
on the unit circle. For these signals, xhat1 can provide a verification of xhat.

[...] = cceps(x,n) zero pads x to length n and returns the length n complex 
cepstrum of x.

Algorithm cceps is an M-file implementation of algorithm 7.1 in [2]. A lengthy Fortran 
program reduces to these three lines of MATLAB code, which compose the core 
of cceps:

h = fft(x);
logh = log(abs(h)) + sqrt(-1)*rcunwrap(angle(h));
y = real(ifft(logh));
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Note  rcunwrap in the above code segment is a special version of unwrap that 
subtracts a straight line from the phase. rcunwrap is a local function within 
cceps and is not available for use from the MATLAB command line. 

References [1] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. 
Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 788-789.

[2] IEEE. Programs for Digital Signal Processing. IEEE Press. New York: John 
Wiley & Sons, 1979. 

See Also icceps, hilbert, rceps, unwrap
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7cell2sosPurpose Convert cell array for second-order sections to second-order sections matrix

Syntax m = cell2sos(c)

Description m = cell2sos(c) changes a 1-by-L cell array c consisting of 1-by-2 cell arrays 
into an L-by-6 second-order section matrix m. Matrix m takes the same form as 
the matrix generated by tf2sos. You can use m = cell2sos(c) to invert the results 
of c = sos2cell(m).

c must be a cell array of the form

c = { {b1 a1} {b2 a2} ... {bL aL} }

where both bi and ai are row vectors of at most length 3, and i = 1, 2, ..., L. The 
resulting matrix m is given by

m = [b1 a1;b2 a2; ... ;bL aL]

See Also sos2cell, tf2sos
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7cfirpmPurpose Complex and nonlinear-phase equiripple FIR filter design

Syntax b = cfirpm(n,f,@fresp)
b = cfirpm(n,f,@fresp,w)
b = cfirpm(n,f,a,w)
b = cfirpm(...,'sym')
b = cfirpm(...,'skip_stage2')
b = cfirpm(...,'debug')
b = cfirpm(...,{lgrid})
[b,delta,opt] = cfirpm(...)

Description cfirpm allows arbitrary frequency-domain constraints to be specified for the 
design of a possibly complex FIR filter. The Chebyshev (or minimax) filter error 
is optimized, producing equiripple FIR filter designs.

b = cfirpm(n,f,@fresp) returns a length n+1 FIR filter with the best 
approximation to the desired frequency response as returned by function 
fresp, which is called by its function handle (@fresp). f is a vector of frequency 
band edge pairs, specified in the range -1 and 1, where 1 corresponds to the 
normalized Nyquist frequency. The frequencies must be in increasing order, 
and f must have even length. The frequency bands span f(k) to f(k+1) for k 
odd; the intervals f(k+1) to f(k+2) for k odd are “transition bands” or “don’t 
care” regions during optimization.

Predefined fresp frequency response functions are included for a number of 
common filter designs, as described below. For all of the predefined frequency 
response functions, the symmetry option 'sym' defaults to 'even' if no 
negative frequencies are contained in f and d = 0; otherwise 'sym' defaults to 
'none'. (See the 'sym' option below for details.) For all of the predefined 
frequency response functions, d specifies a group-delay offset such that the 
filter response has a group delay of n/2+d in units of the sample interval. 
Negative values create less delay; positive values create more delay. By default 
d = 0:
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• @lowpass, @highpass, @allpass, @bandpass, @bandstop

These functions share a common syntax, exemplified below by the string 
'lowpass'.

b = cfirpm(n,f,@lowpass,...) and

b = cfirpm(n,f,{@lowpass,d},...) design a linear-phase (n/2+d delay) 
filter.

• @multiband designs a linear-phase frequency response filter with arbitrary 
band amplitudes.

b = cfirpm(n,f,{@multiband,a},...) and

b = cfirpm(n,f,{@multiband,a,d},...) specify vector a containing the 
desired amplitudes at the band edges in f. The desired amplitude at 
frequencies between pairs of points f(k) and f(k+1) for k odd is the line 
segment connecting the points (f(k),a(k)) and (f(k+1),a(k+1)).

• @differentiator designs a linear-phase differentiator. For these designs, 
zero-frequency must be in a transition band, and band weighting is set to be 
inversely proportional to frequency.

b = cfirpm(n,f,{@differentiator,fs},...) and

b = cfirpm(n,f,{@differentiator,fs,d},...) specify the sample rate 
fs used to determine the slope of the differentiator response. If omitted, fs 
defaults to 1.

• @hilbfilt designs a linear-phase Hilbert transform filter response. For 
Hilbert designs, zero-frequency must be in a transition band.

b = cfirpm(n,f,@hilbfilt,...) and

b = cfirpm(N,F,{@hilbfilt,d},...) design a linear-phase 
(n/2+d delay) Hilbert transform filter.

• @invsinc designs a linear-phase inverse-sinc filter response.

b = cfirpm(n,f,{@invsinc,a},...) and

b = cfirpm(n,f,{@invsinc,a,d},...) specify gain a for the 
sinc-function, computed as sinc(a*g), where g contains the optimization    
grid frequencies normalized to the range [-1,1].  By default, a=1. The 
group-delay offset is d, such that the filter response will have a group 
delay of N/2 + d in units of the sample interval, where N is the filter order. 
Negative values create less delay and positive values create more delay.  
By default, d=0.
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b = cfirpm(n,f,@fresp,w) uses the real, non-negative weights in vector w to 
weight the fit in each frequency band. The length of w is half the length of f, so 
there is exactly one weight per band.

b = cfirpm(n,f,a,w) is a synonym for b = cfirpm(n,f,{@multiband,a},w).

b = cfirpm(...,'sym') imposes a symmetry constraint on the impulse 
response of the design, where 'sym' may be one of the following:

• 'none' indicates no symmetry constraint. This is the default if any negative 
band edge frequencies are passed, or if fresp does not supply a default.

• 'even' indicates a real and even impulse response. This is the default for 
highpass, lowpass, allpass, bandpass, bandstop, invsinc, and multiband 
designs.

• 'odd' indicates a real and odd impulse response. This is the default for 
Hilbert and differentiator designs.

• 'real' indicates conjugate symmetry for the frequency response

If any 'sym' option other than 'none' is specified, the band edges should be 
specified only over positive frequencies; the negative frequency region is filled 
in from symmetry. If a 'sym' option is not specified, the fresp function is 
queried for a default setting. Any user-supplied fresp function should return 
a valid 'sym'string when it is passed the string 'defaults' as the filter order 
N.

b = cfirpm(...,'skip_stage2') disables the second-stage optimization 
algorithm, which executes only when cfirpm determines that an optimal 
solution has not been reached by the standard firpm error-exchange. Disabling 
this algorithm may increase the speed of computation, but may incur a 
reduction in accuracy. By default, the second-stage optimization is enabled.

b = cfirpm(...,'debug') enables the display of intermediate results during 
the filter design, where 'debug' may be one of 'trace', 'plots', 'both', or 
'off'. By default it is set to 'off'.

b = cfirpm(...,{lgrid}) uses the integer lgrid to control the density of the 
frequency grid, which has roughly 2^nextpow2(lgrid*n) frequency points. 
The default value for lgrid is 25. Note that the {lgrid} argument must be a 
1-by-1 cell array.
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Any combination of the 'sym', 'skip_stage2', 'debug', and {lgrid} options may be 
specified.

[b,delta] = cfirpm(...) returns the maximum ripple height delta.

[b,delta,opt] = cfirpm(...) returns a structure opt of optional results 
computed by cfirpm and contains the following fields. 

User-definable functions may be used, instead of the predefined frequency 
response functions for @fresp. The function is called from within cfirpm using 
the following syntax

[dh,dw] = fresp(n,f,gf,w,p1,p2,...)

where:

• n is the filter order.

• f is the vector of frequency band edges that appear monotonically between -1 
and 1, where 1 corresponds to the Nyquist frequency.

• gf is a vector of grid points that have been linearly interpolated over each 
specified frequency band by cfirpm. gf determines the frequency grid at 
which the response function must be evaluated. This is the same data 
returned by cfirpm in the fgrid field of the opt structure.

Field Description

opt.fgrid Frequency grid vector used for the filter design optimization

opt.des Desired frequency response for each point in opt.fgrid

opt.wt Weighting for each point in opt.fgrid

opt.H Actual frequency response for each point in opt.fgrid

opt.error Error at each point in opt.fgrid

opt.iextr Vector of indices into opt.fgrid for extremal frequencies

opt.fextr Vector of extremal frequencies
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• w is a vector of real, positive weights, one per band, used during optimization. 
w is optional in the call to cfirpm; if not specified, it is set to unity weighting 
before being passed to fresp.

• dh and dw are the desired complex frequency response and band weight 
vectors, respectively, evaluated at each frequency in grid gf.

• p1, p2, ..., are optional parameters that may be passed to fresp.

Additionally, a preliminary call is made to fresp to determine the default 
symmetry property 'sym'. This call is made using the syntax:

sym = fresp('defaults',{n,f,[],w,p1,p2,...})

The arguments may be used in determining an appropriate symmetry default 
as necessary. The function private/lowpass.m may be useful as a template for 
generating new frequency response functions.

Examples Example 1
Design a 31-tap, linear-phase, lowpass filter:

b = cfirpm(30,[-1 -0.5 -0.4 0.7 0.8 1],@lowpass);
fvtool(b,1)

Click the Magnitude and Phase Response button.
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Example 2
Design a nonlinear-phase allpass FIR filter:

n = 22; % Filter order
f = [-1 1]; % Frequency band edges
w = [1 1]; % Weights for optimization
gf = linspace(-1,1,256); % Grid of frequency points 
d = exp(-1i*pi*gf*n/2 + 1i*pi*pi*sign(gf).*gf.*gf*(4/pi));

% Desired frequency response
Vector d now contains the complex frequency response that we desire for the 
FIR filter computed by cfirpm.

Now compute the FIR filter that best approximates this response:

b = cfirpm(n,f,'allpass',w,'real'); % Approximation
freqz(b,1,256,'whole');

subplot(2,1,1); hold on %overlay desired response
plot(pi*(gf+1),20*log10(abs(fftshift(d))),'r--')

subplot(2,1,2); hold on
plot(pi*(gf+1),unwrap(angle(fftshift(d)))*180/pi,'r--')
legend('Approximation','Desired')
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Algorithm An extended version of the Remez exchange method is implemented for the 
complex case. This exchange method obtains the optimal filter when the 
equiripple nature of the filter is restricted to have n+2 extremals. When it does 
not converge, the algorithm switches to an ascent-descent algorithm that takes 
over to finish the convergence to the optimal solution. See the references for 
further details.

References [1] Karam, L.J., and J.H. McClellan. “Complex Chebyshev Approximation for 
FIR Filter Design.” IEEE Trans. on Circuits and Systems II. March 1995. 
Pgs. 207-216.

[2] Karam, L.J. Design of Complex Digital FIR Filters in the Chebyshev Sense. 
Ph.D. Thesis, Georgia Institute of Technology, March 1995.
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[3] Demjanjov, V.F., and V.N. Malozemov. Introduction to Minimax. New York: 
John Wiley & Sons, 1974.

See Also fir1, fir2, firls, firpm, function_handle
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7cheb1apPurpose Chebyshev Type I analog lowpass filter prototype

Syntax [z,p,k] = cheb1ap(n,Rp)

Description [z,p,k] = cheb1ap(n,Rp) returns the poles and gain of an order n Chebyshev 
Type I analog lowpass filter prototype with Rp dB of ripple in the passband. The 
function returns the poles in the length n column vector p and the gain in 
scalar k. z is an empty matrix, because there are no zeros. The transfer 
function is

Chebyshev Type I filters are equiripple in the passband and monotonic in the 
stopband. The poles are evenly spaced about an ellipse in the left half plane. 
The Chebyshev Type I passband edge angular frequency  is set to 1.0 for a 
normalized result. This is the frequency at which the passband ends and the 
filter has magnitude response of 10-Rp/20.

References [1] Parks, T.W., and C.S. Burrus. Digital Filter Design. New York: John Wiley 
& Sons, 1987. Chapter 7.

See Also besselap, buttap, cheby1, cheb2ap, ellipap

H s( ) z s( )
p s( )
---------- k

s p 1( )–( ) s p 2( )–( ) s p n( )–( )
--------------------------------------------------------------------------------= =

ω0
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7cheb1ordPurpose Chebyshev Type I filter order

Syntax [n,Wn] = cheb1ord(Wp,Ws,Rp,Rs)
[n,Wn] = cheb1ord(Wp,Ws,Rp,Rs,'s')

Description cheb1ord calculates the minimum order of a digital or analog Chebyshev 
Type I filter required to meet a set of filter design specifications.

Digital Domain

[n,Wn] = cheb1ord(Wp,Ws,Rp,Rs) returns the lowest order n of the 
Chebyshev Type I filter that loses no more than Rp dB in the passband and has 
at least Rs dB of attenuation in the stopband. The scalar (or vector) of 
corresponding cutoff frequencies Wn, is also returned. Use the output 
arguments n and Wn with the cheby1 function.

Choose the input arguments to specify the stopband and passband according to 
the following table.

Description of Stopband and Passband Filter Parameters

Parameter Description

Wp Passband corner frequency Wp, the cutoff frequency, is a 
scalar or a two-element vector with values between 0 and 1, 
with 1 corresponding to the normalized Nyquist frequency, π 
radians per sample.

Ws Stopband corner frequency Ws, is a scalar or a two-element 
vector with values between 0 and 1, with 1 corresponding to 
the normalized Nyquist frequency. 

Rp Passband ripple, in decibels. This value is the maximum 
permissible passband loss in decibels. 

Rs Stopband attenuation, in decibels. This value is the number 
of decibels the stopband is down from the passband. 
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Use the following guide to specify filters of different types

If your filter specifications call for a bandpass or bandstop filter with unequal 
ripple in each of the passbands or stopbands, design separate lowpass and 
highpass filters according to the specifications in this table, and cascade the 
two filters together. 

Analog Domain

[n,Wn] = cheb1ord(Wp,Ws,Rp,Rs,'s') finds the minimum order n and cutoff 
frequencies Wn for an analog Chebyshev Type I filter. You specify the 
frequencies Wp and Ws similar to those described in the Table , Description of 
Stopband and Passband Filter Parameters table above, only in this case you 
specify the frequency in radians per second, and the passband or the stopband 
can be infinite.

Use cheb1ord for lowpass, highpass, bandpass, and bandstop filters as 
described in the Table , Filter Type Stopband and Passband Specifications 
table above.

Examples For data sampled at 1000 Hz, design a lowpass filter with less than 3 dB of 
ripple in the passband defined from 0 to 40 Hz and at least 60 dB of ripple in 
the stopband defined from 150 Hz to the Nyquist frequency (500 Hz):

Wp = 40/500; Ws = 150/500;

Filter Type Stopband and Passband Specifications

Filter Type Stopband and Passband Conditions Stopband Passband

Lowpass Wp < Ws, both scalars (Ws,1) (0,Wp)

Highpass Wp > Ws, both scalars (0,Ws) (Wp,1)

Bandpass The interval specified by Ws contains 
the one specified by Wp 
(Ws(1) < Wp(1) < Wp(2) < Ws(2)).

(0,Ws(1)) 
and 
(Ws(2),1)

(Wp(1),Wp(2))

Bandstop The interval specified by Wp contains 
the one specified by Ws 
(Wp(1) < Ws(1) < Ws(2) < Wp(2)).

(0,Wp(1)) 
and 
(Wp(2),1)

(Ws(1),Ws(2))
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Rp = 3; Rs = 60;
[n,Wn] = cheb1ord(Wp,Ws,Rp,Rs)

n =
     4
Wn =
    0.0800

[b,a] = cheby1(n,Rp,Wn);
freqz(b,a,512,1000); 
title('n=4 Chebyshev Type I Lowpass Filter')

Next design a bandpass filter with a passband of 60 Hz to 200 Hz, with less 
than 3 dB of ripple in the passband, and 40 dB attenuation in the stopbands 
that are 50 Hz wide on both sides of the passband:

Wp = [60 200]/500; Ws = [50 250]/500;
Rp = 3; Rs = 40;
[n,Wn] = cheb1ord(Wp,Ws,Rp,Rs)

n =
     7
Wn =
    0.1200    0.4000
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[b,a] = cheby1(n,Rp,Wn);
freqz(b,a,512,1000);
title('n=7 Chebyshev Type I Bandpass Filter')

Algorithm cheb1ord uses the Chebyshev lowpass filter order prediction formula described 
in [1]. The function performs its calculations in the analog domain for both 
analog and digital cases. For the digital case, it converts the frequency 
parameters to the s-domain before the order and natural frequency estimation 
process, and then converts them back to the z-domain.

cheb1ord initially develops a lowpass filter prototype by transforming the 
passband frequencies of the desired filter to 1 rad/s (for low- or highpass filters) 
or to -1 and 1 rad/s (for bandpass or bandstop filters). It then computes the 
minimum order required for a lowpass filter to meet the stopband specification.

References [1] Rabiner, L.R., and B. Gold. Theory and Application of Digital Signal 
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975. Pg. 241.

See Also buttord, cheby1, cheb2ord, ellipord, kaiserord
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7cheb2apPurpose Chebyshev Type II analog lowpass filter prototype

Syntax [z,p,k] = cheb2ap(n,Rs)

Description [z,p,k] = cheb2ap(n,Rs) finds the zeros, poles, and gain of an order n 
Chebyshev Type II analog lowpass filter prototype with stopband ripple Rs dB 
down from the passband peak value. cheb2ap returns the zeros and poles in 
length n column vectors z and p and the gain in scalar k. If n is odd, z is length 
n-1. The transfer function is

Chebyshev Type II filters are monotonic in the passband and equiripple in the 
stopband. The pole locations are the inverse of the pole locations of cheb1ap, 
whose poles are evenly spaced about an ellipse in the left half plane. The 
Chebyshev Type II stopband edge angular frequency ω0 is set to 1 for a 
normalized result. This is the frequency at which the stopband begins and the 
filter has magnitude response of 10-Rs/20.

Algorithm Chebyshev Type II filters are sometimes called inverse Chebyshev filters 
because of their relationship to Chebyshev Type I filters. The cheb2ap function 
is a modification of the Chebyshev Type I prototype algorithm:

1 cheb2ap replaces the frequency variable ω with 1/ω, turning the lowpass 
filter into a highpass filter while preserving the performance at ω = 1.

2 cheb2ap subtracts the filter transfer function from unity.

References [1] Parks, T.W., and C.S. Burrus. Digital Filter Design. New York: John Wiley 
& Sons, 1987. Chapter 7.

See Also besselap, buttap, cheb1ap, cheby2, ellipap

H s( ) z s( )
p s( )
---------- k s z 1( )–( ) s z 2( )–( ) s z n( )–( )

s p 1( )–( ) s p 2( )–( ) s p n( )–( )
--------------------------------------------------------------------------------= =
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7cheb2ordPurpose Chebyshev Type II filter order

Syntax [n,Wn] = cheb2ord(Wp,Ws,Rp,Rs)
[n,Wn] = cheb2ord(Wp,Ws,Rp,Rs,'s')

Description cheb2ord calculates the minimum order of a digital or analog Chebyshev 
Type II filter required to meet a set of filter design specifications.

Digital Domain

[n,Wn] = cheb2ord(Wp,Ws,Rp,Rs) returns the lowest order n of the 
Chebyshev Type II filter that loses no more than Rp dB in the passband and has 
at least Rs dB of attenuation in the stopband. The scalar (or vector) of 
corresponding cutoff frequencies Wn, is also returned. Use the output 
arguments n and Wn in cheby2.

Choose the input arguments to specify the stopband and passband according to 
the following table.

Description of Stopband and Passband Filter Parameters

Parameter Description

Wp Passband corner frequency Wp, the cutoff frequency, is a 
scalar or a two-element vector with values between 0 and 1, 
with 1 corresponding to the normalized Nyquist frequency, π 
radians per sample.

Ws Stopband corner frequency Ws, is a scalar or a two-element 
vector with values between 0 and 1, with 1 corresponding to 
the normalized Nyquist frequency. 

Rp Passband ripple, in decibels. This value is the maximum 
permissible passband loss in decibels. 

Rs Stopband attenuation, in decibels. This value is the number 
of decibels the stopband is down from the passband. 
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Use the following guide to specify filters of different types.

If your filter specifications call for a bandpass or bandstop filter with unequal 
ripple in each of the passbands or stopbands, design separate lowpass and 
highpass filters according to the specifications in this table, and cascade the 
two filters together.

Analog Domain

[n,Wn] = cheb2ord(Wp,Ws,Rp,Rs,'s') finds the minimum order n and cutoff 
frequencies Wn for an analog Chebyshev Type II filter. You specify the 
frequencies Wp and Ws similar to those described in the Table , Description of 
Stopband and Passband Filter Parameters table above, only in this case you 
specify the frequency in radians per second, and the passband or the stopband 
can be infinite.

Use cheb2ord for lowpass, highpass, bandpass, and bandstop filters as 
described in the Table , Filter Type Stopband and Passband Specifications 
table above.

Filter Type Stopband and Passband Specifications

Filter Type Stopband and Passband Conditions Stopband Passband

Lowpass Wp < Ws, both scalars (Ws,1) (0,Wp)

Highpass Wp > Ws, both scalars (0,Ws) (Wp,1)

Bandpass The interval specified by Ws contains 
the one specified by Wp 
(Ws(1) < Wp(1) < Wp(2) < Ws(2)).

(0,Ws(1)) 
and 
(Ws(2),1)

(Wp(1),Wp(2))

Bandstop The interval specified by Wp contains 
the one specified by Ws 
(Wp(1) < Ws(1) < Ws(2) < Wp(2)).

(0,Wp(1)) 
and 
(Wp(2),1)

(Ws(1),Ws(2))
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Examples Example 1
For data sampled at 1000 Hz, design a lowpass filter with less than 3 dB of 
ripple in the passband defined from 0 to 40 Hz, and at least 60 dB of 
attenuation in the stopband defined from 150 Hz to the Nyquist frequency 
(500 Hz):

Wp = 40/500; Ws = 150/500;
Rp = 3; Rs = 60;
[n,Wn] = cheb2ord(Wp,Ws,Rp,Rs)

n =
     4

Wn =
    0.2597

[b,a] = cheby2(n,Rs,Wn);
freqz(b,a,512,1000); 
title('n=4 Chebyshev Type II Lowpass Filter')
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Example 2
Next design a bandpass filter with a passband of 60 Hz to 200 Hz, with less 
than 3 dB of ripple in the passband, and 40 dB attenuation in the stopbands 
that are 50 Hz wide on both sides of the passband:

Wp = [60 200]/500; Ws = [50 250]/500;
Rp = 3; Rs = 40;
[n,Wn] = cheb2ord(Wp,Ws,Rp,Rs)

n =
     7

Wn =
    0.1019    0.4516

[b,a] = cheby2(n,Rs,Wn);
freqz(b,a,512,1000)
title('n=7 Chebyshev Type II Bandpass Filter')
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Algorithm cheb2ord uses the Chebyshev lowpass filter order prediction formula described 
in [1]. The function performs its calculations in the analog domain for both 
analog and digital cases. For the digital case, it converts the frequency 
parameters to the s-domain before the order and natural frequency estimation 
process, and then converts them back to the z-domain.

cheb2ord initially develops a lowpass filter prototype by transforming the 
stopband frequencies of the desired filter to 1 rad/s (for low- and highpass 
filters) and to -1 and 1 rad/s (for bandpass and bandstop filters). It then 
computes the minimum order required for a lowpass filter to meet the 
passband specification.

References [1] Rabiner, L.R., and B. Gold. Theory and Application of Digital Signal 
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975. Pg. 241.

See Also buttord, cheb1ord, cheby2, ellipord, kaiserord
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7chebwinPurpose Chebyshev window

Syntax w = chebwin(n,r)

Description w = chebwin(n,r) returns the column vector w containing the length n 
Chebyshev window whose Fourier transform sidelobe magnitude is r dB below 
the mainlobe magnitude. The default value for r is 100.0 dB.

Note  If you specify a one-point window (set n=1), the value 1 is returned.

Examples Create a 64-point Chebyshev window with 100 dB of sidelobe attenuation and 
display the result using WVTool:

N=64;
wvtool(chebwin(N))

Algorithm An artifact of the equiripple design method used in chebwin is the presence of 
impulses at the endpoints of the time-domain response. This is due to the 
constant-level sidelobes in the frequency domain. The magnitude of the 
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impulses are on the order of the size of the spectral sidelobes. If the sidelobes 
are large, the effect at the endpoints may be significant. For more information 
on this effect, see reference [2].

References [1] IEEE. Programs for Digital Signal Processing. IEEE Press. New York: John 
Wiley & Sons, 1979. Program 5.2.

[2] Harris, Fredric J. Multirate Signal Processing for Communication Systems, 
New Jersey: Prentice Hall PTR, 2004, pp. 60-64.

See Also gausswin, kaiser, tukeywin, window, wintool, wvtool
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7cheby1Purpose Chebyshev Type I filter design (passband ripple)

Syntax [b,a] = cheby1(n,Rp,Wn)
[b,a] = cheby1(n,Rp,Wn,'ftype')
[b,a] = cheby1(n,Rp,Wn,'s')
[b,a] = cheby1(n,Rp,Wn,'ftype','s')
[z,p,k] = cheby1(...)
[A,B,C,D] = cheby1(...)

Description cheby1 designs lowpass, bandpass, highpass, and bandstop digital and analog 
Chebyshev Type I filters. Chebyshev Type I filters are equiripple in the 
passband and monotonic in the stopband. Type I filters roll off faster than 
type II filters, but at the expense of greater deviation from unity in the 
passband.

Digital Domain

[b,a] = cheby1(n,Rp,Wn) designs an order n Chebyshev lowpass digital 
Chebyshev filter with normalized passband edge frequency Wn and Rp dB of 
peak-to-peak ripple in the passband. It returns the filter coefficients in the 
length n+1 row vectors b and a, with coefficients in descending powers of z.

Normalized passband edge frequency is the frequency at which the magnitude 
response of the filter is equal to -Rp dB. For cheby1, the normalized passband 
edge frequency Wn is a number between 0 and 1, where 1 corresponds to the 
Nyquist frequency, π radians per sample. Smaller values of passband ripple Rp 
lead to wider transition widths (shallower rolloff characteristics).

If Wn is a two-element vector, Wn = [w1 w2], cheby1 returns an order 2*n 
bandpass filter with passband w1 < < w2.

[b,a] = cheby1(n,Rp,Wn,'ftype') designs a highpass , lowpass, or 
bandstop filter, where the string 'ftype' is one of the following

• 'high' for a highpass digital filter with normalized passband edge frequency 
Wn

H z( ) B z( )
A z( )
----------- b 1( ) b 2( )z 1– b n 1+( )z n–+ + +

1 a 2( )z 1– a n 1+( )z n–+ + +
------------------------------------------------------------------------------------= =

ω
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• 'low' for a lowpass digital filter with normalized passband edge frequency 
Wn

• 'stop' for an order 2*n bandstop digital filter if Wn is a two-element vector, 
Wn = [w1 w2]. The stopband is w1 < ω < w2.

With different numbers of output arguments, cheby1 directly obtains other 
realizations of the filter. To obtain zero-pole-gain form, use three output 
arguments as shown below:

[z,p,k] = cheby1(n,Rp,Wn) or

[z,p,k] = cheby1(n,Rp,Wn,'ftype') returns the zeros and poles in length n 
column vectors z and p and the gain in the scalar k. 

To obtain state-space form, use four output arguments as shown below:

[A,B,C,D] = cheby1(n,Rp,Wn) or

[A,B,C,D] = cheby1(n,Rp,Wn,'ftype') where A, B, C, and D are

and u is the input, x is the state vector, and y is the output.

Analog Domain

[b,a] = cheby1(n,Rp,Wn,'s') designs an order n lowpass analog Chebyshev 
Type I filter with angular passband edge frequency Wn rad/s. It returns the 
filter coefficients in length n+1 row vectors b and a, in descending powers of s, 
derived from the transfer function

Angular passband edge frequency is the frequency at which the magnitude 
response of the filter is -Rp dB. For cheby1, the angular passband edge 
frequency Wn must be greater than 0 rad/s. 

x n 1+[ ] Ax n[ ] Bu n[ ]+=

y n[ ] Cx n[ ] Du n[ ]+=

H s( ) B s( )
A s( )
----------- b 1( )sn b 2( )sn 1– b n 1+( )+ + +

sn a 2( )sn 1– a n 1+( )+ + +
-------------------------------------------------------------------------------------= =
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If Wn is a two-element vector Wn = [w1 w2] with w1 < w2, then 
cheby1(n,Rp,Wn,'s') returns an order 2*n bandpass analog filter with 
passband w1 < ω < w2.

[b,a] = cheby1(n,Rp,Wn,'ftype','s') designs a highpass, lowpass, or 
bandstop filter.

You can supply different numbers of output arguments for cheby1 to directly 
obtain other realizations of the analog filter. To obtain zero-pole-gain form, use 
three output arguments as shown below.

[z,p,k] = cheby1(n,Rp,Wn,'s') or

[z,p,k] = cheby1(n,Rp,Wn,'ftype','s') returns the zeros and poles in 
length n or 2*n column vectors z and p and the gain in the scalar k. 

To obtain state-space form, use four output arguments as shown below:

[A,B,C,D] = cheby1(n,Rp,Wn,'s') or

[A,B,C,D] = cheby1(n,Rp,Wn,'ftype','s') where A, B, C, and D are defined 
as

and u is the input, x is the state vector, and y is the output.

Examples Example 1: Lowpass Filter
For data sampled at 1000 Hz, design a 9th-order lowpass Chebyshev Type I 
filter with 0.5 dB of ripple in the passband and a passband edge frequency of 
300 Hz, which corresponds to a normalized value of 0.6:

[b,a] = cheby1(9,0.5,300/500);

The frequency response of the filter is

freqz(b,a,512,1000)

x· Ax Bu+=

y Cx Du+=
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Example 2: Bandpass Filter
Design a 10th-order bandpass Chebyshev Type I filter with a passband from 
100 to 200 Hz and plot its impulse response:

n = 10; Rp = 0.5;
Wn = [100 200]/500;
[b,a] = cheby1(n,Rp,Wn);
[y,t] = impz(b,a,101); stem(t,y)
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Limitations For high order filters, the state-space form is the most numerically accurate, 
followed by the zero-pole-gain form. The transfer function form is the least 
accurate; numerical problems can arise for filter orders as low as 15.

Algorithm cheby1 uses a five-step algorithm:

1 It finds the lowpass analog prototype poles, zeros, and gain using the 
cheb1ap function.

2 It converts the poles, zeros, and gain into state-space form.

3 It transforms the lowpass filter into a bandpass, highpass, or bandstop filter 
with desired cutoff frequencies, using a state-space transformation.

4 For digital filter design, cheby1 uses bilinear to convert the analog filter 
into a digital filter through a bilinear transformation with frequency 
prewarping. Careful frequency adjustment guarantees that the analog 
filters and the digital filters will have the same frequency response 
magnitude at Wn or w1 and w2.

5 It converts the state-space filter back to transfer function or zero-pole-gain 
form, as required.

See Also besself, butter, cheb1ap, cheb1ord, cheby2, ellip
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7cheby2Purpose Chebyshev Type II filter design (stopband ripple)

Syntax [b,a] = cheby2(n,Rs,Wn)
[b,a] = cheby2(n,Rs,Wn,'ftype')
[b,a] = cheby2(n,Rs,Wn,'s')
[b,a] = cheby2(n,Rs,Wn,'ftype','s')
[z,p,k] = cheby2(...)
[A,B,C,D] = cheby2(...)

Description cheby2 designs lowpass, highpass, bandpass, and bandstop digital and analog 
Chebyshev Type II filters. Chebyshev Type II filters are monotonic in the 
passband and equiripple in the stopband. Type II filters do not roll off as fast 
as type I filters, but are free of passband ripple.

Digital Domain

[b,a] = cheby2(n,Rs,Wn) designs an order n lowpass digital Chebyshev Type 
II filter with normalized stopband edge frequency Wn and stopband ripple Rs dB 
down from the peak passband value. It returns the filter coefficients in the 
length n+1 row vectors b and a, with coefficients in descending powers of z.

Normalized stopband edge frequency is the beginning of the stopband, where 
the magnitude response of the filter is equal to -Rs dB. For cheby2, the 
normalized stopband edge frequency Wn is a number between 0 and 1, where 1 
corresponds to the Nyquist frequency. Larger values of stopband attenuation 
Rs lead to wider transition widths (shallower rolloff characteristics).

If Wn is a two-element vector, Wn = [w1 w2], cheby2 returns an order 2*n 
bandpass filter with passband w1 < ω < w2.

[b,a] = cheby2(n,Rs,Wn,'ftype') designs a highpass, lowpass, or bandstop 
filter, where the string 'ftype' is one of the following.

• 'high' for a highpass digital filter with normalized stopband edge frequency 
Wn

H z( ) B z( )
A z( )
----------- b 1( ) b 2( )z 1– b n 1+( )z n–+ + +

1 a 2( )z 1– a n 1+( )z n–+ + +
------------------------------------------------------------------------------------= =
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• 'low' for a lowpass digital filter with normalized stopband edge frequency 
Wn

• 'stop' for an order 2*n bandstop digital filter if Wn is a two-element vector, 
Wn = [w1 w2]. The stopband is w1 < ω < w2.

With different numbers of output arguments, cheby2 directly obtains other 
realizations of the filter. To obtain zero-pole-gain form, use three output 
arguments as shown below:

[z,p,k] = cheby2(n,Rs,Wn) or

[z,p,k] = cheby2(n,Rs,Wn,'ftype') returns the zeros and poles in length n 
column vectors z and p and the gain in the scalar k.

To obtain state-space form, use four output arguments as shown below.

[A,B,C,D] = cheby2(n,Rs,Wn) or

[A,B,C,D] = cheby2(n,Rs,Wn,'ftype') where A, B, C, and D are

and u is the input, x is the state vector, and y is the output.

Analog Domain

[b,a] = cheby2(n,Rs,Wn,'s') designs an order n lowpass analog Chebyshev 
Type II filter with angular stopband edge frequency Wn. It returns the filter 
coefficients in the length n+1 row vectors b and a, with coefficients in 
descending powers of s, derived from the transfer function.

Angular stopband edge frequency is the frequency at which the magnitude 
response of the filter is equal to -Rs dB. For cheby2, the angular stopband edge  
frequency Wn must be greater than 0 rad/s. 

x n 1+[ ] Ax n[ ] Bu n[ ]+=

y n[ ] Cx n[ ] Du n[ ]+=

H s( ) B s( )
A s( )
----------- b 1( )sn b 2( )sn 1– b n 1+( )+ + +

sn a 2( )sn 1– a n 1+( )+ + +
-------------------------------------------------------------------------------------= =
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If Wn is a two-element vector Wn = [w1 w2] with w1 < w2, then 
cheby2(n,Rs,Wn,'s') returns an order 2*n bandpass analog filter with 
passband w1 < ω < w2.

[b,a] = cheby2(n,Rs,Wn,'ftype','s') designs a highpass , lowpass, or 
bandstop filter.

With different numbers of output arguments, cheby2 directly obtains other 
realizations of the analog filter. To obtain zero-pole-gain form, use three output 
arguments as shown below:

[z,p,k] = cheby2(n,Rs,Wn,'s') or

[z,p,k] = cheby2(n,Rs,Wn,'ftype','s') returns the zeros and poles in 
length n or 2*n column vectors z and p and the gain in the scalar k. 

To obtain state-space form, use four output arguments as shown below:

[A,B,C,D] = cheby2(n,Rs,Wn,'s') or

[A,B,C,D] = cheby2(n,Rs,Wn,'ftype','s') where A, B, C, and D are

and u is the input, x is the state vector, and y is the output.

Examples Example 1: Lowpass Filter
For data sampled at 1000 Hz, design a ninth-order lowpass Chebyshev Type II 
filter with stopband attenuation 20 dB down from the passband and a 
stopband edge frequency of 300 Hz, which corresponds to a normalized value of 
0.6:

[b,a] = cheby2(9,20,300/500);

The frequency response of the filter is 

freqz(b,a,512,1000)

x· Ax Bu+=

y Cx Du+=
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Example 2: Bandpass Filter
Design a fifth-order bandpass Chebyshev Type II filter with passband from 100 
to 200 Hz and plot the impulse response of the filter:

n = 5; r = 20;
Wn = [100 200]/500;
[b,a] = cheby2(n,r,Wn);
[y,t] = impz(b,a,101); stem(t,y)
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Limitations For high order filters, the state-space form is the most numerically accurate, 
followed by the zero-pole-gain form. The transfer function coefficient form is 
the least accurate; numerical problems can arise for filter orders as low as 15.

Algorithm cheby2 uses a five-step algorithm:

1 It finds the lowpass analog prototype poles, zeros, and gain using the 
cheb2ap function.

2 It converts poles, zeros, and gain into state-space form.

3 It transforms the lowpass filter into a bandpass, highpass, or bandstop filter 
with desired cutoff frequencies, using a state-space transformation.

4 For digital filter design, cheby2 uses bilinear to convert the analog filter 
into a digital filter through a bilinear transformation with frequency 
prewarping. Careful frequency adjustment guarantees that the analog 
filters and the digital filters will have the same frequency response 
magnitude at Wn or w1 and w2.

5 It converts the state-space filter back to transfer function or zero-pole-gain 
form, as required.

See Also besself, butter, cheb2ap, cheb1ord, cheby1, ellip
7-100



chirp
7chirpPurpose Swept-frequency cosine

Syntax y = chirp(t,f0,t1,f1)
y = chirp(t,f0,t1,f1,'method')
y = chirp(t,f0,t1,f1,'method',phi)
y = chirp(t,f0,t1,f1,'quadratic',phi,'shape')

Description y = chirp(t,f0,t1,f1) generates samples of a linear swept-frequency cosine 
signal at the time instances defined in array t, where f0 is the instantaneous 
frequency at time 0, and f1 is the instantaneous frequency at time t1. f0 and 
f1 are both in hertz. If unspecified, f0 is e-6 for logarithmic chirp and 0 for all 
other methods, t1 is 1, and f1 is 100.

y = chirp(t,f0,t1,f1,'method') specifies alternative sweep method 
options, where method can be:

• linear, which specifies an instantaneous frequency sweep fi(t) given by

where

and the default value for f0 is 0.  β ensures that the desired frequency 
breakpoint f1 at time t1 is maintained.

• quadratic, which specifies an instantaneous frequency sweep fi(t) given by

where

and the default value for f0 is 0.  If f0 > f1 (downsweep), the default shape is 
convex. If f0 < f1 (upsweep), the default shape is concave.

• logarithmic specifies an instantaneous frequency sweep fi(t) given by

fi t( ) f0 βt+=

β f1 f0–( ) t1⁄=

fi t( ) f0 βt2+=

β f1 f0–( ) t1
2⁄=
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where

and the default value for f0 is 1e-6. Both an upsweep (f1 > f0) and a 
downsweep (f0 > f1) of frequency is possible. 

Each of the above methods can be entered as 'li', 'q', and 'lo', respectively.

y = chirp(t,f0,t1,f1,'method',phi) allows an initial phase phi to be 
specified in degrees. If unspecified, phi is 0. Default values are substituted for 
empty or omitted trailing input arguments.

y = chirp(t,f0,t1,f1,'quadratic',phi,'shape') specifies the shape of the 
quadratic swept-frequency signal’s spectrogram. shape is either concave or 
convex, which describes the shape of the parabola in the positive frequency 
axis. If shape is omitted, the default is convex for downsweep (f0 > f1) and is 
concave for upsweep (f0 < f1).

fi t( ) f0 βt×=

β
f1
f0
----⎝ ⎠

⎛ ⎞

1
t1
----

=

Convex downsweep 
shape

Concave upsweep 
shape

t

f f

t
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Examples Example 1
Compute the spectrogram of a chirp with linear instantaneous frequency 
deviation:

t = 0:0.001:2; % 2 secs @ 1kHz sample rate
y = chirp(t,0,1,150); % Start @ DC, cross 150Hz at t=1 sec
spectrogram(y,256,250,256,1E3,'yaxis')
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Example 2
Compute the spectrogram of a chirp with quadratic instantaneous frequency 
deviation:

t = -2:0.001:2; % ±2 secs @ 1kHz sample rate
y = chirp(t,100,1,200,'quadratic'); % Start @ 100Hz, cross 200Hz 

% at t=1 sec
spectrogram(y,128,120,128,1E3,'yaxis')
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Example 3
Compute the spectrogram of a convex quadratic chirp:

t = -1:0.001:1; % +/-1 second @ 1kHz sample rate
fo = 100; f1 = 400; % Start at 100Hz, go up to 400Hz
y = chirp(t,fo,1,f1,'q',[],'convex');
spectrogram(y,256,200,256,1000,'yaxis')
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Example 4
Compute the spectrogram of a concave quadratic chirp:

t = 0:0.001:1; % 1 second @ 1kHz sample rate
fo = 100; f1 = 25; % Start at 100Hz, go down to 25Hz
y = chirp(t,fo,1,f1,'q',[],'concave');
spectrogram(y,hanning(256),128,256,1000,'yaxis')

Example 5
Compute the spectrogram of a logarithmic chirp:

t = 0:0.001:10; % 10 seconds @ 1kHz sample rate
fo = 10; f1 = 400; % Start at 10Hz, go up to 400Hz
y = chirp(t,fo,10,f1,'logarithmic');
spectrogram(y,256,200,256,1000,'yaxis')
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See Also cos, diric, gauspuls, pulstran, rectpuls, sawtooth, sin, sinc, square, 
tripuls
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7convPurpose Convolution and polynomial multiplication

conv is a MATLAB function.
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7conv2Purpose Two-dimensional convolution

conv2 is a MATLAB function.
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7convmtxPurpose Convolution matrix

Syntax A = convmtx(c,n)
A = convmtx(r,n)

Description A convolution matrix is a matrix, formed from a vector, whose inner product 
with another vector is the convolution of the two vectors.

A = convmtx(c,n) where c is a length m column vector returns a matrix A of 
size (m+n-1)-by-n. The product of A and another column vector x of length n is 
the convolution of c with x.

A = convmtx(r,n) where r is a length m row vector returns a matrix A of size 
n-by-(m+n-1). The product of A and another row vector x of length n is the 
convolution of r with x.

Examples Generate a simple convolution matrix:

h = [1 2 3 2 1];
convmtx(h,7)
ans =

 1    2    3    2    1    0    0    0    0    0    0
 0    1    2    3    2    1    0    0    0    0    0
 0    0    1    2    3    2    1    0    0    0    0
 0    0    0    1    2    3    2    1    0    0    0
 0    0    0    0    1    2    3    2    1    0    0
 0    0    0    0    0    1    2    3    2    1    0
 0    0    0    0    0    0    1    2    3    2    1

Note that convmtx handles edge conditions by zero padding.

In practice, it is more efficient to compute convolution using

y = conv(c,x)

than by using a convolution matrix.

n = length(x);
y = convmtx(c,n)*x

Algorithm convmtx uses the function toeplitz to generate the convolution matrix.
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See Also conv, convn, conv2, dftmtx
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7corrcoefPurpose Correlation coefficient matrix

corrcoef is a MATLAB function.
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7corrmtxPurpose Data matrix for autocorrelation matrix estimation

Syntax X = corrmtx(x,m)
X = corrmtx(x,m,'method')
[X,R] = corrmtx(...)

Description X = corrmtx(x,m) returns an (n+m)-by-(m+1) rectangular Toeplitz matrix X, 
such that X'X is a (biased) estimate of the autocorrelation matrix for the 
length n data vector x.

X = corrmtx(x,m,'method') computes the matrix X according to the method 
specified by the string 'method':

• 'autocorrelation': (default) X is the (n+m)-by-(m+1) rectangular Toeplitz 
matrix that generates an autocorrelation estimate for the length n data 
vector x, derived using prewindowed and postwindowed data, based on an 
mth order prediction error model.

• 'prewindowed': X is the n-by-(m+1) rectangular Toeplitz matrix that 
generates an autocorrelation estimate for the length n data vector x, derived 
using prewindowed data, based on an mth order prediction error model.

• 'postwindowed': X is the n-by-(m+1) rectangular Toeplitz matrix that 
generates an autocorrelation estimate for the length n data vector x, derived 
using postwindowed data, based on an mth order prediction error model.

• 'covariance': X is the (n-m)-by-(m+1) rectangular Toeplitz matrix that 
generates an autocorrelation estimate for the length n data vector x, derived 
using nonwindowed data, based on an mth order prediction error model.

• 'modified': X is the 2(n-m)-by-(m+1) modified rectangular Toeplitz matrix 
that generates an autocorrelation estimate for the length n data vector x, 
derived using forward and backward prediction error estimates, based on an 
mth order prediction error model.

[X,R] = corrmtx(...) also returns the (m+1)-by-(m+1) autocorrelation matrix 
estimate R, calculated as X'*X.

Examples randn('state',1); n=0:99;   
s=exp(i*pi/2*n)+2*exp(i*pi/4*n)+exp(i*pi/3*n)+randn(1,100);  
X=corrmtx(s,12,'mod');
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Algorithm The Toeplitz data matrix computed by corrmtx depends on the method you 
select. The matrix determined by the autocorrelation (default) method is given 
by the following matrix.

In this matrix, m is the same as the input argument m to corrmtx, and n is 
length(x). Variations of this matrix are used to return the output X of corrmtx 
for each method:

• 'autocorrelation': (default) X = X, above.

• 'prewindowed': X is the n-by-(m+1) submatrix of X that is given by the 
portion of X above the lower gray line. 

• 'postwindowed': X is the n-by-(m+1) submatrix of X that is given by the 
portion of X below the upper gray line. 

• 'covariance': X is the (n-m)-by-(m+1) submatrix of X that is given by the 
portion of X between the two gray lines. 

• 'modified': X is the 2(n-m)-by-(m+1) matrix Xmod shown below. 

X

x 1( ) 0

x m 1+( ) x1 )

x n m–( ) x m 1+( )

x n( ) x n m–( )

0 x n( )

=
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References [1] Marple, S.L. Digital Spectral Analysis, Englewood Cliffs, NJ, Prentice-Hall, 
1987, pp. 216-223.

See Also peig, pmusic, rooteig, rootmusic, xcorr

Xmod

x m 1+( ) x1 )

x n m–( ) x m 1+( )

x n( ) x n m–( )

x∗ 1( ) x∗ m 1+( )

x∗ m 1+( ) x∗ n m–( )

x∗ n m–( ) x∗ n( )

=
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7covPurpose Covariance matrix

cov is a MATLAB function.
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7cplxpairPurpose Group complex numbers into complex conjugate pairs

cplxpair is a MATLAB function.
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7cpsdPurpose Cross power spectral density

Syntax Pxy = cpsd(x,y)
Pxy = cpsd(x,y,window)
Pxy = cpsd(x,y,window,noverlap)
[Pxy,W] = cpsd(x,y,window,noverlap,nfft)
[Pxy,F] = cpsd(x,y,window,noverlap,nfft,fs)
[...] = cpsd(...,'twosided')
cpsd(x,y,...)

Description Pxy = cpsd(x,y) estimates the cross power spectral density Pxy of the 
discrete-time signals x and y using the Welch’s averaged, modified 
periodogram method of spectral estimation. The cross power spectral density is 
the distribution of power per unit frequency.

For real x and y, cpsd returns a one-sided CPSD and for complex x or y, it 
returns a two-sided CPSD.
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cpsd uses the following default values:

Note  You can use the empty matrix [] to specify the default value for any 
input argument except x or y. For example, Pxy = cpsd(x,y,[],[],128 uses a 
Hamming window, default noverlap to obtain 50% overlap, and the specified 
128 nfft.

Parameter Description Default Value

nfft FFT length which determines 
the frequencies at which the 
power spectrum is estimated

For real x and y, the length of 
Pxy is (nfft/2+1) if nfft is 
even or (nfft+1)/2 if nfft is 
odd. For complex x or y, the 
length of Pxy is nfft.

If nfft is greater than the 
signal length, the data is 
zero-padded. If nfft is less 
than the signal length, the 
segment is wrapped using 
datawrap so that the length is 
equal to nfft.

Maximum of 256 or the 
next power of 2 greater 
than the length of each 
section of x or y

fs Sampling frequency 1

window Windowing function and 
number of samples to use for 
each section

Periodic Hamming 
window of length to 
obtain eight equal 
sections of x and y

noverlap Number of samples by which 
the sections overlap

Value to obtain 50% 
overlap
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Pxy = cpsd(x,y,window) specifies a windowing function, divides x and y into 
overlapping sections of the specified window length, and windows each section 
using the specified window function. If you supply a scalar for window, Pxy uses 
a Hamming window of that length. The x and y vectors are divided into eight 
equal sections of that length. If the signal cannot be sectioned evenly with 50% 
overlap, it is truncated.

Pxy = cpsd(x,y,window,noverlap) overlaps the sections of x by noverlap 
samples. noverlap must be an integer smaller than the length of window.

[Pxy,W] = cpsd(x,y,window,noverlap,nfft) uses the specified FFT length 
nfft in estimating the CPSD. It also returns W, which is the vector of 
normalized frequencies (in rad/sample) at which the CPSD is estimated. For 
real signals, the range of W is [0, pi] when nfft is even and [0, pi) when nfft is 
odd. For complex signals, the range of W is [0, 2*pi).

[Pxy,F] = cpsd(x,y,window,noverlap,nfft,fs) returns Pxy as a function of 
frequency and a vector F of frequencies at which the CPSD is estimated. fs is 
the sampling frequency in Hz. For real signals, the range of F is [0, fs/2] when 
nfft is even and [0, fs/2) when nfft is odd. For complex signals, the range of 
F is [0, fs).

[...] = cpsd(...,'twosided') returns the two-sided CPSD of real signals x 
and y. The length of the resulting Pxy is nfft and its range is [0, 2*pi) if you do 
not specify fs. If you specify fs, the range is [0,fs). Entering’onesided’for a real 
signal produces the default. You can place the ’onesided’ or ’twosided’ string in 
any position after the noverlap parameter.

cpsd(...) plots the CPSD versus frequency in the current figure window. 

Examples Generate two colored noise signals and plot their CPSD with a confidence 
interval of 95%. Specify a length 1024 FFT, a 500 point triangular window with 
no overlap, and a sampling frequency of 10 Hz:

randn('state',0);
h = fir1(30,0.2,rectwin(31));
h1 = ones(1,10)/sqrt(10);
r = randn(16384,1);
x = filter(h1,1,r);
y = filter(h,1,x);
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cpsd(x,y,triang(500),250,1024)

Algorithm cpsd uses Welch’s averaged periodogram method. See the references listed 
below.

References [1] Rabiner, L.R., and B. Gold. Theory and Application of Digital Signal 
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975. Pgs. 414-419.

[2] Welch, P.D. “The Use of Fast Fourier Transform for the Estimation of Power 
Spectra: A Method Based on Time Averaging Over Short, Modified 
Periodograms.” IEEE Trans. Audio Electroacoust. Vol. AU-15 (June 1967). 
Pgs. 70-73.
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[3] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. 
Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 737.

See Also dspdata.psd, mscohere, pburg, pcov, peig, periodogram, pmcov, pmtm, pmusic, 
pwelch, pyulear, spectrum.welch, tfestimate
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7cztPurpose Chirp z-transform

Syntax y = czt(x,m,w,a)
y = czt(x)

Description y = czt(x,m,w,a) returns the chirp z-transform of signal x. The chirp 
z-transform is the z-transform of x along a spiral contour defined by w and a. 
m is a scalar that specifies the length of the transform, w is the ratio between 
points along the z-plane spiral contour of interest, and scalar a is the complex 
starting point on that contour. The contour, a spiral or “chirp” in the z-plane, is 
given by

z = a*(w.^-(0:m-1))

y = czt(x) uses the following default values:

• m = length(x)

• w = exp(-j*2*pi/m)

• a = 1

With these defaults, czt returns the z-transform of x at m equally spaced points 
around the unit circle. This is equivalent to the discrete Fourier transform of x, 
or fft(x). The empty matrix [] specifies the default value for a parameter.

If x is a matrix, czt(x,m,w,a) transforms the columns of x.

Examples Create a random vector x of length 1013 and compute its DFT using czt:

randn('state',0);
x = randn(1013,1);
y = czt(x);

Use czt to zoom in on a narrow-band section (100 to 150 Hz) of a filter’s 
frequency response. First design the filter:

h = fir1(30,125/500,rectwin(31)); % filter
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Establish frequency and CZT parameters:

fs = 1000; f1 = 100; f2 = 150;  % in hertz
m = 1024;
w = exp(-j*2*pi*(f2-f1)/(m*fs));
a = exp(j*2*pi*f1/fs);

Compute both the DFT and CZT of the filter:

y = fft(h,1000);
z = czt(h,m,w,a);

Create frequency vectors and compare the results:

fy = (0:length(y)-1)'*1000/length(y); 
fz = ((0:length(z)-1)'*(f2-f1)/length(z)) + f1;
plot(fy(1:500),abs(y(1:500))); axis([1 500 0 1.2])
title('FFT')
figure
plot(fz,abs(z)); axis([f1 f2 0 1.2])
title('CZT')

Algorithm czt uses the next power-of-2 length FFT to perform a fast convolution when 
computing the z-transform on a specified chirp contour [1]. 

Diagnostics If m, w, or a is not a scalar, czt gives the following error message:

Inputs M, W, and A must be scalars.
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References [1] Rabiner, L.R., and B. Gold. Theory and Application of Digital Signal 
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975. Pgs. 393-399.

See Also fft, freqz
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7dctPurpose Discrete cosine transform (DCT)

Syntax y = dct(x)
y = dct(x,n)

Description y = dct(x) returns the unitary discrete cosine transform of x

where

N is the length of x, and x and y are the same size. If x is a matrix, dct 
transforms its columns. The series is indexed from n = 1 and k = 1 instead of 
the usual n = 0 and k = 0 because MATLAB vectors run from 1 to N instead of 
from 0 to N- 1.

y = dct(x,n) pads or truncates x to length n before transforming.

The DCT is closely related to the discrete Fourier transform. You can often 
reconstruct a sequence very accurately from only a few DCT coefficients, a 
useful property for applications requiring data reduction.
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Examples Find how many DCT coefficients represent 99% of the energy in a sequence:

x = (1:100) + 50*cos((1:100)*2*pi/40);
X = dct(x);
[XX,ind] = sort(abs(X)); ind = fliplr(ind);
i = 1;
while (norm([X(ind(1:i)) zeros(1,100-i)])/norm(X)<.99)

i = i + 1;
end

i =
      3

References [1] Jain, A.K. Fundamentals of Digital Image Processing. Englewood Cliffs, NJ: 
Prentice-Hall, 1989.

[2] Pennebaker, W.B., and J.L. Mitchell. JPEG Still Image Data Compression 
Standard. New York, NY: Van Nostrand Reinhold, 1993. Chapter 4.

See Also fft, idct, dct2, idct2
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7decimatePurpose Decimation — decrease sampling rate

Syntax y = decimate(x,r)
y = decimate(x,r,n)
y = decimate(x,r,'fir')
y = decimate(x,r,n,'fir')

Description Decimation reduces the original sampling rate for a sequence to a lower rate, 
the opposite of interpolation. The decimation process filters the input data with 
a lowpass filter and then resamples the resulting smoothed signal at a lower 
rate.

y = decimate(x,r) reduces the sample rate of x by a factor r. The decimated 
vector y is r times shorter in length than the input vector x. By default, 
decimate employs an eighth-order lowpass Chebyshev Type I filter with a 
cutoff frequency of 0.8*(Fs/2)/r. It filters the input sequence in both the forward 
and reverse directions to remove all phase distortion, effectively doubling the 
filter order.

y = decimate(x,r,n) uses an order n Chebyshev filter. Orders above 13 are 
not recommended because of numerical instability. MATLAB displays a 
warning in this case.

Note  For better results when r is greater than 13, you should break r into its 
factors and call decimate several times.

y = decimate(x,r,'fir') uses an order 30 FIR filter, instead of the 
Chebyshev IIR filter. Here decimate filters the input sequence in only one 
direction. This technique conserves memory and is useful for working with long 
sequences.

y = decimate(x,r,n,'fir') uses an order n FIR filter.

Examples Decimate a signal by a factor of four:

t = 0:.00025:1; % Time vector
x = sin(2*pi*30*t) + sin(2*pi*60*t);
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y = decimate(x,4);

View the original and decimated signals:

stem(x(1:120)), axis([0 120 -2 2]) % Original signal
title('Original Signal')
figure
stem(y(1:30)) % Decimated signal
title('Decimated Signal')

Algorithm decimate uses decimation algorithms 8.2 and 8.3 from [1]:

1 It designs a lowpass filter. By default, decimate uses a Chebyshev Type I 
filter with normalized cutoff frequency 0.8/r and 0.05 dB of passband 
ripple. For the fir option, decimate designs a lowpass FIR filter with cutoff 
frequency 1/r using fir1.

2 For the FIR filter, decimate applies the filter to the input vector in one 
direction. In the IIR case, decimate applies the filter in forward and reverse 
directions with filtfilt. 

3 decimate resamples the filtered data by selecting every rth point.

Diagnostics If r is not an integer, decimate gives the following error message:

Resampling rate R must be an integer.

If n specifies an IIR filter with order greater than 13, decimate gives the 
following warning:

Warning: IIR filters above order 13 may be unreliable.

0 50 100
-2

-1

0

1

2
Original Signal

0 10 20 30
-2

-1

0

1

2
Decimated Signal
7-129



decimate
References [1] IEEE. Programs for Digital Signal Processing. IEEE Press. New York: John 
Wiley & Sons, 1979. Chapter 8.

See Also cheby1, downsample, filtfilt, fir1, mfilt, interp, resample
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7deconvPurpose Deconvolution and polynomial division

deconv is a MATLAB function.
7-131



demod
7demodPurpose Demodulation for communications simulation

Syntax x = demod(y,fc,fs,'method')
x = demod(y,fc,fs,'method',opt)
x = demod(y,fc,fs,'pwm','centered')
[x1,x2] = demod(y,fc,fs,'qam')

Description demod performs demodulation, that is, it obtains the original signal from a 
modulated version of the signal. demod undoes the operation performed by 
modulate.

x = demod(y,fc,fs,'method') and

x = demod(y,fc,fs,'method',opt) demodulate the real carrier signal y with 
a carrier frequency fc and sampling frequency fs, using one of the options 
listed below for method. (Note that some methods accept an option, opt.)

Method Description

amdsb-sc
or
am

Amplitude demodulation, double sideband, suppressed 
carrier. Multiplies y by a sinusoid of frequency fc and applies a 
fifth-order Butterworth lowpass filter using filtfilt.

x = y.*cos(2*pi*fc*t);
[b,a] = butter(5,fc*2/fs);
x = filtfilt(b,a,x);

amdsb-tc Amplitude demodulation, double sideband, transmitted 
carrier. Multiplies y by a sinusoid of frequency fc, and applies a 
fifth-order Butterworth lowpass filter using filtfilt.

x = y.*cos(2*pi*fc*t);
[b,a] = butter(5,fc*2/fs);
x = filtfilt(b,a,x);

If you specify opt, demod subtracts scalar opt from x. The default 
value for opt is 0.
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The default method is 'am'. In all cases except 'ppm' and 'pwm', x is the 
same size as y.

If y is a matrix, demod demodulates its columns.

amssb Amplitude demodulation, single sideband. Multiplies y by a 
sinusoid of frequency fc and applies a fifth-order Butterworth 
lowpass filter using filtfilt.

x = y.*cos(2*pi*fc*t);
[b,a] = butter(5,fc*2/fs);
x = filtfilt(b,a,x);

fm Frequency demodulation. Demodulates the FM waveform by 
modulating the Hilbert transform of y by a complex exponential 
of frequency -fc Hz and obtains the instantaneous frequency of 
the result.

pm Phase demodulation. Demodulates the PM waveform by 
modulating the Hilbert transform of y by a complex exponential 
of frequency –fc Hz and obtains the instantaneous phase of the 
result.

ppm Pulse-position demodulation. Finds the pulse positions of a 
pulse-position modulated signal y. For correct demodulation, the 
pulses cannot overlap. x is length length(t)*fc/fs.

pwm Pulse-width demodulation. Finds the pulse widths of a 
pulse-width modulated signal y. demod returns in x a vector whose 
elements specify the width of each pulse in fractions of a period. 
The pulses in y should start at the beginning of each carrier 
period, that is, they should be left justified.

qam Quadrature amplitude demodulation.
[x1,x2] = demod(y,fc,fs,'qam') multiplies y by a cosine and a sine of 
frequency fc and applies a fifth-order Butterworth lowpass filter 
using filtfilt.

x1 = y.*cos(2*pi*fc*t);
x2 = y.*sin(2*pi*fc*t);
[b,a] = butter(5,fc*2/fs);
x1 = filtfilt(b,a,x1);
x2 = filtfilt(b,a,x2);
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x = demod(y,fc,fs,'pwm','centered') finds the pulse widths assuming 
they are centered at the beginning of each period. x is length 
length(y)*fc/fs.

See Also modulate, vco, fskdemod, genqamdemod, mskdemod, pamdemod, pmdemod,  
qamdemod
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7dfiltPurpose Discrete-time filters    

Syntax Hd = dfilt.structure(input1,...)
Hd = [dfilt.structure(input1,...),dfilt.structure(input1,...),...]

Description Hd = dfilt.structure(input1,...) returns a discrete-time filter, Hd, of type 
structure. Each structure takes one or more inputs. If you specify a 
dfilt.structure with no inputs, a default filter is created.

Note  You must use a structure with dfilt. 

Hd = [dfilt.structure(input1,...),dfilt.structure(input1,...),...]  
returns a vector containing dfilt filters.

Structures
Structures for dfilt specify the type of filter structure. Available types of  
structures for dfilt are shown below. 

dfilt.structure Description

dfilt.delay Delay

dfilt.df1 Direct-form I

dfilt.df1sos Direct-form I, second-order sections

dfilt.df1t Direct-form I transposed

dfilt.df1tsos Direct-form I transposed, second-order sections

dfilt.df2 Direct-form II

dfilt.df2sos Direct-form II, second-order sections

dfilt.df2t Direct-form II transposed

dfilt.df2tsos Direct-form II transposed, second-order sections
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For more information on each structure, refer to its reference page.

dfilt.dffir Direct-form FIR

dfilt.dffirt Direct-form FIR transposed

dfilt.dfsymfir Direct-form symmetric FIR 

dfilt.dfasymfir Direct-form antisymmetric FIR

dfilt.fftfir Overlap-add FIR

dfilt.latticeallpass Lattice allpass

dfilt.latticear Lattice autoregressive (AR)

dfilt.latticearma Lattice autoregressive moving- average (ARMA)

dfilt.latticemamax Lattice moving-average (MA) for maximum phase

dfilt.latticemamin Lattice moving-average (MA) for minimum phase

dfilt.calattice Coupled, allpass lattice (available only with the Filter Design Toolbox)

dfilt.calatticepc Coupled, allpass lattice with power complementary output (available 
only with the Filter Design Toolbox)

dfilt.statespace State-space

dfilt.scalar Scalar gain object

dfilt.cascade Filters arranged in series

dfilt.parallel Filters arranged in parallel

dfilt.structure Description
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Methods
Methods provide ways of performing functions directly on your dfilt object 
without having to specify the filter parameters again. You can apply these 
methods directly on the variable you assigned to your dfilt object. 

For example, if you create a dfilt object, Hd, you can check whether it has 
linear phase with islinphase(Hd), view its frequency response plot with 
fvtool(Hd), or obtain its frequency response values with h=freqz(Hd). You 
can use all of the methods below in this way. 

Note  If your variable is a 1-D array of dfilt filters, the method is applied to 
each object in the array. Only freqz, grpdelay, impz, is*, order, and stepz 
methods can be applied to arrays. The zplane method can be applied to an 
array only if it is used without outputs.
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Some of the methods listed below have the same name as functions in the 
Signal Processing Toolbox and they behave similarly. This is called overloading 
of functions.

Method Description

addstage Adds a stage to a cascade or parallel object, 
where a stage is a separate, modular filter. See 
dfilt.cascade and dfilt.parallel.

block (Available only with the Signal Processing 
Blockset)  

block(Hd) creates a Signal Processing Blockset 
block of the dfilt object. The block method can 
specify these properties/values:

'Destination' indicates where to place the block. 
'Current' places the block in the current 
Simulink model. 'New' creates a new model. 
Default value is 'Current'.

'Blockname' assigns the entered string to the 
block name.  Default name is 'Filter'.

'OverwriteBlock'indicates whether to  overwrite 
the block generated by the block method ('on') 
and defined by Blockame. Default is 'off'.

'MapStates' specifies initial conditions in the block 
('on'). Default is 'off'. See “Using Filter States” 
on page 7-145.

cascade Returns the series combination of two dfilt 
objects. See dfilt.cascade.

coeffs Returns the filter coefficients in a structure 
containing fields that use the same property 
names as those in the original dfilt.

convert Converts a dfilt object from one filter structure,  
to another filter structure
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fcfwrite Writes a filter coefficient ASCII file. The file can 
contain a single filter or a vector of objects.  If the 
Filter Design Toolbox is installed, the file can 
contain multirate filters (mfilt) or adaptive filters 
(adaptfilt).  Default filename is untitled.fcf.

fcfwrite(Hd,filename) writes to a disk file 
named filename in the current working directory.  
The .fcf extension is added automatically.

fcfwrite(...,fmt) writes the coefficients in the 
format fmt, where valid fmt strings are:
'hex' for hexadecimal
'dec' for decimal
'bin' for binary representation.

fftcoeffs Returns the frequency-domain coefficients used 
when filtering with a dfilt.fftfir

filter Performs filtering using the dfilt object

firtype Returns the type (1-4) of a linear phase FIR filter

freqz Plots the frequency response in fvtool. Note that 
unlike the freqz function, this dfilt freqz 
method has a default length of 8192.

grpdelay Plots the group delay in fvtool

impz Plots the impulse response in fvtool

impzlength Returns the length of the impulse response

info Displays dfilt information, such as filter 
structure, length, stability,  linear phase, and, 
when appropriate, lattice and ladder length. 

isallpass Returns a logical 1 (i.e., true) if the dfilt object in 
an allpass filter or a logical 0 (i.e., false) if it is not

Method Description
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iscascade Returns a logical 1 if the dfilt object is cascaded 
or a logical 0 if it is not

isfir Returns a logical 1 if the dfilt object has finite 
impulse response (FIR) or a logical 0 if it does not

islinphase Returns a logical 1 if the dfilt object is linear 
phase or a logical 0 if it is not

ismaxphase Returns a logical 1 if the dfilt object is 
maximum-phase or a logical 0 if it is not

isminphase Returns a logical 1 if the dfilt object is 
minimum-phase or a logical 0 if it is not

isparallel Returns a logical 1 if the dfilt object has parallel 
stages or a logical 0 if it does not

isreal Returns a logical 1 if the dfilt object has 
real-valued coefficients or a logical 0 if it does not

isscalar Returns a logical 1 if the dfilt object is a scalar or 
a logical 0 if it is not scalar

issos Returns a logical 1 if the dfilt object has 
second-order sections or a logical 0 if it does not

isstable Returns a logical 1 if the dfilt object is stable or a 
logical 0 if it are not

nsections Returns the number of sections in a second-order 
sections filter. If a multistage filter contains 
stages with multiple sections, using nsections 
returns the total number of sections in all the 
stages (a stage with a single section returns 1). 

nstages Returns the number of stages of the filter, where a 
stage is a separate, modular filter

nstates Returns the number of states for an object

Method Description
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order Returns the filter order. If Hd is a single-stage 
filter, the order is given by the number of delays 
needed for a minimum realization of the filter. If 
Hd has multiple stages, the order is given by the 
number of delays needed for a minimum 
realization of the overall filter.

parallel Returns the parallel combination of two dfilt 
filters. See dfilt.parallel.

phasez Plots the phase response in fvtool

Method Description
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realizemdl (Available only with Simulink ) 

realizemdl(Hd)  creates a Simulink model 
containing a subsystem block realization of your 
dfilt. 

realizemdl(Hd,p1,v1,p2,v2,...) creates the  
block using the properties p1, p2,... and values v1,  
v2,... specified.

 The following properties are available:

'Blockname'  specifies the name of the block.  The 
default value is  'Filter'.

'Destination' specifies whether to add the block 
to a current Simulink model or create a new model. 
Valid values are 'Current' and 'New'.

'OverwriteBlock' specifies whether to overwrite 
an existing block that was created by realizemdl 
or create a new block. Valid values are 'on' and 
'off'. Note that only blocks created by 
realizemdl are overwritten.

The following properties optimize the block 
structure.  Specifying 'on' turns the optimization 
on and 'off' creates the block without 
optimization. The default for each block is 'off'.

'OptimizeZeros' removes zero-gain blocks.

'OptimizeOnes' replaces unity-gain blocks with a 
direct connection.

'OptimizeNegOnes' replaces negative unity-gain 
blocks with a sign change at the nearest 
summation block.

'OptimizeDelayChains' replaces cascaded chains 
of delay block with a single integer delay block set 
to the appropriate delay.

Method Description
7-142



dfilt
removestage Removes a stage from a cascade or parallel dfilt. 
See dfilt.cascade and dfilt.parallel.

setstage Overwrites a stage of a cascade or parallel dfilt. 
See dfilt.cascade and dfilt.parallel.

sos Converts the dfilt to a second-order sections 
dfilt. If Hd has a single section, the returned 
filter has the same class.

sos(Hd,flag) specifies the ordering of the 
second-order sections. If flag='UP', the first row 
contains the poles closest to the origin, and the 
last row contains the poles closest to the unit 
circle. If flag='down', the sections are ordered in 
the opposite direction. The zeros are always 
paired with the poles closest to them.
 
sos(Hd,flag,scale) specifies  the scaling of the 
gain and the numerator coefficients of all 
second-order sections. scale can be 'none', 'inf' 
(infinity-norm) or 'two' (2-norm). Using 
infinity-norm scaling with up ordering minimizes 
the probability of overflow in the realization. 
Using 2-norm scaling with down ordering 
minimizes the peak roundoff noise. 

ss Converts the dfilt to state-space.  To see the 
separate A,B,C,D matrices for the state-space 
model, use [A,B,C,D]=ss(Hd).

Method Description
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Viewing Properties
As with any object, you can use get to view a dfilt properties. To see a specific 
property, use

 get(Hd,'property') 

To see all properties for an object, use

get(Hd)

Note  If you have the Filter Design Toolbox, an arithmetic property is 
displayed.  You can change the internal arithmetic of the filter from double- 
precision to single-precision using:
Hd.arithmetic = 'single'

If you have both the Filter Design Toolbox and the Fixed-Point Toolbox, you 
can change the arithmetic property to fixed-point using:
Hd.arithmetic = 'fixed'

stepz Plots the step response in fvtool

stepz(Hd,n) computes the first n samples of the 
step response.

stepz(Hd,n,Fs) separates the time samples by 
T = 1/Fs, where Fs is assumed to be in Hz.

tf Converts the dfilt to a transfer function

zerophase Plots the zero-phase response in fvtool

zpk Converts the dfilt to zeros-pole-gain form

zplane Plots  a pole-zero plot in fvtool

Method Description
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Changing Properties
To set specific properties, use

set(Hd,'property1',value,'property2',value,...) 

Note that you must use single quotation marks around the property name.  

Copying an Object
To create a copy of an object, use the copy method.

H2 = copy(Hd)

Note  Using the syntax H2 = Hd copies only the object handle and does not 
create a new object.

Converting Between Filter Structures
To change the filter structure of a dfilt object Hd, use

Hd2=convert(Hd,'structure_string');

where structure_string is any valid structure name in single quotation 
marks. If Hd is a cascade or parallel structure, each of its stages is converted 
to the new structure.

Using Filter States
Two properties control the filter states:

• states—stores the current states of the filter. Before the filter is applied, the 
states correspond to the initial conditions and after the filter is applied, the 
states correspond to the final conditions. For df1, df1t, df1sos and df1tsos 
structures, states returns a filtstates object.

• PersistentMemory—controls whether filter states are saved.. The default 
value is 'false', which causes the initial conditions to be reset to zero before 
filtering and turns off the display of states information.   Setting 
PersistentMemory to 'true' allows the filter to use your initial conditioons 
or to reuse the final conditions of a previous filtering operation as the initial 
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conditions of the next filtering operation.  It also displays information about 
the filter states.

Note  If you set the states and want to use them for filtering, you must set 
PersistentMemory to 'true' before you use the filter.

Examples Create a direct-form I filter and use a method to see if it is stable.

[b,a] = butter(8,0.25);
Hd = dfilt.df1(b,a)
 
Hd = 
         FilterStructure: 'Direct-Form I'
               Numerator: [1x9 double]
             Denominator: [1x9 double]
        PersistentMemory: false
    
isstable(Hd)
ans =
     1

If a dfilt’s numerator values do not fit on a single line, a description of the 
vector is displayed.  To see the specific numerator values for this example, use

get(Hd,'numerator')

ans =
Columns 1 through 6 
    0.0001    0.0009    0.0030    0.0060    0.0076    0.0060
  Columns 7 through 9 
    0.0030    0.0009    0.0001

Create an array containing two dfilt objects, apply a method and verify that 
the method acts on both objects, and use a method to test whether the objects 
are FIR objects.

b = fir1(5,.5);
Hd = dfilt.dffir(b); % create an FIR object
[b,a] = butter(5,.5);
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Hd(2) = dfilt.df2t(b,a); % create a DF2T object and place
% it in the second column of Hd

[h,w] = freqz(Hd);
size(h) % verify that resulting h is
ans = % 2 columns
        8192           2
size(w) % verify that resulting w is
ans = % 1 column
        8192           1

test_fir = isfir(Hd)
test_fir =
     1     0 % Hd(1) is FIR and Hd(2) is not

Refer to the reference pages for each structure for more examples.

See Also dfilt.cascade , dfilt.df1, dfilt.df1t, dfilt.df2,  dfilt.df2t, 
dfilt.dfasymfir, dfilt.dffir, dfilt.dffirt, dfilt.dfsymfir, 
dfilt.latticeallpass, dfilt.latticear, dfilt.latticearma,  
dfilt.latticemamax, dfilt.latticemamin, dfilt.parallel, 
dfilt.statespace, filter, freqz, grpdelay, impz, sos, step, tf, zpk, zplane
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7dfilt.cascadePurpose  Cascade of discrete-time filters

Syntax Hd = dfilt.cascade(Hd1,Hd2,...)

Description Hd = dfilt.cascade(Hd1,Hd2,...) returns a discrete-time filter, Hd, of type 
cascade, which is a serial interconnection of two or more dfilt filters, Hd1, Hd2, 
and so on. Each filter in a cascade is a separate stage. 

You can also use the nondot notation format for calling a cascade:

cascade(Hd1,Hd2,...)

Examples Cascade a lowpass filter and a highpass filter to produce a bandpass filter:

[b1,a1]=butter(8,0.6); % Lowpass
[b2,a2]=butter(8,0.4,'high'); % Highpass
H1=dfilt.df2t(b1,a1);
H2=dfilt.df2t(b2,a2);
Hcas=dfilt.cascade(H1,H2) % Bandpass with passband 0.4-0.6

Hcas = 
         FilterStructure: Cascade
                Stage(1): Direct-Form II Transposed
                Stage(2): Direct-Form II Transposed
        PersistentMemory: false

To view details of a stage, use

Hcas.stage(1)
 ans =
     FilterStructure: 'Direct-Form II Transposed'
          Arithmetic: 'double'
           Numerator: [1x9 double]
         Denominator: [1x9 double]

X(z) Y(z)Hd1(z) Hd2(z)

Hd

 . . .
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    PersistentMemory: false

To view the states of a stage, use

Hcas.stage(1).states

You can display states for individual stages only.

See Also dfilt, dfilt.parallel, dfilt.scalar
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7dfilt.delayPurpose Delay filter

Syntax Hd = dfilt.delay
Hd = dfilt.delay(latency)

Description Hd = dfilt.delay returns a discrete-time filter, Hd, of type delay, which adds 
a single delay to any signal filtered with Hd. The filtered signal has its values 
shifted by one sample. 

Hd = dfilt.delay(latency) returns a discrete-time filter, Hd, of type delay, 
which adds the number of delay units specified in latency to any signal filtered 
with Hd. The filtered signal has its values shifted by the latency number of 
samples. The values that appear before the shifted signal are the filter states.

Examples Create a delay filter with a latency of 4 and filter a simple signal to view the 
impact of applying a delay.

h = dfilt.delay(4) 
h = 
     FilterStructure: 'Delay'
             Latency: 4      
    PersistentMemory: false  

sig = 1:7 % Create some simple signal data
sig =
     1     2     3     4     5     6     7

states = h.states % Filter states before filtering
states =
     0
     0
     0
     0

filter(h,sig) % Filter using the delay filter
ans =
     0     0     0     0     1     2     3

states=h.states % Filter states after filtering
states =
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     4
     5
     6
     7

See Also dfilt
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7dfilt.df1Purpose Discrete-time, direct-form I filter

Syntax Hd = dfilt.df1(b,a)
Hd = dfilt.df1

Description Hd = dfilt.df1(b,a) returns a discrete-time, direct-form I filter, Hd,  with 
numerator coefficients b and denominator coefficients a. The filter states for 
this object are stored in a filtstates object.

Hd = dfilt.df1 returns a default, discrete-time, direct-form I filter, Hd, with 
b=1 and a=1. This filter passes the input through to the output unchanged.

Note  The leading coefficient of the denominator a(1) cannot be 0. 
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To display the filter states, use this code to access the filtstates object.

Hs = Hd.states % Where Hd is the dfilt.df1 object and
double (Hs) % Hs is the filtstates object

The vector is

Examples Create a direct-form I discrete-time filter with coefficents from a fourth-order 
lowpass Butterworth design 

[b,a] = butter(4,.5);  
Hd = dfilt.df1(b,a)

     FilterStructure: 'Direct-Form I'
           Numerator: [0.0940 0.3759 0.5639 0.3759 0.0940]
         Denominator: [1 -3.6082e-016 0.4860 3.6545e-017 0.0177
    PersistentMemory: false

See Also dfilt, dfilt.df1t, dfilt.df2, dfilt.df2t
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7dfilt.df1sosPurpose Discrete-time, second-order section, direct-form I filter

Syntax Hd = dfilt.df1sos(s)
Hd = dfilt.df1sos(b1,a1,b2,a2,...)
Hd = dfilt.df1sos(...,g)

Description Hd = dfilt.df1sos(s) returns a discrete-time, second-order section, 
direct-form I filter, Hd, with coefficients given in the s matrix. The filter states 
for this object are stored in a filtstates object.

Hd = dfilt.df1sos(b1,a1,b2,a2,...) returns a discrete-time, second-order 
section, direct-form I filter, Hd, with coefficients for the first section given in the 
b1 and a1 vectors, for the second section given in the b2 and a2 vectors, etc.

Hd = dfilt.df1sos(...,g) includes a gain vector g. The elements of g are the 
gains for each section. The maximum length of g is the number of sections plus 
one. If g is not specified, all gains default to one.

Hd = dfilt.df1sos returns a default, discrete-time, second-order section, 
direct-form I filter, Hd. This filter passes the input through to the output 
unchanged.

Note  The leading coefficient of the denominator a(1) cannot be 0. 
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To display the filter states, use this code to access the filtstates object.

Hs = Hd.states % Where Hd is the dfilt.df1 object and
double (Hs) % Hs is the filtstates object
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The vector is

For filters with more than one section, each section is a separate column in the 
matrix.

Examples Specify a second-order sections, direct-form I discrete-time filter with  
coefficients from a sixth order, low pass, elliptical filter using the following 
code. The resulting filter has three sections. 

[z,p,k] = ellip(6,1,60,.4); % Obtain filter coefficients
[s,g] = zp2sos(z,p,k); % Convert to SOS
Hd = dfilt.df1sos(s,g)

Hd = 
     FilterStructure: 'Direct-Form I, Second-Order Sections'
           sosMatrix: [3x6 double]
         ScaleValues: [0.0153280112138154;1;1;1]
    PersistentMemory: false

See Also dfilt, dfilt.df1tsos, dfilt.df2sos, dfilt.df2tsos
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7dfilt.df1tPurpose  Discrete-time, direct-form I transposed filter

Syntax Hd = dfilt.df1t(b,a)
Hd = dfilt.df1t

Description Hd = dfilt.df1t(b,a) returns a discrete-time, direct-form I transposed filter, 
Hd, with numerator coefficients b and denominator coefficients a. The filter 
states for this object are stored in a filtstates object.

Hd = dfilt.df1t returns a default, discrete-time, direct-form I transposed 
filter, Hd, with b=1 and a=1. This filter passes the input through to the output 
unchanged.

Note  The leading coefficient of the denominator a(1) cannot be 0. 

To display the filter states, use this code to access the filtstates object.

Hs = Hd.states % Where Hd is the dfilt.df1 object and
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double (Hs) % Hs is the filtstates object

The vector is

Examples Create a direct-form I transposed discrete-time filter with coefficents from a 
fourth-order lowpass Butterworth design 

[b,a] = butter(4,.5);  
Hd = dfilt.df1t(b,a)

Hd = 
     FilterStructure: 'Direct-Form I Transposed'
           Numerator: [0.0940 0.3759 0.5639 0.3759 0.0940]
         Denominator: [1 -3.6082e-016 0.4860 3.6545e-017 0.0177]
    PersistentMemory: false

See Also dfilt, dfilt.df1, dfilt.df2, dfilt.df2t
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7dfilt.df1tsosPurpose Discrete-time, second-order section, direct-form I transposed filter

Syntax Hd = dfilt.df1tsos(s)
Hd = dfilt.df1tsos(b1,a1,b2,a2,...)
Hd = dfilt.df1tsos(...,g)

Description Hd = dfilt.df1tsos(s) returns a discrete-time, second-order section, 
direct-form I, transposed filter, Hd, with coefficients given in the s matrix. The 
filter states for this object are stored in a filtstates object.

Hd = dfilt.df1tsos(b1,a1,b2,a2,...) returns a discrete-time, 
second-order section, direct-form I, tranposed filter, Hd, with coefficients for the 
first section given in the b1 and a1 vectors, for the second section given in the 
b2 and a2 vectors, etc.

Hd = dfilt.df1tsos(...,g) includes a gain vector g. The elements of g are 
the gains for each section. The maximum length of g is the number of sections 
plus one. If g is not specified, all gains default to one.

Hd = dfilt.df1tsos returns a default, discrete-time, second-order section, 
direct-form I, transposed filter, Hd. This filter passes the input through to the 
output unchanged.

Note  The leading coefficient of the denominator a(1) cannot be 0. 
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To display the filter states, use this code to access the filtstates object.

Hs = Hd.states % Where Hd is the dfilt.df1 object and
double (Hs) % Hs is the filtstates object

The matrix is

Examples Specify a second-order sections, direct-form I, transposed discrete-time filter 
with coefficients from a sixth order, low pass, elliptical filter using the 
following code: 

[z,p,k] = ellip(6,1,60,.4); % Obtain filter coefficients
[s,g] = zp2sos(z,p,k); % Convert to SOS
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Hd = dfilt.df1tsos(s,g)

Hd = 
     FilterStructure: [1x47 char]
           sosMatrix: [3x6 double]
         ScaleValues: [0.0153280112138154;1;1;1]
    PersistentMemory: false

Hd.FilterStructure % Display FilterStructure string
ans =

Direct-Form I Transposed, Second-Order Sections

See Also dfilt, dfilt.df1sos, dfilt.df2sos, dfilt.df2tsos
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7dfilt.df2Purpose Discrete-time, direct-form II filter

Syntax Hd = dfilt.df2(b,a)
Hd = dfilt.df2

Description Hd = dfilt.df2(b,a) returns a discrete-time, direct-form II filter, Hd,  with 
numerator coefficients b and denominator coefficients a.

Hd = dfilt.df2 returns a default, discrete-time, direct-form II filter, Hd, with 
b=1 and a=1. This filter passes the input through to the output unchanged.

Note  The leading coefficient of the denominator a(1) cannot be 0. 
7-162



dfilt.df2
The resulting filter states column vector is
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Examples Create a direct-form II discrete-time filter with coefficents from a fourth-order 
lowpass Butterworth design 

[b,a] = butter(4,.5);  
Hd = dfilt.df2(b,a)

Hd = 
     FilterStructure: 'Direct-Form II'
           Numerator: [0.0940 0.3759 0.5639 0.3759 0.0940]
         Denominator: [1 -3.6082e-016 0.4860 3.6545e-017 0.0177]
    PersistentMemory: false

See Also dfilt, dfilt.df1, dfilt.df1t, dfilt.df2t
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7dfilt.df2sosPurpose Discrete-time, second-order section, direct-form II filter

Syntax Hd = dfilt.df2sos(s)
Hd = dfilt.df2sos(b1,a1,b2,a2,...)
Hd = dfilt.df2sos(...,g)

Description Hd = dfilt.df2sos(s) returns a discrete-time, second-order section, 
direct-form II filter, Hd, with coefficients given in the s matrix.

Hd = dfilt.df2sos(b1,a1,b2,a2,...) returns a discrete-time, second-order 
section, direct-form II object, Hd, with coefficients for the first section given in 
the b1 and a1 vectors, for the second section given in the b2 and a2 vectors, etc.

Hd = dfilt.df2sos(...,g) includes a gain vector g. The elements of g are the 
gains for each section. The maximum length of g is the number of sections plus 
one. If g is not specified, all gains default to one.

Hd = dfilt.df2sos returns a default, discrete-time, second-order section, 
direct-form II filter, Hd. This filter passes the input through to the output 
unchanged.

Note  The leading coefficient of the denominator a(1) cannot be 0. 
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The resulting filter states column vector is

For filters with more than one section, each section is a separate column in the 
vector.
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Examples Specify a second-order sections, direct-form II discrete-time filter with 
coefficients from a sixth order, low pass, elliptical filter using the following 
code: 

[z,p,k] = ellip(6,1,60,.4); % Obtain filter coefficients
[s,g] = zp2sos(z,p,k); % Convert to SOS
Hd = dfilt.df2sos(s,g)

Hd =
         FilterStructure: [1x37 char]
               sosMatrix: [3x6 double]
             ScaleValues: [0.0153280112138154;1;1;1]
        PersistentMemory: false

Hd.FilterStructure % Display FilterStructure string
ans =
Direct-Form II Transposed, Second-Order Sections

See Also dfilt, dfilt.df1sos, dfilt.df1tsos, dfilt.df2tsos
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7dfilt.df2tPurpose Discrete-time, direct-form II transposed filter

Syntax Hd = dfilt.df2t(b,a)
Hd = dfilt.df2t

Description Hd = dfilt.df2t(b,a) returns a discrete-time, direct-form II transposed 
filter, Hd, with numerator coefficients b and denominator coefficients a.

Hd = dfilt.df2t returns a default, discrete-time, direct-form II transposed 
filter, Hd, with b=1 and a=1. This filter passes the input through to the output 
unchanged.

Note  The leading coefficient of the denominator a(1) cannot be 0. 
7-168



dfilt.df2t
The resulting filter states column vector is

Examples Create a direct-form II transposed discrete-time filter with coefficents from a 
fourth-order lowpass Butterworth design 

[b,a] = butter(4,.5);  
Hd = dfilt.df2t(b,a)

Hd = 
     FilterStructure: 'Direct-Form II Transposed'
           Numerator: [0.0940 0.3759 0.5639 0.3759 0.0940]
         Denominator: [1 -3.6082e-016 0.4860 3.6545e-017 0.0177]
    PersistentMemory: false

See Also dfilt, dfilt.df1, dfilt.df1t, dfilt.df2
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7dfilt.df2tsosPurpose Discrete-time, second-order section, direct-form II transposed filter

Syntax Hd = dfilt.df2tsos(s)
Hd = dfilt.df2tsos(b1,a1,b2,a2,...)
Hd = dfilt.df2tsos(...,g)

Description Hd = dfilt.df2sos(s) returns a discrete-time, second-order section, 
direct-form II, transposed filter, Hd, with coefficients given in the s matrix.

Hd = dfilt.df2tsos(b1,a1,b2,a2,...) returns a discrete-time, 
second-order section, direct-form II, tranposed filter, Hd, with coefficients for 
the first section given in the b1 and a1 vectors, for the second section given in 
the b2 and a2 vectors, etc.

Hd = dfilt.df2tsos(...,g) includes a gain vector g. The elements of g are 
the gains for each section. The maximum length of g is the number of sections 
plus one. If g is not specified, all gains default to one.

Hd = dfilt.df2tsos returns a default, discrete-time, second-order section, 
direct-form II, transposed filter, Hd. This filter passes the input through to the 
output unchanged.

Note  The leading coefficient of the denominator a(1) cannot be 0. 
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The resulting filter states column vector is

Examples Specify a second-order sections, direct-form II, transposed discrete-time filter 
with coefficients from a sixth order, low pass, elliptical filter using the 
following code: 

[z,p,k] = ellip(6,1,60,.4); % Obtain filter coefficients
[s,g] = zp2sos(z,p,k); % Convert to SOS
Hd = dfilt.df2tsos(s,g)

Hd =
         FilterStructure: [1x48 char]
               sosMatrix: [3x6 double]
             ScaleValues: [0.0153280112138154;1;1;1]
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        PersistentMemory: false

See Also dfilt, dfilt.df1sos, dfilt.df1tsos, dfilt.df2sos
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7dfilt.dfasymfirPurpose Discrete-time, direct-form antisymmetric FIR filter

Syntax Hd = dfilt.dfasymfir(b)
Hd = dfilt.dfasymfir

Description Hd = dfilt.dfasymfir(b) returns a discrete-time, direct-form, 
antisymmetric FIR filter, Hd, with numerator coefficients b. 

Hd = dfilt.dfasymfir returns a default, discrete-time, direct-form, 
antisymmetric FIR filter, Hd, with b=1. This filter passes the input through to 
the output unchanged.

Note  Only the first half of vector b is used because the second half is 
assumed to be antisymmetric. In the figure below for an odd number of 
coefficients, b(3) = 0, b(4) = -b(2) and b(5) = -b(1), and in the next figure for an 
even number of coefficients, b(4) = -b(3), b(5) = -b(2), and b(6) = -b(1).
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The resulting filter states column vector for the odd number of coefficients 
example above is
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Examples Odd Order
Create a Type 4 25th order highpass direct-form antisymmetric FIR filter 
structure for a dfilt object, Hd, with the following code:

Hd = firpm(25,[0 .4 .5 1],[0 0 1 1],'h');

Even Order
Create a 44th order lowpass direct-form antisymmetric FIR differentiator filter 
structure for a dfilt object, Hd, with the following code:

h=firpm(44,[0 .3 .4 1],[0 .2 0 0],'differentiator');

See Also dfilt, dfilt.dffir, dfilt.dffirt, dfilt.dfsymfir
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7dfilt.dffirPurpose Discrete-time, direct-form, FIR filter

Syntax Hd = dfilt.dffir(b)
Hd = dfilt.dffir

Description Hd = dfilt.dffir(b) returns a discrete-time, direct-form finite impulse 
response (FIR) filter, Hd, with numerator coefficients, b. 

Hd = dfilt.dffir returns a default, discrete-time, direct-form FIR filter, Hd, 
with b=1.  This filter passes the input through to the output unchanged.

The resulting filter states column vector is
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Examples Create a direct-form FIR discrete-time filter with coefficients from a 30th order 
lowpass equiripple design:

b = firpm(30,[0 .1 .2 .5]*2,[1 1 0 0]);
Hd = dfilt.dffir(b)

Hd =
         FilterStructure: 'Direct-Form FIR'
               Numerator: [1x31 double]
        PersistentMemory: false

See Also dfilt, dfilt.dfasymfir, dfilt.dffirt, dfilt.dfsymfir
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7dfilt.dffirtPurpose Discrete-time, direct-form FIR transposed filter

Syntax Hd = dfilt.dffirt(b)
Hd = dfilt.dffirt

Description Hd = dfilt.dffirt(b) returns a discrete-time, direct-form FIR transposed 
filter, Hd, with numerator coefficients b.

Hd = dfilt.dffirt returns a default, discrete-time, direct-form FIR 
transposed filter, Hd, with b=1. This filter passes the input through to the 
output unchanged.

The resulting filter states column vector is
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Examples Create a direct-form FIR transposed discrete-time filter with coefficients from 
a 30th order lowpass equiripple design:

b = firpm(30,[0 .1 .2 .5]*2,[1 1 0 0]);
Hd = dfilt.dffirt(b)

Hd =
         FilterStructure: 'Direct-Form FIR Transposed'
               Numerator: [1x31 double]
        PersistentMemory: false

See Also dfilt, dfilt.dffir, dfilt.dfasymfir, dfilt.dfsymfir
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7dfilt.dfsymfirPurpose Discrete-time, direct-form symmetric FIR filter 

Syntax Hd = dfilt.dfsymfir(b)
Hd = dfilt.dfsymfir

Description Hd = dfilt.dfsymfir(b) returns a discrete-time, direct-form symmetric FIR 
filter, Hd, with numerator coefficients b.

Hd = dfilt.dfsymfir returns a default, discrete-time, direct-form symmetric 
FIR filter, Hd, with b=1. This filter passes the input through to the output 
unchanged.

Note  Only the first half of vector b is used because the second half is 
assumed to be symmetric. In the figure below for an odd number of 
coefficients, b(3) = 0, b(4) = b(2) and b(5) = b(1), and in the next figure for an 
even number of coefficients, b(4) = b(3), b(5) = b(2), and b(6) = b(1).
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The resulting filter states column vector for the odd number of coefficients 
example above is
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Examples Odd Order
Specify a fifth-order direct-form symmetric FIR filter structure for a dfilt 
object, Hd, with the following code:

b = [-0.008 0.06 0.44 0.44 0.06 -0.008];
Hd = dfilt.dfsymfir(b)

Hd =
    FilterStructure: 'Direct-Form Symmetric FIR'
           Numerator: [-0.0080 0.0600 0.4400 0.4400 0.0600 -0.0080]
   PersistentMemory: false

Even Order
Specify a fourth-order direct-form symmetric FIR filter structure for a dfilt 
object, Hd, with the following code:

b = [-0.01 0.1 0.8 0.1 -0.01];
Hd = dfilt.dfsymfir(b)

Hd =
      FilterStructure: 'Direct-Form Symmetric FIR'
            Numerator: [-0.0100 0.1000 0.8000 0.1000 -0.0100]
     PersistentMemory: false

See Also dfilt, dfilt.dfasymfir, dfilt.dffir, dfilt.dffirt
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7dfilt.fftfirPurpose Discrete-time, overlap-add, FIR filter

Syntax Hd = dfilt.fftfir(b,len)
Hd = dfilt.fftfir(b)
Hd = dfilt.fftfir

Description This object uses the overlap-add method of block FIR filtering, which is very 
efficient for streaming data. 

Hd = dfilt.fftfir(b,len) returns a discrete-time, FFT, FIR filter, Hd, with 
numerator coefficients, b and block length, len. The block length is the number 
of input points to use for each overlap-add computation. 

Hd = dfilt.fftfir(b) returns a discrete-time, FFT, FIR filter, Hd, with 
numerator coefficients, b and block length, len=100. 

Hd = dfilt.fftfir returns a default, discrete-time, FFT, FIR filter, Hd, with 
the numerator b=1 and block length, len=100. This filter passes the input 
through to the output unchanged.

Note  When you use a dfilt.fftfir object to filter, the input signal length 
must be an integer multiple of the object’s block length, len.

The resulting number of FFT points = (filter length + the block length - 1). The 
filter is most efficient if the number of FFT points is a power of 2.
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The fftfir uses an overlap-add block processing algorithm, which is 
represented as follows, 

where len is the block length and M is the length of the numerator-1,  
(length(b)-1), which is also the number of states. The output of each 
convolution is a block that is longer than the input block by a tail of 
(length(b)-1) samples.  These tails overlap the next block and are added to it. 
The states reported by dfilt.fftfir are the tails of the final convolution.

Examples Create an FFT FIR discrete-time filter with coefficients from a 30th order 
lowpass equiripple design:

b = firpm(30,[0 .1 .2 .5]*2,[1 1 0 0]);
Hd = dfilt.fftfir(b)

Hd =
        FilterStructure: 'Overlap-Add FIR'
              Numerator: [1x31 double]
            BlockLength: 100
    NonProcessedSamples: []
       PersistentMemory: false
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To view the frequency domain coefficients used in the filtering, use the 
following command.

fftcoeffs(Hd)

See Also dfilt, dfilt.dffir, dfilt.dfasymfir, dfilt.dffirt, dfilt.dfsymfir
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7dfilt.latticeallpassPurpose Discrete-time, lattice allpass filter

Syntax Hd = dfilt.latticeallpass(k)
Hd = dfilt.latticeallpass

Description Hd = dfilt.latticeallpass(k) returns a discrete-time, lattice allpass filter, 
Hd, with lattice coefficients, k.

Hd = dfilt.latticeallpass returns a default, discrete-time, lattice allpass 
filter, Hd, with k=[ ]. This filter passes the input through to the output 
unchanged.

The resulting filter states column vector is

Examples Form a third-order lattice allpass filter structure for a dfilt object, Hd, using 
the following lattice coefficients:

k = [.66 .7 .44];
Hd = dfilt.latticeallpass(k)

Hd =
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             FilterStructure: 'Lattice Allpass'
                     Lattice: [0.6600 0.7000 0.4400]
            PersistentMemory: false

See Also dfilt, dfilt.latticear, dfilt.latticearma, dfilt.latticemamax, 
dfilt.latticemamin
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7dfilt.latticearPurpose Discrete-time, lattice, autoregressive filter

Syntax Hd = dfilt.latticear(k)
Hd = dfilt.latticear

Description Hd = dfilt.latticear(k) returns a discrete-time, lattice autoregressive 
filter, Hd, with lattice coefficients, k.

Hd = dfilt.latticear returns a default, discrete-time, lattice autoregressive 
filter, Hd, with k=[ ]. This filter passes the input through to the output 
unchanged.

The resulting filter states column vector is
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Examples Form a third-order lattice autoregressive filter structure for a dfilt object, Hd, 
using the following lattice coefficients:

k = [.66 .7 .44];
Hd = dfilt.latticear(k)

Hd =
             FilterStructure: 'Lattice Autoregressive (AR)'
                     Lattice: [0.6600 0.7000 0.4400]
            PersistentMemory: false

See Also dfilt, dfilt.latticeallpass, dfilt.latticearma, dfilt.latticemamax, 
dfilt.latticemamin
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7dfilt.latticearmaPurpose Discrete-time, lattice, autoregressive, moving-average filter

Syntax Hd = dfilt.latticearma(k,v)
Hd = dfilt.latticearma

Description Hd = dfilt.latticearma(k,v) returns a discrete-time, lattice 
autoregressive, moving-average filter, Hd, with lattice coefficients, k and ladder 
coefficients v.

Hd = dfilt.latticearma returns a default, discrete-time, lattice 
autoregressive, moving-average filter, Hd, with k=[ ] and v=1. This filter passes 
the input through to the output unchanged.

The resulting filter states column vector is
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Examples Form a third-order lattice autoregressive, moving-average filter structure for a 
dfilt object, Hd, using the following lattice coefficients:

k = [.66 .7 .44];
Hd = dfilt.latticearma(k)

 Hd =
  FilterStructure: 'Lattice Autoregressive Moving-Average (ARMA)'
          Lattice: [0.6600 0.7000 0.4400]
           Ladder: 1
 PersistentMemory: false

See Also dfilt, dfilt.latticeallpass, dfilt.latticear, dfilt.latticemamax, 
dfilt.latticemamin
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7dfilt.latticemamaxPurpose Discrete-time, lattice, moving-average filter

Syntax Hd = dfilt.latticemamax(k)
Hd = dfilt.latticemamax

Description Hd = dfilt.latticemamax(k) returns a discrete-time, lattice, 
moving-average filter, Hd, with lattice coefficients k. 

Note  If the k coefficients define a maximum phase filter, the resulting filter 
in this structure is maximum phase. If your coefficients do not define a 
maximum phase filter, placing them in this structure does not produce a 
maximum phase filter.

Hd = dfilt.latticemamax returns a default discrete-time, lattice, 
moving-average filter, Hd, with k=[ ]. This filter passes the input through to the 
output unchanged.
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The resulting filter states column vector is

Examples Form a fourth-order lattice, moving-average, maximum phase filter structure 
for a dfilt object, Hd, using the following lattice coefficients:

k = [.66 .7 .44 .33];
Hd = dfilt.latticemamax(k)

Hd =
  FilterStructure: 'Lattice Moving-Average (MA) For Maximum Phase'
       Arithmetic: 'double'
          Lattice: [0.6600 0.7000 0.4400 0.3300]
 PersistentMemory: false

See Also dfilt, dfilt.latticeallpass, dfilt.latticear, dfilt.latticearma, 
dfilt.latticemamin
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7dfilt.latticemaminPurpose Discrete-time, lattice, moving-average filter

Syntax Hd = dfilt.latticemamin(k)
Hd = dfilt.latticemamin

Description Hd = dfilt.latticemamin(k) returns a discrete-time, lattice, 
moving-average, minimum phase, filter, Hd, with lattice coefficients k. 

Note  If the k coefficients define a minimum phase filter, the resulting filter 
in this structure is minimum phase. If your coefficients do not define a 
minimum phase filter, placing them in this structure does not produce a 
minimum phase filter.

Hd = dfilt.latticemamin returns a default discrete-time, lattice, 
moving-average, minimum phase, filter, Hd, with k=[ ]. This filter passes the 
input through to the output unchanged.
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The resulting filter states column vector is

Examples Form a third-order lattice, moving-average, minimup phase, filter structure for 
a dfilt object, Hd, using the following lattice coefficients.

k = [.66 .7 .44];
Hd = dfilt.latticemamin(k)

Hd =
  FilterStructure: 'Lattice Moving-Average (MA) For Minimum Phase'
         Lattice: [0.6600 0.7000 0.4400]
PersistentMemory: false

See Also dfilt, dfilt.latticeallpass, dfilt.latticear, dfilt.latticearma, 
dfilt.latticemamax
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7dfilt.parallelPurpose Discrete-time, parallel structure filter

Syntax Hd = dfilt.parallel(Hd1,Hd2,...)

Description Hd = dfilt.parallel(Hd1,Hd2,...) returns a discrete-time filter, Hd, which 
is a structure of two or more dfilt filters, Hd1, Hd2, etc. arranged in parallel. 
Each filter in a parallel structure is a separate stage. You can display states for 
individual stages only. To view the states of a stage use 

Hd.stage(1).states

You can also use the nondot notation format for calling a parallel structure.

parallel(Hd1,Hd2,...)

Examples Using a parallel structure, create a coupled-allpass decomposition of a 7th 
order lowpass digital, elliptic filter with a normalized cutoff frequency of 0.5, 1 
decibel of peak-to-peak ripple and a minimum stopband attenuation of 40 
decibels.

k1 = [-0.0154    0.9846   -0.3048    0.5601]; 
Hd1 = dfilt.latticeallpass(k1);
k2 = [-0.1294    0.8341   -0.4165];
Hd2 = dfilt.latticeallpass(k2);
Hpar = parallel(Hd1 ,Hd2);
gain = dfilt.scalar(0.5); % Normalize the passband gain

X(z)

Y(z)

Hd1((z))

Hd2((z)) +

Hd

 .
 .
 .
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Hcas = cascade(gain,Hpar);
fvtool(Hcas)

See Also dfilt, dfilt.cascade
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7dfilt.scalarPurpose Discrete-time, scalar filter

Syntax Hd = dfilt.scalar(g)
Hd = dfilt.scalar

Description Hd = dfilt.scalar(g) returns a discrete-time, scalar filter, Hd, with gain g, 
where g is a scalar.

Hd = dfilt.scalar returns a default, discrete-time scalar gain filter, Hd, with 
gain 1.

Example Create a direct-form I filter and a scalar object with a gain of 3 and cascade 
them together.

b = [0.3 0.6 0.3];
a = [1 0 0.2];
Hd_filt = dfilt.df1(b,a)
Hd_gain = dfilt.scalar(3)
Hd=cascade(Hd_gain,Hd_filt)
fvtool(Hd_filt,Hd_gain,Hd)

Hd_filt =  
         FilterStructure: 'Direct-Form I'
               Numerator: [0.3000 0.6000 0.3000]
             Denominator: [1 0 0.2000]
        PersistentMemory: false

Hd_gain = 
         FilterStructure: 'Scalar'
                    Gain: 3
        PersistentMemory: false

Hd = 
         FilterStructure: Cascade
                Stage(1): Scalar
                Stage(2): Direct-Form I
        PersistentMemory: false
7-200



dfilt.scalar
To view the stages of the cascaded filter, use

Hd.stage(1)
 
ans = 
         FilterStructure: 'Scalar'
                    Gain: 3
        PersistentMemory: false

and

Hd.stage(2)
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ans = 
         FilterStructure: 'Direct-Form I'
               Numerator: [0.3 0.6 0.3]
             Denominator: [1 0 0.2]
        PersistentMemory: false

See Also dfilt, dfilt.cascade
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7dfilt.statespacePurpose Discrete-time, state-space filter

Syntax Hd = dfilt.statespace(A,B,C,D)
Hd = dfilt.statespace

Description Hd = dfilt.statespace(A,B,C,D) returns a discrete-time state-space filter, 
Hd, with rectangular arrays A, B, C and D. 

A, B, C, and D are from the matrix or state-space form of a filter’s difference 
equations

where x(n) is the vector states at time n, u(n) is the input at time n, y is the 
output at time n, A is the state-transition matrix, B is the input-to-state 
transmission matrix, C is the state-to-output transmission matrix, and D is the 
input-to-ouput transmission matrix. For single-channel systems, A is an m-by-m 
matrix where m is the order of the filter, B is a column vector, C is a row vector, 
and D is a scalar.

Hd = dfilt.statespace returns a default, discrete-time state-space filter, Hd, 
with A=[ ], B=[ ], C=[ ], and D=1. This filter passes the input through to the 
output unchanged.

x n 1+( ) Ax n( ) Bu n( )+=

y n( ) Cx n( ) Du n( )+=
7-203



dfilt.statespace
The resulting filter states column vector has the same number of rows as the 
number of rows of A or B.

Examples Create a second-order, state-space filter structure from a second-order, lowpass  
Butterworth design.

[A,B,C,D] = butter(2,0.5);
Hd = dfilt.statespace(A,B,C,D)

Hd =
             FilterStructure: 'State-space'
                           A: [2x2 double]
                           B: [0.8284;0.8284]
                           C: [0.2071 0.5]
                           D: 0.2929
            PersistentMemory: false

See Also dfilt
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7dftmtxPurpose Discrete Fourier transform matrix

Syntax A = dftmtx(n)

Description A discrete Fourier transform matrix is a complex matrix of values around the 
unit circle, whose matrix product with a vector computes the discrete Fourier 
transform of the vector.

A = dftmtx(n) returns the n-by-n complex matrix A that, when multiplied into 
a length n column vector x. 

y = A*x

computes the discrete Fourier transform of x.

The inverse discrete Fourier transform matrix is

Ai = conj(dftmtx(n))/n

Examples In practice, the discrete Fourier transform is computed more efficiently and 
uses less memory with an FFT algorithm

x = 1:256;
y1 = fft(x);

than by using the Fourier transform matrix.

n = length(x);
y2 = x*dftmtx(n);
norm(y1-y2)

ans =
1.8297e-009

Algorithm dftmtx takes the FFT of the identity matrix to generate the transform matrix.

See Also convmtx, fft
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7digitrevorderPurpose Permute input into digit-reversed order

Syntax y = digitrevorder(x,r)
[y,i] = digitrevorder(x,r)

Description digitrevorder is useful for preordering a vector of filter coefficients for use in 
frequency-domain filtering algorithms, in which the fft and ifft transforms 
are computed without digit-reversed ordering for improved run-time efficiency.

y = digitrevorder(x,r) returns the input data in digit-reversed order in 
vector or matrix y. The digit-reversal is computed using the number system 
base (radix base) r, which can be any integer from 2 to 36. The length of x must 
be an integer power of r. If x is a matrix, the digit reversal occurs on the first 
dimension of x with size greater than 1. y is the same size as x. 

[y,i] = digitrevorder(x,r) returns the digit-reversed vector or matrix y 
and the digit-reversed indices i, such that y = x(i). Recall that MATLAB uses 
1-based indexing, so the first index of y will be 1, not 0.

The following table shows the numbers 0 through 15, the corresponding digits 
and the digit-reversed numbers using radix base-4. The corresponding radix 
base-2 bits and bit-reversed indices are also shown.

Linear 
Index

Base-4 
Digits

Digit-
Reversed

Digit-
Reversed 
Index

Base-2 
Bits

Base-2 
Reversed 
(bitrevorder)

Bit-
Reversed 
Index

0 00 00 0 0000 0000 0

1 01 10 4 0001 1000 8

2 02 20 8 0010 0100 4

3 03 30 12 0011 1100 12

4 10 01 1 0100 0010 2

5 11 11 5 0101 1010 10

6 110 011 9 0110 0110 6
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Examples Obtain the digit-reversed, radix base-3 ordered output of a vector containing 9 
values:

x=[0:8]'; % Create a column vector
[x,digitrevorder(x,3)]
ans =

     0     0
     1     3
     2     6
     3     1
     4     4
     5     7
     6     2
     7     5
     8     8

See Also bitrevorder, fft, ifft

7 13 31 13 0111 1110 14

8 20 02 2 1000 0001 1

9 21 12 6 1001 1001 9

10 22 22 10 1010 0101 5

11 23 32 14 1011 1101 13

12 30 03 3 1100 0011 3

13 31 13 7 1101 1011 11

14 32 23 11 1110 0111 7

15 33 33 15 1111 1111 15

Linear 
Index

Base-4 
Digits

Digit-
Reversed

Digit-
Reversed 
Index

Base-2 
Bits

Base-2 
Reversed 
(bitrevorder)

Bit-
Reversed 
Index
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7diricPurpose Dirichlet or periodic sinc function

Syntax y = diric(x,n)

Description y = diric(x,n) returns a vector or array y the same size as x. The elements 
of y are the Dirichlet function of the elements of x. n must be a positive integer.

The Dirichlet function, or periodic sinc function, is

for any nonzero integer n. This function has period 2π for n odd and period 4π 
for n even. Its peak value is 1, and its minimum value is -1 for n even. The 
magnitude of this function is (1/n) times the magnitude of the discrete-time 
Fourier transform of the n-point rectangular window.

Diagnostics If n is not a positive integer, diric gives the following error message:

Requires n to be a positive integer.

See Also cos, gauspuls, pulstran, rectpuls, sawtooth, sin, sinc, square, tripuls

diric x n,( )
1–

x
2π
------- n 1–( )

x 0 2π± 4π± …, , ,=

nx 2⁄( )sin
n x 2⁄( )sin
---------------------------- else⎩

⎪
⎨
⎪
⎧

=

7-208



downsample
7downsamplePurpose Decrease sampling rate by integer factor

Syntax y = downsample(x,n)
y = downsample(x,n,phase)

Description y = downsample(x,n) decreases the sampling rate of x by keeping every nth 
sample starting with the first sample. x can be a vector or a matrix. If x is a 
matrix, each column is considered a separate sequence. 

y = downsample(x,n,phase) specifies the number of samples by which to 
offset the downsampled sequence. phase must be an integer from 0 to n-1.

Examples Decrease the sampling rate of a sequence by 3:

x = [1 2 3 4 5 6 7 8 9 10];
y = downsample(x,3)

y =
1 4 7 10

Decrease the sampling rate of the sequence by 3 and add a phase offset of 2:

y = downsample(x,3,2)

y =
3 6 9

Decrease the sampling rate of a matrix by 3:

x = [1 2 3; 4 5 6; 7 8 9; 10 11 12];
y = downsample(x,3);
x,y

x =
1 2 3
4 5 6
7 8 9

10 11 12

y = 
1 2 3

10 11 12
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See Also decimate, interp, interp1, resample, spline, upfirdn, upsample
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7dpssPurpose Discrete prolate spheroidal sequences (Slepian sequences)

Syntax [e,v] = dpss(n,nw)
[e,v] = dpss(n,nw,k)
[e,v] = dpss(n,nw,[k1 k2])
[e,v] = dpss(n,nw,'int')
[e,v] = dpss(n,nw,'int',Ni)
[e,v] = dpss(...,'trace')

Description [e,v] = dpss(n,nw) generates the first 2*nw discrete prolate spheroidal 
sequences (DPSS) of length n in the columns of e, and their corresponding 
concentrations in vector v. They are also generated in the DPSS MAT-file 
database dpss.mat. nw must be less than n/2.

[e,v] = dpss(n,nw,k) returns the k most band-limited discrete prolate 
spheroidal sequences. k must be an integer such that 1 ≤ k ≤ n.

[e,v] = dpss(n,nw,[k1 k2]) returns the k1st through the k2nd discrete 
prolate spheroidal sequences, where 1 ≤ k1 ≤ k2 ≤ n.

For all of the above forms: 

• The Slepian sequences are calculated directly.

• The sequences are generated in the frequency band |ω| ≤ (2πW), where 
W = nw/n is the half-bandwidth and ω is in rad/sample.

• e(:,1) is the length n signal most concentrated in the frequency band 
|ω| ≤ (2πW) radians, e(:,2) is the signal orthogonal to e(:,1) that is most 
concentrated in this band, e(:,3) is the signal orthogonal to both e(:,1) 
and e(:,2) that is most concentrated in this band, etc. 

• For multitaper spectral analysis, typical choices for nw are 2, 5/2, 3, 7/2, or 4.

[e,v] = dpss(n,nw,'int') uses the interpolation method specified by the 
string 'int' to compute e and v from the sequences in dpss.mat with length 
closest to n. The string 'int' can be either:

• 'spline': Use spline interpolation.

• 'linear': Use linear interpolation. This is much faster but less accurate than 
spline interpolation. 
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[e,v] = dpss(n,nw,'int',Ni) interpolates from existing length Ni 
sequences. The interpolation method 'linear' requires Ni > n.

[e,v] = dpss(...,'trace') uses the trailing string 'trace' to display 
which interpolation method DPSS uses. If you don’t specify the interpolation 
method, the display indicates that you are using the direct method.

Examples Example 1: Using dpss, dpssave, and dpssdir
Create a catalogue of 16 DPSS functions with nw = 4, and use spline 
interpolation on 10 of these functions while displaying the interpolation 
method you use. You can do this using dpss, dpsssave, and dpssdir:

% Create the catalogue of functions.
[e,v] = dpss(16,4);

% Save e and v in a MAT-file. 
dpsssave(4,e,v);

% Find nw = 4. First create a structure called index.
index = dpssdir;
index.wlists
ans = 
     NW: 4
    key: 1

% Use spline interpolation on 10 of the DPSS functions.
[e1,v1] = dpss(10,4,'spline',size(e,1),'trace');

Example 2: Using dpss and dpssload
Create a set of DPSS functions using dpss, and use the spline method on a 
subset of these functions. Use dpssload to load the MAT-file created by dpss:

% Create the catalogue of functions.
[e,v] = dpss(16,4);

% Load dpss.mat, where e and v are saved. 
[e1,v1] = dpssload(16,4);

% Use spline interpolation on 10 of the DPSS functions.
[e1,v1] = dpss(10,4,'spline');
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References [1] Percival, D.B., and A.T. Walden. Spectral Analysis for Physical 
Applications: Multitaper and Conventional Univariate Techniques. Cambridge: 
Cambridge University Press, 1993.

See Also dpssclear, dpssdir, dpssload, dpsssave, pmtm
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7dpssclearPurpose Remove discrete prolate spheroidal sequences from database

Syntax dpssclear(n,nw)

Description dpssclear(n,nw) removes sequences with length n and time-bandwidth 
product nw from the DPSS MAT-file database dpss.mat.

See Also dpss, dpssdir, dpssload, dpsssave
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7dpssdirPurpose Discrete prolate spheroidal sequences database directory

Syntax dpssdir
dpssdir(n)
dpssdir(nw,'nw')
dpssdir(n,nw)
index = dpssdir

Description dpssdir manages the database directory that contains the generated DPSS 
samples in the DPSS MAT-file database dpss.mat.

dpssdir lists the directory of saved sequences in dpss.mat.

dpssdir(n) lists the sequences saved with length n.

dpssdir(nw,'nw') lists the sequences saved with time-bandwidth product nw.

dpssdir(n,nw) lists the sequences saved with length n and time-bandwidth 
product nw.

index = dpssdir is a structure array describing the DPSS database. Pass n 
and nw options as for the no output case to get a filtered index.

Examples See “Example 1: Using dpss, dpssave, and dpssdir” on page 7-212.

See Also dpss, dpssclear, dpssload, dpsssave
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7dpssloadPurpose Load discrete prolate spheroidal sequences from database

Syntax [e,v] = dpssload(n,nw)

Description [e,v] = dpssload(n,nw) loads all sequences with length n and 
time-bandwidth product nw in the columns of e and their corresponding 
concentrations in vector v from the DPSS MAT-file database dpss.mat.

Examples See “Example 2: Using dpss and dpssload” on page 7-212.

See Also dpss, dpssclear, dpssdir, dpsssave
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7dpsssavePurpose Save discrete prolate spheroidal sequences in database

Syntax dpsssave(nw,e,v)
status = dpsssave(nw,e,v)

Description dpsssave(nw,e,v) saves the sequences in the columns of e and their 
corresponding concentrations in vector v in the DPSS MAT-file database 
dpss.mat. It is not necessary to specify sequence length, because the length of 
the sequence is determined by the number of rows of e.

nw is the time-bandwidth product that was specified when the sequence was 
created using dpss.

status = dpsssave(nw,e,v) returns 0 if the save was successful and 1 if 
there was an error.

Examples See “Example 1: Using dpss, dpssave, and dpssdir” on page 7-212.

See Also dpss, dpssclear, dpssdir, dpssload
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7dspdataPurpose DSP data parameter information

Syntax Hs = dspdata.databoj(input1,...)

Description Hs = dspdata.dataobj(input1,...) returns a dspdata object Hs of type 
dataobj. This object contains all the parameter information needed for the 
specified type of dataobj. Each dataobj takes one or more inputs, which are 
described on the individual reference pages. If you do not specify any input 
values, the returned object has default property values appropriate for the 
particular dataobj type.

Note  You must use a dataobj with dspdata. 

Data Objects
A data object (dataobj)  for dspdata specifies the type of data stored in the 
object. Available dataobj types for dspdata are shown below.

For more information on each dataobj type, refer to its reference page.

Methods
Methods provide ways of performing functions directly on your dspdata object. 
You can apply these methods directly on the variable you assigned to your 
dspdata object. 

dspdata.dataobj Description

dspdata.msspectrum Mean-square spectrum data (power)

dspdata.psd Power spectral density data 
(power/frequency)

dspdata.pseudospectrum Pseudospectrum data (power)
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.

Method Description

avgpower Note that this method applies only to dspdata.psd  
objects.

avgpower(Hs) computes the average power in a 
given frequency band. The technique uses a 
rectangle approximation of the integral of the Hs 
signal’s power spectral density (PSD). If the signal 
is a matrix, the computation is done on each 
column. The average power is the total signal 
power and the SpectrumType property determines 
whether the total average power is contained in 
the one-sided or two-sided spectrum. For aa 
one-sided spectrum, the range is [0,pi] for even 
number of frequency points and [0,pi) for odd. For 
a two-sided spectrum the range is [0,2pi).

avgpower(Hs,freqrange) specifies the frequency 
range over which to calculate the average power. 
freqrange is a two-element vector of the 
frequencies between which to calculate. If a 
frequency value does not match exactly the 
frequency in Hs, the next closest value is used. 
Note that the first frequency value in freqrange is 
included in the calculation and the second value is 
excluded.

centerdc centerdc(Hs) or centerdc(Hs,true) shifts the 
data and frequency values so that the DC 
component is at the center of the spectrum. If the 
SpectrumType property is 'onesided', it is 
changed to 'twosided' and then the DC 
component is centered.

centerdc(Hs,'false') shifts the data and 
frequency values so that the DC component is at 
the left edge of the spectrum.
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halfrange halfrange(Hs) converts the Hs spectrum to a 
spectrum calculated over half the Nyquist interval.  
All associated properties affected by the new 
frequency range are adjusted automatically. This 
method is used for dspdata.pseudospectrum 
objects.

Note that the spectrum is assumed to be from a 
real signal (that is, halfrange uses half the data 
points regardless of whether the data is 
symmetric).

normalizefreq normalizefreq(Hs) or normalizefreq(Hs,true) 
normalizes the frequency specifications in the Hs 
object to Fs so the frequencies are between 0 and 1. 
It also sets the NormalizedFrequency property to 
true.

normalizefreq(Hs,false) converts the 
frequencies to linear frequencies.

normalizefreq(Hs,false,Fs) sets a new 
sampling frequency Fs. This can be used only with 
false.

onesided onesided(Hs) converts the Hs spectrum to a 
spectrum calculated over half the Nyquist interval 
and containing the total signal power.  All 
associated properties affected by the new 
frequency range are adjusted automatically. This 
method is used for dspdata.psd and 
dspdata.msspectrum objects.

Note that the spectrum is assumed to be from a 
real signal (that is, onesided uses half the data 
points regardless of whether the data is 
symmetric).

Method Description
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Plotting a dspdata Object
The plot method displays the dspdata object spectrum in a separate figure 
window.

plot(Hs) % Plots an existing Hs object

plot Displays the data graphically in the current figure 
window. 

For a dspdata.psd object, it displays the power 
spectral density in dB/Hz.

For a dspdata.msspectrum object, it displays the 
power spectrum in dB.

For a dspdata.pseudospectrum object, it displays 
the pseudospectrum in dB.

twosided twosided(Hs) converts the Hs spectrum to a 
spectrum calculated over the whole Nyquist 
interval.  All associated properties affected by the 
new frequency range are adjusted automatically. 
This method is used for dspdata.psd and 
dspdata.msspectrum objects. 

Note that if your data is nonuniformly sampled, 
converting from onesided to twosided may 
produce incorrect results.

wholerange wholerange(Hs) converts the Hs spectrum to a 
spectrum calculated over the whole Nyquist 
interval.  All associated properties affected by the 
new frequency range are adjusted automatically. 
This method is used for dspdata.pseudospectrum 
objects. 

Note that if your data is nonuniformly sampled, 
converting from half to wholerange may produce 
incorrect results.

Method Description
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Modifying a dspdata Object
After you create a dspdata object, you can use any of the methods in the table 
above to modify the object properties. 

For example, to change the object from two-sided to one-sided, use

onesided(Hs)

The Hs object is modifed.

Examples See the msspectrum, psd, or pseudospectrum reference pages for specific 
examples.

 See Also dspdata.msspectrum, dspdata.psd, dspdata.pseudospectrum
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7dspdata.msspectrumPurpose  Mean-square (power) spectrum

Syntax Hmss = dspdata.msspectrum(Data)
Hmss = dspdata.msspectrum(Data,Frequencies)
Hmss = dspdata.msspectrum(...,'Fs',Fs)
Hmss = dspdata.msspectrum(...,'SpectrumType',SpectrumType)
Hmss = dspdata.msspectrum(...,'CenterDC',flag)

Description The mean-squared spectrum (MSS) is intended for discrete spectra. Unlike the 
power spectral density (PSD), the peaks in the MSS  reflect the power in the 
signal at a given frequency. The MSS of a signal is the Fourier transform of 
that signal’s autocorrelation. 

Hmss = dspdata.msspectrum(Data) uses the mean-square (power) spectrum  
data contained in Data, which can be in the form of a vector or a matrix, where 
each column is a separate set of data. Default values for other properties of the 
object are as follows:
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Property Default Value Description

Name 'Mean-square Spectrum' Read-only string

Frequencies []
type  double

Vector of frequencies at which the 
spectrum is evaluated. The range of 
this vector depends on the 
SpectrumType value. For a one-sided 
spectrum, the default range is [0, pi) or 
[0, Fs/2) for odd length, and [0, pi] or [0, 
Fs/2] for even length, if Fs is specified. 
For a two-sided spectrum, it is [0, 2pi) 
or [0, Fs). 

The length of the Frequencies vector 
must match the length of the columns 
of Data.

If you do not specify Frequencies, a 
default vector is created. If one-sided is 
selected, then the whole number of 
FFT points (nFFT) for this vector is 
assumed to be even.

If onesided is selected and you specify 
Frequencies, the last frequency point 
is compared to the next-to-last point 
and to pi (or Fs/2, if Fs is specified). If 
the last point is closer to pi (or Fs/2) 
than it is to the previous point, nFFT is 
assumed to be even. If it is closer to the 
previous point, nFFT is assumed to be 
odd.
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Hmss = dspdata.msspectrum(Data,Frequencies) uses the power spectrum   
data contained in Data and Frequencies vectors. 

Hmss = dspdata.msspectrum(...,'Fs',Fs) uses the sampling frequency Fs. 
Specifying Fs uses a default set of linear frequencies (in Hz) based on Fs and 
sets NormalizedFrequency to false. 

Hmss = dspdata.msspectrum(...,'SpectrumType',SpectrumType) uses the 
SpectrumType string to specify the interval over which the power spectrum was 
calculated. For data that ranges from [0 pi) or [0 pi], set the SpectrumType to 

Fs `Normalized' Sampling frequency, which is 
'Normalized' if NormalizedFrequency 
is true. If NormalizedFrequency is 
false Fs defaults to 1 Hz.

SpectrumType 'Onesided' Nyquist interval over which the power 
spectrum is calculated. Valid values 
are 'Onesided' and 'Twosided'.  See 
the onesided and twosided methods in 
dspdata for information on changing 
this property.

The interval for Onesided is [0 pi) or 
[0 pi] depending on the number of FFT 
points, and for Twosided the interval is 
[0 2pi).  

NormalizedFrequency true Whether the frequency is normalized 
(true) or not (false). This property is 
set automatically at construction time 
based on Fs. If Fs is specified, 
NormalizedFrequency is set to false. 
See the normalizefreq method in 
dspdata for information on changing 
this property.

Property Default Value Description
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onesided; for data that ranges from [0 2pi), set the the SpectrumType to 
twosided. 

Hmss = dspdata.msspectrum(...,'CenterDC',flag) uses the value of flag 
to indicate whether the zero-frequency (DC) component is centered.  If flag is  
true, it indicates that the DC component is in the center of the two-sided 
spectrum. Set the flag to false if the DC component is on the left edge of the 
spectrum.

Methods
Methods provide ways of performing functions directly on your dspdata object 
without having to specify the parameters again. You can apply a method 
directly on the variable you assigned to your dspdata.msspectrum object. You 
can use the following methods with a dspdata.msspectrum object.

• centerdc
• normalizefreq
• onesided
• plot
• twosided

For example, to normalize the frequency and set the NormalizedFrequency 
parameter to true, use

Hmss = normalizefreq(Hs)

For detailed information on using the methods and plotting the spectrum, see 
the dspdata reference page.

Examples This example shows how to view the spectral content of two sinusoids with 
random noise.

Fs = 32e3;
t = 0:1/Fs:2.96;
x = cos(2*pi*t*1.24e3)+cos(2*pi*t*10e3)+randn(size(t));
X = fft(x);
P = (abs(X)/length(x)).^2; % Compute the mean-square.

% Create data object.
Hmss = dspdata.msspectrum(P,'Fs',Fs,'centerdc',true); 
plot(Hmss); % Plot the mean-square spectrum.
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See Also dspdata.psd, dspdata.pseudospectrum, spectrum
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7dspdata.psdPurpose Power spectral density

Syntax Hpsd = dspdata.psd(Data)
Hpsd = dspdata.psd(Data,Frequencies)
Hpsd = dspdata.psd(...,'Fs',Fs)
Hpsd = dspdata.psd(...,'SpectrumType',SpectrumType)
Hpsd = dspdata.psd(...,'CenterDC',flag)

Description The power spectral density (PSD) is intended for continuous spectra.  The 
integral of the PSD over a given frequency band computes the average power 
in the signal over that frequency band. In contrast to the mean-squared 
spectrum, the peaks in this spectra do not reflect the power at a given 
frequency. See the avgpower method of dspdata for more information.

A one-sided PSD contains the total power of the signal in the frequency interval 
from DC to half of the Nyquist rate. A two-sided PSD contains the total power 
in the frequency interval from DC to the Nyquist rate. 

Hpsd = dspdata.psd(Data) uses the power spectral density data contained in 
Data, which can be in the form of a vector or a matrix, where each column is a 
separate set of data. Default values for other properties of the object are shown 
below:
7-228



dspdata.psd
.

Property Default Value Description

Name 'Power Spectral Density' Read-only string

Frequencies []
type double

Vector of frequencies at which the 
power spectral density is evaluated. 
The range of this vector depends on the 
SpectrumType value. For one-sided, the 
default range is [0, pi) or [0, Fs/2) for 
odd length, and [0, pi] or [0, Fs/2] for 
even length, if Fs is specified. For 
two-sided, it is [0, 2pi) or [0, Fs).
If you do not specify Frequencies, a 
default vector is created. If one-sided is 
selected, then the whole number of 
FFT points (nFFT) for this vector is 
assumed to be even.

If onesided is selected and you specify 
Frequencies, the last frequency point 
is compared to the next-to-last point 
and to pi (or Fs/2, if Fs is specified). If 
the last point is closer to pi (or Fs/2) 
than it is to the previous point, nFFT is 
assumed to be even. If it is closer to the 
previous point, nFFT is assumed to be 
odd.

The length of the Frequencies vector 
must match the length of the columns 
of Data.

Fs `Normalized' Sampling frequency, which is 
'Normalized' if NormalizedFrequency 
is true. If NormalizedFrequency is 
false Fs defaults to 1.
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Hpsd = dspdata.psd(Data,Frequencies) uses the power spectral density 
estimation data contained in Data and Frequencies vectors. 

Hpsd = dspdata.psd(...,'Fs',Fs) uses the sampling frequency Fs. 
Specifying Fs uses a default set of linear frequencies (in Hz) based on Fs and 
sets NormalizedFrequency to false. 

Hpsd = dspdata.psd(...,'SpectrumType',SpectrumType) uses the 
SpectrumType string to specify the interval over which the power spectral 
density was calculated. For data that ranges from [0 pi) or [0 pi], set the 
SpectrumType to onesided; for data that ranges from [0 2pi), set the the 
SpectrumType to twosided. 

SpectrumType 'Onesided' Nyquist interval over which the power 
spectral density is calculated. Valid 
values are 'Onesided' and 
'Twosided'. A one-sided PSD contains  
the total signal power in half the 
Nyquist interval.  See the onesided 
and twosided methods in dspdata for 
information on changing this property.

The range for half the Nyquist interval 
is [0 pi) or [0 pi] depending on the 
number of FFT points. For the whole 
Nyquist interval, the range is [0 2pi). 

NormalizedFrequency true Whether the frequency is normalized 
(true) or not (false). This property is 
set automatically at construction time 
based on Fs. If Fs is specified, 
NormalizedFrequency is set to false.  
See the normalizefreq method in 
dspdata for information on changing 
this property.

Property Default Value Description
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Hpsd = dspdata.psd(...,'CenterDC',flag) uses the value of flag to 
indicate whether the zero-frequency (DC) component is centered.  If flag is  
true, it indicates that the DC component is in the center of the two-sided 
spectrum. Set the flag to false if the DC component is on the left edge of the 
spectrum.

Methods
Methods provide ways of performing functions directly on your dspdata object. 
You can apply a method directly on the variable you assigned to your 
dspdata.psd object. You can use the following methods with a dspdata.psd 
object.

• avgpower
• centerdc
• normalizefreq
• onesided
• plot
• twosided

For example, to normalize the frequency and set the NormalizedFrequency 
parameter to true, use

Hpsd = normalizefreq(Hpsd)

For detailed information on using the methods and plotting the spectrum, see 
the dspdata reference page.

Examples Resolving Signal Components
Use the periodogram to estimate the power spectral density of a noisy 
sinusoidal signal with two frequency components and then store the results in 
a PSD data object and plot it.

Fs = 32e3;
t = 0:1/Fs:2.96;
x = cos(2*pi*t*1.24e3)+ cos(2*pi*t*10e3)+ randn(size(t));
Pxx = periodogram(x);
Hpsd = dspdata.psd(Pxx,'Fs',Fs); % Create a PSD data object.
plot(Hpsd);                 % Plot the PSD data object.
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See Also dspdata.msspectrum, dspdata.pseudospectrum, spectrum
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7dspdata.pseudospectrumPurpose  Pseudospectrum dspdata object

Syntax Hps = dspdata.pseudospectrum(Data)
Hps = dspdata.pseudospectrum(Data,Frequencies)
Hps = dspdata.pseudospectrum(...,'Fs',Fs)
Hps = dspdata.pseudospectrum(...,'SpectrumRange',SpectrumRange)
Hps = dspdata.pseudospectrum(...,'CenterDC',flag)

Description A pseudospectrum is an indicator of the presence of sinusoidal components in 
a signal.

Hps = dspdata.pseudospectrum(Data) uses the pseudospsectrum data 
contained in Data, which can be in the form of a vector or a matrix, where each 
column is a separate set of data. Default values for other properties of the 
object are:
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Property Default Value Description

Name 'Pseudospectrum' Read-only string

Frequencies []
type double

Vector of frequencies at which the 
power spectral density is evaluated. 
The range of this vector depends on the 
SpectrumRange value. For half, the 
default range is [0, pi) or [0, Fs/2) for 
odd length, and [0, pi] or [0, Fs/2] for 
even length, if Fs is specified. For 
whole, it is [0, 2pi) or [0, Fs). 

If you do not specify Frequencies, a 
default vector is created. If half the 
Nyquist range is selected, then the 
whole number of FFT points (nFFT) for 
this vector is assumed to be even.

If half the Nyquist range is selected 
and you specify Frequencies, the last 
frequency point is compared to the 
next-to-last point and to pi (or Fs/2, if 
Fs is specified). If the last point is 
closer to pi (or Fs/2) than it is to the 
previous point, nFFT is assumed to be 
even. If it is closer to the previous 
point, nFFT is assumed to be odd.

The length of the Frequencies vector 
must match the length of the columns 
of Data.

Fs `Normalized' Sampling frequency, which is 
'Normalized' if NormalizedFrequency 
is true. If NormalizedFrequency is 
false Fs defaults to 1.
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Hps = dspdata.pseudospectrum(Data,Frequencies) uses the 
pseudospectrum estimation data contained in the Data and Frequencies 
vectors. 

Hps = dspdata.pseudospectrum(...,'Fs',Fs) uses the sampling frequency 
Fs. Specifying Fs uses a default set of linear frequencies (in Hz) based on Fs and 
sets NormalizedFrequency to false. 

Hps = dspdata.pseudospectrum...,'SpectrumRange',SpectrumRange) uses 
the SpectrumRange string to specify the interval over which the 
pseudospectrum  was calculated. For data that ranges from [0 pi) or [0 pi], set 
the SpectrumRange to half; for data that ranges from [0 2pi), set the the 
SpectrumRange to whole. 

Hps = dspdata.pseudospectrum(...,'CenterDC',flag) uses the value of 
flag to indicate whether the zero-frequency (DC) component is centered.  If 

SpectrumRange 'Half' Nyquist interval over which the 
pseudospectrum is calculated. Valid 
values are 'Half' and 'Whole'.  See 
the half and whole methods in 
dspdata for information on changing 
this property.

The interval for Half is [0 pi) or [0 pi] 
depending on the number of FFT 
points, and for Whole the interval is 
[0 2pi). 

NormalizedFrequency true Whether the frequency is normalized 
(true) or not (false). This property is 
set automatically at construction time 
based on Fs. If Fs is specified, 
NormalizedFrequency is set to false.  
See the normalizefreq method in 
dspdata for information on changing 
this property.

Property Default Value Description
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flag is  true, it indicates that the DC component is in the center of the whole 
Nyquist range spectrum. Set the flag to false if the DC component is on the 
left edge of the spectrum.

Methods
Methods provide ways of performing functions directly on your dspdata object. 
You can apply a method directly on the variable you assigned to your 
dspdata.pseudospectrum object. You can use the following methods with a 
dspdata.pseudospectrum object.

• centerdc
• halfrange
• normalizefreq
• plot
• wholerange

For example, to normalize the frequency and set the NormalizedFrequency 
parameter to true, use

Hps = normalizefreq(Hps)

For detailed information on using the methods and plotting the 
pseudospectrum, see the dspdata reference page.

Examples Storing and Plotting Pseudospectrum Data
Use eigenanalysis to estimate the pseudospectrum of a noisy sinusoidal signal 
with two frequency components. Then store the results in a pseudospectrum 
data object and plot it.

Fs = 32e3;
t  = 0:1/Fs:2.96; 
x = cos(2*pi*t*1.24e3) + cos(2*pi*t*10e3) + randn(size(t)); 
P = pmusic(x,4);
hps = dspdata.pseudospectrum(P,'Fs',Fs); % Create data object.
plot(hps);                          % Plot the pseudospectrum.
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See Also dspdata.msspectrum, dspdata.psd, spectrum
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7dspfwizPurpose Open FDATool Realize Model panel to create a Simulink filter block

Syntax dspfwiz

Description Note  You must have Simulink installed to use this function.

dspfwiz  opens FDATool with the Realize Model panel displayed.  See 
“Exporting to Simulink” on page 5-36 for information on using this panel. 

Use other panels in FDATool to design your filter and then use the Realize 
Model panel to create your filter as a subsystem block, which is a combination 
of Sum, Gain, and Integer Delay blocks, in a Simulink model. 

If you also have the Signal Processing Blockset installed, you can create a 
Digital Filter block instead of a subsystem block, by deselecting the Build 
model using basic elements check box. For more information on the 
differences between these types of blocks, see  Choosing Between Filter Design 
Blocks in the Signal Blockset documentation.

See Also fdatool, realizemdl
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7dspoptsPurpose Spectral estimation parameter information 

Syntax Hopts = dspopts.optsobj

Description Hopts = dspopts.optsobj returns a DSP options object Hopts of type 
optsobj. This DSP options object contains optional parameter information for 
the specified type of optsobj. 

You create options objects via methods on other objects. For example, 

Hopts = psdopts(Hs,X) 

returns a spectrum object Hopts options object. You can change the values of 
the Hopts object and then use this modified options object as an input to the 
psd method of a spectrum object: 

Hpsd = psd(Hs,X,Hopts)

Note  You must use an optsobj with dspopts. 

Options Objects
An options object (optsobj)  for dspopts contain optional parameter values for 
the particular optsobj. Available optsobjs for dspopts are as follows:

• spectrum — Spectrum options for any spectrum estimation method object.  
The spectrum object method to create this options object is psdopts and 
msspectrumopts.  See spectrum for more information. 

Properties and valid values of a dspopts.spectrum object are as follows:

- 'NFFT'— integer number of FFT points

- 'NormalizedFrequency'— whether frequency is normalized (true) or not 
(false)

- 'Fs'— sampling frequency, used only when 'NormalizedFrequency' is 
false. If 'NormalizedFrequency' is true, the value of Fs is 'Normalized'.

- 'SpectrumType'— 'Onesided' for half the Nyquist interval or 'Twosided' 
for the whole Nyquist interval.
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• pseudospectrum — Pseudospectrum options for spectrum.music and 
spectrum.eigenvector objects. The spectrum object method to create this 
options object is pseudospectrumopts.  See spectrum for more information. 

Properties and valid values of a dspopts.pseudospectrum object are as 
follows:

- 'NFFT' — integer number of FFT points

- 'NormalizedFreqeuncy'—whether frequency is normalized (true) or not 
(false)

- 'Fs' — sampling frequency, used only when 'NormalizedFrequency' is 
false. If 'NormalizedFrequency' is true, the value of Fs is 'Normalized'.

- 'SpectrumRange' — 'Half' for half the Nyquist interval or 'Whole' for 
the whole Nyquist interval.

Modifying a DSPOPTS Object
To set specific properties, use

set(Hopts,'property1',value, 'property2',value,...) 

or use the dot method

Hopts.property = value

where 'property1', 'property2', and property are the specific property 
names.

To view the options for a property use set without specifying a value

set(Hopts,'property')

Note that you must use single quotation marks around the property name if 
you are not using the dot method. 

Another way to change an object’s properties is by using the inspect command,  
which opens the Property Inspector window where you can edit any property, 
except dynamic properties.

inspect(Hopts)

Examples Define a fourth order auto-regressive model and view its power spectral density 
using the Burg algorithm. Use dspopts to specify the FFT length and sampling 
frequency.
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randn('state',1);
x=randn(100,1);
x=filter(1,[1 1/2 1/3 1/4 1/5],x);%Fourth order AR filter
Hs=spectrum.burg; %Fourth order AR model
Hopts = dspopts.spectrum;
set(Hs,'FFTLength','UserDefined');
set(Hopts,'NFFT',512);
set(Hopts,'Fs',1000);
psd(Hs,x,Hopts)

 See Also spectrum, spectrum.burg, spectrum.cov, spectrum.eigenvector, 
spectrum.mcov, spectrum.mtm, spectrum.music, spectrum.periodogram, 
spectrum.welch, spectrum.yulear
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7ellipPurpose Elliptic (Cauer) filter design

Syntax [b,a] = ellip(n,Rp,Rs,Wn)
[b,a] = ellip(n,Rp,Rs,Wn,'ftype')
[b,a] = ellip(n,Rp,Rs,Wn,'s')
[b,a] = ellip(n,Rp,Rs,Wn,'ftype','s')
[z,p,k] = ellip(...)
[A,B,C,D] = ellip(...)

Description ellip designs lowpass, bandpass, highpass, and bandstop digital and analog 
elliptic filters. Elliptic filters offer steeper rolloff characteristics than 
Butterworth or Chebyshev filters, but are equiripple in both the pass- and 
stopbands. In general, elliptic filters meet given performance specifications 
with the lowest order of any filter type.

Digital Domain

[b,a] = ellip(n,Rp,Rs,Wn) designs an order n lowpass digital elliptic filter 
with normalized passband edge frequency Wn, Rp dB of ripple in the passband, 
and a stopband Rs dB down from the peak value in the passband. It returns the 
filter coefficients in the length n+1 row vectors b and a, with coefficients in 
descending powers of z.

The normalized passband edge frequency is the edge of the passband, at which 
the magnitude response of the filter is -Rp dB. For ellip, the normalized cutoff 
frequency Wn is a number between 0 and 1, where 1 corresponds to half the 
sampling frequency (Nyquist frequency). Smaller values of passband ripple Rp 
and larger values of stopband attenuation Rs both lead to wider transition 
widths (shallower rolloff characteristics).

If Wn is a two-element vector, Wn = [w1 w2], ellip returns an order 2*n 
bandpass filter with passband w1 < ω < w2.

[b,a] = ellip(n,Rp,Rs,Wn,'ftype') designs a highpass, lowpass, or 
bandstop filter, where the string 'ftype' is one of the following.

H z( ) B z( )
A z( )
----------- b 1( ) b 2( )z 1– b n 1+( )z n–+ + +

1 a 2( )z 1– a n 1+( )z n–+ + +
------------------------------------------------------------------------------------= =
7-242



ellip
• 'high' for a highpass digital filter with normalized passband edge frequency 
Wn

• 'low' for a lowpass digital filter with normalized passband edge frequency 
Wn

• 'stop' for an order 2*n bandstop digital filter if Wn is a two-element vector, 
Wn = [w1 w2]. The stopband is w1 < ω < w2.

With different numbers of output arguments, ellip directly obtains other 
realizations of the filter. To obtain zero-pole-gain form, use three output 
arguments as shown below.

[z,p,k] = ellip(n,Rp,Rs,Wn) or

[z,p,k] = ellip(n,Rp,Rs,Wn,'ftype') returns the zeros and poles in length 
n column vectors z and p and the gain in the scalar k. 

To obtain state-space form, use four output arguments as shown below:

[A,B,C,D] = ellip(n,Rp,Rs,Wn) or

[A,B,C,D] = ellip(n,Rp,Rs,Wn,'ftype') where A, B, C, and D are

and u is the input, x is the state vector, and y is the output.

Analog Domain

[b,a] = ellip(n,Rp,Rs,Wn,'s') designs an order n lowpass analog elliptic 
filter with angular passband edge frequency Wn and returns the filter 
coefficients in the length n+1 row vectors b and a, in descending powers of s, 
derived from this transfer function:

The angular passband edge frequency is the edge of the passband, at which the 
magnitude response of the filter is -Rp dB. For ellip, the angular passband 
edge frequency Wn must be greater than 0 rad/s.

x n 1+[ ] Ax n[ ] Bu n[ ]+=

y n[ ] Cx n[ ] Du n[ ]+=

H s( ) B s( )
A s( )
----------- b 1( )sn b 2( )sn 1– b n 1+( )+ + +

sn a 2( )sn 1– a n 1+( )+ + +
-------------------------------------------------------------------------------------= =
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If Wn is a two-element vector with w1 < w2, then ellip(n,Rp,Rs,Wn,'s') returns an 
order 2*n bandpass analog filter with passband w1 < ω < w2.

[b,a] = ellip(n,Rp,Rs,Wn,'ftype','s') designs a highpass, lowpass, or 
bandstop filter.

With different numbers of output arguments, ellip directly obtains other 
realizations of the analog filter. To obtain zero-pole-gain form, use three output 
arguments as shown below:

[z,p,k] = ellip(n,Rp,Rs,Wn,'s') or

[z,p,k] = ellip(n,Rp,Rs,Wn,'ftype','s') returns the zeros and poles in 
length n or 2*n column vectors z and p and the gain in the scalar k. 

To obtain state-space form, use four output arguments as shown below:

[A,B,C,D] = ellip(n,Rp,Rs,Wn,'s') or

[A,B,C,D] = ellip(n,Rp,Rs,Wn,'ftype','s') where A, B, C, and D are

and u is the input, x is the state vector, and y is the output.

Examples Example 1
For data sampled at 1000 Hz, design a sixth-order lowpass elliptic filter with a 
passband edge frequency of 300 Hz, which corresponds to a normalized value 
of 0.6, 3 dB of ripple in the passband, and 50 dB of attenuation in the stopband:

[b,a] = ellip(6,3,50,300/500);

The filter’s frequency response is

freqz(b,a,512,1000)
title('n=6 Lowpass Elliptic Filter')

x· Ax Bu+=

y Cx Du+=
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Example 2
Design a 20th-order bandpass elliptic filter with a passband from 100 to 200 Hz 
and plot its impulse response:

n = 10; Rp = 0.5; Rs = 20;
Wn = [100 200]/500;
[b,a] = ellip(n,Rp,Rs,Wn);
[y,t] = impz(b,a,101); stem(t,y)
title('Impulse Response of n=10 Elliptic Filter')
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Limitations For high order filters, the state-space form is the most numerically accurate, 
followed by the zero-pole-gain form. The transfer function form is the least 
accurate; numerical problems can arise for filter orders as low as 15.

Algorithm The design of elliptic filters is the most difficult and computationally intensive 
of the Butterworth, Chebyshev Type I and II, and elliptic designs. ellip uses 
a five-step algorithm:

1 It finds the lowpass analog prototype poles, zeros, and gain using the 
ellipap function.

2 It converts the poles, zeros, and gain into state-space form.

3 It transforms the lowpass filter to a bandpass, highpass, or bandstop filter 
with the desired cutoff frequencies using a state-space transformation.

4 For digital filter design, ellip uses bilinear to convert the analog filter 
into a digital filter through a bilinear transformation with frequency 
prewarping. Careful frequency adjustment guarantees that the analog 
filters and the digital filters will have the same frequency response 
magnitude at Wn or w1 and w2.

5 It converts the state-space filter back to transfer function or zero-pole-gain 
form, as required.
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See Also besself, butter, cheby1, cheby2, ellipap, ellipord
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7ellipapPurpose Elliptic analog lowpass filter prototype

Syntax [z,p,k] = ellipap(n,Rp,Rs)

Description [z,p,k] = ellipap(n,Rp,Rs) returns the zeros, poles, and gain of an order n 
elliptic analog lowpass filter prototype, with Rp dB of ripple in the passband, 
and a stopband Rs dB down from the peak value in the passband. The zeros and 
poles are returned in length n column vectors z and p and the gain in scalar k. 
If n is odd, z is length n - 1. The transfer function is

Elliptic filters offer steeper rolloff characteristics than Butterworth and 
Chebyshev filters, but they are equiripple in both the passband and the 
stopband. Of the four classical filter types, elliptic filters usually meet a given 
set of filter performance specifications with the lowest filter order.

ellip sets the passband edge angular frequency  of the elliptic filter to 1 for 
a normalized result. The passband edge angular frequency is the frequency at 
which the passband ends and the filter has a magnitude response of 10-Rp/20.

Algorithm ellipap uses the algorithm outlined in [1]. It employs the M-file ellipk to 
calculate the complete elliptic integral of the first kind and the M-file ellipj 
to calculate Jacobi elliptic functions.

References [1] Parks, T.W., and C.S. Burrus. Digital Filter Design. New York: John Wiley 
& Sons, 1987. Chapter 7.

See Also besselap, buttap, cheb1ap, cheb2ap, ellip

H s( ) z s( )
p s( )
---------- k s z 1( )–( ) s z 2( )–( ) s z n( )–( )
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7ellipordPurpose Minimum order for elliptic filters

Syntax [n,Wn] = ellipord(Wp,Ws,Rp,Rs)
[n,Wn] = ellipord(Wp,Ws,Rp,Rs,'s')

Description ellipord calculates the minimum order of a digital or analog elliptic filter 
required to meet a set of filter design specifications. 

Digital Domain

[n,Wn] = ellipord(Wp,Ws,Rp,Rs) returns the lowest order n of the elliptic 
filter that loses no more than Rp dB in the passband and has at least Rs dB of 
attenuation in the stopband. The scalar (or vector) of corresponding cutoff 
frequencies Wn, is also returned. Use the output arguments n and Wn in ellip.

Choose the input arguments to specify the stopband and passband according to 
the following table.

Description of Stopband and Passband Filter Parameters

Parameter Description

Wp Passband corner frequency Wp, the cutoff frequency, is a 
scalar or a two-element vector with values between 0 and 1, 
with 1 corresponding to the normalized Nyquist frequency, 
π radians per sample.

Ws Stopband corner frequency Ws, is a scalar or a two-element 
vector with values between 0 and 1, with 1 corresponding to 
the normalized Nyquist frequency. 

Rp Passband ripple, in decibels. Twice this value specifies the 
maximum permissible passband width in decibels. 

Rs Stopband attenuation, in decibels. This value is the number 
of decibels the stopband is attenuated with respect to the 
passband response. 
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Use the following guide to specify filters of different types.

If your filter specifications call for a bandpass or bandstop filter with unequal 
ripple in each of the passbands or stopbands, design separate lowpass and 
highpass filters according to the specifications in this table, and cascade the 
two filters together.

Analog Domain

[n,Wn] = ellipord(Wp,Ws,Rp,Rs,'s') finds the minimum order n and cutoff 
frequencies Wn for an analog filter. You specify the frequencies Wp and Ws 
similar to those described in the Table , Description of Stopband and Passband 
Filter Parameters table above, only in this case you specify the frequency in 
radians per second, and the passband or the stopband can be infinite.

Use ellipord for lowpass, highpass, bandpass, and bandstop filters as 
described in the Table , Filter Type Stopband and Passband Specifications 
table above.

Filter Type Stopband and Passband Specifications

Filter Type Stopband and Passband Conditions Stopband Passband

Lowpass Wp < Ws, both scalars (Ws,1) (0,Wp)

Highpass Wp > Ws, both scalars (0,Ws) (Wp,1)

Bandpass The interval specified by Ws contains 
the one specified by Wp 
(Ws(1) < Wp(1) < Wp(2) < Ws(2)).

(0,Ws(1)) 
and 
(Ws(2),1)

(Wp(1),Wp(2))

Bandstop The interval specified by Wp contains 
the one specified by Ws 
(Wp(1) < Ws(1) < Ws(2) < Wp(2)).

(0,Wp(1)) 
and 
(Wp(2),1)

(Ws(1),Ws(2))
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Examples Example 1
For 1000 Hz data, design a lowpass filter with less than 3 dB of ripple in the 
passband defined from 0 to 40 Hz and at least 60 dB of ripple in the stopband 
defined from 150 Hz to the Nyquist frequency (500 Hz):

Wp = 40/500; Ws = 150/500;
Rp = 3; Rs = 60;
[n,Wn] = ellipord(Wp,Ws,Rp,Rs)

n =
     4

Wn =
    0.0800

[b,a] = ellip(n,Rp,Rs,Wn);
freqz(b,a,512,1000);
title('n=4 Elliptic Lowpass Filter')
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Example 2
Now design a bandpass filter with a passband from 60 Hz to 200 Hz, with less 
than 3 dB of ripple in the passband, and 40 dB attenuation in the stopbands 
that are 50 Hz wide on both sides of the passband:

Wp = [60 200]/500; Ws = [50 250]/500;
Rp = 3; Rs = 40;
[n,Wn] = ellipord(Wp,Ws,Rp,Rs)

n =
     5
Wn =
    0.1200    0.4000

[b,a] = ellip(n,Rp,Rs,Wn);
freqz(b,a,512,1000);
title('n=5 Elliptic Bandpass Filter')
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Algorithm ellipord uses the elliptic lowpass filter order prediction formula described 
in [1]. The function performs its calculations in the analog domain for both the 
analog and digital cases. For the digital case, it converts the frequency 
parameters to the s-domain before estimating the order and natural 
frequencies, and then converts them back to the z-domain.

ellipord initially develops a lowpass filter prototype by transforming the 
passband frequencies of the desired filter to 1 rad/s (for low- and highpass 
filters) and to -1 and 1 rad/s (for bandpass and bandstop filters). It then 
computes the minimum order required for a lowpass filter to meet the stopband 
specification.

References [1] Rabiner, L.R., and B. Gold. Theory and Application of Digital Signal 
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975. Pg. 241.

See Also buttord, cheb1ord, cheb2ord, ellip
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7eqtflengthPurpose Equalize lengths of transfer function's numerator and denominator

Syntax [b,a] = eqtflength(num,den)
[b,a,n,m] = eqtflength(num,den)

Description [b,a] = eqtflength(num,den) modifies the vector num and/or the vector den, 
so that the resulting output vectors b and a have the same length. The input 
vectors num and den may have different lengths. The vector num represents the 
numerator polynomial of a given discrete-time transfer function, and the vector 
den represents its denominator. The resulting numerator b and denominator a 
represent the same discrete-time transfer function, but these vectors have the 
same length.

[b,a,n,m] = eqtflength(num,den) modifies the vectors as above and also 
returns the numerator order n and the denominator m, not including any 
trailing zeros.

Use eqtflength to obtain a numerator and denominator of equal length before 
applying transfer function conversion functions such as tf2ss and tf2zp to 
discrete-time models.

Examples num = [1 0.5];
den = [1 0.75 0.6 0];
[b,a,n,m] = eqtflength(num,den)

b =
    1.0000    0.5000         0

a =
    1.0000    0.7500    0.6000

n =
     1
m =
     2

Algorithm eqtflength(num,den) appends zeros to either num or den as necessary. If both num 
and den have trailing zeros in common, these are removed.

See Also tf2ss, tf2zp
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7fdatoolPurpose Filter Design and Analysis Tool

Syntax fdatool

Description fdatool opens the Filter Design and Analysis Tool (FDATool). Use this tool to

• Design filters

• Analyze filters

• Modify existing filter designs

See Chapter 5, “FDATool: A Filter Design and Analysis GUI,” for more 
information.

Remarks The Filter Design and Analysis Tool provides more design methods than the 
SPTool Filter Designer. It also integrates advanced filter design methods from 
the Filter Design Toolbox.
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Note  The Filter Design and Analysis Tool requires a screen resolution 
greater than 640 x 480.

See Also fvtool, sptool, wvtool
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7fftPurpose One-dimensional fast Fourier transform

fft is a MATLAB function.
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7fft2Purpose Two-dimensional fast Fourier transform

fft2 is a MATLAB function.
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7fftfiltPurpose FFT-based FIR filtering using  overlap-add method

Syntax y = fftfilt(b,x)
y = fftfilt(b,x,n)

Description fftfilt filters data using the efficient FFT-based method of overlap-add, a 
frequency domain filtering technique that works only for FIR filters.

y = fftfilt(b,x) filters the data in vector x with the filter described by 
coefficient vector b. It returns the data vector y. The operation performed by 
fftfilt is described in the time domain by the difference equation:

An equivalent representation is the z-transform or frequency domain 
description:

By default, fftfilt chooses an FFT length and data block length that 
guarantee efficient execution time.

If x is a matrix, fftfilt filters its columns.  If b is a matrix, fftfilt applies 
the filter in each column of b to the signal vector x. If b and x are both matrices 
with the same number of columns,  the i-th column of b is used to filter the i-th 
column of x.

y = fftfilt(b,x,n) uses n to determine the length of the FFT. See the 
Algorithm section below for information.

fftfilt works for both real and complex inputs.

Comparison to FILTER function
When the input signal is relatively laree, it is advantageous to use fftfilt  
instead of filter.  filter performs N multiplications for each sample in x, 
where N is the filter length.  fftfilt performs 2 FFT operations — the FFT of 
the signal block of length L plus the inverse FT of the product of the FFTs — 
at the cost of

 1/2*L*log2(L)

y n( ) b 1( )x n( ) b 2( )x n 1–( ) b nb 1+( )x n nb–( )+ + +=

Y z( ) b 1( ) b 2( )z 1– b nb 1+( )z nb–+ + +( )X z( )=
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where L is the block length.  It then performs L pointwise multiplications for a 
total cost of

 L+L*log2(L) = L*(1+log2(L))

multiplcations.  The cost ratio is therefore

 L*(1+log2(L))/(N*L) => (1+log2(L))/N

which is approximately log2(L)/N. 

Therefore, fftfilt becomes advantageous when log2(L) is less than N.

Examples Show that the results from fftfilt and filter are identical:

b = [1 2 3 4];
x = [1 zeros(1,99)]';
norm(fftfilt(b,x) - filter(b,1,x))

ans =
9.5914e-15

Algorithm fftfilt uses fft to implement the overlap-add method [1], a technique that 
combines successive frequency domain filtered blocks of an input sequence. 
fftfilt breaks an input sequence x into length L data blocks, where L must be 
greater than the filter length N.

and convolves each block with the filter b by

y = ifft(fft(x(i:i+L-1),nfft).*fft(b,nfft));

where nfft is the FFT length. fftfilt overlaps successive output sections by 
n-1 points, where n is the length of the filter, and sums them.

x
L 2L 3L ceil(nx/L)*L

.  .  .

nb–1L

nb–12L

nb–13L
.  .  .
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fftfilt chooses the key parameters L and nfft in different ways, depending 
on whether you supply an FFT length n and on the lengths of the filter and 
signal. If you do not specify a value for n (which determines FFT length), 
fftfilt chooses these key parameters automatically:

• If length(x)is greater than length(b), fftfilt chooses values that 
minimize the number of blocks times the number of flops per FFT.

• If length(b) is greater than or equal to length(x), fftfilt uses a single 
FFT of length

2^nextpow2(length(b) + length(x) - 1)

This essentially computes
y = ifft(fft(B,nfft).*fft(X,nfft))

If you supply a value for n, fftfilt chooses an FFT length, nfft, of 
2^nextpow2(n)and a data block length of nfft - length(b) + 1. If n is less than 
length(b), fftfilt sets n to length(b).

References [1] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing, 
Prentice-Hall, 1989.

See Also conv, dfilt.fftfir, filter, filtfilt
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7fftshiftPurpose Rearrange FFT function outputs

fftshift is a MATLAB function.
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7filterPurpose Filter data with a recursive (IIR) or nonrecursive (FIR) filter

filter is a MATLAB function.

Signal-specific 
Information

Filter Method of DFILT

Filter is also an overloaded method of the discrete-time filter object (dfilt). You can pass an 
object handle, data, and optionally, the dimension into the filter method. 
The MATLAB filter function describes a zi input for initial conditions. Note 
that the recommended way of passing initial conditions into a dfilt is by using 
the states property. For more information, see the dfilt reference page.

Filter Normalization
Using filter on b and a coefficients normalizes the filter by forcing the a0 
coefficient to be equal to 1. 

Using the filter method on a dfilt object does not normalize the a0 
coefficient.
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7filter2Purpose Two-dimensional digital filtering

filter2 is a MATLAB function.
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7filternormPurpose  2-norm or infinity-norm of a digital filter

Syntax filternorm(b,a)
filternorm(b,a,pnorm)
filternorm(b,a,2,tol)

Description A typical use for filter norms is in digital filter scaling to reduce quantization 
effects. Scaling often improves the signal-to-noise ratio of the filter without 
resulting in data overflow. You, also, can use the 2-norm to compute the energy 
of the impulse response of a filter.

filternorm(b,a) computes the 2-norm of the digital filter defined by the 
numerator coefficients in b and denominator coefficients in a.

filternorm(b,a,pnorm) computes the 2- or infinity-norm (inf-norm) of the 
digital filter, where pnorm is either 2 or inf. 

filternorm(b,a,2,tol) computes the 2-norm of an IIR filter with the 
specified tolerance, tol. The tolerance can be specified only for IIR 2-norm 
computations. pnorm in this case must be 2. If tol is not specified, it defaults to 
1e-8.

Examples Compute the 2-norm with a tolerance of 1e-10 of an IIR filter:

[b,a]=butter(5,.5);
L2=filternorm(b,a,2,1e-10)

L2 =

    0.7071

Compute the inf-norm of an FIR filter:

b=firpm(30,[.1 .9],[1 1],'Hilbert');
Linf=filternorm(b,1,inf)

Linf =

    1.0028
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Algorithm Given a filter H(z) with frequency reponse H(ejω), the Lp-norm is given by

For the case , the  norm simplifies to

For the case p = 2, Parseval’s theorem states that

where h(n) is the impulse response of the filter. The energy of the impulse 
response, then, is .

Reference Jackson, L.B., Digital Filters and Signal Processing, Third Edition, Kluwer 
Academic Publishers, 1996, Chapter 11.

See Also zp2sos, norm
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7filtfiltPurpose Zero-phase digital filtering

Syntax y = filtfilt(b,a,x)

Description y = filtfilt(b,a,x) performs zero-phase digital filtering by processing the 
input data in both the forward and reverse directions (see problem 5.39 in [1]). 
After filtering in the forward direction, it reverses the filtered sequence and 
runs it back through the filter. The resulting sequence has precisely zero-phase 
distortion and double the filter order. filtfilt minimizes start-up and ending 
transients by matching initial conditions, and works for both real and complex 
inputs. 

Note that filtfilt should not be used with differentiator and Hilbert FIR 
filters, since the operation of these filters depends heavily on their phase 
response.

Algorithm filtfilt is an M-file that uses the filter function. In addition to the 
forward-reverse filtering, it attempts to minimize startup transients by 
adjusting initial conditions to match the DC component of the signal and by 
prepending several filter lengths of a flipped, reflected copy of the input signal.

References [1] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing, 
Prentice-Hall, 1989, pp. 311-312.

[2] Mitra, S.K., Digital Signal Processing, 2nd ed., McGraw-Hill, 2001, Sections 
4.4.2 and 8.2.5. 

[3] Gustafsson, F., “Determining the initial states in forward-backward 
filtering,” IEEE Transactions on Signal Processing, April 1996, Volume 44, 
Issue 4, pp. 988--992, 

See Also fftfilt, filter, filter2
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7filticPurpose Iinitial conditions for transposed direct-form II filter implementation

Syntax z = filtic(b,a,y,x)
z = filtic(b,a,y)

Description z = filtic(b,a,y,x) finds the initial conditions, z, for the delays in the 
transposed direct-form II filter implementation given past outputs y and 
inputs x. The vectors b and a represent the numerator and denominator 
coefficients, respectively, of the filter’s transfer function.

The vectors x and y contain the most recent input or output first, and oldest 
input or output last.

where n is length(b)-1 (the numerator order) and m is length(a)-1 (the 
denominator order). If length(x) is less than n, filtic pads it with zeros to 
length n; if length(y) is less than m, filtic pads it with zeros to length m. 
Elements of x beyond x(n-1) and elements of y beyond y(m-1) are unnecessary 
so filtic ignores them.

Output z is a column vector of length equal to the larger of n and m. z describes 
the state of the delays given past inputs x and past outputs y.

z = filtic(b,a,y) assumes that the input x is 0 in the past.

The transposed direct-form II structure is shown in the following illustration.

n-1 is the filter order. 

filtic works for both real and complex inputs.

x x 1–( ) x 2–( ) x 3–( ) … x n–( ) …, , , , ,{ }=

y y 1–( ) y 2–( ) y 3–( ) … y m–( ) …, , , , ,{ }=

Σ Σ Σz -1 z -1

x(m)

y(m)

b(3) b(2) b(1)

– a(3) – a(2)

z1(m)z2(m)
Σ z -1

b(n)

–a(n)

zn -1(m)

...

...

...
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Algorithm filtic performs a reverse difference equation to obtain the delay states z.

Diagnostics If any of the input arguments y, x, b, or a is not a vector (that is, if any 
argument is a scalar or array), filtic gives the following error message:

Requires vector inputs.

References Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing, 
Prentice-Hall, 1989, pp. 296, 301-302.

See Also filter, filtfilt
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7filtstatesPurpose Filter states 

Syntax Hs = filtstates.structure(input1,...)

Description Hs = filtstates.structure(input1,...) returns a filter states object Hs,  
which contains the filter states. 

You can extract a filtstates object from the states property of an object with

Hd = dfilt.df1
Hs = Hd.states

or, for an mfilt object in the Filter Design Toolbox, with

Hm = mfilt.cicdecim
Hs = Hm.states

Structures
Structures for filtstates specify the type of filter structure. Available types 
of  structures for filtstates are shown below. 

Methods
Refer to the particular filtstates.structure reference page for information 
on methods.

See Also filtstates.dfiir, dfilt, dfilt.df1, dfilt.df1t, dfilt.df1sos, 
dfilt.df1tsos

filtstates.structure Description

filtstates.dfiir filtstates for IIR Direct-form I filters 
(dfilt.df1, dfilt.df1t, dfilt.df1sos, and 
dfilt.df1tsos)

filtstates.cic filtstates for cascaded integrator comb filters. 
(Available only with the Filter Design Toolbox 
and the Fixed Point Toolbox.)
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7filtstates.dfiirPurpose IIR Direct-form filter states 

Syntax Hs = filtstates.dfiir(numstates,denstates)

Description Hs = filtstates.dfiir(numstates,denstates) returns an IIR direct-form  
filter states object Hs with two properties—Numerator and Denominator, which 
contain the filter states. These two properties are column vectors with each 
column representing a separate channel of filter states. The number of states 
is always one less than the the number of filter numerator or denominator 
coefficients. 

You can extract a filtstates object from the states property of an IIR 
direct-form I object with

Hd = dfilt.df1
Hs = Hd.states

Methods
You can use the following methods on a filtstates.dfiir object.

 Examples This example demonstrates the interaction of filtstates with a dfilt.df1 
object.

[b,a] = butter(4,0.5); % Design a butterworth filter
Hd = dfilt.df1(b,a); % Create a dfilt object
Hs = Hd.states % Extract a filter states object from

%  the dfilt states property
Hs.Numerator = [1,1,1,1]' % Modify the numerator states

Method Description

double Converts a filtstates object to a double-precision vector 
containing the values of the numerator and denominator 
states. The numerator states are listed first in this vector, 
followed by the denominator states.

single Converts a filtstates object to a single-precision vector 
containing the values of the numerator and denominator 
states. (This method is used with the Fitler Design 
Toolbox.)
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Hd.states = Hs % Set the modified states back to the 
%  original object

Dbl = double(Hs) % Create a double vector from states

See Also filtstates, dfilt, dfilt.df1, dfilt.df1t, dfilt.df1sos, dfilt.df1tsos
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7fir1Purpose Wwindow-based finite impulse response filter design

Syntax b = fir1(n,Wn)
b = fir1(n,Wn,'ftype')
b = fir1(n,Wn,window)
b = fir1(n,Wn,'ftype',window)
b = fir1(...,'normalization')

Description fir1 implements the classical method of windowed linear-phase FIR digital 
filter design [1]. It designs filters in standard lowpass, highpass, bandpass, and 
bandstop configurations. By default the filter is normalized so that the 
magnitude response of the filter at the center frequency of the passband is 
0 dB.

Note  Use fir2 for windowed filters with arbitrary frequency response.

b = fir1(n,Wn) returns row vector b containing the n+1 coefficients of an 
order n lowpass FIR filter. This is a Hamming-window based, linear-phase 
filter with normalized cutoff frequency Wn. The output filter coefficients, b, are 
ordered in descending powers of z.

Wn is a number between 0 and 1, where 1 corresponds to the Nyquist frequency.

If Wn is a two-element vector, Wn = [w1 w2], fir1 returns a bandpass filter with 
passband w1 < ω < w2. 

If Wn is a multi-element vector, Wn = [w1 w2 w3 w4 w5 ... wn], fir1 returns 
an order n multiband filter with bands 0 < ω < w1, w1 < ω < w2, ..., wn < ω < 1.

By default, the filter is scaled so that the center of the first passband has a 
magnitude of exactly 1 after windowing.

b = fir1(n,Wn,'ftype') specifies a filter type, where 'ftype' is:

• 'high' for a highpass filter with cutoff frequency Wn.

B z( ) b 1( ) b 2( )z 1– b n 1+( )z n–+ + +=
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• 'stop' for a bandstop filter, if Wn = [w1 w2]. The stopband frequency range 
is specified by this interval. 

• 'DC-1' to make the first band of a multiband filter a passband.

• 'DC-0' to make the first band of a multiband filter a stopband.

fir1 always uses an even filter order for the highpass and bandstop 
configurations. This is because for odd orders, the frequency response at the 
Nyquist frequency is 0, which is inappropriate for highpass and bandstop 
filters. If you specify an odd-valued n, fir1 increments it by 1.

b = fir1(n,Wn,window) uses the window specified in column vector window 
for the design. The vector window must be n+1 elements long. If no window is 
specified, fir1 uses a Hamming window (see hamming) of length n+1.

b = fir1(n,Wn,'ftype',window) accepts both 'ftype' and window 
parameters.

b = fir1(...,'normalization') specifies whether or not the filter 
magnitude is normalized. The string 'normalization' can be the following:

• 'scale' (default): Normalize the filter so that the magnitude response of the 
filter at the center frequency of the passband is 0 dB.

• 'noscale': Do not normalize the filter.

The group delay of the FIR filter designed by fir1 is n/2.

Algorithm fir1 uses the window method of FIR filter design [1]. If w(n) denotes a window, 
where 1 ≤ n ≤ N, and the impulse response of the ideal filter is h(n), where 
h(n) is the inverse Fourier transform of the ideal frequency response, then the 
windowed digital filter coefficients are given by

b n( ) w n( )h n( ) 1 n N≤ ≤,=
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Examples Example 1
Design a 48th-order FIR bandpass filter with passband 0.35 ≤ ω ≤ 0.65:

b = fir1(48,[0.35 0.65]);
freqz(b,1,512)

Example 2
The chirp.mat file contains a signal, y, that has most of its power above fs/4, 
or half the Nyquist frequency. Design a 34th-order FIR highpass filter to 
attenuate the components of the signal below fs/4. Use a cutoff frequency 
of 0.48 and a Chebyshev window with 30 dB of ripple:

load chirp  % Load y and fs.
b = fir1(34,0.48,'high',chebwin(35,30));
freqz(b,1,512)
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References Programs for Digital Signal Processing, IEEE Press, New York, 1979. 
Algorithm 5.2.

See Also cfirpm, filter, fir2, fircls, fircls1, firls, freqz, kaiserord, firpm, 
window
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7fir2Purpose Ffrequency sampling-based finite impulse response filter design

Syntax b = fir2(n,f,m)
b = fir2(n,f,m,window)
b = fir2(n,f,m,npt)
b = fir2(n,f,m,npt,window)
b = fir2(n,f,m,npt,lap)
b = fir2(n,f,m,npt,lap,window)

Description fir2 designs frequency sampling-based digital FIR filters with arbitrarily 
shaped frequency response. 

Note  Use fir1 for windows-based standard lowpass, bandpass, highpass, 
and bandstop configurations.

b = fir2(n,f,m) returns row vector b containing the n+1 coefficients of an 
order n FIR filter. The frequency-magnitude characteristics of this filter match 
those given by vectors f and m:

• f is a vector of frequency points in the range from 0 to 1, where 1 corresponds 
to the Nyquist frequency. The first point of f must be 0 and the last point 1. 
The frequency points must be in increasing order.

• m is a vector containing the desired magnitude response at the points 
specified in f.

• f and m must be the same length.

• Duplicate frequency points are allowed, corresponding to steps in the 
frequency response.

Use plot(f,m) to view the filter shape.

The output filter coefficients, b, are ordered in descending powers of z.

fir2 always uses an even filter order for configurations with a passband at the 
Nyquist frequency. This is because for odd orders, the frequency response at 

b z( ) b 1( ) b 2( )z 1– b n 1+( )z n–+ + +=
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the Nyquist frequency is necessarily 0. If you specify an odd-valued n, fir2 
increments it by 1.

b = fir2(n,f,m,window) uses the window specified in the column vector 
window. The vector window must be n+1 elements long. If no window is specified, 
fir2 uses a Hamming window (see hamming) of length n+1.

b = fir2(n,f,m,npt) or 

b = fir2(n,f,m,npt,window) specifies the number of points, npt, for the grid 
onto which fir2 interpolates the frequency response, without or with a window 
specification.

b = fir2(n,f,m,npt,lap) and

b = fir2(n,f,m,npt,lap,window) specify the size of the region, lap, that 
fir2 inserts around duplicate frequency points, with or without a window 
specification.

See the “Algorithm” section for more on npt and lap.

Examples Design a 30th-order lowpass filter and overplot the desired frequency response 
with the actual frequency response:

f = [0 0.6 0.6 1]; m = [1 1 0 0];
b = fir2(30,f,m);
[h,w] = freqz(b,1,128);
plot(f,m,w/pi,abs(h))
legend('Ideal','fir2 Designed')
title('Comparison of Frequency Response Magnitudes')
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Algorithm The desired frequency response is interpolated onto a dense, evenly spaced grid 
of length npt. npt is 512 by default. If two successive values of f are the same, 
a region of lap points is set up around this frequency to provide a smooth but 
steep transition in the requested frequency response. By default, lap is 25. The 
filter coefficients are obtained by applying an inverse fast Fourier transform to 
the grid and multiplying by a window; by default, this is a Hamming window.

References Mitra, S.K., Digital Signal Processing A Computer Based Approach, First 
Edition, McGraw-Hill, New York, 1998, pp. 462-468.

Jackson, L.B., Digital Filters and Signal Processing, Third Edition, Kluwer 
Academic Publishers, Boston, 1996, pp. 301-307. 

See Also butter, cheby1, cheby2, ellip, fir1, maxflat, firpm, yulewalk
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7firclsPurpose Constrained least square, FIR multiband filter design

Syntax b = fircls(n,f,amp,up,lo)
fircls(n,f,amp,up,lo,'design_flag')

Description b = fircls(n,f,amp,up,lo) generates a length n+1 linear phase FIR filter b. 
The frequency-magnitude characteristics of this filter match those given by 
vectors f and amp:

• f is a vector of transition frequencies in the range from 0 to 1, where 1 
corresponds to the Nyquist frequency. The first point of f must be 0 and the 
last point 1. The frequency points must be in increasing order.

• amp is a vector describing the piecewise constant desired amplitude of the 
frequency response. The length of amp is equal to the number of bands in the 
response and should be equal to length(f)-1.

• up and lo are vectors with the same length as amp. They define the upper and 
lower bounds for the frequency response in each band.

fircls always uses an even filter order for configurations with a passband at 
the Nyquist frequency (that is, highpass and bandstop filters). This is because 
for odd orders, the frequency response at the Nyquist frequency is 
necessarily 0. If you specify an odd-valued n, fircls increments it by 1.

fircls(n,f,amp,up,lo,'design_flag') enables you to monitor the filter 
design, where 'design_flag' can be

• 'trace', for a textual display of the design error at each iteration step.

• 'plots', for a collection of plots showing the filter’s full-band magnitude 
response and a zoomed view of the magnitude response in each sub-band. All 
plots are updated at each iteration step. The O’s on the plot are the estimated 
extremals of the new iteration and the X’s are the estimated extremals of the 
previous iteration, where the extremals are the peaks (maximum and 
minimum) of the filter ripples. Only ripples that have a corresponding O and 
X are made equal.

• 'both', for both the textual display and plots.
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Examples Design an order 150 bandpass filter: 

n=150;
f=[0 0.4 1];
a=[1 0];
up=[1.02 0.01];
lo =[0.98 -0.01];
b = fircls(n,f,a,up,lo,'both'); % Display plots of the bands
  Bound Violation = 0.0788344298966  
  Bound Violation = 0.0096137744998  
  Bound Violation = 0.0005681345753  
  Bound Violation = 0.0000051519942  
  Bound Violation = 0.0000000348656  
  Bound Violation = 0.0000000006231  
%  The above Bound Violations indicate iterations as
%  the design converges.
fvtool(b) % Display magnitude plot
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Note  Normally, the lower value in the stopband will be specified as negative. 
By setting lo equal to 0 in the stopbands, a nonnegative frequency response 
amplitude can be obtained. Such filters can be spectrally factored to obtain 
minimum phase filters.

Algorithm fircls uses an iterative least-squares algorithm to obtain an equiripple 
response. The algorithm is a multiple exchange algorithm that uses Lagrange 
multipliers and Kuhn-Tucker conditions on each iteration. 

References [1] Selesnick, I.W., M. Lang, and C.S. Burrus, “Constrained Least Square 
Design of FIR Filters without Specified Transition Bands,” Proceedings of the 
IEEE Int. Conf. Acoust., Speech, Signal Processing, Vol. 2 (May 1995), 
pp. 1260-1263.
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[2] Selesnick, I.W., M. Lang, and C.S. Burrus. “Constrained Least Square 
Design of FIR Filters without Specified Transition Bands.” IEEE Transactions 
on Signal Processing, Vol. 44, No. 8 (August 1996).

See Also fircls1, firls, firpm
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7fircls1Purpose  Constrained least square, lowpass and highpass, linear phase, FIR filter design

Syntax b = fircls1(n,wo,dp,ds)
b = fircls1(n,wo,dp,ds,'high')
b = fircls1(n,wo,dp,ds,wt)
b = fircls1(n,wo,dp,ds,wt,'high')
b = fircls1(n,wo,dp,ds,wp,ws,k)
b = fircls1(n,wo,dp,ds,wp,ws,k,'high')
b = fircls1(n,wo,dp,ds,...,'design_flag')

Description b = fircls1(n,wo,dp,ds) generates a lowpass FIR filter b, where n+1 is the 
filter length, wo is the normalized cutoff frequency in the range between 0 and 1 
(where 1 corresponds to the Nyquist frequency), dp is the maximum passband 
deviation from 1 (passband ripple), and ds is the maximum stopband deviation 
from 0 (stopband ripple).

b = fircls1(n,wo,dp,ds,'high') generates a highpass FIR filter b. fircls1 
always uses an even filter order for the highpass configuration. This is because 
for odd orders, the frequency response at the Nyquist frequency is 
necessarily 0. If you specify an odd-valued n, fircls1 increments it by 1.

b = fircls1(n,wo,dp,ds,wt) and

b = fircls1(n,wo,dp,ds,wt,'high') specifies a frequency wt above which 
(for wt > wo) or below which (for wt < wo) the filter is guaranteed to meet the 
given band criterion. This will help you design a filter that meets a passband 
or stopband edge requirement. There are four cases: 

• Lowpass: 

- 0 < wt < wo < 1: the amplitude of the filter is within dp of 1 over the 
frequency range 0 < ω < wt. 

- 0 < wo < wt < 1: the amplitude of the filter is within ds of 0 over the 
frequency range wt < ω < 1. 

• Highpass: 

- 0 < wt < wo < 1: the amplitude of the filter is within ds of 0 over the 
frequency range 0 < ω < wt.     
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- 0 < wo < wt < 1: the amplitude of the filter is within dp of 1 over the 
frequency range wt < ω < 1.

b = fircls1(n,wo,dp,ds,wp,ws,k) generates a lowpass FIR filter b with a 
weighted function, where n+1 is the filter length, wo is the normalized cutoff 
frequency, dp is the maximum passband deviation from 1 (passband ripple), and 
ds is the maximum stopband deviation from 0 (stopband ripple). wp is the 
passband edge of the L2 weight function and ws is the stopband edge of the L2 
weight function, where wp < wo < ws. k is the ratio (passband L2 error)/(stopband 
L2 error)

b = fircls1(n,wo,dp,ds,wp,ws,k,'high') generates a highpass FIR filter b 
with a weighted function, where ws < wo < wp.

b = fircls1(n,wo,dp,ds,...,'design_flag') enables you to monitor the 
filter design, where 'design_flag' can be

• 'trace', for a textual display of the design table used in the design

• 'plots', for plots of the filter’s magnitude, group delay, and zeros and poles. 
All plots are updated at each iteration step. The O’s on the plot are the  
estimated extremals of the new iteration and the X’s are the estimated  
extremals of the previous iteration, where the extremals are the peaks  
(maximum and minimum) of the filter ripples. Only ripples that have a 
corresponding O and X are made equal.

• 'both', for both the textual display and plots

Note  In the design of very narrow band filters with small dp and ds, there 
may not exist a filter of the given length that meets the specifications.

k
A ω( ) D ω( )– 2 ωd

0
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∫

A ω( ) D ω( )– 2 ωd
ws

π

∫
------------------------------------------------------=
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Examples Design an order 55 lowpass filter with a cutoff frequency at 0.3:

n = 55;     wo = 0.3;
dp = 0.02;  ds = 0.008;
b = fircls1(n,wo,dp,ds,'both'); % Display plots of the bands
    Bound Violation = 0.0870385343920  
    Bound Violation = 0.0149343456540  
    Bound Violation = 0.0056513587932  
    Bound Violation = 0.0001056264205  
    Bound Violation = 0.0000967624352  
    Bound Violation = 0.0000000226538  
    Bound Violation = 0.0000000000038  
%  The above Bound Violations indicate iterations as
%  the design converges.
fvtool(b) % Display magnitude plot
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Algorithm fircls1 uses an iterative least-squares algorithm to obtain an equiripple 
response. The algorithm is a multiple exchange algorithm that uses Lagrange 
multipliers and Kuhn-Tucker conditions on each iteration.

References [1] Selesnick, I.W., M. Lang, and C.S. Burrus, “Constrained Least Square 
Design of FIR Filters without Specified Transition Bands,” Proceedings of the 
IEEE Int. Conf. Acoust., Speech, Signal Processing, Vol. 2 (May 1995), 
pp. 1260-1263.

[2] Selesnick, I.W., M. Lang, and C.S. Burrus, “Constrained Least Square 
Design of FIR Filters without Specified Transition Bands,” IEEE Transactions 
on Signal Processing, Vol. 44, No. 8 (August 1996).

See Also fircls, firls, firpm
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7firlsPurpose Least square linear-phase FIR filter design

Syntax b = firls(n,f,a)
b = firls(n,f,a,w)
b = firls(n,f,a,'ftype')
b = firls(n,f,a,w,'ftype')

Description firls designs a linear-phase FIR filter that minimizes the weighted, 
integrated squared error between an ideal piecewise linear function and the 
magnitude response of the filter over a set of desired frequency bands.

b = firls(n,f,a) returns row vector b containing the n+1 coefficients of the 
order n FIR filter whose frequency-amplitude characteristics approximately 
match those given by vectors f and a. The output filter coefficients, or “taps,” 
in b obey the symmetry relation.

These are type I (n odd) and type II (n even) linear-phase filters. Vectors f and a 
specify the frequency-amplitude characteristics of the filter:

• f is a vector of pairs of frequency points, specified in the range between 0 
and 1, where 1 corresponds to the Nyquist frequency. The frequencies must 
be in increasing order. Duplicate frequency points are allowed and, in fact, 
can be used to design a filter exactly the same as those returned by the fir1 
and fir2 functions with a rectangular (rectwin) window.

• a is a vector containing the desired amplitude at the points specified in f. 

The desired amplitude function at frequencies between pairs of points 
(f(k), f(k+1)) for k odd is the line segment connecting the points (f(k), a(k)) 
and (f(k+1), a(k+1)).

The desired amplitude function at frequencies between pairs of points 
(f(k), f(k+1)) for k even is unspecified. These are transition or “don’t care” 
regions.

• f and a are the same length. This length must be an even number.

firls always uses an even filter order for configurations with a passband at 
the Nyquist frequency. This is because for odd orders, the frequency response 

b k( ) b n 2 k–+( ) k 1= … n 1+, , ,=
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at the Nyquist frequency is necessarily 0. If you specify an odd-valued n, firls 
increments it by 1.

The figure below illustrates the relationship between the f and a vectors in 
defining a desired amplitude response.

b = firls(n,f,a,w) uses the weights in vector w to weight the fit in each 
frequency band. The length of w is half the length of f and a, so there is exactly 
one weight per band.

b = firls(n,f,a,'ftype') and 

b = firls(n,f,a,w,'ftype') specify a filter type, where 'ftype' is:

• 'hilbert' for linear-phase filters with odd symmetry (type III and type IV). 
The output coefficients in b obey the relation b(k) = -b(n+2-k), 
k = 1, ... , n + 1. This class of filters includes the Hilbert transformer, which 
has a desired amplitude of 1 across the entire band.

• 'differentiator' for type III and type IV filters, using a special weighting 
technique. For nonzero amplitude bands, the integrated squared error has a 
weight of (1/f)2 so that the error at low frequencies is much smaller than at 
high frequencies. For FIR differentiators, which have an amplitude 
characteristic proportional to frequency, the filters minimize the relative 
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integrated squared error (the integral of the square of the ratio of the error 
to the desired amplitude).

Examples Example 1
Design an order 255 lowpass filter with transition band:

b = firls(255,[0 0.25 0.3 1],[1 1 0 0]);

Example 2
Design a 31 coefficient differentiator:

b = firls(30,[0 0.9],[0 0.9*pi],'differentiator');

An ideal differentiator has the response D(w) = jw. The amplitudes include a 
pi multiplier because the frequencies are normalized by pi.

Example 3
Design a 24th-order anti-symmetric filter with piecewise linear passbands and 
plot the desired and actual frequency response:

F = [0 0.3  0.4 0.6  0.7 0.9]; 
A = [0  1   0  0  0.5 0.5];
b = firls(24,F,A,'hilbert');
for i=1:2:6, 
   plot([F(i) F(i+1)],[A(i) A(i+1)],'--'), hold on
end
[H,f] = freqz(b,1,512,2);
plot(f,abs(H)), grid on, hold off
legend('Ideal','firls Design')
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Algorithm Reference [1] describes the theoretical approach behind firls. The function 
solves a system of linear equations involving an inner product matrix of size 
roughly n/2 using the MATLAB \ operator.

This function designs type I, II, III, and IV linear-phase filters. Type I and II 
are the defaults for n even and odd respectively, while the 'hilbert' and 
'differentiator' flags produce type III (n even) and IV (n odd) filters. The 
various filter types have different symmetries and constraints on their 
frequency responses (see [2] for details).

Diagnostics One of the following diagnostic messages is displayed when an incorrect 
argument is used:
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Type I Even even: No restriction No restriction

Type II Odd No restriction H(1) = 0

Type III Even odd: H(0) = 0 H(1) = 0

Type IV Odd H(0) = 0 No restriction

b k( ) b n 2 k–+( ) k 1= … n 1+, , ,=

b k( ) b– n 2 k–+( ) k 1= … n 1+, , ,=
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F must be even length.
F and A must be equal lengths.
Requires symmetry to be 'hilbert' or 'differentiator'.
Requires one weight per band.
Frequencies in F must be nondecreasing.
Frequencies in F must be in range [0,1].

A more serious warning message is

Warning: Matrix is close to singular or badly scaled.

This tends to happen when the product of the filter length and transition width 
grows large. In this case, the filter coefficients b might not represent the 
desired filter. You can check the filter by looking at its frequency response.

References [1] Parks, T.W., and C.S. Burrus, Digital Filter Design, John Wiley & Sons, 
1987, pp. 54-83.

[2] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing, 
Prentice-Hall, 1989, pp. 256-266.

See Also fir1, fir2, firrcos, firpm
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7firpmPurpose Parks-McClellan optimal FIR filter design

Syntax b = firpm(n,f,a)
b = firpm(n,f,a,w)
b = firpm(n,f,a,'ftype')
b = firpm(n,f,a,w,'ftype')
b = firpm(...,{lgrid})
[b,err] = firpm(...)
[b,err,res] = firpm(...)
b = firpm(n,f,@fresp,w)
b = firpm(n,f,@fresp,w,'ftype')

Description firpm designs a linear-phase FIR filter using the Parks-McClellan 
algorithm [1]. The Parks-McClellan algorithm uses the Remez exchange 
algorithm and Chebyshev approximation theory to design filters with an 
optimal fit between the desired and actual frequency responses. The filters are 
optimal in the sense that the maximum error between the desired frequency 
response and the actual frequency response is minimized. Filters designed this 
way exhibit an equiripple behavior in their frequency responses and are 
sometimes called equiripple filters. firpm exhibits discontinuities at the head 
and tail of its impulse response due to this equiripple nature.

b = firpm(n,f,a) returns row vector b containing the n+1 coefficients of the 
order n FIR filter whose frequency-amplitude characteristics match those 
given by vectors f and a. 

The output filter coefficients (taps) in b obey the symmetry relation:

b k( ) b n 2 k–+( ) k 1= … n 1+, , ,=
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Vectors f and a specify the frequency-magnitude characteristics of the filter:

• f is a vector of pairs of normalized frequency points, specified in the range 
between 0 and 1, where 1 corresponds to the Nyquist frequency. The 
frequencies must be in increasing order.

• a is a vector containing the desired amplitudes at the points specified in f. 

The desired amplitude at frequencies between pairs of points (f(k), f(k+1)) for 
k odd is the line segment connecting the points (f(k), a(k)) and 
(f(k+1), a(k+1)).

The desired amplitude at frequencies between pairs of points (f(k), f(k+1)) for 
k even is unspecified. The areas between such points are transition or “don’t 
care” regions.

• f and a must be the same length. The length must be an even number.

The relationship between the f and a vectors in defining a desired frequency 
response is shown in the illustration below.

firpm always uses an even filter order for configurations with a passband at 
the Nyquist frequency. This is because for odd orders, the frequency response 
at the Nyquist frequency is necessarily 0. If you specify an odd-valued n, firpm 
increments it by 1.
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b = firpm(n,f,a,w) uses the weights in vector w to weight the fit in each 
frequency band. The length of w is half the length of f and a, so there is exactly 
one weight per band.

Note  
b = firpm(n,f,a,w) is a synonym for b = firpm(n,f,{@firpmfrf,a},w).  

where, @firpmfrf is the predefined frequency response function handle for 
firpm. If desired, you can write your own response function.  Use 
help private/firpmfrf for information.

b = firpm(n,f,a,'ftype') and

b = firpm(n,f,a,w,'ftype') specify a filter type, where 'ftype' is

• 'hilbert', for linear-phase filters with odd symmetry (type III and type IV)

The output coefficients in b obey the relation b(k) = -b(n+2-k), k = 1, ..., 
n + 1. This class of filters includes the Hilbert transformer, which has a 
desired amplitude of 1 across the entire band.

For example, 
h = firpm(30,[0.1 0.9],[1 1],'hilbert');

designs an approximate FIR Hilbert transformer of length 31.

• 'differentiator', for type III and type IV filters, using a special weighting 
technique

For nonzero amplitude bands, it weights the error by a factor of 1/f so that 
the error at low frequencies is much smaller than at high frequencies. For 
FIR differentiators, which have an amplitude characteristic proportional to 
frequency, these filters minimize the maximum relative error (the maximum 
of the ratio of the error to the desired amplitude).

b = firpm(...,{lgrid}) uses the integer lgrid to control the density of the 
frequency grid, which has roughly (lgrid*n)/(2*bw) frequency points, where 
bw is the fraction of the total frequency band interval [0,1] covered by f. 
Increasing lgrid often results in filters that more exactly match an equiripple 
filter, but that take longer to compute. The default value of 16 is the minimum 
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value that should be specified for lgrid. Note that the {lgrid} argument must 
be a 1-by-1 cell array.

[b,err] = firpm(...) returns the maximum ripple height in err.

[b,err,res] = firpm(...) returns a structure res with the following fields. 

You can also use firpm to write a function that defines the desired frequency 
response. The predefined frequency response function handle for firpm is  
@firpmfrf, which designs a linear-phase FIR filter.

b = firpm(n,f,@fresp,w) returns row vector b containing the n+1 
coefficients of the order n FIR filter whose frequency-amplitude characteristics 
best approximate the response returned by function handle @fresp. The 
function is called from within firpm with the following syntax.

[dh,dw] = fresp(n,f,gf,w)

The arguments are similar to those for firpm:

• n is the filter order.

• f is the vector of normalized frequency band edges that appear monotonically 
between 0 and 1, where 1 is the Nyquist frequency.

• gf is a vector of grid points that have been linearly interpolated over each 
specified frequency band by firpm. gf determines the frequency grid at 
which the response function must be evaluated, and contains the same data 
returned by cfirpm in the fgrid field of the opt structure.

res.fgrid Frequency grid vector used for the filter design optimization

res.des Desired frequency response for each point in res.fgrid

res.wt Weighting for each point in opt.fgrid

res.H Actual frequency response for each point in res.fgrid

res.error Error at each point in res.fgrid (res.des-res.H)

res.iextr Vector of indices into res.fgrid for extremal frequencies

res.fextr Vector of extremal frequencies
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• w is a vector of real, positive weights, one per band, used during optimization. 
w is optional in the call to firpm; if not specified, it is set to unity weighting 
before being passed to fresp.

• dh and dw are the desired complex frequency response and band weight 
vectors, respectively, evaluated at each frequency in grid gf.

b = firpm(n,f,@fresp,w,'ftype') designs antisymmetric (odd) filters, 
where 'ftype' is either 'd' for a differentiator or 'h' for a Hilbert 
transformer. If you do not specify an ftype, a call is made to fresp to determine 
the default symmetry property sym. This call is made using the syntax.

sym = fresp('defaults',{n,f,[],w,p1,p2,...})

The arguments n, f, w, etc., may be used as necessary in determining an 
appropriate value for sym, which firpm expects to be either 'even' or 'odd'. If 
fresp does not support this calling syntax, firpm defaults to even symmetry.

Examples Graph the desired and actual frequency responses of a 17th-order 
Parks-McClellan bandpass filter:

f = [0 0.3 0.4 0.6 0.7 1]; a = [0 0 1 1 0 0];
b = firpm(17,f,a);
[h,w] = freqz(b,1,512);
plot(f,a,w/pi,abs(h))
legend('Ideal','firpm Design')

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Ideal       
remez Design
7-297



firpm
Algorithm firpm is a MEX-file version of the original Fortran code from [1], altered to 
design arbitrarily long filters with arbitrarily many linear bands.

firpm designs type I, II, III, and IV linear-phase filters. Type I and type II are 
the defaults for n even and n odd, respectively, while type III (n even) and 
type IV (n odd) are obtained with the 'hilbert' and 'differentiator' flags. 
The different types of filters have different symmetries and certain constraints 
on their frequency responses (see [5] for more details).

Diagnostics If you get the following warning message, 

-  Failure to Converge -
Probable cause is machine rounding error.

it is possible that the filter design may still be correct. Verify the design by 
checking its frequency response.

References [1] Programs for Digital Signal Processing, IEEE Press, New York, 1979, 
Algorithm 5.1.

[2] Selected Papers in Digital Signal Processing, II, IEEE Press, New York, 
1979.

[3] Parks, T.W., and C.S. Burrus, Digital Filter Design, John Wiley & Sons, 
New York:, 1987, p. 83.

[4] Rabiner, L.R., J.H. McClellan, and T.W. Parks, “FIR Digital Filter Design 
Techniques Using Weighted Chebyshev Approximations,” Proc. IEEE 63 
(1975).

Linear Phase 
Filter Type

Filter 
Order

Symmetry of Coefficients Response H(f), 
f = 0

Response H(f), 
f = 1 (Nyquist)

Type I Even even: No restriction No restriction

Type II Odd No restriction H(1) = 0

Type III Even odd: H(0) = 0 H(1) = 0

Type IV Odd H(0) = 0 No restriction

b k( ) b n 2 k–+( ) k 1= … n 1+, , ,=

b k( ) b– n 2 k–+( ) k 1= … n 1+, , ,=
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[5] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing, 
Prentice-Hall, Englewood Cliffs, NJ, 1989, pp. 256-266.

See Also butter, cheby1, cheby2, cfirpm, ellip, fir1, fir2, fircls, fircls1, firls, 
firrcos, firgr, firpmord, function_handle, yulewalk
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7firpmordPurpose Parks-McClellan optimal FIR filter order estimation

Syntax [n,fo,ao,w] = firpmord(f,a,dev)
[n,fo,ao,w] = firpmord(f,a,dev,fs)
c = firpmord(f,a,dev,fs,'cell')

Description [n,fo,ao,w] = firpmord(f,a,dev) finds the approximate order, normalized 
frequency band edges, frequency band amplitudes, and weights that meet 
input specifications f, a, and dev.

• f is a vector of frequency band edges (between 0 and fs/2, where fs is the 
sampling frequency), and a is a vector specifying the desired amplitude on 
the bands defined by f. The length of f is two less than twice the length of a. 
The desired function is piecewise constant.

• dev is a vector the same size as a that specifies the maximum allowable 
deviation or ripples between the frequency response and the desired 
amplitude of the output filter for each band.

Use firpm with the resulting order n, frequency vector fo, amplitude response 
vector ao, and weights w to design the filter b which approximately meets the 
specifications given by firpmord input parameters f, a, and dev.

b = firpm(n,fo,ao,w)

[n,fo,ao,w] = firpmord(f,a,dev,fs) specifies a sampling frequency fs. 
fs defaults to 2 Hz, implying a Nyquist frequency of 1 Hz. You can therefore 
specify band edges scaled to a particular application’s sampling frequency.

In some cases firpmord underestimates the order n. If the filter does not meet 
the specifications, try a higher order such as n+1 or n+2.

c = firpmord(f,a,dev,fs,'cell') generates a cell-array whose elements 
are the parameters to firpm.

Examples Example 1
Design a minimum-order lowpass filter with a 500 Hz passband cutoff 
frequency and 600 Hz stopband cutoff frequency, with a sampling frequency of 
2000 Hz, at least 40 dB attenuation in the stopband, and less than 3 dB of 
ripple in the passband:
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rp = 3;          % Passband ripple
rs = 40;         % Stopband ripple
fs = 2000;       % Sampling frequency
f = [500 600];   % Cutoff frequencies
a = [1 0];       % Desired amplitudes

% Compute deviations
dev = [(10^(rp/20)-1)/(10^(rp/20)+1)  10^(-rs/20)]; 

[n,fo,ao,w] = firpmord(f,a,dev,fs);
b = firpm(n,fo,ao,w);
freqz(b,1,1024,fs);
title('Lowpass Filter Designed to Specifications');

Note that the filter falls slightly short of meeting the stopband attenuation and 
passband ripple specifications. Using n+1 in the call to firpm instead of n 
achieves the desired amplitude characteristics.

Example 2
Design a lowpass filter with a 1500 Hz passband cutoff frequency and 2000 Hz 
stopband cutoff frequency, with a sampling frequency of 8000 Hz, a maximum 
stopband amplitude of 0.1, and a maximum passband error (ripple) of 0.01:
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[n,fo,ao,w] = firpmord([1500 2000],[1 0],[0.01 0.1],8000 );
b = firpm(n,fo,ao,w);

This is equivalent to

c = firpmord( [1500 2000],[1 0],[0.01 0.1],8000,'cell');
b = firpm(c{:});

Note  In some cases, firpmord underestimates or overestimates the order n. If 
the filter does not meet the specifications, try a higher order such as n+1 
or n+2.

Results are inaccurate if the cutoff frequencies are near 0 or the Nyquist 
frequency.

Algorithm firpmord uses the algorithm suggested in [1]. This method is inaccurate for 
band edges close to either 0 or the Nyquist frequency (fs/2).

References [1] Rabiner, L.R., and O. Herrmann, “The Predictability of Certain Optimum 
Finite Impulse Response Digital Filters,” IEEE Trans. on Circuit Theory, 
Vol. CT-20, No. 4 (July 1973), pp. 401-408.

[2] Rabiner, L.R., and B. Gold. Theory and Application of Digital Signal 
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975, pp. 156-157.

See Also buttord, cheb1ord, cheb2ord, ellipord, kaiserord, firpm
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7firrcosPurpose Raised cosine FIR filter design

Syntax b = firrcos(n,F0,df,fs)
b = firrcos(n,F0,df,fs,'bandwidth')
b = firrcos(n,F0,df)
b = firrcos(n,F0,r,fs,'rolloff')
b = firrcos(...,'type')
b = firrcos(...,'type',delay)
b = firrcos(...,'type',delay,window)
[b,a] = firrcos(...)

Description b = firrcos(n,F0,df,fs) or, equivalently,

b = firrcos(n,F0,df,fs,'bandwidth') returns an order n lowpass 
linear-phase FIR filter with a raised cosine transition band. The filter has 
cutoff frequency F0, transition bandwidth df, and sampling frequency fs, all in 
hertz. df must be small enough so that F0 ± df/2 is between 0 and fs/2. The 
coefficients in b are normalized so that the nominal passband gain is always 
equal to 1. Specify fs as the empty vector [] to use the default value fs = 2.

b = firrcos(n,F0,df) uses a default sampling frequency of fs = 2.

b = firrcos(n,F0,r,fs,'rolloff') interprets the third argument, r, as the 
rolloff factor instead of the transition bandwidth, df. r must be in the range 
[0,1].

b = firrcos(...,'type') designs either a normal raised cosine filter or a 
square root raised cosine filter according to how you specify of the string 
'type'. Specify 'type' as:

• 'normal', for a regular raised cosine filter. This is the default, and is also in 
effect when the 'type' argument is left empty, [].

• 'sqrt', for a square root raised cosine filter.

b = firrcos(...,'type',delay) specifies an integer delay in the range 
[0,n+1]. The default is n/2 for even n and (n+1)/2 for odd n.

b = firrcos(...,'type',delay,window) applies a length n+1 window to the 
designed filter to reduce the ripple in the frequency response. window must be 
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a length n+1 column vector. If no window is specified, a rectangular (rectwin) 
window is used. Care must be exercised when using a window with a delay 
other than the default.

[b,a] = firrcos(...) always returns a = 1.

Examples Design an order 20 raised cosine FIR filter with cutoff frequency 0.25 of the 
Nyquist frequency and a transition bandwidth of 0.25:

h = firrcos(20,0.25,0.25);
freqz(h,1)

See Also fir1, fir2, firls, firpm
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7flattopwinPurpose Flat Top weighted window.

Syntax w = flattopwin(n)
w = flattopwin(n,'sflag')

Description Flat Top windows have very low passband ripple (< 0.01 dB) and are used 
primarily for calibration purposes. Their bandwidth is approximately 2.5 times 
wider than a Hann window.

w = flattopwin(n) returns the n-point symmetric Flat Top window in column 
vector w. 

w = flattopwin(n,sflag) returns the n-point symmetric Flat Top window 
using sflag window sampling, where sflag is either 'symmetric' or 
'periodic'. 

Algorithm Flat top windows are summations of cosines.  The coefficients of a flat top 
window are computed from the following equation

 

where  and  elsewhere.

Examples Create a 64-point, symmetric Flat Top window and view the window using 
WVTool: 

w = flattopwin(64); 
wvtool(w);

w t( ) 1 1.93 2πt
T

---------⎝ ⎠
⎛ ⎞ 1.29 4πt

T
---------⎝ ⎠

⎛ ⎞ 0.388 6πt
T

---------⎝ ⎠
⎛ ⎞ 0.0322 8πt

T
---------⎝ ⎠

⎛ ⎞cos+cos–cos+cos–=

0 t T≤ ≤ w t( ) 0=
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Reference [1] Gade, Svend and Herlufsen, H., “Use of Weighting Functions in DFT/FFT 
Analysis (Part I),” Brüel & Kjær, Windows to FFT Analysis (Part I) Technical 
Review, No. 3, 1987, pp. 19-21.

See Also blackman, hamming, hann
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7freqsPurpose Frequency response of analog filters

Syntax h = freqs(b,a,w)
[h,w] = freqs(b,a)
[h,w] = freqs(b,a,f)
freqs(b,a)

Description freqs returns the complex frequency response H(jω) (Laplace transform) of an 
analog filter

given the numerator and denominator coefficients in vectors b and a. 

h = freqs(b,a,w) returns the complex frequency response of the analog filter 
specified by coefficient vectors b and a. freqs evaluates the frequency response 
along the imaginary axis in the complex plane at the angular frequencies in 
rad/sec specified in real vector w, which must contain more than one frequency.

[h,w] = freqs(b,a) automatically picks a set of 200 frequency points w on 
which to compute the frequency response h. 

[h,w] = freqs(b,a,f) picks f number of frequencies on which to compute the 
frequency response h.

freqs with no output arguments plots the magnitude and phase response 
versus frequency in the current figure window.

freqs works only for real input systems and positive frequencies.

Examples Find and graph the frequency response of the transfer function given by:

a = [1 0.4 1];
b = [0.2 0.3 1];
w = logspace(-1,1);
freqs(b,a,w)

H s( ) B s( )
A s( )
----------- b 1( )sn b 2( )sn 1– b n 1+( )+ + +

a 1( )sm a 2( )sm 1– a m 1+( )+ + +
-------------------------------------------------------------------------------------------= =

H s( ) 0.2s2 0.3s 1+ +
s2 0.4s 1+ +

-----------------------------------------=
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You can also create the plot with:

h = freqs(b,a,w);
mag = abs(h);
phase = angle(h);
subplot(2,1,1), loglog(w,mag)
subplot(2,1,2), semilogx(w,phase)

To convert to hertz, degrees, and decibels, use:

f = w/(2*pi);
mag = 20*log10(mag);
phase = phase*180/pi;

Algorithm freqs evaluates the polynomials at each frequency point, then divides the 
numerator response by the denominator response:

s = i*w;
h = polyval(b,s)./polyval(a,s);

See Also abs, angle, freqz, invfreqs, logspace, polyval
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7freqspacePurpose Frequency spacing for frequency response

freqspace is a MATLAB function.
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7freqzPurpose Frequency response of digital filters

Syntax [h,w]= freqz(b,a,l)
h = freqz(b,a,w)
[h,w] = freqz(b,a,l,'whole')
[h,f] = freqz(b,a,l,fs)
h = freqz(b,a,f,fs)
[h,f] = freqz(b,a,l,'whole',fs)
freqz(b,a,...)
freqz(Hd)

Description [h,w] = freqz(b,a,l) returns the frequency response vector h and the 
corresponding angular frequency vector w for the digital filter whose transfer 
function is determined by the (real or complex) numerator and denominator 
polynomials represented in the vectors b and a, respectively. The vectors h 
and w are both of length l. The angular frequency vector w has values ranging 
from 0 to π radians per sample. When you don’t specify the integer l, or you 
specify it as the empty vector [], the frequency response is calculated using the 
default value of 512 samples.

h = freqz(b,a,w) returns the frequency response vector h calculated at the 
frequencies (in radians per sample) supplied by the vector w. The vector w can 
have any length.

[h,w] = freqz(b,a,l,'whole') uses n sample points around the entire unit 
circle to calculate the frequency response. The frequency vector w has length l 
and has values ranging from 0 to 2π radians per sample.

[h,f] = freqz(b,a,l,fs) returns the frequency response vector h and the 
corresponding frequency vector f for the digital filter whose transfer function 
is determined by the (real or complex) numerator and denominator 
polynomials represented in the vectors b and a, respectively. The vectors h 
and f are both of length l. For this syntax, the frequency response is calculated 
using the sampling frequency specified by the scalar fs (in hertz). The 
frequency vector f is calculated in units of hertz (Hz). The frequency vector f has 
values ranging from 0 to fs/2 Hz. 
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h = freqz(b,a,f,fs) returns the frequency response vector h calculated at 
the frequencies (in Hz) supplied in the vector f. The vector f can be any length.

[h,f] = freqz(b,a,l,'whole',fs) uses n points around the entire unit circle 
to calculate the frequency response. The frequency vector f has length l and 
has values ranging from 0 to fs Hz. 

freqz(b,a,...) plots the magnitude and unwrapped phase of the frequency 
response of the filter. The plot is displayed in the current figure window.

freqz(Hd) plots the magnitude and unwrapped phase of the frequency 
response of the filter. The plot is displayed in fvtool. The input Hd is a dfilt 
filter object or an array of dfilt filter objects.

Remarks It is best to choose a power of 2 for the third input argument n, because freqz 
uses an FFT algorithm to calculate the frequency response. See the reference 
description of fft for more information.

Examples Plot the magnitude and phase response of an FIR filter:

b = fir1(80,0.5,kaiser(81,8));
freqz(b,1);
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The same example using a dfilt object and displaying the result in the Filter 
Visualization Tool (fvtool) is

Hd = dfilt.dffir(b);
freqz(Hd);

Algorithm The frequency response [1] of a digital filter can be interpreted as the transfer 
function evaluated at z = ejω. You can always write a rational transfer function 
in the following form. 

freqz determines the transfer function from the (real or complex) numerator 
and denominator polynomials you specify, and returns the complex frequency 

H z( ) B z( )
A z( )
----------- b 1( ) b 2( )z 1– b n 1+( )z n–+ + +

a 1( ) a 2( )z 1– a m 1+( )z m–+ + +
----------------------------------------------------------------------------------------= =
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response H(ejω) of a digital filter. The frequency response is evaluated at 
sample points determined by the syntax that you use.

freqz generally uses an FFT algorithm to compute the frequency response 
whenever you don’t supply a vector of frequencies as an input argument. It 
computes the frequency response as the ratio of the transformed numerator 
and denominator coefficients, padded with zeros to the desired length. 

When you do supply a vector of frequencies as an input argument, then freqz 
evaluates the polynomials at each frequency point using Horner’s method of 
nested polynomial evaluation [1], dividing the numerator response by the 
denominator response.

References [1] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing, 
Prentice-Hall, 1989, pp. 203-205.

See Also abs, angle, fft, filter, freqs, impz, invfreqs, logspace
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7fvtoolPurpose Filter Visualization Tool

Syntax fvtool(b,a)
fvtool(b1,a1,b2,a2,...bn,an)
fvtool(Hd1,Hd2,...)
h = fvtool(...)

Description fvtool(b,a) opens FVTool and computes the magnitude response of the 
digital filter defined with numerator, b and denominator, a. Using FVTool you 
can display the phase response, group delay, impulse response, step response, 
pole-zero plot, and coefficients of the filter. You can export the displayed 
response to a file with Export on the File menu.

fvtool(b1,a1,b2,a2,...bn,an) opens FVTool and computes the magnitude 
responses of multiple filters defined with numerators, b1...bn and 
denominators, a1...an.

fvtool(Hd1,Hd2,...) opens FVTool and computes the magnitude responses 
of the filters in the dfilt objects Hd1, Hd2, etc. If you have the Filter Design 
Toolbox installed, you can also use fvtool(H1,H2,...) to analyze quantized 
filter objects (dfilt with arithmetic set to 'single'), multirate filter (mfilt) 
objects, and adaptive filter (adaptfilt) objects.

h = fvtool(...) returns a figure handle h. You can use this handle to interact 
with FVTool from the command line. See “Controlling FVTool from the 
MATLAB Command Line” below.
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FVTool has two toolbars.

• An extended version of the MATLAB plot editing toolbar. The following table 
shows the toolbar icons specific to FVTool.

Icon Description

Zoom to full view. This view displays the response 
using standard MATLAB plotting, which shows all 
data values. The default view (via Restore default 
view on the View menu) displays an improved 
view of only significant data.

Toggle legend

Toggle grid
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• Analysis toolbar with the following icons

Link to FDATool (appears only if FVTool was 
started from FDATool)

 Toggle Add mode/Replace mode (appears only if 
FVTool was launched from FDATool)

Magnitude response of the current filter. See freqz and 
zerophase for more information. 

To see the zero-phase response, right-click on the y-axis label of 
the Magnitude plot and select Zero-phase from the context menu.

Phase response of the current filter. See phasez for more 
information.

Superimposes the magnitude response and the phase response of 
the current filter. See freqz for more information.

Shows the group delay of the current filter. Group delay is the 
average delay of the filter as a function of frequency. See 
grpdelay for more information.

Shows the phase delay of the current filter. Phase delay is the 
time delay the filter imposes on each component of the input 
signal. See phasedelay for more information

Impluse response of the current filter. The impulse response is 
the response of the filter to a impulse input. See impz for more 
information.

Step response of the current filter. The step response is the 
response of the filter to a step input. See stepz for more 
information.

Pole-zero plot, which shows the pole and zero locations of the 
current filter on the z-plane. See zplane for more information.
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Linking to FDATool
In fdatool, selecting Filter Visualization Tool from the View menu or the 
Full View Analysis toolbar button  when an analysis is displayed starts 
FVTool for the current filter. You can synchronize FDATool and FVTool with 
the FDAToolLink toolbar button . Any changes made to the filter in 
FDATool are immediately reflected in FVTool. 

Two FDATool link modes are provided via the Set Link Mode toolbar button:

• Replace —removes the filter currently displayed in FVTool and inserts 
the new filter.

• Add —retains the filter currently displayed in FVTool and adds the new 
filter to the display.

Modifying the Axes
You can change the x- or y-axis units by right-clicking the mouse on the axis 
label or by right-clicking on the plot and selecting Analysis Parameters. 
Available options for the axes units are as follows.

Filter coefficients of the current filter, which depend on the filter 
structure (e.g., direct-form, lattice, etc.) in a text box. For SOS 
filters, each section is displayed as a separate filter.

Detailed filter information.

Plot X-Axis Units Y-Axis Units

Magnitude Normalized Frequency
Linear Frequency

Magnitude
Magnitude(dB)
Magnitude squared
Zero-Phase

Phase Normalized Frequency
Linear Frequency

Phase
Continuous Phase
Degrees
Radians
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Modifying the Plot
You can use any of the plot editing toolbar buttons to change the properties of 
your plot. 

Analysis Parameters are parameters that apply to the displayed analyses. To 
display them, right-click in the plot area and select Analysis Parameters from 
the menu. (Note that you can access the menu only if the Edit Plot button is 
inactive.) The following analysis parameters are displayed. (If more than one 
response is displayed, parameters applicable to each plot are displayed.)  Not 
all of these analysis fields are displayed for all types of plots:

• Normalized Frequency — if checked, frequency is normalized between 0 
and 1, or if not checked, frequency is in Hz

Magnitude 
and Phase

Normalized Frequency
Linear Frequency

(y-axis on left side)
Magnitude
Magnitude(dB)
Magnitude squared
Zero-Phase

(y-axis on right side)
Phase
Continuous Phase
Degrees
Radians

Group 
Delay

Normalized Frequency
Linear Frequency

Samples
Time

Phase 
Delay

Normalized Frequency
Linear Frequency

Degrees
Radians

Impulse 
Response

Samples
Time

Amplitude

Step 
Response

Samples
Time

Amplitude

Pole-Zero Real Part Imaginary Part

Plot X-Axis Units Y-Axis Units
7-318



fvtool
• Frequency Scale — y-axis scale (Linear or Log)

• Frequency Range — range of the frequency axis or Specify freq. vector

• Number of Points — number of samples used to compute the response

• Frequency Vector — vector to use for plotting, if Specify freq. vector is 
selected in Frequency Range.

• Magnitude Display — y-axis units (Magnitude, Magnitude (dB), Magnitude 
squared, or Zero-Phase)

• Phase Units — y-axis units (Degrees or Radians)

• Phase Display — type of phase plot (Phase or Continuous Phase)

• Group Delay Units — y-axis units (Samples or Time)

• Specify Length — length type of impulse or step response (Default or 
Specified)

• Length—number of points to use for the impulse or step response

In addition to the above analysis parameters, you can change the plot type for 
Impulse and Step Response plots by right-clicking and selecting Line with 
Marker, Stem or Line from the context menu. You can change the x-axis units 
by right-clicking on the x-axis label and selecting Samples or Time.

To save the displayed parameters as the default values to use when FDATool 
or FVTool is opened, click Save as default.

To restore the MATLAB-defined default values, click Restore original 
defaults.

Data Markers display information about a particular point in the plot. See 
“Using Data Markers” on page 5-17 for more information.

When FVTool is started from FDATool,  you can use Specification Masks to 
display filter specifications on a Magnitude plot.  You can also draw your own 
specification masks. See “Analyzing the Filter” on page 5-15 for more 
information.

Note  To use Passband zoom on the View menu, your filter must have been 
designed using fdesign or FDATool. Passband zoom is not provided for 
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cascaded integrator-comb (CIC) filters because CICs do not have conventional 
passbands.

Overlaying a Response
You can overlay a second response on the plot by selecting Overlay Analysis 
from the Analysis menu and selecting an available response. A second y-axis 
is added to the right side of the response plot. The Analysis Parameters dialog 
box shows parameters for the x-axis and both y-axes.

Controlling FVTool from the MATLAB Command Line
After you obtain the handle for FVTool, you can control some aspects of FVTool 
from the command line. In addition to the standard Handle Graphics® 
properties (see Handle Graphics in the MATLAB documentation), FVTool has 
the following properties:

• 'Filters' — returns a cell array of the filters in FVTool.

• 'Analysis' — displays the specified type of analysis plot. The following 
table lists the analyses and corresponding analysis strings. 

Analysis Type Analysis String

Magnitude plot 'magnitude'

Phase plot 'phase'

Magnitude and phase plot `freq'

Group delay plot 'grpdelay'

Phase delay plot `phasedelay'

Impulse response plot 'impulse'

Step response plot 'step'

Pole-zero plot 'polezero'

Filter coefficients 'coefficients'

Filter information 'info'
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• 'Grid' — controls whether the grid is 'on' or 'off'

• 'Legend' — controls whether the legend is 'on' or 'off'

• 'Fs' — controls the sampling frequency of filters in FVTool. The sampling 
frequency vector must be of the same length as the number of filters or a 
scalar value. If it is a vector, each value is applied to its corresponding filter. 
If it is a scalar, the same value is applied to all filters.

• SosViewSettings — (This option is available only if you have the Filter 
Deisgn Toolbox.) For second-order sections filters, this controls how the filter 
is displayed. The SOSViewSettings property contains an object so you must 
use this syntax to set it:  set(h.SOSViewSettings,'View',viewtype), 
where viewtype is one of the following:

- 'Complete' — Displays the complete response of the overall filter

- 'Individual' — Displays the response of each section separately

- 'Cumulative' — Displays the response for each section accumulated with 
each prior section. If your filter has three sections, the first plot shows 
section one, the second plot shows the accumlation of sections one and two, 
and the third plot show the accumulation of all three sections.

You can also define whether to use SecondaryScaling, which determines 
where the sections should be split. The secondary scaling points are the 
scaling locations between the recursive and the nonrecursive parts of the 
section. The default value is false, which does not use secondary scaling. 
To turn on secondary scaling, use this syntax:   
set(h.SOSViewSettings,'View','Cumulative',true)

- 'UserDefined' — Allows you to define which sections to display and the 
order in which to display them. Enter a cell array where each section is 
represented by its index. If you enter one index, only that section is 
plotted. If you enter a range of indices, the combined response of that 
range of sections is plotted. For example, if your filter has four sections, 
entering {1:4} plots the combined response for all four sections, and 
entering {1,2,3,4} plots the response for each section individually.

Magnitude response estimate 
(available only with Filter Design Toolbox)

'magestimate'

Round-off noise power 
(available only with Filter Design Toolbox)

'noisepower'
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Note  You can change other properties of FVTool from the command line 
using the set function.  Use get(h) to view property tags and current 
property settings.

You can use the following methods with the FVTool handle.

addfilter(h,filtobj)  adds a new filter to FVTool. The new filter, filtobj, 
must be a dfilt filter object. You can specify  the sampling frequency of the 
new filter with addfilter(h,filtobj,'Fs',10)

setfilter(h,filtobj) replaces the filter in FVTool with the filter specified 
in filtobj. You can set the sampling frequency as described above.

deletefilter(h, index) deletes the filter at the FVTool cell array index  
location.

legend(h,str1,str2,...)  creates a legend in FVTool by associating str1 
with filter 1, str2 with filter 2, etc. See legend in the MATLAB documentation 
for information.

For more information on using FVTool from the command line, see the demo  
fvtooldemo.

Examples Example 1
Display the magnitude response of an elliptic filter, starting FVTool from the 
command line:

[b,a]=ellip(6,3,50,300/500);
fvtool(b,a); 
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Example 2
Display and analyze multiple FIR filters, starting FVTool from the command 
line. Then, display the associated analysis parameters for the magnitude:

b1 = firpm(20,[0 0.4 0.5 1],[1 1 0 0]); 
b2 = firpm(40,[0 0.4 0.5 1],[1 1 0 0]); 
fvtool(b1,1,b2,1); 
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Right-click on the plot and select Analysis Parameters.. 

Example 3
Create a lowpass, equiripple filter of order 20 in FDATool and display it in 
FVTool.

fdatool %start FDATool

Set these parameters in fdatool:

Parameter Setting

Response Type Lowpass

Design Method FIR Equiripple

Filter Order Specify order:  20

Density factor 16

Frequency specifications  units Normalized (0 to 1)

Wpass 0.4
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and then click the Design Filter button.

Wstop 0.5

Magnitude specifications  Wpass 
and Wstop

1

Parameter Setting
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Click the Full View Analysis button to start FVTool. 
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Example 4
Create an elliptic filter and use some of FVTool’s figure handle commands:

[b,a]=ellip(6,3,50,300/500);
h = fvtool(b,a); % Create handle, h and start FVTool

%    with magnitude plot
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set(h,'Analysis','phase') % Change display to phase plot
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set(h,'Legend','on') % Turn legend on
legend(h,'Phase plot') % Add legend text

get(h) % View all properties
% FVTool-specific properties are
%   at the end of this list.

                 AlphaMap: [1x64 double]
             BackingStore: 'on'
          CloseRequestFcn: 'closereq'
                    Color: [0.8314 0.8157 0.7843]
                 ColorMap: [64x3 double]
              CurrentAxes: 208.0084
         CurrentCharacter: ''
            CurrentObject: []
             CurrentPoint: [0 0]
             DockControls: 'on'
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             DoubleBuffer: 'on'
                 FileName: ''
              FixedColors: [11x3 double]
            IntegerHandle: 'on'
           InvertHardcopy: 'on'
              KeyPressFcn: ''
                  MenuBar: 'none'
              MinColormap: 64
                    Name: 'Filter Visualization Tool - Phase Response'
                 NextPlot: 'new'
              NumberTitle: 'on'
               PaperUnits: 'inches'
         PaperOrientation: 'portrait'
            PaperPosition: [0.2500 2.5000 8 6]
        PaperPositionMode: 'manual'
                PaperSize: [8.5000 11]
                PaperType: 'usletter'
                  Pointer: 'arrow'
        PointerShapeCData: [16x16 double]
      PointerShapeHotSpot: [1 1]
                 Position: [360 292 560 345]
                 Renderer: 'painters'
             RendererMode: 'auto'
                   Resize: 'on'
                ResizeFcn: ''
            SelectionType: 'normal'
              ShareColors: 'on'
                  Toolbar: 'auto'
                    Units: 'pixels'
      WindowButtonDownFcn: ''
    WindowButtonMotionFcn: ''
        WindowButtonUpFcn: ''
              WindowStyle: 'normal'
             BeingDeleted: 'off'
            ButtonDownFcn: ''
                 Children: [15x1 double]
                 Clipping: 'on'
                CreateFcn: ''
                DeleteFcn: ''
               BusyAction: 'queue'
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         HandleVisibility: 'on'
                  HitTest: 'on'
            Interruptible: 'on'
                   Parent: 0
                 Selected: 'off'
       SelectionHighlight: 'on'
                      Tag: 'filtervisualizationtool'
            UIContextMenu: []
                 UserData: []
                  Visible: 'on'
          AnalysisToolbar: 'on'
            FigureToolbar: 'on'
                  Filters: {[1x1 dfilt.df2t]}
                     Grid: 'on'
                   Legend: 'on'
               DesignMask: 'off'
                       Fs: 1
          SOSViewSettings: [1x1 dspopts.sosview]
                 Analysis: 'phase'
        OverlayedAnalysis: ''
            ShowReference: 'on'
            PolyphaseView: 'off'
      NormalizedFrequency: 'on'
           FrequencyScale: 'Linear'
           FrequencyRange: '[0, pi)'
           NumberofPoints: 8192
          FrequencyVector: [1x256 double]
               PhaseUnits: 'Radians'
             PhaseDisplay: 'Phase'

See Also fdatool, sptool
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7gauspulsPurpose Gaussian-modulated sinusoidal pulse

Syntax yi = gauspuls(t,fc,bw)
yi = gauspuls(t,fc,bw,bwr)
[yi,yq] = gauspuls(...)
[yi,yq,ye] = gauspuls(...)
tc = gauspuls('cutoff',fc,bw,bwr,tpe)

Description gauspuls generates Gaussian-modulated sinusoidal pulses.

yi = gauspuls(t,fc,bw) returns a unity-amplitude Gaussian RF pulse at the 
times indicated in array t, with a center frequency fc in hertz and a fractional 
bandwidth bw, which must be greater than 0. The default value for fc is 
1000 Hz and for bw is 0.5. 

yi = gauspuls(t,fc,bw,bwr) returns a unity-amplitude Gaussian RF pulse 
with a fractional bandwidth of bw as measured at a level of bwr dB with respect 
to the normalized signal peak. The fractional bandwidth reference level bwr 
must be less than 0, because it indicates a reference level less than the peak 
(unity) envelope amplitude. The default value for bwr is -6 dB. 

[yi,yq] = gauspuls(...) returns both the in-phase and quadrature pulses. 

[yi,yq,ye] = gauspuls(...) returns the RF signal envelope. 

tc = gauspuls('cutoff',fc,bw,bwr,tpe) returns the cutoff time tc (greater 
than or equal to 0) at which the trailing pulse envelope falls below tpe dB with 
respect to the peak envelope amplitude. The trailing pulse envelope level tpe 
must be less than 0, because it indicates a reference level less than the peak 
(unity) envelope amplitude. The default value for tpe is -60 dB. 

Remarks Default values are substituted for empty or omitted trailing input arguments.
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Examples Plot a 50 kHz Gaussian RF pulse with 60% bandwidth, sampled at a rate of 
1 MHz. Truncate the pulse where the envelope falls 40 dB below the peak:

tc = gauspuls('cutoff',50e3,0.6,[],-40); 
t = -tc : 1e-6 : tc; 
yi = gauspuls(t,50e3,0.6); 
plot(t,yi)

See Also chirp, cos, diric, pulstran, rectpuls, sawtooth, sin, sinc, square, tripuls
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7gaussfirPurpose Gaussian FIR pulse-shaping filter

Syntax h = gaussfir(bt)
h = gausswin(bt,n)
h = gausswin(bt,n,o)

Description This filter is used primarily in Gaussian minimum shift keying (GMSK) 
communications applications. 

h = gaussfir(bt) designs a low pass FIR Gaussian pulse-shaping filter and 
returns the filter coefficients in the h vector. bt is the 3-dB bandwidth-symbol 
time product where b is the two-sided bandwidth in hertz and t is in seconds. 
Smaller bt products produce larger pulse widths. The number of symbol 
periods (n) defaults to 3 and the oversampling factor (o) defaults to 2. 

The length of the impulse response of the filter is given by 2*o*n+1.  The 
coefficients h are normalized so that the nominal passband gain is always equal 
to 1.

h = gaussfir(bt,n) uses n number of symbol periods between the start of the 
filter impulse response and its peak.

h = gaussfir(bt,n,o) uses an oversampling factor of o, which is the number 
of samples per symbol.

Examples Design a Gaussian filter to be used in a Global System for Mobile 
communications (GSM) GMSK scheme.

bt = .3; % 3-dB bandwidth-symbol time
o = 8;  % Oversampling factor
n = 2;  % 2 symbol periods to the filters peak. 
h = gaussfir(bt,n,o); 
hfvt = fvtool(h,'impulse');
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References [1] Rappaport T.S., Wireless Communications Principles and Practice, Prentice 
Hall, 1996.

[2] Krishnapura N., Pavan S., Mathiazhagan C., Ramamurthi B., “A Baseband 
Pulse Shaping Filter for Gaussian Minimum Shift Keying,” Proceedings of the 
1998 IEEE International Symposium on Circuits and Systems, 1998.

See Also firrcos, rcosfir
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7gausswinPurpose Gaussian window

Syntax w = gausswin(n)
w = gausswin(n,α)

Description w = gausswin(n) returns an n-point Gaussian window in the column vector w. 
n is a positive integer. The coefficients of a Gaussian window are computed 
from the following equation.

 

where  and .

w = gausswin(n,α) returns an n-point Gaussian window where α is the 
reciprocal of the standard deviation. The width of the window is inversely 
related to the value of α; a larger value of α produces a more narrow window. 
If α is omitted, it defaults to 2.5.

Note  If the window appears to be clipped, increase the number of points (n) 
used for gausswin(n) .

Examples Create a 64-point Gaussian window and display the result in WVTool:

N=64;
wvtool(gausswin(N))
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Note  The shape of this window is similar in the frequency domain because 
the Fourier transform of a Gaussian is also a Gaussian.

References [1] Harris, F.J. “On the Use of Windows for Harmonic Analysis with the 
Discrete Fourier Transform.” Proceedings of the IEEE. Vol. 66, No. 1 (January 
1978).

[2] Roberts, Richard A., and C.T. Mullis. Digital Signal Processing. Reading, 
MA: Addison-Wesley, 1987, pp. 135-136.

See Also chebwin, kaiser, tukeywin, window, wintool, wvtool
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7gmonopulsPurpose Gaussian monopulse

Syntax y = gmonopuls(t,fc)
tc = gmonopuls('cutoff',fc)

Description y = gmonopuls(t,fc) returns samples of the unity-amplitude Gaussian 
monopulse with center frequency fc (in hertz) at the times indicated in array t. 
By default, fc = 1000 Hz.

tc = gmonopuls('cutoff',fc) returns the time duration between the 
maximum and minimum amplitudes of the pulse.

Remarks Default values are substituted for empty or omitted trailing input arguments.

Examples Example 1
Plot a 2 GHz Gaussian monopulse sampled at a rate of 100 GHz:

fc = 2E9; fs=100E9;
tc = gmonopuls('cutoff',fc);
t  = -2*tc : 1/fs : 2*tc;
y = gmonopuls(t,fc); plot(t,y)
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Example 2
Construct a pulse train from the monopulse of Example 1 using a spacing of 
7.5 ns:

fc = 2E9;  fs=100E9; % center freq, sample freq
D = [2.5 10 17.5]' * 1e-9; % pulse delay times
tc = gmonopuls('cutoff',fc); % width of each pulse
t  = 0 : 1/fs : 150*tc; % signal evaluation time
yp = pulstran(t,D,@gmonopuls,fc);
plot(t,yp)

See Also chirp, gauspuls, pulstran, rectpuls, tripuls
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7goertzelPurpose Discrete Fourier transform using second order Goertzel algorithm

Syntax y = goertzel(x,i)
y = goertzel(x,i,dim)

Description goertzel computes the discrete Fourier transform (DFT) of specific indices in 
a vector or matrix. 

y = goertzel(x,i) returns the DFT of vector x at the indices in vector i, 
computed using the second-order Goertzel algorithm. If x is a matrix, goertzel 
computes each column separately. The indices in vector i must be integer 
values from 1 to N, where N is the length of the first matrix dimension of x that 
is greater than 1. The resulting y has the same dimensions as x. If i is omitted, 
it is assumed to be [1:N], which results in a full DFT computation. 

y = goertzel(x,i,dim) returns the discrete Fourier transform (DFT) of 
matrix x at the indices in vector i, computed along the dimension dim of x.

Note  fft computes all DFT values at all indices, while goertzel computes 
DFT values at a specified subset of indices (i.e., a portion of the signal’s 
frequency range). If less than log2(N) points are required, goertzel is more 
efficient than the Fast Fourier Transform (fft).

Two examples where goertzel can be useful are spectral analysis of very large 
signals and dual-tone multifrequency (DTMF) signal detection.

Examples Estimate the frequency of the two tones generated by the “1” button on a 
telephone keypad.

% Frequency tones of the telephone pad (Hz)
f = [697 770 852 941 1209 1336 1477]; 
Fs = 8000; 
N = 205;
% Tones of 25.6 ms
tones = sum(sin(2*pi*[697;1209]*(0:N-1)/Fs));
k = round(f/Fs*N); % Indices of the DFT
ydft = goertzel(tones,k+1); % DC is represented by the value 1
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estim_f = round(k*Fs/N); % Frequencies at which DFT estimated
stem(estim_f,abs(ydft)) % Peaks detected around 697 & 1209 Hz

Algorithm goertzel implements this transfer function

where N is the length of the signal and k is the index of the computed DFT. k 
is related to the indices in vector i above as k = i - 1.

The signal flow graph for this transfer function is

Hk z( )
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and it is implemented as

where

  

and 

To compute X[k] for a particular k, the Goertzel algorithm requires 4N real 
multiplications and 4N real additions. Although this is less efficient than 
computing the DFT by the direct method, Goertzel uses recursion to compute 

 and 

which are evaluated only at n = N. The direct DFT does not use recursion and 
must compute each complex term separately.
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References [1] Burrus, C.S. and T.W. Parks. DFT/FFT and Convolution Algorithms. John 
Wiley & Sons, 1985, pp. 32-26.

[2] Mitra, Sanjit K. Digital Signal Processing: A Computer-Based Approach. 
New York, NY: McGraw-Hill, 1998, pp. 520-523.

See Also fft, fft2
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7grpdelayPurpose Average filter delay (group delay)

Syntax grpdelay(b,a)
[gd,w] = grpdelay(b,a,n)
[gd,f] = grpdelay(b,a,n,fs)
[gd,w] = grpdelay(b,a,n,'whole')
[gd,f] = grpdelay(b,a,n,'whole',fs)
gd = grpdelay(b,a,w)
gd = grpdelay(b,a,f,fs)
grpdelay(Hd)

Description The group delay of a filter is a measure of the average delay of the filter as a 
function of frequency. It is the negative first derivative of the phase response 
of the filter. If the complex frequency response of a filter is , then the 
group delay is 

where ω is frequency and θ is the phase angle of .

grpdelay(b,a) with no output arguments plots the group delay versus 
frequency in the current figure window.

[gd,w] = grpdelay(b,a,l) returns the i-point group delay, , of the 
digital filter

given the numerator and denominator coefficients in vectors b and a. grpdelay 
returns both gd, the group delay, and w, a vector containing the n frequency 
points in radians. grpdelay evaluates the group delay at n points equally 
spaced around the upper half of the unit circle, so w contains n points between 
0 and π. 

[gd,f] = grpdelay(b,a,n,fs) specifies a positive sampling frequency fs in 
hertz. It returns a length n vector f containing the actual frequency points at 
which the group delay is calculated, also in hertz. f contains n points between 
0 and fs/2.
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[gd,w] = grpdelay(b,a,n,'whole') and 

[gd,f] = grpdelay(b,a,n,'whole',fs) use n points around the whole unit 
circle (from 0 to 2π, or from 0 to fs).

gd = grpdelay(b,a,w) and

gd = grpdelay(b,a,f,fs) return the group delay evaluated at the points in w 
(in radians) or f (in hertz), respectively, where fs is the sampling frequency in 
hertz.

grpdelay(Hd) plots the group delay and displays the plot in fvtool. The input 
Hd is a dfilt filter object or an array of dfilt filter objects.

grpdelay works for both real and complex filters.

Examples Plot the group delay of Butterworth filter b(z)/a(z):

[b,a] = butter(6,0.2);
grpdelay(b,a,128)

The same example using a dfilt object and displaying the result in the Filter 
Visualization Tool (fvtool) is
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[b,a] = butter(6,0.2);
Hd=dfilt.df1(b,a);
grpdelay(Hd,128)

Plot both the group and phase delays of a system on the same graph:

gd = grpdelay(b,a,512);
gd(1) = []; % Avoid NaNs
[h,w] = freqz(b,a,512); h(1) = []; w(1) = [];
pd = -unwrap(angle(h))./w;
plot(w,gd,w,pd,':')
xlabel('Frequency (rad/sec)'); grid;
legend('Group Delay','Phase Delay');
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Algorithm grpdelay multiplies the filter coefficients by a unit ramp. After Fourier 
transformation, this process corresponds to differentiation.

See Also cceps, fft, freqz, hilbert, icceps, rceps
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7hammingPurpose Hamming window

Syntax w = hamming(n)
w = hamming(n,'sflag')

Description w = hamming(n) returns an n-point symmetric Hamming window in the 
column vector w. n should be a positive integer. The coefficients of a Hamming 
window are computed from the following equation.

w = hamming(n,'sflag') returns an n-point Hamming window using the 
window sampling specified by 'sflag', which can be either 'periodic' or 
'symmetric' (the default). When 'periodic' is specified, hamming computes a 
length n+1 window and returns the first n points.

Note  If you specify a one-point window (n=1), the value 1 is returned.

Examples Create a 64-point Hamming window and display the result in WVTool:

N=64;
wvtool(hamming(N))

w k 1+[ ] 0.54 0.46 2π k
n 1–
-------------⎝ ⎠

⎛ ⎞cos– k 0= … n 1–, , ,=
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References [1] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing, 
Prentice-Hall, 1989, pp. 447-448.

See Also blackman, flattopwin, hann, window, wintool, wvtool
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7hannPurpose Hann (Hanning)   window

Syntax w = hann(n)
w = hann(n,'sflag')

Description w = hann(n) returns an n-point symmetric Hann window in the column 
vector w. n must be a positive integer. The coefficients of a Hann window are 
computed from the following equation.

w = hann(n,'sflag') returns an n-point Hann window using the window 
sampling specified by 'sflag', which can be either 'periodic' or 
'symmetric' (the default). When 'periodic' is specified, hann computes a 
length n+1 window and returns the first n points.

Note  If you specify a one-point window (n=1), the value 1 is returned.

Examples Create a 64-point Hann window and display the result in WVTool:

N=64;
wvtool(hann(N))

w k 1+[ ] 0.5 1 2π k
n 1–
-------------⎝ ⎠

⎛ ⎞cos–⎝ ⎠
⎛ ⎞ k 0= … n 1–, , ,=
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References [1] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing, 
Prentice-Hall, 1989, pp. 447-448.

See Also blackman, flattopwin, hamming, window, wintool, wvtool
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7hilbertPurpose Discrete-time analytic signal using Hilbert transform

Syntax x = hilbert(xr)
x = hilbert(xr,n)

Description x = hilbert(xr) returns a complex helical sequence, sometimes called the 
analytic signal, from a real data sequence. The analytic signal x = xr + i*xi 
has a real part, xr, which is the original data, and an imaginary part, xi, which 
contains the Hilbert transform. The imaginary part is a version of the original 
real sequence with a 90° phase shift. Sines are therefore transformed to cosines 
and vice versa. The Hilbert transformed series has the same amplitude and 
frequency content as the original real data and includes phase information that 
depends on the phase of the original data.

If xr is a matrix, x = hilbert(xr) operates columnwise on the matrix, finding 
the Hilbert transform of each column.

x = hilbert(xr,n) uses an n point FFT to compute the Hilbert transform. 
The input data xr is zero-padded or truncated to length n, as appropriate.

The Hilbert transform is useful in calculating instantaneous attributes of a 
time series, especially the amplitude and frequency. The instantaneous 
amplitude is the amplitude of the complex Hilbert transform; the 
instantaneous frequency is the time rate of change of the instantaneous phase 
angle. For a pure sinusoid, the instantaneous amplitude and frequency are 
constant. The instantaneous phase, however, is a sawtooth, reflecting the way 
in which the local phase angle varies linearly over a single cycle. For mixtures 
of sinusoids, the attributes are short term, or local, averages spanning no more 
than two or three points.

Reference [1] describes the Kolmogorov method for minimum phase 
reconstruction, which involves taking the Hilbert transform of the logarithm of 
the spectral density of a time series. The toolbox function rceps performs this 
reconstruction.

For a discrete-time analytic signal x, the last half of fft(x) is zero, and the 
first (DC) and center (Nyquist) elements of fft(x) are purely real.

Examples xr = [1 2 3 4];
x = hilbert(xr)
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x =
   1.0000+1.0000i 2.0000-1.0000i 3.0000-1.0000i 4.0000+1.0000i

You can see that the imaginary part, imag(x) = [1 -1 -1 1], is the Hilbert 
transform of xr, and the real part, real(x) = [1 2 3 4], is simply xr itself. 
Note that the last half of fft(x) = [10 -4+4i -2 0] is zero (in this example, 
the last half is just the last element), and that the DC and Nyquist elements of 
fft(x), 10 and -2 respectively, are purely real.

Algorithm The analytic signal for a sequence x has a one-sided Fourier transform, that is, 
negative frequencies are 0. To approximate the analytic signal, hilbert 
calculates the FFT of the input sequence, replaces those FFT coefficients that 
correspond to negative frequencies with zeros, and calculates the inverse FFT 
of the result.

In detail, hilbert uses a four-step algorithm:

1 It calculates the FFT of the input sequence, storing the result in a vector x. 

2 It creates a vector h whose elements h(i) have the values:

- 1 for i = 1, (n/2)+1

- 2 for i = 2, 3, ... , (n/2)

- 0 for i = (n/2)+2, ... , n

3 It calculates the element-wise product of x and h.

4 It calculates the inverse FFT of the sequence obtained in step 3 and returns 
the first n elements of the result.

If the input data xr is a matrix, hilbert operates in a similar manner, 
extending each step above to handle the matrix case.

References [1] Claerbout, J.F., Fundamentals of Geophysical Data Processing, 
McGraw-Hill, 1976, pp. 59-62.

[2] Marple, S.L., “Computing the discrete-time analytic signal via FFT,” IEEE 
Transactions on Signal Processing, Vol. 47, No. 9 (September 1999), 
pp. 2600-2603.

[3] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing, 
2nd ed., Prentice-Hall, 1998.

See Also fft, ifft, rceps
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7iccepsPurpose Inverse complex cepstrum

Syntax x = icceps(xhat,nd)

Description Note  icceps only works on real data.

x = icceps(xhat,nd) returns the inverse complex cepstrum of the real data  
sequence xhat, removing nd samples of delay. If xhat was obtained with 
cceps(x), then the amount of delay that was added to x was the element of 
round(unwrap(angle(fft(x)))/pi) corresponding to π radians.

References [1] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing, 
Prentice-Hall, 1989.

See Also cceps, hilbert, rceps, unwrap
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7idctPurpose Inverse discrete cosine transform

Syntax x = idct(y)
x = idct(y,n)

Description The inverse discrete cosine transform reconstructs a sequence from its discrete 
cosine transform (DCT) coefficients. The idct function is the inverse of the dct 
function.

x = idct(y) returns the inverse discrete cosine transform of y

where

and N = length(x), which is the same as length(y). The series is indexed 
from n = 1 and k = 1 instead of the usual n = 0 and k = 0 because MATLAB 
vectors run from 1 to N instead of from 0 to N-1.

x = idct(y,n) appends zeros or truncates the vector y to length n before 
transforming.

If y is a matrix, idct transforms its columns.

References [1] Jain, A.K., Fundamentals of Digital Image Processing, Prentice-Hall, 1989.

[2] Pennebaker, W.B., and J.L. Mitchell, JPEG Still Image Data Compression 
Standard, Van Nostrand Reinhold, 1993, Chapter 4.

See Also dct, dct2, idct2, ifft
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ifft
7ifftPurpose One-dimensional inverse fast Fourier transform

ifft is a MATLAB function.
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7ifft2Purpose Two-dimensional inverse fast Fourier transform

ifft2 is a MATLAB function.
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7impinvarPurpose Impulse invariance method for analog-to-digital filter conversion

Syntax [bz,az] = impinvar(b,a,fs)
[bz,az] = impinvar(b,a)
[bz,az] = impinvar(b,a,fs,tol)

Description [bz,az] = impinvar(b,a,fs) creates a digital filter with numerator and 
denominator coefficients bz and az, respectively, whose impulse response is 
equal to the impulse response of the analog filter with coefficients b and a, 
scaled by 1/fs. If you leave out the argument fs, or specify fs as the empty 
vector [], it takes the default value of 1 Hz. 

[bz,az] = impinvar(b,a,fs,tol) uses the tolerance specified by tol to 
determine whether poles are repeated. A larger tolerance increases the 
likelihood that impinvar interprets closely located poles as multiplicities 
(repeated ones). The default is 0.001, or 0.1% of a pole’s magnitude. Note that 
the accuracy of the pole values is still limited to the accuracy obtainable by the 
roots function.

Examples Example 1
Convert an analog lowpass filter to a digital filter using impinvar with a 
sampling frequency of 10 Hz:

[b,a] = butter(4,0.3,'s');
[bz,az] = impinvar(b,a,10)

bz =

  1.0e-006 *

   -0.0000    0.1324    0.5192    0.1273         0

az =

    1.0000   -3.9216    5.7679   -3.7709    0.9246
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Example 2
Illustrate the relationship between analog and digital impulse responses [2].

Note  This example requires the impulse function from the Control System 
Toolbox.

The steps used in this example are:

1 Create an analog Butterworth filter

2 Use impinvar with a sampling frequency Fs of 10 Hz to scale the coefficients 
by 1/Fs. This compensates for the gain that will be introduced in Step 4 
below. 

3 Use Control System Toolbox impulse function to plot the continuous-time 
unit impulse response of an LTI system.

4 Plot the digital impulse response, multiplying the numerator by a constant 
(Fs) to compenstate for the 1/Fs gain introduced in the impulse response of 
the derived digital filter. 

[b,a] = butter(4,0.3,'s');                                          
[bz,az] = impinvar(b,a,10);                                           
sys = tf(b,a);
impulse(sys);
hold on;                                                               
impz(10*bz,az,[],10);

Zooming the resulting plot shows that the analog and digital impulse responses 
are the same.
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f

Algorithm impinvar performs the impulse-invariant method of analog-to-digital transfer 
function conversion discussed in reference [1]:

1 It finds the partial fraction expansion of the system represented by b and a.

2 It replaces the poles p by the poles exp(p/fs).

3 It finds the transfer function coefficients of the system from the residues 
from step 1 and the poles from step 2.

References [1] Parks, T.W., and C.S. Burrus, Digital Filter Design, John Wiley & Sons, 
1987, pp. 206-209.

[2] Antoniou, Andreas, Digital Filters, McGraw Hill, Inc, 1993, pp.221-224.

See Also bilinear, lp2bp, lp2bs, lp2hp, lp2lp
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7impzPurpose Impulse response of digital filters

Syntax [h,t] = impz(b,a)
[h,t] = impz(b,a,n)
[h,t] = impz(b,a,n,fs)
impz(b,a)
impz(Hd)

Description [h,t] = impz(b,a) computes the impulse response of the filter with 
numerator coefficients b and denominator coefficients a. impz chooses the 
number of samples and returns the response in the column vector h and sample 
times in the column vector t (where t = [0:n-1]', and n = length(t) is 
computed automatically).

[h,t] = impz(b,a,n) computes n samples of the impulse response when n is 
an integer (t = [0:n-1]'). If n is a vector of integers, impz computes the 
impulse response at those integer locations, starting the response computation 
from 0 (and t = n or t = [0 n]). If, instead of n, you include the empty vector [] 
for the second argument, the number of samples is computed automatically by 
default.

[h,t] = impz(b,a,n,fs) computes n samples and produces a vector t of 
length n so that the samples are spaced 1/fs units apart. 

impz(b,a) with no output arguments plots the impulse response and displays 
the response in the current figure window.

impz(Hd) plots the impulse responsee of the filter and displays the plot in 
fvtool. The input Hd is a dfilt filter object or an array of dfilt filter objects.

Note  impz works for both real and complex input systems.

Examples Plot the first 50 samples of the impulse response of a fourth-order lowpass 
elliptic filter with cutoff frequency of 0.4 times the Nyquist frequency:

[b,a] = ellip(4,0.5,20,0.4);
impz(b,a,50)
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The same example using a dfilt object and displaying the result in the Filter 
Tool (fvtool) is

[b,a] = ellip(4,0.5,20,0.4);
Hd = dfilt.df1(b,a)
impz(Hd,50)
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Algorithm impz filters a length n impulse sequence using 

filter(b,a,[1 zeros(1,n-1)])

and plots the results using stem.

To compute n in the auto-length case, impz either uses n = length(b) for the 
FIR case or first finds the poles using p = roots(a), if length(a) is greater 
than 1.

If the filter is unstable, n is chosen to be the point at which the term from the 
largest pole reaches 10^6 times its original value.

If the filter is stable, n is chosen to be the point at which the term due to the 
largest amplitude pole is 5*10^-5 of its original amplitude.
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If the filter is oscillatory (poles on the unit circle only), impz computes five 
periods of the slowest oscillation.

If the filter has both oscillatory and damped terms, n is chosen to equal five 
periods of the slowest oscillation or the point at which the term due to the 
largest (nonunity) amplitude pole is 5*10^-5 of its original amplitude, 
whichever is greater.

impz also allows for delays in the numerator polynomial. The number of delays 
is incorporated into the computation for the number of samples. 

See Also impulse, stem
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7interpPurpose Interpolation — increase sampling rate by integer factor

Syntax y = interp(x,r)
y = interp(x,r,l,alpha)
[y,b] = interp(x,r,l,alpha)

Description Interpolation increases the original sampling rate for a sequence to a higher 
rate. interp performs lowpass interpolation by inserting zeros into the original 
sequence and then applying a special lowpass filter.

y = interp(x,r) increases the sampling rate of x by a factor of r. The 
interpolated vector y is r times longer than the original input x.

y = interp(x,r,l,alpha) specifies l (filter length) and alpha (cut-off 
frequency). The default value for l is 4 and the default value for alpha is 0.5.

[y,b] = interp(x,r,l,alpha) returns vector b containing the filter 
coefficients used for the interpolation. 

Examples Interpolate a signal by a factor of four:

t = 0:0.001:1; % Time vector
x = sin(2*pi*30*t) + sin(2*pi*60*t);
y = interp(x,4);
stem(x(1:30)); 
title('Original Signal');
figure
stem(y(1:120)); 
title('Interpolated Signal');
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Algorithm interp uses the lowpass interpolation Algorithm 8.1 described in [1]:

1 It expands the input vector to the correct length by inserting zeros between 
the original data values.

2 It designs a special symmetric FIR filter that allows the original data to pass 
through unchanged and interpolates between so that the mean-square 
errors between the interpolated points and their ideal values are minimized.

3 It applies the filter to the input vector to produce the interpolated output 
vector.

The length of the FIR lowpass interpolating filter is 2*l*r+1. The number of 
original sample values used for interpolation is 2*l. Ordinarily, l should be less 
than or equal to 10. The original signal is assumed to be band limited with 
normalized cutoff frequency 0 ≤ alpha ≤ 1, where 1 is half the original sampling 
frequency (the Nyquist frequency). The default value for l is 4 and the default 
value for alpha is 0.5.

Diagnostics If r is not an integer, interp gives the following error message:

Resampling rate R must be an integer.

References [1] Programs for Digital Signal Processing, IEEE Press, New York, 1979, 
Algorithm 8.1.

See Also decimate, downsample, interp1, resample, spline, upfirdn, upsample
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7intfiltPurpose Interpolation FIR filter design

Syntax b = intfilt(l,p,alpha)
b = intfilt(l,n,'Lagrange')

Description b = intfilt(l,p,alpha) designs a linear phase FIR filter that performs ideal 
bandlimited interpolation using the nearest 2*p nonzero samples, when used 
on a sequence interleaved with l-1 consecutive zeros every l samples. It 
assumes an original bandlimitedness of alpha times the Nyquist frequency. The 
returned filter is identical to that used by interp. b is length 2*l*p-1

alpha is inversely proportional to the transition bandwidth of the filter and it 
also affects the bandwith of the don’t-care regions in the stopband.  Specifying 
alpha allows you to specify how much of the Nyquist interval your input signal 
occupies. This is beneficial, particularly for signals to be interpolated, because 
it allows you to increase the transition bandwidth without affecting the 
interpolation and results in better stopband attenuation for a given l and p.  If 
you set alpha to 1, your signal is assumed to occupy the entire Nyquist interval. 
Setting alpha to less than one allows for don’t-care regions in the stopband. For 
example, if your input occupies half the Nyquist interval, you could set alpha to 
0.5.

b = intfilt(l,n,'Lagrange') designs an FIR filter that performs nth-order 
Lagrange polynomial interpolation on a sequence interleaved with l-1 
consecutive zeros every r samples. b has length (n + 1)*l for n even, and length 
(n + 1)*l-1 for n odd. If both n and l are even, the filter designed is not linear 
phase.

Both types of filters are basically lowpass and have a gain of l in the passband..

Examples Design a digital interpolation filter to upsample a signal by four, using the 
bandlimited method:

alpha = 0.5; % "Bandlimitedness" factor
h1 = intfilt(4,2,alpha); % Bandlimited interpolation

The filter h1 works best when the original signal is bandlimited to alpha times 
the Nyquist frequency. Create a bandlimited noise signal:

randn('state',0)
x = filter(fir1(40,0.5),1,randn(200,1)); % Bandlimit
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Now zero pad the signal with three zeros between every sample. The resulting 
sequence is four times the length of x:

xr = reshape([x zeros(length(x),3)]',4*length(x),1);

Interpolate using the filter command:

y = filter(h1,1,xr);

y is an interpolated version of x, delayed by seven samples (the group-delay of 
the filter). Zoom in on a section of one hundred samples to see this:

plot(100:200,y(100:200),7+(101:4:196),x(26:49),'o')

intfilt also performs Lagrange polynomial interpolation of the original 
signal. For example, first-order polynomial interpolation is just linear 
interpolation, which is accomplished with a triangular filter:

h2 = intfilt(4,1,'l')   % Lagrange interpolation

h2 =
   0.2500   0.5000   0.7500   1.0000   0.7500   0.5000  0.2500

Algorithm The bandlimited method uses firls to design an interpolation FIR equivalent 
to that presented in [1]. The polynomial method uses Lagrange’s polynomial 
interpolation formula on equally spaced samples to construct the appropriate 
filter.
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References [1] Oetken, Parks, and Schüßler, “New Results in the Design of Digital 
Interpolators,” IEEE Trans. Acoust., Speech, Signal Processing, Vol. ASSP-23 
(June 1975), pp. 301-309.

See Also decimate, downsample, interp, resample, upsample
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7invfreqsPurpose Identify continuous-time filter parameters from frequency response data

Syntax [b,a] = invfreqs(h,w,n,m)
[b,a] = invfreqs(h,w,n,m,wt)
[b,a] = invfreqs(h,w,n,m,wt,iter)
[b,a] = invfreqs(h,w,n,m,wt,iter,tol)
[b,a] = invfreqs(h,w,n,m,wt,iter,tol,'trace')

[b,a] = invfreqs(h,w,'complex',n,m,...)

Description invfreqs is the inverse operation of freqs. It finds a continuous-time transfer 
function that corresponds to a given complex frequency response. From a 
laboratory analysis standpoint, invfreqs is useful in converting magnitude 
and phase data into transfer functions.

[b,a] = invfreqs(h,w,n,m) returns the real numerator and denominator 
coefficient vectors b and a of the transfer function

whose complex frequency response is given in vector h at the frequency points 
specified in vector w. Scalars n and m specify the desired orders of the 
numerator and denominator polynomials. 

Frequency is specified in radians between 0 and π, and the length of h must be 
the same as the length of w. invfreqs uses conj(h) at -w to ensure the proper 
frequency domain symmetry for a real filter.

[b,a] = invfreqs(h,w,n,m,wt) weights the fit-errors versus frequency, 
where wt is a vector of weighting factors the same length as w.

[b,a] = invfreqs(h,w,n,m,wt,iter) and 

[b,a] = invfreqs(h,w,n,m,wt,iter,tol) provide a superior algorithm that 
guarantees stability of the resulting linear system and searches for the best fit 
using a numerical, iterative scheme. The iter parameter tells invfreqs to end 
the iteration when the solution has converged, or after iter iterations, 
whichever comes first. invfreqs defines convergence as occurring when the 
norm of the (modified) gradient vector is less than tol, where tol is an optional 
parameter that defaults to 0.01. To obtain a weight vector of all ones, use

H s( ) B s( )
A s( )
----------- b 1( )sn b 2( )sn 1– b n 1+( )+ + +

a 1( )sm a 2( )sm 1– a m 1+( )+ + +
------------------------------------------------------------------------------------------= =
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invfreqs(h,w,n,m,[],iter,tol)

[b,a] = invfreqs(h,w,n,m,wt,iter,tol,'trace') displays a textual 
progress report of the iteration. 

[b,a] = invfreqs(h,w,'complex',n,m,...) creates a complex filter. In this 
case no symmetry is enforced, and the frequency is specified in radians 
between -π and π.

Remarks When building higher order models using high frequencies, it is important to 
scale the frequencies, dividing by a factor such as half the highest frequency 
present in w, so as to obtain well conditioned values of a and b. This corresponds 
to a rescaling of time.

Examples Example 1
Convert a simple transfer function to frequency response data and then back 
to the original filter coefficients:

a = [1 2 3 2 1 4]; b = [1 2 3 2 3];
[h,w] = freqs(b,a,64);
[bb,aa] = invfreqs(h,w,4,5)

bb =

    1.0000    2.0000    3.0000    2.0000    3.0000

aa =

    1.0000    2.0000    3.0000    2.0000    1.0000    4.0000
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Notice that bb and aa are equivalent to b and a, respectively. However, aa has 
poles in the left half-plane and thus the system is unstable. Use invfreqs’s 
iterative algorithm to find a stable approximation to the system:

[bbb,aaa] = invfreqs(h,w,4,5,[],30)

bbb =

    0.6816    2.1015    2.6694    0.9113   -0.1218

aaa =

    1.0000    3.4676    7.4060    6.2102    2.5413    0.0001

Example 2
Suppose you have two vectors, mag and phase, that contain magnitude and 
phase data gathered in a laboratory, and a third vector w of frequencies. You 
can convert the data into a continuous-time transfer function using invfreqs:

[b,a] = invfreqs(mag.*exp(j*phase),w,2,3);

Algorithm By default, invfreqs uses an equation error method to identify the best model 
from the data. This finds b and a in

by creating a system of linear equations and solving them with the MATLAB \ 
operator. Here A(w(k)) and B(w(k)) are the Fourier transforms of the 
polynomials a and b, respectively, at the frequency w(k), and n is the number 
of frequency points (the length of h and w). This algorithm is based on Levi [1]. 
Several variants have been suggested in the literature, where the weighting 
function wt gives less attention to high frequencies.

min
b a,

wt k( ) h k( )A w k( )( ) B w k( )( )– 2

k 1=

n

∑

7-373



invfreqs
The superior (“output-error”) algorithm uses the damped Gauss-Newton method 
for iterative search [2], with the output of the first algorithm as the initial 
estimate. This solves the direct problem of minimizing the weighted sum of the 
squared error between the actual and the desired frequency response points.

References [1] Levi, E.C., “Complex-Curve Fitting,” IRE Trans. on Automatic Control, 
Vol. AC-4 (1959), pp. 37-44.

[2] Dennis, J.E., Jr., and R.B. Schnabel. Numerical Methods for Unconstrained 
Optimization and Nonlinear Equations. Englewood Cliffs, NJ: Prentice-Hall, 
1983.

See Also freqs, freqz, invfreqz, prony

min
b a,

wt k( ) h k( ) B w k( )( )
A w k( )( )
--------------------–

2

k 1=

n

∑
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7invfreqzPurpose Identify discrete-time filter parameters from frequency response data

Syntax [b,a] = invfreqz(h,w,n,m)
[b,a] = invfreqz(h,w,n,m,wt)
[b,a] = invfreqz(h,w,n,m,wt,iter)
[b,a] = invfreqz(h,w,n,m,wt,iter,tol)
[b,a] = invfreqz(h,w,n,m,wt,iter,tol,'trace')
[b,a] = invfreqz(h,w,'complex',n,m,...)

Description invfreqz is the inverse operation of freqz; it finds a discrete-time transfer 
function that corresponds to a given complex frequency response. From a 
laboratory analysis standpoint, invfreqz can be used to convert magnitude 
and phase data into transfer functions.

[b,a] = invfreqz(h,w,n,m) returns the real numerator and denominator 
coefficients in vectors b and a of the transfer function

whose complex frequency response is given in vector h at the frequency points 
specified in vector w. Scalars n and m specify the desired orders of the 
numerator and denominator polynomials.

Frequency is specified in radians between 0 and π, and the length of h must be 
the same as the length of w. invfreqz uses conj(h) at -w to ensure the proper 
frequency domain symmetry for a real filter.

[b,a] = invfreqz(h,w,n,m,wt) weights the fit-errors versus frequency, 
where wt is a vector of weighting factors the same length as w.

[b,a] = invfreqz(h,w,n,m,wt,iter) and

[b,a] = invfreqz(h,w,n,m,wt,iter,tol) provide a superior algorithm that 
guarantees stability of the resulting linear system and searches for the best fit 
using a numerical, iterative scheme. The iter parameter tells invfreqz to end 
the iteration when the solution has converged, or after iter iterations, 
whichever comes first. invfreqz defines convergence as occurring when the 
norm of the (modified) gradient vector is less than tol, where tol is an optional 
parameter that defaults to 0.01. To obtain a weight vector of all ones, use

H z( ) B z( )
A z( )
----------- b 1( ) b 2( )z 1– b n 1+( )z n–+ + +

a 1( ) a 2( )z 1– a m 1+( )z m–+ + +
----------------------------------------------------------------------------------------= =
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invfreqz(h,w,n,m,[],iter,tol)

[b,a] = invfreqz(h,w,n,m,wt,iter,tol,'trace') displays a textual 
progress report of the iteration.

[b,a] = invfreqz(h,w,'complex',n,m,...) creates a complex filter. In this 
case no symmetry is enforced, and the frequency is specified in radians 
between -π and π.

Examples Convert a simple transfer function to frequency response data and then back 
to the original filter coefficients:

a = [1 2 3 2 1 4]; b = [1 2 3 2 3];
[h,w] = freqz(b,a,64);
[bb,aa] = invfreqz(h,w,4,5)

bb =

    1.0000    2.0000    3.0000    2.0000    3.0000

aa =

    1.0000    2.0000    3.0000    2.0000    1.0000    4.0000

Notice that bb and aa are equivalent to b and a, respectively. However, aa has 
poles outside the unit circle and thus the system is unstable. Use invfreqz’s 
iterative algorithm to find a stable approximation to the system:

[bbb,aaa] = invfreqz(h,w,4,5,[],30)

bbb =

    0.2427    0.2788    0.0069    0.0971    0.1980

aaa =

    1.0000   -0.8944    0.6954    0.9997   -0.8933    0.6949

Algorithm By default, invfreqz uses an equation error method to identify the best model 
from the data. This finds b and a in
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by creating a system of linear equations and solving them with the MATLAB \ 
operator. Here A(ω(k)) and B(ω(k)) are the Fourier transforms of the 
polynomials a and b, respectively, at the frequency ω(k), and n is the number 
of frequency points (the length of h and w). This algorithm is a based on Levi [1].

The superior (“output-error”) algorithm uses the damped Gauss-Newton 
method for iterative search [2], with the output of the first algorithm as the 
initial estimate. This solves the direct problem of minimizing the weighted sum 
of the squared error between the actual and the desired frequency response 
points.

References [1] Levi, E.C., “Complex-Curve Fitting,” IRE Trans. on Automatic Control, 
Vol. AC-4 (1959), pp. 37-44.

[2] Dennis, J.E., Jr., and R.B. Schnabel, Numerical Methods for Unconstrained 
Optimization and Nonlinear Equations, Prentice-Hall, 1983.

See Also freqs, freqz, invfreqz, prony

min
b a,

wt k( ) h k( )A ω k( )( ) B ω k( )( )– 2

k 1=

n

∑

min
b a,

wt k( ) h k( ) B ω k( )( )
A ω k( )( )
-------------------–

2

k 1=

n

∑
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7is2rcPurpose Convert inverse sine parameters to reflection coefficients

Syntax k = is2rc(isin)

Description k = is2rc(isin) returns a vector of reflection coefficients k from a vector of 
inverse sine parameters isin. 

Examples isin = [0.2000 0.8727 0.0020 0.0052 -0.0052];
k = is2rc(isin)

k =
    0.3090    0.9801    0.0031    0.0082   -0.0082

References [1] Deller, J.R., J.G. Proakis, and J.H.L. Hansen, “Discrete-Time Processing of 
Speech Signals,” Prentice-Hall, 1993.

See Also ac2rc, lar2rc, poly2rc, rc2is
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7kaiserPurpose Kaiser window

Syntax w = kaiser(n,beta)

Description w = kaiser(n,beta) returns an n-point Kaiser (I0 – sinh) window in the 
column vector w. beta is the Kaiser window β parameter that affects the 
sidelobe attenuation of the Fourier transform of the window. The default value 
for beta is 0.5.

To obtain a Kaiser window that designs an FIR filter with sidelobe height 
-α dB, use the following β.

Increasing beta widens the main lobe and decreases the amplitude of the 
sidelobes (increases the attenuation).

Examples Create a 200-point Kaiser window with a beta of 2.5 and display the result 
using WVTool:

w = kaiser(200,2.5);
wvtool(w)

β
0.1102 α 8.7–( ), α 50>

0.5842 α 21–( )0.4 0.07886 α 21–( )+ , 50 α 21≥ ≥
0, α 21<⎩

⎪
⎨
⎪
⎧

=
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References [1] Kaiser, J.F., “Nonrecursive Digital Filter Design Using the - sinh 
Window Function,” Proc. 1974 IEEE Symp. Circuits and Systems, (April 1974), 
pp. 20-23.

[2] Selected Papers in Digital Signal Processing II, IEEE Press, New York, 
1975.

[3] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing, 
Prentice-Hall, 1989, p. 453.

See Also chebwin, gausswin, kaiserord, tukeywin, window, wintool, wvtool

I0
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7kaiserordPurpose Kaiser window FIR filter design estimation parameters

Syntax [n,Wn,beta,ftype] = kaiserord(f,a,dev)
[n,Wn,beta,ftype] = kaiserord(f,a,dev,fs)
c = kaiserord(f,a,dev,fs,'cell')

Description kaiserord returns a filter order n and beta parameter to specify a Kaiser 
window for use with the fir1 function. Given a set of specifications in the 
frequency domain, kaiserord estimates the minimum FIR filter order that will 
approximately meet the specifications. kaiserord converts the given filter 
specifications into passband and stopband ripples and converts cutoff 
frequencies into the form needed for windowed FIR filter design.

[n,Wn,beta,ftype] = kaiserord(f,a,dev) finds the approximate order n, 
normalized frequency band edges Wn, and weights that meet input 
specifications f, a, and dev. f is a vector of band edges and a is a vector 
specifying the desired amplitude on the bands defined by f. The length of f is 
twice the length of a, minus 2. Together, f and a define a desired piecewise 
constant response function. dev is a vector the same size as a that specifies the 
maximum allowable error or deviation between the frequency response of the 
output filter and its desired amplitude, for each band. The entries in dev 
specify the passband ripple and the stopband attenuation. You specify each 
entry in dev as a positive number, representing absolute filter gain (not in 
decibels).

Note  If, in the vector dev, you specify unequal deviations across bands, the 
minimum specified deviation is used, since the Kaiser window method is 
constrained to produce filters with minimum deviation in all of the bands.

fir1 can use the resulting order n, frequency vector Wn, multiband magnitude 
type ftype, and the Kaiser window parameter beta. The ftype string is 
intended for use with fir1; it is equal to 'high' for a highpass filter and 'stop' 
for a bandstop filter. For multiband filters, it can be equal to 'dc-0' when the 
first band is a stopband (starting at f = 0) or 'dc-1' when the first band is a 
passband.
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To design an FIR filter b that approximately meets the specifications given by 
kaiser parameters f, a, and dev, use the following command.

b = fir1(n,Wn,kaiser(n+1,beta),ftype,'noscale')

[n,Wn,beta,ftype] = kaiserord(f,a,dev,fs) uses a sampling frequency fs 
in Hz. If you don’t specify the argument fs, or if you specify it as the empty 
vector [], it defaults to 2 Hz, and the Nyquist frequency is 1 Hz. You can use 
this syntax to specify band edges scaled to a particular application’s sampling 
frequency. The frequency band edges in f must be from 0 to fs/2.

c = kaiserord(f,a,dev,fs,'cell') is a cell-array whose elements are the 
parameters to fir1.

Note  In some cases, kaiserord underestimates or overestimates the order n. 
If the filter does not meet the specifications, try a higher order such as n+1, n+2, 
and so on, or a try lower order.

Results are inaccurate if the cutoff frequencies are near 0 or the Nyquist 
frequency, or if dev is large (greater than 10%).

Remarks Be careful to distinguish between the meanings of filter length and filter order. 
The filter length is the number of impulse response samples in the FIR filter. 
Generally, the impulse response is indexed from n = 0 to n = L-1, where L is the 
filter length. The filter order is the highest power in a z-transform 
representation of the filter. For an FIR transfer function, this representation is 
a polynomial in z, where the highest power is zL-1 and the lowest power is z0. 
The filter order is one less than the length (L-1) and is also equal to the number 
of zeros of the z polynomial.

Examples Example 1
Design a lowpass filter with passband defined from 0 to 1 kHz and stopband 
defined from 1500 Hz to 4 kHz. Specify a passband ripple of 5% and a stopband 
attenuation of 40 dB:

fsamp = 8000;
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fcuts = [1000 1500];
mags = [1 0];
devs = [0.05 0.01];
[n,Wn,beta,ftype] = kaiserord(fcuts,mags,devs,fsamp);
hh = fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale');
freqz(hh)

Example 2
Design an odd-length bandpass filter (note that odd length means even order, 
so the input to fir1 must be an even integer):

fsamp = 8000;
fcuts = [1000 1300 2210 2410];
mags = [0 1 0];
devs = [0.01 0.05 0.01];
[n,Wn,beta,ftype] = kaiserord(fcuts,mags,devs,fsamp);
n = n + rem(n,2);
hh = fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale');
[H,f] = freqz(hh,1,1024,fsamp);
plot(f,abs(H)), grid on
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Example 3
Design a lowpass filter with a passband cutoff of 1500 Hz, a stopband cutoff of 
2000 Hz, passband ripple of 0.01, stopband ripple of 0.1, and a sampling 
frequency of 8000 Hz:

[n,Wn,beta,ftype] = kaiserord([1500 2000],[1 0],...
[0.01 0.1],8000);

b = fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale');

This is equivalent to

c = kaiserord([1500 2000],[1 0],[0.01 0.1],8000,'cell');
b = fir1(c{:});

Algorithm kaiserord uses empirically derived formulas for estimating the orders of 
lowpass filters, as well as differentiators and Hilbert transformers. Estimates 
for multiband filters (such as bandpass filters) are derived from the lowpass 
design formulas.

The design formulas that underlie the Kaiser window and its application to 
FIR filter design are
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where α = -20log10δ is the stopband attenuation expressed in decibels (recall 
that δp = δs is required). 

The design formula is

where n is the filter order and ∆ω is the width of the smallest transition region.

References [1] Kaiser, J.F., “Nonrecursive Digital Filter Design Using the - sinh 
Window Function,” Proc. 1974 IEEE Symp. Circuits and Systems, (April 1974), 
pp. 20-23.

[2] Selected Papers in Digital Signal Processing II, IEEE Press, New York, 
1975, pp. 123-126.

[3] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing, 
Prentice-Hall, 1989, pp. 458-562.

See Also fir1, kaiser, firpmord

β
0.1102 α 8.7–( ), α 50>

0.5842 α 21–( )0.4 0.07886 α 21–( )+ , 50 α 21≥ ≥
0, α 21<⎩

⎪
⎨
⎪
⎧
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n α 7.95–
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----------------------------=
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7lar2rcPurpose Convert log area ratio parameters to reflection coefficients

Syntax k = lar2rc(g)

Description k = lar2rc(g) returns a vector of reflection coefficients k from a vector of log 
area ratio parameters g. 

Examples g = [0.6389    4.5989    0.0063    0.0163   -0.0163];
k = lar2rc(g)

k =
    0.3090    0.9801    0.0031    0.0081   -0.0081

References [1] Deller, J.R., J.G. Proakis, and J.H.L. Hansen, “Discrete-Time Processing of 
Speech Signals,” Prentice-Hall, 1993.

See Also ac2rc, is2rc, poly2rc, rc2lar
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7latc2tfPurpose Convert lattice filter parameters to transfer function form

Syntax [num,den] = latc2tf(k,v)
[num,den] = latc2tf(k,'iiroption')
num = latc2tf(k,'firoption')
num = latc2tf(k)

Description [num,den] = latc2tf(k,v) finds the transfer function numerator num and 
denominator den from the IIR lattice coefficients k and ladder coefficients v.

[num,den] = latc2tf(k,'iiroption') produces an IIR filter transfer 
function according to the value of the string 'iiroption':

• 'allpole': Produces an all-pole filter transfer function from the associated 
all-pole IIR lattice filter coefficients k.

• 'allpass': Produces an allpass filter transfer function from the associated 
allpass IIR lattice filter coefficients k.

num = latc2tf(k,'firoption') produces an FIR filter according to the value 
of the string 'firoption':

• 'min': Produces a minimum-phase FIR filter numerator from the associated 
minimum-phase FIR lattice filter coefficients k.

• 'max': Produces a maximum-phase FIR filter numerator from the associated 
maximum-phase FIR lattice filter coefficients k. 

• 'FIR': Produces a general FIR filter numerator from the lattice filter 
coefficients k (default, if you leave off the string altogether).

See Also latcfilt, tf2latc
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7latcfiltPurpose Lattice and lattice-ladder filter implementation

Syntax [f,g] = latcfilt(k,x)
[f,g] = latcfilt(k,v,x)
[f,g] = latcfilt(k,1,x)
[f,g,zf] = latcfilt(...,'ic',zi)

Description When filtering data, lattice coefficients can be used to represent

• FIR filters

• All-pole IIR filters

• Allpass IIR filters

• General IIR filters

[f,g] = latcfilt(k,x) filters x with the FIR lattice coefficients in the 
vector k. f is the forward lattice filter result and g is the backward filter result. 
If , f corresponds to the minimum-phase output, and g corresponds to the 
maximum-phase output.

If k and x are vectors, the result is a (signal) vector. Matrix arguments are 
permitted under the following rules:

• If x is a matrix and k is a vector, each column of x is processed through the 
lattice filter specified by k.

• If x is a vector and k is a matrix, each column of k is used to filter x, and a 
signal matrix is returned.

• If x and k are both matrices with the same number of columns, then the ith 
column of k is used to filter the ith column of x. A signal matrix is returned.

[f,g] = latcfilt(k,v,x) filters x with the IIR lattice coefficients k and 
ladder coefficients v. k and v must be vectors, while x can be a signal matrix.

[f,g] = latcfilt(k,1,x) filters x with the IIR lattice specified by k, where k 
and x can be vectors or matrices. f is the all-pole lattice filter result and g is the 
allpass filter result.

[f,g,zf] = latcfilt(...,'ic',zi) accepts a length-k vector zi specifying 
the initial condition of the lattice states. Output zf is a length-k vector 
specifying the final condition of the lattice states.

k 1≤
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See Also filter, latc2tf, tf2latc
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7levinsonPurpose Levinson-Durbin recursion

Syntax a = levinson(r,n)
[a,e] = levinson(r,n)
[a,e,k] = levinson(r,n)

Description The Levinson-Durbin recursion is an algorithm for finding an all-pole IIR filter 
with a prescribed deterministic autocorrelation sequence. It has applications in 
filter design, coding, and spectral estimation. The filter that levinson produces 
is minimum phase.

a = levinson(r,n) finds the coefficients of an nth-order autoregressive linear 
process which has r as its autocorrelation sequence. r is a real or complex 
deterministic autocorrelation sequence. If r is a matrix, levinson finds the 
coefficients for each column of r and returns them in the rows of a.  n is the 
order of denominator polynomial A(z); that is, a = [1 a(2) ... a(n+1)]. The 
filter coefficients are ordered in descending powers of z.

[a,e] = levinson(r,n) returns the prediction error, e, of order n. 

[a,e.k] = levinson(r,n) returns the reflection coefficients k as a column 
vector of length n.  

Note  k is computed internally while computing the a coefficients, so 
returning k simultaneously is more efficient than converting a to k with 
tf2latc.

Algorithm levinson solves the symmetric Toeplitz system of linear equations

H z( ) 1
A z( )
----------- 1

1 a 2( )z 1– a n 1+( )z n–+ + +
-----------------------------------------------------------------------------= =
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where r = [r(1)  ... r(n+1)] is the input autocorrelation vector, and r(i)* 
denotes the complex conjugate of r(i). The algorithm requires O(n2) flops and is 
thus much more efficient than the MATLAB \ command for large n. However, 
the levinson function uses \ for low orders to provide the fastest possible 
execution. 

References [1] Ljung, L., System Identification: Theory for the User, Prentice-Hall, 1987, 
pp. 278-280.

See Also lpc, prony, rlevinson, schurrc, stmcb

r 1( ) r 2( )
∗ r n( )

∗

r 2( ) r 1( ) r n 1–( )
∗
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a 3( )

a n 1+( )
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7lp2bpPurpose Transform lowpass analog filters to bandpass

Syntax [bt,at] = lp2bp(b,a,Wo,Bw)
[At,Bt,Ct,Dt] = lp2bp(A,B,C,D,Wo,Bw)

Description lp2bp transforms analog lowpass filter prototypes with a cutoff angular 
frequency of 1 rad/s into bandpass filters with desired bandwidth and center 
frequency. The transformation is one step in the digital filter design process for 
the butter, cheby1, cheby2, and ellip functions.

lp2bp can perform the transformation on two different linear system 
representations: transfer function form and state-space form. In both cases, the 
input system must be an analog filter prototype.

Transfer Function Form (Polynomial)

[bt,at] = lp2bp(b,a,Wo,Bw) transforms an analog lowpass filter prototype 
given by polynomial coefficients into a bandpass filter with center frequency Wo 
and bandwidth Bw. Row vectors b and a specify the coefficients of the numerator 
and denominator of the prototype in descending powers of s.

Scalars Wo and Bw specify the center frequency and bandwidth in units of rad/s. 
For a filter with lower band edge w1 and upper band edge w2, use 
Wo = sqrt(w1*w2) and Bw = w2-w1. 

lp2bp returns the frequency transformed filter in row vectors bt and at.

State-Space Form

[At,Bt,Ct,Dt] = lp2bp(A,B,C,D,Wo,Bw) converts the continuous-time 
state-space lowpass filter prototype in matrices A, B, C, D shown below

b s( )
a s( )
---------- b 1( )sn b n( )s b n 1+( )+ + +

a 1( )sm a m( )s a m 1+( )+ + +
---------------------------------------------------------------------------------=

x· Ax Bu+=

y Cx Du+=
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into a bandpass filter with center frequency Wo and bandwidth Bw. For a filter 
with lower band edge w1 and upper band edge w2, use Wo = sqrt(w1*w2) and 
Bw = w2-w1. 

The bandpass filter is returned in matrices At, Bt, Ct, Dt.

Algorithm lp2bp is a highly accurate state-space formulation of the classic analog filter 
frequency transformation. Consider the state-space system

where u is the input, x is the state vector, and y is the output. The Laplace 
transform of the first equation (assuming zero initial conditions) is

Now if a bandpass filter is to have center frequency ω0 and bandwidth Bw, the 
standard s-domain transformation is

where Q = ω0/Bw and p = s/ω0. Substituting this for s in the Laplace 
transformed state-space equation, and considering the operator p as d/dt 
results in 

or

Now define

which, when substituted, leads to

The last two equations give equations of state. Write them in standard form 
and multiply the differential equations by ω0 to recover the time/frequency 
scaling represented by p and find state matrices for the bandpass filter:

x· Ax Bu+=

y Cx Du+=

sX s( ) AX s( ) BU s( )+=

s Q p2 1+( ) p⁄=

Qx·· Qx+ A· x Bu·+=

Qx·· A·– x B– u· Qx–=

Qω· Qx–=

Qx· Ax Qω Bu+ +=
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Q = Wo/Bw; [ma,m] = size(A);
At = Wo*[A/Q eye(ma,m);-eye(ma,m) zeros(ma,m)];
Bt = Wo*[B/Q; zeros(ma,n)];
Ct = [C zeros(mc,ma)];
Dt = d;

If the input to lp2bp is in transfer function form, the function transforms it into 
state-space form before applying this algorithm.

See Also bilinear, impinvar, lp2bs, lp2hp, lp2lp
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7lp2bsPurpose Transform lowpass analog filters to bandstop

Syntax [bt,at] = lp2bs(b,a,Wo,Bw)
[At,Bt,Ct,Dt] = lp2bs(A,B,C,D,Wo,Bw)

Description lp2bs transforms analog lowpass filter prototypes with a cutoff angular 
frequency of 1 rad/s into bandstop filters with desired bandwidth and center 
frequency. The transformation is one step in the digital filter design process for 
the butter, cheby1, cheby2, and ellip functions.

lp2bs can perform the transformation on two different linear system 
representations: transfer function form and state-space form. In both cases, the 
input system must be an analog filter prototype.

Transfer Function Form (Polynomial)

[bt,at] = lp2bs(b,a,Wo,Bw) transforms an analog lowpass filter prototype 
given by polynomial coefficients into a bandstop filter with center frequency Wo 
and bandwidth Bw. Row vectors b and a specify the coefficients of the numerator 
and denominator of the prototype in descending powers of s.

Scalars Wo and Bw specify the center frequency and bandwidth in units of 
radians/second. For a filter with lower band edge w1 and upper band edge w2, 
use Wo = sqrt(w1*w2) and Bw = w2-w1. 

lp2bs returns the frequency transformed filter in row vectors bt and at.

State-Space Form

[At,Bt,Ct,Dt] = lp2bs(A,B,C,D,Wo,Bw) converts the continuous-time 
state-space lowpass filter prototype in matrices A, B, C, D shown below

b s( )
a s( )
---------- b 1( )sn b n( )s b n 1+( )+ + +

a 1( )sm a m( )s a m 1+( )+ + +
---------------------------------------------------------------------------------=

x· Ax Bu+=

y Cx Du+=
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into a bandstop filter with center frequency Wo and bandwidth Bw. For a filter 
with lower band edge w1 and upper band edge w2, use Wo = sqrt(w1*w2) and 
Bw = w2-w1. 

The bandstop filter is returned in matrices At, Bt, Ct, Dt.

Algorithm lp2bs is a highly accurate state-space formulation of the classic analog filter 
frequency transformation. If a bandstop filter is to have center frequency ω0 
and bandwidth Bw, the standard s-domain transformation is

where Q = ω0/Bw and p = s/ω0. The state-space version of this transformation is

Q = Wo/Bw;
At = [Wo/Q*inv(A) Wo*eye(ma);-Wo*eye(ma) zeros(ma)];
Bt = -[Wo/Q*(A B); zeros(ma,n)];
Ct = [C/A zeros(mc,ma)];
Dt = D - C/A*B;

See lp2bp for a derivation of the bandpass version of this transformation.

See Also bilinear, impinvar, lp2bp, lp2hp, lp2lp

s p
Q p2 1+( )
------------------------=
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7lp2hpPurpose Transform lowpass analog filters to highpass

Syntax [bt,at] = lp2hp(b,a,Wo)
[At,Bt,Ct,Dt] = lp2hp(A,B,C,D,Wo)

Description lp2hp transforms analog lowpass filter prototypes with a cutoff angular 
frequency of 1 rad/s into highpass filters with desired cutoff angular frequency. 
The transformation is one step in the digital filter design process for the 
butter, cheby1, cheby2, and ellip functions.

The lp2hp function can perform the transformation on two different linear 
system representations: transfer function form and state-space form. In both 
cases, the input system must be an analog filter prototype.

Transfer Function Form (Polynomial)

[bt,at] = lp2hp(b,a,Wo) transforms an analog lowpass filter prototype 
given by polynomial coefficients into a highpass filter with cutoff angular 
frequency Wo. Row vectors b and a specify the coefficients of the numerator and 
denominator of the prototype in descending powers of s.

Scalar Wo specifies the cutoff angular frequency in units of radians/second. The 
frequency transformed filter is returned in row vectors bt and at.

State-Space Form

[At,Bt,Ct,Dt] = lp2hp(A,B,C,D,Wo) converts the continuous-time 
state-space lowpass filter prototype in matrices A, B, C, D below

into a highpass filter with cutoff angular frequency Wo. The highpass filter is 
returned in matrices At, Bt, Ct, Dt.

b s( )
a s( )
---------- b 1( )sn b n( )s b n 1+( )+ + +

a 1( )sm a m( )s a m 1+( )+ + +
---------------------------------------------------------------------------------=

x· Ax Bu+=

y Cx Du+=
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Algorithm lp2hp is a highly accurate state-space formulation of the classic analog filter 
frequency transformation. If a highpass filter is to have cutoff angular 
frequency ω0, the standard s-domain transformation is

The state-space version of this transformation is

At = Wo*inv(A);
Bt = -Wo*(A\B);
Ct = C/A;
Dt = D - C/A*B;

See lp2bp for a derivation of the bandpass version of this transformation.

See Also bilinear, impinvar, lp2bp, lp2bs, lp2lp

s
ω0
p

-------=
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7lp2lpPurpose Change cutoff frequency for lowpass analog filter

Syntax [bt,at] = lp2lp(b,a,Wo)
[At,Bt,Ct,Dt] = lp2lp(A,B,C,D,Wo)

Description lp2lp transforms an analog lowpass filter prototype with a cutoff angular 
frequency of 1 rad/s into a lowpass filter with any specified cutoff angular 
frequency. The transformation is one step in the digital filter design process for 
the butter, cheby1, cheby2, and ellip functions.

The lp2lp function can perform the transformation on two different linear 
system representations: transfer function form and state-space form. In both 
cases, the input system must be an analog filter prototype.

Transfer Function Form (Polynomial)

[bt,at] = lp2lp(b,a,Wo) transforms an analog lowpass filter prototype 
given by polynomial coefficients into a lowpass filter with cutoff angular 
frequency Wo. Row vectors b and a specify the coefficients of the numerator and 
denominator of the prototype in descending powers of s.

Scalar Wo specifies the cutoff angular frequency in units of radians/second. 
lp2lp returns the frequency transformed filter in row vectors bt and at.

State-Space Form

[At,Bt,Ct,Dt] = lp2lp(A,B,C,D,Wo) converts the continuous-time 
state-space lowpass filter prototype in matrices A, B, C, D below

into a lowpass filter with cutoff angular frequency Wo. lp2lp returns the 
lowpass filter in matrices At, Bt, Ct, Dt.

b s( )
a s( )
---------- b 1( )sn b n( )s b n 1+( )+ + +

a 1( )sm a m( )s a m 1+( )+ + +
---------------------------------------------------------------------------------=

x· Ax Bu+=

y Cx Du+=
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Algorithm lp2lp is a highly accurate state-space formulation of the classic analog filter 
frequency transformation. If a lowpass filter is to have cutoff angular frequency 
ω0, the standard s-domain transformation is

The state-space version of this transformation is

At = Wo*A;
Bt = Wo*B;
Ct = C;
Dt = D;

See lp2bp for a derivation of the bandpass version of this transformation.

See Also bilinear, impinvar, lp2bp, lp2bs, lp2hp

s p ω0⁄=
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7lpcPurpose Linear prediction filter coefficients

Syntax [a,g] = lpc(x,p)

Description lpc determines the coefficients of a forward linear predictor by minimizing the 
prediction error in the least squares sense. It has applications in filter design 
and speech coding.

[a,g] = lpc(x,p) finds the coefficients of a pth-order linear predictor (FIR 
filter) that predicts the current value of the real-valued time series x based on 
past samples.

p is the order of the prediction filter polynomial, a = [1 a(2) ... a(p+1)]. If 
p is unspecified, lpc uses as a default p = length(x)-1. If x is a matrix 
containing a separate signal in each column, lpc returns a model estimate for 
each column in the rows of matrix a and a row vector of prediction error 
variances g. The length of p must be less than or equal to the lenght of x.

Examples Estimate a data series using a third-order forward predictor, and compare to 
the original signal.

First, create the signal data as the output of an autoregressive process driven 
by white noise. Use the last 4096 samples of the AR process output to avoid 
start-up transients:

randn('state',0);
noise = randn(50000,1); % Normalized white Gaussian noise
x = filter(1,[1 1/2 1/3 1/4],noise);
x = x(45904:50000);

Compute the predictor coefficients, estimated signal, prediction error, and 
autocorrelation sequence of the prediction error:

a = lpc(x,3);

est_x = filter([0 -a(2:end)],1,x); % Estimated signal
e = x - est_x; % Prediction error
[acs,lags] = xcorr(e,'coeff'); % ACS of prediction error

x̂ n( ) a– 2( )x n 1–( ) a– 3( )x n 2–( ) – a p 1+( )x n p–( )–=
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The prediction error, e(n), can be viewed as the output of the prediction error 
filter A(z) shown below, where H(z) is the optimal linear predictor, x(n) is the 
input signal, and  is the predicted signal.

Compare the predicted signal to the original signal:

plot(1:97,x(4001:4097),1:97,est_x(4001:4097),'--');
title('Original Signal vs. LPC Estimate');
xlabel('Sample Number'); ylabel('Amplitude'); grid;
legend('Original Signal','LPC Estimate')

Look at the autocorrelation of the prediction error:

plot(lags,acs); 
title('Autocorrelation of the Prediction Error');
xlabel('Lags'); ylabel('Normalized Value'); grid;

x̂ n( )

H z( ) a– 2( )z
1–

a– 3( )z
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The prediction error is approximately white Gaussian noise, as expected for a 
third-order AR input process.

Algorithm lpc uses the autocorrelation method of autoregressive (AR) modeling to find 
the filter coefficients. The generated filter might not model the process exactly 
even if the data sequence is truly an AR process of the correct order. This is 
because the autocorrelation method implicitly windows the data, that is, it 
assumes that signal samples beyond the length of x are 0.

lpc computes the least squares solution to

where
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and m is the length of x. Solving the least squares problem via the normal 
equations

leads to the Yule-Walker equations

where r = [r(1) r(2) ... r(p+1)] is an autocorrelation estimate for x computed 
using xcorr. The Yule-Walker equations are solved in O(p2) flops by the 
Levinson-Durbin algorithm (see levinson).

References [1] Jackson, L.B., Digital Filters and Signal Processing, Second Edition, 
Kluwer Academic Publishers, 1989. pp. 255-257.

See Also aryule, levinson, prony, pyulear, stmcb

XHXa XHb=

r 1( ) r 2( )* r p( )*
r 2( ) r 1( )

r 2( )*
r p( ) r 2( ) r 1( )

a 2( )

a 3( )

a p 1+( )

r 2( )–

r 3( )–

r p 1+( )–

=
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7lsf2polyPurpose Convert line spectral frequencies to prediction filter coefficients

Syntax a = lsf2poly(lsf)

Description a = lsf2poly(lsf) returns a vector a containing the prediction filter 
coefficients from a vector lsf of line spectral frequencies. 

Examples lsf = [0.7842    1.5605    1.8776    1.8984    2.3593];
a = lsf2poly(lsf)

a =
    1.0000    0.6148    0.9899    0.0001    0.0031   -0.0081

References [1] Deller, J.R., J.G. Proakis, and J.H.L. Hansen, “Discrete-Time Processing of 
Speech Signals,” Prentice-Hall, 1993.

[2] Rabiner, L.R., and R.W. Schafer, “Digital Processing of Speech Signals,” 
Prentice-Hall, 1978.

See Also ac2poly, poly2lsf, rc2poly
7-405



maxflat
7maxflatPurpose Generalized digital Butterworth filter design

Syntax [b,a] = maxflat(n,m,Wn)
b = maxflat(n,'sym',Wn)
[b,a,b1,b2] = maxflat(n,m,Wn)
[b,a,b1,b2,sos,g] = maxflat(n,m,Wn)
[...] = maxflat(n,m,Wn,'design_flag')

Description [b,a] = maxflat(n,m,Wn) is a lowpass Butterworth filter with numerator 
and denominator coefficients b and a of orders n and m respectively. Wn is the 
normalized cutoff frequency at which the magnitude response of the filter is 
equal to  (approx. -3 dB). Wn must be between 0 and 1, where 1 corresponds 
to the Nyquist frequency.

b = maxflat(n,'sym',Wn) is a symmetric FIR Butterworth filter. n must be 
even, and Wn is restricted to a subinterval of [0,1]. The function raises an error 
if Wn is specified outside of this subinterval.

[b,a,b1,b2] = maxflat(n,m,Wn) returns two polynomials b1 and b2 whose 
product is equal to the numerator polynomial b (that is, b = conv(b1,b2)). 
b1 contains all the zeros at z = -1, and b2 contains all the other zeros.

[b,a,b1,b2,sos,g] = maxflat(n,m,Wn) returns the second-order sections 
representation of the filter as the filter matrix sos and the gain g.

[...] = maxflat(n,m,Wn,'design_flag') enables you to monitor the filter 
design, where 'design_flag' is

• 'trace' for a textual display of the design table used in the design

• 'plots' for plots of the filter’s magnitude, group delay, and zeros and poles

• 'both' for both the textual display and plots

Examples n = 10; m = 2; Wn = 0.2;
[b,a] = maxflat(n,m,Wn)
fvtool(b,a) % Display the magnitude plot

1 2⁄
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Algorithm The method consists of the use of formulae, polynomial root finding, and a 
transformation of polynomial roots.

References [1] Selesnick, I.W., and C.S. Burrus, “Generalized Digital Butterworth Filter 
Design,” Proceedings of the IEEE Int. Conf. Acoust., Speech, Signal Processing, 
Vol. 3 (May 1996).

See Also butter, filter, freqz
7-407



medfilt1
7medfilt1Purpose One-dimensional median filtering

Syntax y = medfilt1(x,n)
y = medfilt1(x,n,blksz)

y = medfilt1(x,n,blksz,dim)

Description y = medfilt1(x,n) applies an order n one-dimensional median filter to 
vector x; the function considers the signal to be 0 beyond the end points. 
Output y has the same length as x.

For n odd, y(k) is the median of x(k-(n-1)/2:k+(n-1)/2).

For n even, y(k) is the median of x(k-n/2), x(k-(n/2)+1), ..., x(k+(n/2)-1). 
In this case, medfilt1 sorts the numbers, then takes the average of the n/2 and 
(n/2)+1 elements.

The default for n is 3.

y = medfilt1(x,n,blksz) uses a for-loop to compute blksz (block size) 
output samples at a time. Use blksz << length(x) if you are low on memory, 
since medfilt1 uses a working matrix of size n-by-blksz. By default, 
blksz = length(x); this provides the fastest execution if you have sufficient 
memory.

If x is a matrix, medfilt1 median filters its columns using

 y(:,i) = medfilt1(x(:,i),n,blksz) 

in a loop over the columns of x.

y = medfilt1(x,n,blksz,dim) specifies the dimension, dim, along which the 
filter operates. 

References [1] Pratt, W.K., Digital Image Processing, John Wiley & Sons, 1978, 
pp. 330-333.

See Also filter, medfilt2, median
7-408



modulate
7modulatePurpose Modulation for communications simulation

Syntax y = modulate(x,fc,fs,'method')
y = modulate(x,fc,fs,'method',opt)
[y,t] = modulate(x,fc,fs)

Description y = modulate(x,fc,fs,'method') and

y = modulate(x,fc,fs,'method',opt) modulate the real message signal x 
with a carrier frequency fc and sampling frequency fs, using one of the options 
listed below for 'method'. Note that some methods accept an option, opt...

Method Description

amdsb-sc
or

am

Amplitude modulation, double sideband, suppressed carrier. 
Multiplies x by a sinusoid of frequency fc.

y = x.*cos(2*pi*fc*t)

amdsb-tc Amplitude modulation, double sideband, transmitted carrier. 
Subtracts scalar opt from x and multiplies the result by a sinusoid 
of frequency fc.

y = (x-opt).*cos(2*pi*fc*t)

If the opt parameter is not present, modulate uses a default of 
min(min(x)) so that the message signal (x-opt) is entirely 
nonnegative and has a minimum value of 0.

amssb Amplitude modulation, single sideband. Multiplies x by a 
sinusoid of frequency fc and adds the result to the Hilbert transform 
of x multiplied by a phase shifted sinusoid of frequency fc.

y =
x.*cos(2*pi*fc*t)+imag(hilbert(x)).*sin(2*pi*fc*t)

This effectively removes the upper sideband.
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fm Frequency modulation. Creates a sinusoid with instantaneous 
frequency that varies with the message signal x. 

y = cos(2*pi*fc*t + opt*cumsum(x))

cumsum is a rectangular approximation to the integral of x. 
modulate uses opt as the constant of frequency modulation. If opt 
is not present, modulate uses a default of

opt = (fc/fs)*2*pi/(max(max(x)))

so the maximum frequency excursion from fc is fc Hz.

pm Phase modulation. Creates a sinusoid of frequency fc whose 
phase varies with the message signal x.

y = cos(2*pi*fc*t + opt*x)

modulate uses opt as the constant of phase modulation. If opt is 
not present, modulate uses a default of

opt = pi/(max(max(x)))

so the maximum phase excursion is π radians.

pwm Pulse-width modulation. Creates a pulse-width modulated 
signal from the pulse widths in x. The elements of x must be 
between 0 and 1, specifying the width of each pulse in fractions of 
a period. The pulses start at the beginning of each period, that is, 
they are left justified. 

modulate(x,fc,fs,'pwm','centered')

yields pulses centered at the beginning of each period. y is length 
length(x)*fs/fc.

ppm Pulse-position modulation. Creates a pulse-position modulated 
signal from the pulse positions in x. The elements of x must be 
between 0 and 1, specifying the left edge of each pulse in fractions 
of a period. opt is a scalar between 0 and 1 that specifies the 
length of each pulse in fractions of a period. The default for opt is 
0.1. y is length length(x)*fs/fc.

qam Quadrature amplitude modulation. Creates a quadrature 
amplitude modulated signal from signals x and opt.

y = x.*cos(2*pi*fc*t) + opt.*sin(2*pi*fc*t)

opt must be the same size as x.
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If you do not specify 'method', then modulate assumes am. Except for the pwm 
and ptm cases, y is the same size as x.

If x is an array, modulate modulates its columns.

[y,t] = modulate(x,fc,fs) returns the internal time vector t that modulate 
uses in its computations.

See Also demod, vco, fskdemod, genqamdemod, mskdemod, pamdemod, pmdemod, qamdemod
7-411



mscohere
7mscoherePurpose Magnitude squared coherence function

Syntax Cxy = mscohere(x,y)
Cxy = mscohere(x,y,window)
Cxy = mscohere(x,y,window,noverlap)
[Cxy,W] = mscohere(x,y,window,noverlap,nfft)
[Cxy,F] = mscohere(x,y,window,noverlap,nfft,fs)
[...] = mscohere(x,y,...,'whole')
mscohere(x,y,...)

Description Cxy = mscohere(x,y) finds the magnitude squared coherence estimate Cxy of 
the input signals x and y using Welch’s averaged, modified periodogram 
method. The magnitude squared coherence estimate is a function of frequency 
with values between 0 and 1 that indicates how well x corresponds to y at each 
frequency. The coherence is a function of the power spectral density (Pxx and 
Pyy) of x and y and the cross power spectral density (Pxy) of x and y.

x and y must be the same length. For real x and y, mscohere returns a one-sided 
coherence estimate and for complex x or y, it returns a two-sided estimate.

Cxy f( )
Pxy f( ) 2

Pxx f( )Pyy f( )
-------------------------------=
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mscohere uses the following default values:

Note  You can use the empty matrix [] to specify the default value for any 
input argument except x or y. For example, Pxy = mschoere(x,y,[],[],128 uses a 
Hamming window, default noverlap to obtain 50% overlap, and the specified 
128 nfft.

Parameter Description Default Value

nfft FFT length which determines 
the frequencies at which the 
coherence is estimated

For real x and y, the length of 
Cxy is (nfft/2+1) if nfft is 
even or (nfft+1)/2 if nfft is 
odd. For complex x or y, the 
length of Cxy is nfft.

If nfft is greater than the 
signal length, the data is 
zero-padded. If nfft is less 
than the signal length, the 
segment is wrapped using 
datawrap so that the length is 
equal to nfft.

Maximum of 256 or the 
next power of 2 greater 
than the length of each 
section of x or y

fs Sampling frequency 1

window Windowing function and 
number of samples to use for 
each section

Periodic Hamming 
window of length to 
obtain eight equal 
sections of x and y

noverlap Number of samples by which 
the sections overlap

Value to obtain 50% 
overlap
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Cxy = mscohere(x,y,window) specifies a windowing function, divides x and y 
into equal overlapping sections of the specified window length, and windows 
each section using the specified window function. If you supply a scalar for 
window, Cxy uses a Hamming window of that length. mscohere zero pads the 
sections if the window length exceeds nfft.

Cxy = mscohere(x,y,window,noverlap) overlaps the sections of x by 
noverlap samples. noverlap must be an integer smaller than the length of 
window.

[Pxy,W] = mscohere(x,y,window,noverlap,nfft) uses the specified FFT 
length nfft to calculate the coherence estimate. It also returns W, which is the 
vector of normalized frequencies (in rad/sample) at which the coherence is 
estimated. For real x and y, Cxy length is (nfft/2 +1) if nfft is even and if nfft 
is odd, the length is (nfft+1)/2. For complex x or y, the length of Cxy is nfft. 
For real signals, the range of W is [0, pi] when nfft is even and [0, pi) when nfft 
is odd. For complex signals, the range of W is [0, 2*pi).

[Cxy,F] = mscohere(x,y,window,noverlap,nfft,fs) returns Cxy as a 
function of frequency and a vector F of frequencies at which the coherence is 
estimated. fs is the sampling frequency in Hz. For real signals, the range of F 
is [0, fs/2] when nfft is even and [0, fs/2) when nfft is odd. For complex 
signals, the range of F is [0, fs).

[...] = mscohere(x,y,...,'whole') returns a coherence estimate with 
frequencies that range over the whole Nyquist interval. Specifying 'half' uses 
half the Nyquist interval.

mscohere(...) plots the magnitude squared coherence versus frequency in the 
current figure window. 

Note  If you use mscohere on two linearly related signals [1] with a single, 
non-overlapping window, the output for all frequencies is Cxy = 1.

Examples Compute and plot the coherence estimate between two colored noise sequences 
x and y:
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randn('state',0);
h = fir1(30,0.2,rectwin(31));
h1 = ones(1,10)/sqrt(10);
r = randn(16384,1);
x = filter(h1,1,r);
y = filter(h,1,x);
mscohere(x,y,hanning(1024),512,1024)

Algorithm mscohere estimates the magnitude squared coherence function [2] using 
Welch’s averaged periodogram method (see references [3] and [4]).

References [1] Stoica, P., and R. Moses. Introduction to Spectral Analysis. Upper Saddle 
River, NJ: Prentice-Hall, 1997. Pgs. 61-64.
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[2] Kay, S.M. Modern Spectral Estimation. Englewood Cliffs, NJ: 
Prentice-Hall, 1988. Pg. 454.

[3] Rabiner, L.R., and B. Gold. Theory and Application of Digital Signal 
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975.

[4] Welch, P.D. “The Use of Fast Fourier Transform for the Estimation of Power 
Spectra: A Method Based on Time Averaging Over Short, Modified 
Periodograms.” IEEE Trans. Audio Electroacoust. Vol. AU-15 (June 1967). 
Pgs. 70-73.

See Also cpsd, periodogram, pwelch, spectrum.welch, tfestimate
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7nuttallwinPurpose Nuttall-defined minimum 4-term Blackman-Harris window  

Syntax w = nuttallwin(n)

Description w = nuttallwin(n) returns a minimum, n-point, 4-term Blackman-harris 
window in the column vector w. The window is minimum in the sense that its 
maximum sidelobes are minimized. The coefficients for this window differ from 
the Blackman-Harris window coefficients computed with blackmanharris and 
produce slightly lower sidelobes.

Examples Compare 64-point Blackman-Harris and Nuttall’s Blackman-Harris windows 
and plot them using WVTool:

N = 64;
w = blackmanharris(N);
y = nuttallwin(N);
wvtool(w,y)

The maximum difference between the two windows is

max(abs(y-w))
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ans =

    0.0099

Algorithm The equation for computing the coefficients of a minimum 4-term 
Blackman-harris window, according to Nuttall, is 

where .

The coefficients for this window are

a0 = 0.3635819
a1 = 0.4891775
a2 = 0.1365995
a3 = .0106411

References [1] Nuttall, Albert H. “Some Windows with Very Good Sidelobe Behavoir.” 
IEEE Transactions on Acoustics, Speech, and Signal Processing. Vol. ASSP-29 
(February 1981). pp. 84-91.

See Also barthannwin, bartlett, blackmanharris, bohmanwin, parzenwin, rectwin, 
triang, window, wintool, wvtool

w k 1+[ ] a0 a1 2π k
n 1–
-------------⎝ ⎠

⎛ ⎞ a2 4π k
n 1–
-------------⎝ ⎠

⎛ ⎞cos a3 6π k
n 1–
-------------⎝ ⎠

⎛ ⎞cos–+cos–=

0 k n 1–( )≤ ≤
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7parzenwinPurpose  Parzen (de la Valle-Poussin) window

Syntax w = parzenwin(n)

Description w = parzenwin(n) returns the n-point Parzen (de la Valle-Poussin) window in 
column vector w. Parzen windows are piecewise cubic approximations of 
Gaussian windows. Parzen window sidelobes fall off as .

Examples Compare 64-point Parzen and Gaussian windows and display the result using 
sigwin window objects and  wintool:

wintool(sigwin.parzenwin(64),sigwin.gausswin(64))

1 ω4⁄
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Algorithm The Parzen window is defined as

References Harris, F.J. “On the Use of Windows for Harmonic Analysis with the Discrete 
Fourier Transform.” Proceedings of the IEEE. Vol. 66, No. 1 (January 1978).

See Also barthannwin, bartlett, blackmanharris, bohmanwin, nuttallwin, rectwin, 
triang, window, wintool, wvtool
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7pburgPurpose Power spectral density using Burg method

Syntax Pxx = pburg(x,p)
[Pxx,w] = pburg(x,p)
[Pxx,w] = pburg(x,p,nfft)
[Pxx,f] = pburg(x,p,nfft,fs)
[Pxx,f] = pburg(x,p,nfft,fs,'range')
[Pxx,w] = pburg(x,p,nfft,'range')
pburg(...)

Description Pxx = pburg(x,p) implements the Burg algorithm, a parametric spectral 
estimation method, and returns Pxx, an estimate of the power spectral density 
(PSD) of the vector x. The entries of x represent samples of a discrete-time 
signal, and p is the integer specifying the order of an autoregressive (AR) 
prediction model for the signal, used in estimating the PSD.

The power spectral density is calculated in units of power per radians per 
sample. Real-valued inputs produce full power one-sided (in frequency) PSDs 
(by default), while complex-valued inputs produce two-sided PSDs. 

In general, the length of the FFT and the values of the input x determine the 
length of Pxx and the range of the corresponding normalized frequencies. For 
this syntax, the (default) FFT length is 256. The following table indicates the 
length of Pxx and the range of the corresponding normalized frequencies for 
this syntax.

[Pxx,w] = pburg(x,p) also returns w, a vector of frequencies at which the 
PSD is estimated. Pxx and w have the same length. The units for frequency are 
rad/sample. 

PSD Vector Characteristics for an FFT Length of 256 (Default)

Real/Complex 
Input Data 

 Length of Pxx Range of the Corresponding 
Normalized Frequencies 

Real-valued 129 [0, π]

Complex-valued 256 [0, 2π)
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[Pxx,w] = pburg(x,p,nfft) uses the Burg method to estimate the PSD while 
specifying the length of the FFT with the integer nfft. If you specify nfft as 
the empty vector [], it takes the default value of 256.

The length of Pxx and the frequency range for w depend on nfft and the values 
of the input x. The following table indicates the length of Pxx and the frequency 
range for w in this syntax.

[Pxx,f] = pburg(x,p,nfft,fs) uses the sampling frequency fs specified as 
an integer in hertz (Hz) to compute the PSD vector (Pxx) and the corresponding 
vector of frequencies (f). In this case, the units for the frequency vector are 
in Hz. The spectral density produced is calculated in units of power per Hz. If 
you specify fs as the empty vector [], the sampling frequency defaults to 1 Hz.

The frequency range for f depends on nfft, fs, and the values of the input x. 
The length of Pxx is the same as in the table above. The following table 
indicates the frequency range for f for this syntax.

[Pxx,f] = pburg(x,p,nfft,fs,'range') or

PSD and Frequency Vector Characteristics 

Real/Complex 
Input Data 

nfft Even/Odd  Length of Pxx Range of w

Real-valued Even (nfft/2 + 1) [0, π]

Real-valued Odd (nfft + 1)/2 [0, π)

Complex-valued Even or odd nfft [0, 2π)

PSD and Frequency Vector Characteristics with fs Specified

Real/Complex 
Input Data 

nfft Even/Odd Range of f

Real-valued Even [0,fs/2]

Real-valued Odd [0,fs/2)

Complex-valued Even or odd [0,fs)
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[Pxx,w] = pburg(x,p,nfft,'range') specifies the range of frequency values 
to include in f or w. This syntax is useful when x is real. 'range' can be either:

• 'twosided': Compute the two-sided PSD over the frequency range [0,fs). 
This is the default for determining the frequency range for complex-valued x.

- If you specify fs as the empty vector, [], the frequency range is [0,1). 

- If you don’t specify fs, the frequency range is [0, 2π). 

• 'onesided': Compute the one-sided PSD over the frequency ranges specified 
for real x. This is the default for determining the frequency range for 
real-valued x.

Note  You can put the string argument 'range' anywhere in the input 
argument list after p.

pburg(...) with no outputs plots the power spectral density in the current 
figure window. The frequency range on the plot is the same as the range of 
output w (or f) for a given set of parameters. 

Remarks The power spectral density is computed as the distribution of power per unit 
frequency.

This algorithm depends on your selecting an appropriate model order for your 
signal.

Examples The Burg method estimates the spectral density by fitting an AR prediction 
model of a given order to the signal, so first generate a signal from an AR 
(all-pole) model of a given order. Use freqz to check the magnitude of the 
frequency response of your AR filter. Then, generate the input signal x by 
filtering white noise through the AR filter. Estimate the PSD of x based on a 
fourth-order AR prediction model because in this case we know that the 
original AR system model a has order 4:

a = [1 -2.2137 2.9403 -2.1697 0.9606];  % AR filter coefficients
[H,w] = freqz(1,a,256);                 % AR filter freq response

% Scale to make one-sided PSD
Hp = plot(w/pi,20*log10(2*abs(H)/(2*pi)),'r'); 
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hold on;
randn('state',1);
x = filter(1,a,randn(256,1));    % AR system output
pburg(x,4,511); 
xlabel('Normalized frequency (\times \pi rad/sample)')
ylabel('One-sided PSD (dB/rad/sample)')
legend('PSD of model output','PSD estimate of x')

Algorithm Linear prediction filters can be used to model the second-order statistical 
characteristics of a signal. The prediction filter output can be used to model the 
signal when the input is white noise. 

The Burg method fits an AR linear prediction filter model of the specified order 
to the input signal by minimizing (using least squares) the arithmetic mean of 
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the forward and backward prediction errors. The spectral density is then 
computed from the frequency response of the prediction filter. The AR filter 
parameters are constrained to satisfy the Levinson-Durbin recursion. 

References [1] Marple, S.L. Digital Spectral Analysis, Englewood Cliffs, NJ, Prentice-Hall, 
1987, Chapter 7.

[2] Stoica, P., and R.L. Moses, Introduction to Spectral Analysis, Prentice-Hall, 
1997.

See Also arburg, lpc, pcov, peig, periodogram, pmcov, pmtm, pmusic, pwelch, pyulear
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7pcovPurpose Power spectral density using covariance method

Syntax Pxx = pcov(x,p)
[Pxx,w] = pcov(x,p)
[Pxx,w] = pcov(x,p,nfft)
[Pxx,f] = pcov(x,p,nfft,fs)
[Pxx,f] = pcov(x,p,nfft,fs,'range')
[Pxx,w] = pcov(x,p,nfft,'range')
pcov(...)

Description Pxx = pcov(x,p) implements the covariance algorithm, a parametric spectral 
estimation method, and returns Pxx, an estimate of the power spectral density 
(PSD) of the vector x. The entries of x represent samples of a discrete-time 
signal, and where p is the integer specifying the order of an autoregressive (AR) 
prediction model for the signal, used in estimating the PSD.

The power spectral density is calculated in units of power per radians per 
sample. Real-valued inputs produce full power one-sided (in frequency) PSDs 
(by default), while complex-valued inputs produce two-sided PSDs. 

In general, the length of the FFT and the values of the input x determine the 
length of Pxx and the range of the corresponding normalized frequencies. For 
this syntax, the (default) FFT length is 256. The following table indicates the 
length of Pxx and the range of the corresponding normalized frequencies for 
this syntax.

[Pxx,w] = pcov(x,p) also returns w, a vector of frequencies at which the PSD 
is estimated. Pxx and w have the same length. The units for frequency are 
rad/sample. 

PSD Vector Characteristics for an FFT Length of 256 (Default)

Real/Complex 
Input Data 

 Length of Pxx Range of the Corresponding 
Normalized Frequencies 

Real-valued 129 [0, π]

Complex-valued 256 [0, 2π)
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[Pxx,w] = pcov(x,p,nfft) uses the covariance method to estimate the PSD 
while specifying the length of the FFT with the integer nfft. If you specify nfft 
as the empty vector [], it takes the default value of 256.

The length of Pxx and the frequency range for w depend on nfft and the values 
of the input x. The following table indicates the length of Pxx and the frequency 
range for w in this syntax.

[Pxx,f] = pcov(x,p,nfft,fs) uses the sampling frequency fs specified as an 
integer in hertz (Hz) to compute the PSD vector (Pxx) and the corresponding 
vector of frequencies (f). In this case, the units for the frequency vector are 
in Hz. The spectral density produced is calculated in units of power per Hz. If 
you specify fs as the empty vector [], the sampling frequency defaults to 1 Hz.

The frequency range for f depends on nfft, fs, and the values of the input x. 
The length of Pxx is the same as in the table above. The following table 
indicates the frequency range for f for this syntax.

[Pxx,f] = pcov(x,p,nfft,fs,'range') or

PSD and Frequency Vector Characteristics 

Real/Complex 
Input Data 

nfft Even/Odd  Length of Pxx Range of w

Real-valued Even (nfft/2 + 1) [0, π]

Real-valued Odd (nfft + 1)/2 [0, π)

Complex-valued Even or odd nfft [0, 2π)

PSD and Frequency Vector Characteristics with fs Specified

Real/Complex Input Data nfft Even/Odd Range of f

Real-valued Even [0,fs/2]

Real-valued Odd [0,fs/2)

Complex-valued Even or odd [0,fs)
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[Pxx,w] = pcov(x,p,nfft,'range') specifies the range of frequency values 
to include in f or w. This syntax is useful when x is real. 'range' can be either:

• 'twosided': Compute the two-sided PSD over the frequency range [0,fs). 
This is the default for determining the frequency range for complex-valued x.

- If you specify fs as the empty vector, [], the frequency range is [0,1). 

- If you don’t specify fs, the frequency range is [0, 2π). 

• 'onesided': Compute the one-sided PSD over the frequency ranges specified 
for real x. This is the default for determining the frequency range for 
real-valued x.

Note  You can put the string argument 'range' anywhere in the input 
argument list after p.

pcov(...) with no outputs plots the power spectral density in the current 
figure window. The frequency range on the plot is the same as the range of 
output w (or f) for a given set of parameters. 

Remarks The power spectral density is computed as the distribution of power per unit 
frequency. 

This algorithm depends on your selecting an appropriate model order for your 
signal.

Examples Because the covariance method estimates the spectral density by fitting an AR 
prediction model of a given order to the signal, first generate a signal from an 
AR (all-pole) model of a given order. You can use freqz to check the magnitude 
of the frequency response of your AR filter. This will give you an idea of what 
to expect when you estimate the PSD using pcov:

a = [1 -2.2137 2.9403 -2.1697 0.9606]; % AR filter coefficients
freqz(1,a) % AR filter frequency response
title('AR System Frequency Response')
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Now generate the input signal x by filtering white noise through the AR filter. 
Estimate the PSD of x based on a fourth-order AR prediction model since in this 
case we know that the original AR system model a has order 4:

randn('state',1);
x = filter(1,a,randn(256,1)); % Signal generated from AR filter 
pcov(x,4) % Fourth-order estimate
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Algorithm Linear prediction filters can be used to model the second-order statistical 
characteristics of a signal. The prediction filter output can be used to model the 
signal when the input is white noise. 

The covariance method estimates the PSD of a signal using the covariance 
method. The covariance (or nonwindowed) method fits an AR linear prediction 
filter model to the signal by minimizing the forward prediction error (based on 
causal observations of your input signal) in the least squares sense. The 
spectral estimate returned by pcov is the squared magnitude of the frequency 
response of this AR model. 

References [1] Marple, S.L. Digital Spectral Analysis, Englewood Cliffs, NJ, Prentice-Hall, 
1987, Chapter 7.
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[2] Stoica, P., and R.L. Moses, Introduction to Spectral Analysis, Prentice-Hall, 
1997.

See Also arcov, lpc, pburg, peig, periodogram, pmcov, pmtm, pmusic, pwelch, pyulear
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7peigPurpose Pseudospectrum using eigenvector method

Syntax [S,w] = peig(x,p)
[S,w] = peig(...,nfft)
[S,f] = peig(x,p,nfft,fs)
[S,f] = peig(...,'corr')
[S,f] = peig(x,p,nfft,fs,nwin,noverlap)
[...] = peig(...,'range')
[...,v,e] = peig(...)
peig(...)

Description [S,w] = peig(x,p) implements the eigenvector spectral estimation method 
and returns S, the pseudospectrum estimate of the input signal x, and w, a 
vector of normalized frequencies (in rad/sample) at which the pseudospectrum 
is evaluated. The pseudospectrum is calculated using estimates of the 
eigenvectors of a correlation matrix associated with the input data x, where x 
is specified as either:

• A row or column vector representing one observation of the signal

• A rectangular array for which each row of x represents a separate 
observation of the signal (for example, each row is one output of an array of 
sensors, as in array processing), such that x'*x is an estimate of the 
correlation matrix 

Note  You can use the output of corrmtx to generate such an array x.

You can specify the second input argument p as either:

• A scalar integer. In this case, the signal subspace dimension is p.

• A two-element vector. In this case, p(2), the second element of p, represents 
a threshold that is multiplied by λmin, the smallest estimated eigenvalue of 
the signal’s correlation matrix. Eigenvalues below the threshold λmin*p(2) 
are assigned to the noise subspace. In this case, p(1) specifies the maximum 
dimension of the signal subspace.
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The extra threshold parameter in the second entry in p provides you more 
flexibility and control in assigning the noise and signal subspaces. 

S and w have the same length. In general, the length of the FFT and the values 
of the input x determine the length of the computed S and the range of the 
corresponding normalized frequencies. The following table indicates the length 
of S (and w) and the range of the corresponding normalized frequencies for this 
syntax.

[S,w] = peig(...,nfft) specifies the length of the FFT used to estimate the 
pseudospectrum with the integer nfft. The default value for nfft (entered as 
an empty vector []) is 256.

The following table indicates the length of S and w, and the frequency range 
for w for this syntax.

[S,f] = peig(x,p,nfft,fs)) returns the pseudospectrum in the vector S 
evaluated at the corresponding vector of frequencies f (in Hz). You supply the 
sampling frequency fs in Hz. If you specify fs with the empty vector [], the 
sampling frequency defaults to 1 Hz.

S Characteristics for an FFT Length of 256 (Default)

Real/Complex 
Input Data 

Length of S and w Range of the Corresponding 
Normalized Frequencies 

Real-valued 129 [0, π]

Complex-valued 256 [0, 2π)

S and Frequency Vector Characteristics 

Real/Complex 
Input Data 

nfft Even/Odd Length of S 
and w

Range of w

Real-valued Even (nfft/2 + 1) [0, π]

Real-valued Odd (nfft + 1)/2 [0, π)

Complex-valued Even or odd nfft [0, 2π)
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The frequency range for f depends on nfft, fs, and the values of the input x. 
The length of S (and f) is the same as in the Table , S and Frequency Vector 
Characteristics above. The following table indicates the frequency range for f 
for this syntax.

[S,f] = peig(...,'corr') forces the input argument x to be interpreted as a 
correlation matrix rather than matrix of signal data. For this syntax x must be 
a square matrix, and all of its eigenvalues must be nonnegative. 

[S,f] = peig(x,p,nfft,fs,nwin,noverlap) allows you to specify nwin, a 
scalar integer indicating a rectangular window length, or a real-valued vector 
specifying window coefficients. Use the scalar integer noverlap in conjunction 
with nwin to specify the number of input sample points by which successive 
windows overlap. noverlap is not used if x is a matrix. The default value for 
nwin is 2*p(1) and noverlap is nwin-1.

With this syntax, the input data x is segmented and windowed before the 
matrix used to estimate the correlation matrix eigenvalues is formulated. The 
segmentation of the data depends on nwin, noverlap, and the form of x. 
Comments on the resulting windowed segments are described in the following 
table. 

S and Frequency Vector Characteristics with fs Specified

Real/Complex Input Data nfft Even/Odd Range of f

Real-valued Even [0,fs/2]

Real-valued Odd [0,fs/2)

Complex-valued Even or odd [0,fs)

Windowed Data Depending on x and nwin

Input data x Form of nwin Windowed Data

Data vector Scalar Length is nwin

Data vector Vector of coefficients Length is length(nwin)
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See the Table , Eigenvector Length Depending on Input Data and Syntax below 
for related information on this syntax.

Note  The arguments nwin and noverlap are ignored when you include the 
string 'corr' in the syntax.

[...] = peig(...,'range') specifies the range of frequency values to include 
in f or w. This syntax is useful when x is real. 'range' can be either:

• 'whole': Compute the pseudospectrum over the frequency range [0,fs). 
This is the default for determining the frequency range for complex-valued x. 

- If you specify fs as the empty vector, [], the frequency range is [0,1). 

- If you don’t specify fs, the frequency range is [0, 2π). 

• 'half': Compute the pseudospectrum over the frequency ranges specified 
for real x. This is the default for determining the frequency range for 
real-valued x.

Note  You can put the string arguments 'range' or 'corr' anywhere in the 
input argument list after p.

[...,v,e] = peig(...) returns the matrix v of noise eigenvectors, along with 
the associated eigenvalues in the vector e. The columns of v span the noise 
subspace of dimension size(v,2). The dimension of the signal subspace is 
size(v,1)-size(v,2). For this syntax, e is a vector of estimated eigenvalues 
of the correlation matrix.

Data matrix Scalar Data is not windowed.

Data matrix Vector of coefficients length(nwin) must be the same 
as the column length of x, and 
noverlap is not used.

Windowed Data Depending on x and nwin (Continued)

Input data x Form of nwin Windowed Data
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peig(...) with no output arguments plots the pseudospectrum in the current 
figure window. 

Remarks In the process of estimating the pseudospectrum, peig computes the noise and 
signal subspaces from the estimated eigenvectors vj and eigenvalues λj of the 
signal’s correlation matrix. The smallest of these eigenvalues is used in 
conjunction with the threshold parameter p(2) to affect the dimension of the 
noise subspace in some cases.

The length n of the eigenvectors computed by peig is the sum of the dimensions 
of the signal and noise subspaces. This eigenvector length depends on your 
input (signal data or correlation matrix) and the syntax you use. 

The following table summarizes the dependency of the eigenvector length on 
the input argument.

You should specify nwin > p(1) or length(nwin) > p(1) if you want p(2) > 1 to 
have any effect.

Eigenvector Length Depending on Input Data and Syntax

Form of Input Data x Comments on the Syntax Length n of 
Eigenvectors

Row or column vector nwin is specified as a scalar 
integer.

nwin

Row or column vector nwin is specified as a vector. length(nwin)

Row or column vector nwin is not specified. 2*p(1)

l-by-m matrix If nwin is specified as a 
scalar, it is not used. If nwin 
is specified as a vector, 
length(nwin) must equal 
m.

m

m-by-m nonnegative 
definite matrix

The string 'corr' is 
specified and nwin is not 
used.

m
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Examples Implement the eigenvector method to find the pseudospectrum of the sum of 
three sinusoids in noise, using the default FFT length of 256. Use the modified 
covariance method for the correlation matrix estimate:

randn('state',1); n=0:99;   
s=exp(i*pi/2*n)+2*exp(i*pi/4*n)+exp(i*pi/3*n)+randn(1,100);  
X=corrmtx(s,12,'mod'); 
peig(X,3,'whole')        % Uses the default NFFT of 256.

Algorithm The eigenvector method estimates the pseudospectrum from a signal or a 
correlation matrix using a weighted version of the MUSIC algorithm derived 
from Schmidt’s eigenspace analysis method [1][2]. The algorithm performs 
eigenspace analysis of the signal’s correlation matrix in order to estimate the 
signal’s frequency content. The eigenvalues and eigenvectors of the signal’s 
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correlation matrix are estimated using svd if you don’t supply the correlation 
matrix. This algorithm is particularly suitable for signals that are the sum of 
sinusoids with additive white Gaussian noise.

The eigenvector method produces a pseudospectrum estimate given by 

where N is the dimension of the eigenvectors and vk is the kth eigenvector of 
the correlation matrix of the input signal. The integer p is the dimension of the 
signal subspace, so the eigenvectors vk used in the sum correspond to the 
smallest eigenvalues  of the correlation matrix. The eigenvectors used in the 
PSD estimate span the noise subspace. The vector e(f) consists of complex 
exponentials, so the inner product 

amounts to a Fourier transform. This is used for computation of the PSD 
estimate. The FFT is computed for each vk and then the squared magnitudes 
are summed and scaled.

References [1] Marple, S.L. Digital Spectral Analysis, Englewood Cliffs, NJ, Prentice-Hall, 
1987, pp. 373-378.

[2] Schmidt, R.O, “Multiple Emitter Location and Signal Parameter 
Estimation,” IEEE Trans. Antennas Propagation, Vol. AP-34 (March 1986), 
pp. 276-280.

[3] Stoica, P., and R.L. Moses, Introduction to Spectral Analysis, Prentice-Hall, 
1997.

See Also corrmtx, pburg, periodogram, pmtm, pmusic, prony, pwelch, rooteig, 
rootmusic
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7periodogramPurpose Power spectral density (PSD)  using a periodogram

Syntax [Pxx,w] = periodogram(x)
[Pxx,w] = periodogram(x,window)
[Pxx,w] = periodogram(x,window,nfft)
[Pxx,f] = periodogram(x,window,nfft,fs)
[Pxx,...] = periodogram(x,...,'range')
periodogram(...)

Description [Pxx,w] = periodogram(x) returns the power spectral density (PSD) 
estimate Pxx of the sequence x using a periodogram. The power spectral 
density is calculated in units of power per radians per sample. The 
corresponding vector of frequencies w is computed in radians per sample, and 
has the same length as Pxx. 

A real-valued input vector x produces a full power one-sided (in frequency) PSD 
(by default), while a complex-valued x produces a two-sided PSD. 

In general, the length N of the FFT and the values of the input x determine the 
length of Pxx and the range of the corresponding normalized frequencies. For 
this syntax, the (default) length N of the FFT is the larger of 256 and the next 
power of 2 greater than the length of x. The following table indicates the length 
of Pxx and the range of the corresponding normalized frequencies for this 
syntax.

[Pxx,w] = periodogram(x,window) returns the PSD estimate Pxx computed 
using the modified periodogram method. The vector window specifies the 
coefficients of the window used in computing a modified periodogram of the 
input signal. Both input arguments must be vectors of the same length. When 
you don’t supply the second argument window, or set it to the empty vector [], 

PSD Vector Characteristics for an FFT Length of N (Default)

Real/Complex 
Input Data 

 Length of Pxx Range of the Corresponding 
Normalized Frequencies 

Real-valued (N/2) +1 [0, π]

Complex-valued N [0, 2π)
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a rectangular window (rectwin) is used by default. In this case the standard 
periodogram is calculated. 

[Pxx,w] = periodogram(x,window,nfft) uses the modified periodogram to 
estimate the PSD while specifying the length of the FFT with the integer nfft. 
If you set nfft to the empty vector [], it takes the default value for N listed in 
the previous syntax. 

The length of Pxx and the frequency range for w depend on nfft and the values 
of the input x. The following table indicates the length of Pxx and the frequency 
range for w for this syntax.

Note  periodogram uses an nfft-point FFT of the windowed data (x.*window) 
to compute the periodogram. If the value you specify for nfft is less than the 
length of x, then x.*window is wrapped modulo nfft. If the value you specify 
for nfft is greater than the length of x, then x.*window is zero-padded to 
compute the FFT.

[Pxx,f] = periodogram(x,window,nfft,fs) uses the sampling frequency fs 
specified as an integer in hertz (Hz) to compute the PSD vector (Pxx) and the 
corresponding vector of frequencies (f). In this case, the units for the frequency 
vector are in Hz. The spectral density produced is calculated in units of power 
per Hz. If you specify fs as the empty vector [], the sampling frequency 
defaults to 1 Hz.

PSD and Frequency Vector Characteristics 

Real/Complex 
Input Data 

nfft Even/Odd  Length of Pxx Range of w

Real-valued Even (nfft/2 + 1) [0, π]

Real-valued Odd (nfft + 1)/2 [0, π)

Complex-valued Even or odd nfft [0, 2π)
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The frequency range for f depends on nfft, fs, and the values of the input x. 
The length of Pxx is the same as in the table above. The following table 
indicates the frequency range for f for this syntax.

[Pxx,f] = periodogram(x,window,nfft,fs,'range') or

[Pxx,w] = periodogram(x,window,nfft,'range') specifies the range of 
frequency values to include in f or w. This syntax is useful when x is real. 
'range' can be either:

• 'twosided': Compute the two-sided PSD over the frequency range [0,fs). 
This is the default for determining the frequency range for complex-valued x.

- If you specify fs as the empty vector, [], the frequency range is [0,1). 

- If you don’t specify fs, the frequency range is [0, 2π). 

• 'onesided': Compute the one-sided PSD over the frequency ranges specified 
for real x. This is the default for determining the frequency range for 
real-valued x.

Note  You can put the string argument 'range' anywhere in the input 
argument list after window.

periodogram(...) with no outputs plots the power spectral density in dB per 
unit frequency in the current figure window. The frequency range on the plot 
is the same as the range of output w (or f) for the syntax you use. 

Examples Compute the periodogram of a 200 Hz signal embedded in additive noise using 
the default window:

PSD and Frequency Vector Characteristics with fs Specified

Real/Complex Input Data nfft Even/Odd Range of f

Real-valued Even [0,fs/2]

Real-valued Odd [0,fs/2)

Complex-valued Even or odd [0,fs)
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randn('state',0);
Fs = 1000;   
t = 0:1/Fs:.3;
x = cos(2*pi*t*200)+0.1*randn(size(t)); 
periodogram(x,[],'twosided',512,Fs) 

Algorithm The periodogram for a sequence [x1, ... , xn] is given by the following formula:

This expression forms an estimate of the power spectrum of the signal defined 
by the sequence [x1, ... , xn].
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If you weight your signal sequence by a window [w1, ... , wn], then the weighted 
or modified periodogram is defined as 

In either case, periodogram uses an nfft-point FFT to compute the power 
spectral density as , where F is

• 2π when you do not supply the sampling frequency

• fs when you supply the sampling frequency 

References [1] Stoica, P., and R.L. Moses, Introduction to Spectral Analysis, Prentice-Hall, 
1997, pp. 24-26.

[2] Welch, P.D, “The Use of Fast Fourier Transform for the Estimation of Power 
Spectra: A Method Based on Time Averaging Over Short, Modified 
Periodograms,” IEEE Trans. Audio Electroacoustics, Vol. AU-15 (June 1967), 
pp. 70-73.

[3] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing, 
Prentice-Hall, 1989, pp. 730-742.

See Also dspdata.msspectrum, pburg, pcov, peig, pmcov, pmtm, pmusic, pwelch,  
pyulear
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7phasedelayPurpose CPhase delay of digital filters

Syntax [phi,w] = phasedelay(b,a,n)
[phi,w] = phasedelay(b,a,n,'whole')
phi = phasedelay(b,a,w)
[phi,f] = phasedelay(b,a,n,fs)
[phi,f] = phasedelay(b,a,n,'whole',fs)
phi = phasedelay(b,a,f,fs)
[phi,w,s] = phasedelay(...)
[phi,f,s] = phasedelay(...)
phasedelay(b,a,...)

Description [phi,w] = phasedelay(b,a,n) returns the n-point phase delay response 
vector phi and the n-point frequency reponse vector w (in radians/sample) of the 
filter defined by numerator coefficients b and denominator coefficients a. The 
phase delay response is evaluated at n equally spaced points around the upper 
half of the unit circle. If n is omitted, it defaults to 512.

[phi,w] = phasedelay(b,a,n,'whole') uses n equally spaced points around 
the whole unit circle. 

phi = phasedelay(b,a,w) returns the phase delay response at frequencies 
specified in vector w (in radians/sample). The frequencies are normally 
between 0 and π.

[phi,f] = phasedelay(b,a,n,fs) and 
[phi,f] = phasedelay(b,a,n,'whole',fs) return the phase delay vector f 
(in Hz), using the sampling frequency fs (in Hz).

phi = phasedelay(b,a,f,fs) returns the phase delay response at the 
frequencies specified in vector f (in Hz), using the sampling frequency fs (in 
Hz)..

[phi,w,s] = phasedelay(...) and [phi,f,s] = phasedelay(...) return 
plotting information, where s is a structure with fields you can change to 
display different frequency response plots.

phasedelay(b,a,...) with no output arguments, plots the phase delay 
response of the filter.
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Examples Example 1
Plot the phase delay response of a constrained least squares FIR filter:

b=fircls1(54,.3,.02,.008); 
phasedelay(b) 

Example 2
Plot the phase delay response of an elliptic filter:

[b,a] = ellip(10,.5,20,.4); 
phasedelay(b,a,512,'whole')
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See Also freqz, fvtool, phasez, grpdelay
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7phasezPurpose Phase response of digital filters

Syntax [phi,w] = phasez(b,a,n)
[phi,w] = phasez(b,a,n,'whole')
phi = phasez(b,a,w)
[phi,f] = phasez(b,a,n,fs)
[phi,f] = phasez(b,a,n,'whole',fs)
phi = phasez(b,a,f,fs)
[phi,w,s] = phasez(...)
[phi,f,s] = phasez(...)
phasez(b,a,...)
phasez(Hd)

Description [phi,w] = phasez(b,a,n) returns the n-point phase response vector phi and 
the n-point frequency reponse vector w (in radians/sample) of the filter defined 
by numerator coefficients b and denominator coefficients a. The phase 
response is evaluated at n equally spaced points around the upper half of the 
unit circle. If n is omitted, it defaults to 512.

[phi,w] = phasez(b,a,n,'whole') uses n equally spaced points around the 
whole unit circle. 

phi = phasez(b,a,w) returns the phase response at frequencies specified in 
vector w (in radians/sample). The frequencies are normally between 0 and π.

[phi,f] = phasez(b,a,n,fs) and [phi,f] = phasez(b,a,n,'whole',fs) 
return the phase vector f (in Hz), using the sampling frequency fs (in Hz).

phi = phasez(b,a,f,fs) returns the phase response at the frequencies 
specified in vector f (in Hz), using the sampling frequency fs (in Hz)..

[phi,w,s] = phasez(...) and [phi,f,s] = phasez(...) return plotting 
information, where s is a structure with fields you can change to display 
different frequency response plots.

phasez(b,a,...) with no output arguments, plots the phase response of the 
filter in the current filter window.
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phasez(Hd) plots the phase response of the filter and displays the plot in 
fvtool. The input Hd is a dfilt filter object.

Examples Example 1
Plot the phase response of a constrained least squares FIR filter:

b=fircls1(54,.3,.02,.008); 
phasez(b) 

The same example using a dfilt filter object and displaying the result in 
fvtool, where you can perform more analyses, is

b=fircls1(54,.3,.02,.008); 
Hd=dfilt.dffir(b);
phasez(Hd) 
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Example 2
Plot the phase response of an elliptic filter:

[b,a] = ellip(10,.5,20,.4); 
phasez(b,a,512,'whole')
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See Also freqz, fvtool, phasedelay, grpdelay
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7pmcovPurpose Power spectral density using modified covariance method

Syntax Pxx = pmcov(x,p)
[Pxx,w] = pmcov(x,p)
[Pxx,w] = pmcov(x,p,nfft)
[Pxx,f] = pmcov(x,p,nfft,fs)
[Pxx,f] = pmcov(x,p,nfft,fs,'range')
[Pxx,w] = pmcov(x,p,nfft,'range')
pmcov(...)

Description Pxx = pmcov(x,p) implements the modified covariance algorithm, a 
parametric spectral estimation method, and returns Pxx, an estimate of the 
power spectral density (PSD) of the vector x. The entries of x represent samples 
of a discrete-time signal, and p is the integer specifying the order of an 
autoregressive (AR) prediction model for the signal, used in estimating the 
PSD.

The power spectral density is calculated in units of power per radians per 
sample. Real-valued inputs produce full power one-sided (in frequency) PSDs 
(by default), while complex-valued inputs produce two-sided PSDs. 

In general, the length of the FFT and the values of the input x determine the 
length of Pxx and the range of the corresponding normalized frequencies. For 
this syntax, the (default) FFT length is 256. The following table indicates the 
length of Pxx and the range of the corresponding normalized frequencies for 
this syntax.

[Pxx,w] = pmcov(x,p) also returns w, a vector of frequencies at which the 
PSD is estimated. Pxx and w have the same length. The units for frequency are 
rad/sample. 

PSD Vector Characteristics for an FFT Length of 256 (Default)

Real/Complex 
Input Data 

 Length of Pxx Range of the Corresponding 
Normalized Frequencies 

Real-valued 129 [0, π]

Complex-valued 256 [0, 2π)
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[Pxx,w] = pmcov(x,p,nfft) uses the covariance method to estimate the PSD 
while specifying the length of the FFT with the integer nfft. If you specify nfft 
as the empty vector [], it takes the default value of 256.

The length of Pxx and the frequency range for w depend on nfft and the values 
of the input x. The following table indicates the length of Pxx and the frequency 
range for w for this syntax.

[Pxx,f] = pmcov(x,p,nfft,fs) uses the sampling frequency fs specified as 
an integer in hertz (Hz) to compute the PSD vector (Pxx) and the corresponding 
vector of frequencies (f). In this case, the units for the frequency vector are 
in Hz. The spectral density produced is calculated in units of power per Hz. If 
you specify fs as the empty vector [], the sampling frequency defaults to 1 Hz.

The frequency range for f depends on nfft, fs, and the values of the input x. 
The length of Pxx is the same as in the Table , PSD and Frequency Vector 
Characteristics above. The following table indicates the frequency range for f 
in this syntax.

[Pxx,f] = pmcov(x,p,nfft,fs,'range') or

PSD and Frequency Vector Characteristics 

Real/Complex 
Input Data 

nfft Even/Odd  Length of Pxx Range of w

Real-valued Even (nfft/2 + 1) [0, π]

Real-valued Odd (nfft + 1)/2 [0, π)

Complex-valued Even or odd nfft [0, 2π)

PSD and Frequency Vector Characteristics with fs Specified

Real/Complex Input Data nfft Even/Odd Range of f

Real-valued Even [0,fs/2]

Real-valued Odd [0,fs/2)

Complex-valued Even or odd [0,fs)
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[Pxx,w] = pmcov(x,p,nfft,'range') specifies the range of frequency values 
to include in f or w. This syntax is useful when x is real. 'range' can be either:

• 'twosided': Compute the two-sided PSD over the frequency range [0,fs). 
This is the default for determining the frequency range for complex-valued x.

- If you specify fs as the empty vector, [], the frequency range is [0,1). 

- If you don’t specify fs, the frequency range is [0, 2π). 

• 'onesided': Compute the one-sided PSD over the frequency ranges specified 
for real x. This is the default for determining the frequency range for 
real-valued x.

Note  You can put the string argument 'range' anywhere in the input 
argument list after p.

pmcov(...) with no outputs plots the power spectral density in the current 
figure window. The frequency range on the plot is the same as the range of 
output w (or f) for a given set of parameters. 

Remarks The power spectral density is computed as the distribution of power per unit 
frequency. 

This algorithm depends on your selecting an appropriate model order for your 
signal.

Examples Because the modified covariance method estimates the spectral density by 
fitting an AR prediction model of a given order to the signal, first generate a 
signal from an AR (all-pole) model of a given order. You can use freqz to check 
the magnitude of the frequency response of your AR filter. This will give you an 
idea of what to expect when you estimate the PSD using pmcov: 

a = [1 -2.2137 2.9403 -2.1697 0.9606]; % AR filter coefficients
freqz(1,a) % AR filter frequency response
title('AR System Frequency Response')
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Now generate the input signal x by filtering white noise through the AR filter. 
Estimate the PSD of x based on a fourth-order AR prediction model since in this 
case we know that the original AR system model a has order 4:

randn('state',1);
x = filter(1,a,randn(256,1));  % AR filter output
pmcov(x,4) % Fourth-order estimate

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−200

−150

−100

−50

0

50

100

Normalized Frequency  (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−20

−10

0

10

20

30

40

Normalized Frequency  (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

AR System Frequency Response
7-454



pmcov
Algorithm Linear prediction filters can be used to model the second-order statistical 
characteristics of a signal. The prediction filter output can be used to model the 
signal when the input is white noise. 

pmcov estimates the PSD of the signal vector using the modified covariance 
method. This method fits an autoregressive (AR) linear prediction filter model 
to the signal by simultaneously minimizing the forward and backward 
prediction errors (based on causal observations of your input signal) in the 
least squares sense. The spectral estimate returned by pmcov is the magnitude 
squared frequency response of this AR model. 

References [1] Marple, S.L. Digital Spectral Analysis, Englewood Cliffs, NJ, Prentice-Hall, 
1987, Chapter 7.
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[2] Stoica, P., and R.L. Moses, Introduction to Spectral Analysis, Prentice-Hall, 
1997.

See Also armcov, lpc, pburg, pcov, peig, periodogram, pmtm, pmusic, pwelch, prony,  
pyulear
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7pmtmPurpose Power spectral density using multitaper method (MTM)

Syntax [Pxx,w] = pmtm(x,nw)
[Pxx,w] = pmtm(x,nw,nfft)
[Pxx,f] = pmtm(x,nw,nfft,fs)
[Pxx,Pxxc,f] = pmtm(x,nw,nfft,fs)
[Pxx,Pxxc,f] = pmtm(x,nw,nfft,fs,p)
[Pxx,Pxxc,f] = pmtm(x,e,v,nfft,fs,p)
[Pxx,Pxxc,f] = pmtm(x,dpss_params,nfft,fs,p)
[...] = pmtm(...,'method')
[...] = pmtm(...,'range')
pmtm(...)

Description pmtm estimates the power spectral density (PSD) of the time series x using the 
multitaper method (MTM) described in [1]. This method uses linear or 
nonlinear combinations of modified periodograms to estimate the PSD. These 
periodograms are computed using a sequence of orthogonal tapers (windows in 
the frequency domain) specified from the discrete prolate spheroidal sequences 
(see dpss).

[Pxx,w] = pmtm(x,nw) estimates the PSD Pxx for the input signal x, using 
2*nw-1 discrete prolate spheroidal sequences as data tapers for the multitaper 
estimation method. nw is the time-bandwidth product for the discrete prolate 
spheroidal sequences. If you specify nw as the empty vector [], a default value 
of 4 is used. Other typical choices are 2, 5/2, 3, or 7/2. pmtm also returns w, a 
vector of frequencies at which the PSD is estimated. Pxx and w have the same 
length. The units for frequency are rad/sample. 

The power spectral density is calculated in units of power per radians per 
sample. Real-valued inputs produce (by default) full power one-sided (in 
frequency) PSDs, while complex-valued inputs produce two-sided PSDs. 

In general, the length N of the FFT and the values of the input x determine the 
length of Pxx and the range of the corresponding normalized frequencies. For 
this syntax, the (default) length N of the FFT is the larger of 256 and the next 
power of 2 greater than the length of the segment. The following table indicates 
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the length of Pxx and the range of the corresponding normalized frequencies for 
this syntax.

[Pxx,w] = pmtm(x,nw,nfft) uses the multitaper method to estimate the PSD 
while specifying the length of the FFT with the integer nfft. If you specify nfft 
as the empty vector [], it adopts the default value for N described in the 
previous syntax.

The length of Pxx and the frequency range for w depend on nfft and the values 
of the input x. The following table indicates the length of Pxx and the frequency 
range for w for this syntax.

[Pxx,f] = pmtm(x,nw,nfft,fs) uses the sampling frequency fs specified as 
an integer in hertz (Hz) to compute the PSD vector (Pxx) and the corresponding 
vector of frequencies (f). In this case, the units for the frequency vector f are 
in Hz. The spectral density produced is calculated in units of power per Hz. If 
you specify fs as the empty vector [], the sampling frequency defaults to 1 Hz.

The frequency range for f depends on nfft, fs, and the values of the input x. 
The length of Pxx is the same as in the Table , PSD and Frequency Vector 

PSD Vector Characteristics for an FFT Length of N (Default)

Real/Complex 
Input Data 

 Length of Pxx Range of the Corresponding 
Normalized Frequencies 

Real-valued (N/2) +1 [0, π]

Complex-valued N [0, 2π)

PSD and Frequency Vector Characteristics 

Real/Complex 
Input Data 

nfft Even/Odd  Length of Pxx Range of w

Real-valued Even (nfft/2 + 1) [0, π]

Real-valued Odd (nfft + 1)/2 [0, π)

Complex-valued Even or odd nfft [0, 2π)
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Characteristics above. The following table indicates the frequency range for f 
for this syntax.

[Pxx,Pxxc,f] = pmtm(x,nw,nfft,fs) returns Pxxc, the 95% confidence 
interval for Pxx. Confidence intervals are computed using a chi-squared 
approach. Pxxc is a two-column matrix with the same number of rows as Pxx. 
Pxxc(:,1) is the lower bound of the confidence interval and Pxxc(:,2) is the 
upper bound of the confidence interval.

[Pxx,Pxxc,f] = pmtm(x,nw,nfft,fs,p) returns Pxxc, the p*100% confidence 
interval for Pxx, where p is a scalar between 0 and 1. If you don’t specify p, or 
if you specify p as the empty vector [], the default 95% confidence interval is 
used.

[Pxx,Pxxc,f] = pmtm(x,e,v,nfft,fs,p) returns the PSD estimate Pxx, the 
confidence interval Pxxc, and the frequency vector f from the data tapers 
contained in the columns of the matrix e, and their concentrations in the 
vector v. The length of v is the same as the number of columns in e. You can 
obtain the data to supply as these arguments from the outputs of dpss.

[Pxx,Pxxc,f] = pmtm(x,dpss_params,nfft,fs,p) uses the cell array 
dpss_params containing the input arguments to dpss (listed in order, but 
excluding the first argument) to compute the data tapers. For example, 
pmtm(x,{3.5,'trace'},512,1000) calculates the prolate spheroidal 
sequences for nw = 3.5, using nfft = 512, and fs = 1000, and displays the 
method that dpss uses for this calculation. See dpss for other options.

[...] = pmtm(...,'method') specifies the algorithm used for combining the 
individual spectral estimates. The string 'method' can be one of the following:

• 'adapt': Thomson’s adaptive nonlinear combination (default)

PSD and Frequency Vector Characteristics with fs Specified

Real/Complex Input Data nfft Even/Odd Range of f

Real-valued Even [0, fs/2]

Real-valued Odd [0, fs/2)

Complex-valued Even or odd [0, fs)
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• 'unity': A linear combination of the weighted periodograms with unity 
weights

• 'eigen': A linear combination of the weighted periodograms with 
eigenvalue weights

[...] = pmtm(...,'range') specifies the range of frequency values to include 
in f or w. This syntax is useful when x is real. 'range' can be either:

• 'twosided': Compute the two-sided PSD over the frequency range [0,fs). 
This is the default for determining the frequency range for complex-valued x.

- If you specify fs as the empty vector, [], the frequency range is [0,1). 

- If you don’t specify fs, the frequency range is [0, 2π). 

• 'onesided': Compute the one-sided PSD over the frequency ranges specified 
for real x. This is the default for determining the frequency range for 
real-valued x.

Note  You can put the string arguments 'range' or 'method' anywhere after 
the input argument nw or v.

pmtm(...) with no output arguments plots the PSD estimate and the 
confidence intervals in the current figure window. If you don’t specify fs, the 
95% confidence interval is plotted. If you do specify fs, the confidence intervals 
plotted depend on the value of p.
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Examples This example analyzes a sinusoid in white noise:

randn('state',0);
fs = 1000; 
t = 0:1/fs:0.3;
x = cos(2*pi*t*200) + 0.1*randn(size(t));
[Pxx,Pxxc,f] = pmtm(x,3.5,512,fs,0.99);
hpsd = dspdata.psd([Pxx Pxxc],'Fs',fs);
plot(hpsd)

References [1] Percival, D.B., and A.T. Walden, Spectral Analysis for Physical 
Applications: Multitaper and Conventional Univariate Techniques, Cambridge 
University Press, 1993.
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[2] Thomson, D.J., “Spectrum estimation and harmonic analysis,” Proceedings 
of the IEEE, Vol. 70 (1982), pp. 1055-1096.

See Also dpss, pburg, pcov, peig, periodogram, pmcov, pmusic, pwelch, pyulear
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7pmusicPurpose Pseudospectrum using MUSIC algorithm

Syntax [S,w] = pmusic(x,p)
[S,w] = pmusic(...,nfft)
[S,f] = pmusic(x,p,nfft,fs))
[S,f] = pmusic(...,'corr')
[S,f] = pmusic(x,p,nfft,fs,nwin,noverlap)
[...] = pmusic(...,'range')
[...,v,e] = pmusic(...)
pmusic(...)

Description [S,w] = pmusic(x,p) implements the MUSIC (Multiple Signal Classification) 
algorithm and returns S, the pseudospectrum estimate of the input signal x, 
and a vector w of normalized frequencies (in rad/sample) at which the 
pseudospectrum is evaluated. The pseudospectrum is calculated using 
estimates of the eigenvectors of a correlation matrix associated with the input 
data x, where x is specified as either:

• A row or column vector representing one observation of the signal

• A rectangular array for which each row of x represents a separate 
observation of the signal (for example, each row is one output of an array of 
sensors, as in array processing), such that x'*x is an estimate of the 
correlation matrix 

Note  You can use the output of corrmtx to generate such an array x.

You can specify the second input argument p as either:

• A scalar integer. In this case, the signal subspace dimension is p.

• A two-element vector. In this case, p(2), the second element of p, represents 
a threshold that is multiplied by λmin, the smallest estimated eigenvalue of 
the signal’s correlation matrix. Eigenvalues below the threshold λmin*p(2) 
are assigned to the noise subspace. In this case, p(1) specifies the maximum 
dimension of the signal subspace.
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The extra threshold parameter in the second entry in p provides you more 
flexibility and control in assigning the noise and signal subspaces. 

S and w have the same length. In general, the length of the FFT and the values 
of the input x determine the length of the computed S and the range of the 
corresponding normalized frequencies. The following table indicates the length 
of S (and w) and the range of the corresponding normalized frequencies for this 
syntax.

[S,w] = pmusic(...,nfft) specifies the length of the FFT used to estimate 
the pseudospectrum with the integer nfft. The default value for nfft (entered 
as an empty vector []) is 256.

The following table indicates the length of S and w, and the frequency range for 
w in this syntax.

[S,f] = pmusic(x,p,nfft,fs) returns the pseudospectrum in the vector S 
evaluated at the corresponding vector of frequencies f (in Hz). You supply the 
sampling frequency fs in Hz. If you specify fs with the empty vector [], the 
sampling frequency defaults to 1 Hz.

S Characteristics for an FFT Length of 256 (Default)

Real/Complex 
Input Data 

Length of S and w Range of the Corresponding 
Normalized Frequencies 

Real-valued 129 [0, π]

Complex-valued 256 [0, 2π)

S and Frequency Vector Characteristics 

Real/Complex 
Input Data 

nfft Even/Odd Length of S 
and w

Range of w

Real-valued Even (nfft/2 + 1) [0, π]

Real-valued Odd (nfft + 1)/2 [0, π)

Complex-valued Even or odd nfft [0, 2π)
7-464



pmusic
The frequency range for f depends on nfft, fs, and the values of the input x. 
The length of S (and f) is the same as in the Table , S and Frequency Vector 
Characteristics above. The following table indicates the frequency range for f 
for this syntax.

[S,f] = pmusic(...,'corr') forces the input argument x to be interpreted as 
a correlation matrix rather than matrix of signal data. For this syntax x must 
be a square matrix, and all of its eigenvalues must be nonnegative. 

[S,f] = pmusic(x,p,nfft,fs,nwin,noverlap) allows you to specify nwin, a 
scalar integer indicating a rectangular window length, or a real-valued vector 
specifying window coefficients. Use the scalar integer noverlap in conjunction 
with nwin to specify the number of input sample points by which successive 
windows overlap. noverlap is not used if x is a matrix. The default value for 
nwin is 2*p(1) and noverlap is nwin-1.

With this syntax, the input data x is segmented and windowed before the 
matrix used to estimate the correlation matrix eigenvalues is formulated. The 
segmentation of the data depends on nwin, noverlap, and the form of x. 
Comments on the resulting windowed segments are described in the following 
table. 

S and Frequency Vector Characteristics with fs Specified

Real/Complex Input Data nfft Even/Odd Range of f

Real-valued Even [0,fs/2]

Real-valued Odd [0,fs/2)

Complex-valued Even or odd [0,fs)

Windowed Data Depending on x and nwin

Input data x Form of nwin Windowed Data

Data vector Scalar Length is nwin

Data vector Vector of coefficients Length is length(nwin)
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See the Table , Eigenvector Length Depending on Input Data and Syntax below 
for related information on this syntax.

Note  The arguments nwin and noverlap are ignored when you include the 
string 'corr' in the syntax. 

[...] = pmusic(...,'range') specifies the range of frequency values to 
include in f or w. This syntax is useful when x is real. 'range' can be either:

• 'whole': Compute the pseudospectrum over the frequency range [0,fs). 
This is the default for determining the frequency range for complex-valued x. 

- If you specify fs as the empty vector, [], the frequency range is [0,1). 

- If you don’t specify fs, the frequency range is [0, 2π). 

• 'half': Compute the pseudospectrum over the frequency ranges specified 
for real x. This is the default for determining the frequency range for 
real-valued x.

Note  You can put the string arguments 'range' or 'corr' anywhere in the 
input argument list after p.

[...,v,e] = pmusic(...) returns the matrix v of noise eigenvectors, along 
with the associated eigenvalues in the vector e. The columns of v span the noise 
subspace of dimension size(v,2). The dimension of the signal subspace is 
size(v,1)-size(v,2). For this syntax, e is a vector of estimated eigenvalues 
of the correlation matrix.

Data matrix Scalar Data is not windowed.

Data matrix Vector of coefficients length(nwin) must be the same 
as the column length of x, and 
noverlap is not used.

Windowed Data Depending on x and nwin (Continued)

Input data x Form of nwin Windowed Data
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pmusic(...) with no output arguments plots the pseudospectrum in the 
current figure window. 

Remarks In the process of estimating the pseudospectrum, pmusic computes the noise 
and signal subspaces from the estimated eigenvectors vj and eigenvalues λj of 
the signal’s correlation matrix. The smallest of these eigenvalues is used in 
conjunction with the threshold parameter p(2) to affect the dimension of the 
noise subspace in some cases.

The length n of the eigenvectors computed by pmusic is the sum of the 
dimensions of the signal and noise subspaces. This eigenvector length depends 
on your input (signal data or correlation matrix) and the syntax you use. 

The following table summarizes the dependency of the eigenvector length on 
the input argument.

You should specify nwin > p(1) or length(nwin) > p(1) if you want p(2) > 1 to 
have any effect.

Eigenvector Length Depending on Input Data and Syntax

Form of Input Data x Comments on the Syntax Length n of 
Eigenvectors

Row or column vector nwin is specified as a scalar 
integer.

nwin

Row or column vector nwin is specified as a vector. length(nwin)

Row or column vector nwin is not specified. 2*p(1)

l-by-m matrix If nwin is specified as a 
scalar, it is not used. If nwin 
is specified as a vector, 
length(nwin) must equal 
m.

m

m-by-m nonnegative 
definite matrix

The string 'corr' is 
specified and nwin is not 
used.

m
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Examples Example 1: pmusic with no Sampling Specified
This example analyzes a signal vector x, assuming that two real sinusoidal 
components are present in the signal subspace. In this case, the dimension of 
the signal subspace is 4 because each real sinusoid is the sum of two complex 
exponentials:

randn('state',0);
n = 0:199;
x = cos(0.257*pi*n) + sin(0.2*pi*n) + 0.01*randn(size(n));
pmusic(x,4)

Example 2: Specifying Sampling Frequency and Subspace Dimensions
This example analyzes the same signal vector x with an eigenvalue cutoff of 
10% above the minimum. Setting p(1) = Inf forces the signal/noise subspace 
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decision to be based on the threshold parameter p(2). Specify the eigenvectors 
of length 7 using the nwin argument, and set the sampling frequency fs to 
8 kHz:

randn('state',0);
n = 0:199;
x = cos(0.257*pi*n) + sin(0.2*pi*n) + 0.01*randn(size(n));
[P,f] = pmusic(x,[Inf,1.1],[],8000,7); % Window length = 7

Example 3: Entering a Correlation Matrix
Supply a positive definite correlation matrix R for estimating the spectral 
density. Use the default 256 samples:

R = toeplitz(cos(0.1*pi*[0:6])) + 0.1*eye(7);
[P,f] = pmusic(R,4,'corr');

Example 4: Entering a Signal Data Matrix Generated from corrmtx
Enter a signal data matrix Xm generated from data using corrmtx:

randn('state',0);
n = 0:699;
x = cos(0.257*pi*(n)) + 0.1*randn(size(n));
Xm = corrmtx(x,7,'mod');
[P,w] = pmusic(Xm,2);

Example 5: Using Windowing to Create the Effect of a Signal Data Matrix
Use the same signal, but let pmusic form the 100-by-7 data matrix using its 
windowing input arguments. In addition, specify an FFT of length 512:

randn('state',0);
n = 0:699;
x = cos(0.257*pi*(n)) + 0.1*randn(size(n));
[PP,ff] = pmusic(x,2,512,[],7,0);

Algorithm The name MUSIC is an acronym for MUltiple SIgnal Classification. The 
MUSIC algorithm estimates the pseudospectrum from a signal or a correlation 
matrix using Schmidt’s eigenspace analysis method [1]. The algorithm 
performs eigenspace analysis of the signal’s correlation matrix in order to 
estimate the signal’s frequency content. This algorithm is particularly suitable 
for signals that are the sum of sinusoids with additive white Gaussian noise. 
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The eigenvalues and eigenvectors of the signal’s correlation matrix are 
estimated if you don’t supply the correlation matrix. 

The MUSIC pseudospectrum estimate is given by 

where N is the dimension of the eigenvectors and vk is the k-th eigenvector of 
the correlation matrix. The integer p is the dimension of the signal subspace, 
so the eigenvectors vk used in the sum correspond to the smallest eigenvalues 
and also span the noise subspace. The vector e(f) consists of complex 
exponentials, so the inner product 

amounts to a Fourier transform. This is used for computation of the 
pseudospectrum estimate. The FFT is computed for each vk and then the 
squared magnitudes are summed.

References [1] Marple, S.L. Digital Spectral Analysis, Englewood Cliffs, NJ, Prentice-Hall, 
1987, pp. 373-378.

[2] Schmidt, R.O, “Multiple Emitter Location and Signal Parameter 
Estimation,” IEEE Trans. Antennas Propagation, Vol. AP-34 (March 1986), 
pp. 276-280.

[3] Stoica, P., and R.L. Moses, Introduction to Spectral Analysis, Prentice-Hall, 
Englewood Cliffs, NJ, 1997.

See Also corrmtx, pburg, peig, periodogram, pmtm, prony, pwelch, rooteig, rootmusic
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7poly2acPurpose Convert prediction filter polynomial to autocorrelation sequence

Syntax r = poly2ac(a,efinal)

Description r = poly2ac(a,efinal) finds the autocorrelation vector r corresponding to 
the prediction filter polynomial a. The autocorrelation sequence produced is 
approximately the same as that of the output of the autoregressive prediction 
filter whose coefficients are determined by a. poly2ac also produces the final 
length(r) step prediction error efinal. If a(1) is not equal to 1, poly2ac 
normalizes the prediction filter polynomial by a(1). a(1) cannot be 0.

Remarks You can apply this function to both real and complex polynomials.

Examples a = [1.0000    0.6147    0.9898    0.0004    0.0034   -0.0077];
efinal = 0.2;
r = poly2ac(a,efinal)

r =
    5.5917
   -1.7277
   -4.4231
    4.3985
    1.6426
   -5.3126 

References [1] Kay, S.M. Modern Spectral Estimation, Englewood Cliffs, NJ, 
Prentice-Hall, 1988.

See Also ac2poly, poly2rc, rc2ac
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7poly2lsfPurpose Convert prediction filter coefficients to line spectral frequencies

Syntax lsf = poly2lsf(a)

Description lsf = poly2lsf(a) returns a vector lsf of line spectral frequencies from a 
vector a of prediction filter coefficients.

Examples a = [1.0000    0.6149    0.9899    0.0000    0.0031   -0.0082];
lsf = poly2lsf(a)

lsf =
    0.7842
    1.5605
    1.8776
    1.8984
    2.3593

References [1] Deller, J.R., J.G. Proakis, and J.H.L. Hansen, “Discrete-Time Processing of 
Speech Signals,” Prentice-Hall, 1993.

[2] Rabiner, L.R., and R.W. Schafer, “Digital Processing of Speech Signals,” 
Prentice-Hall, 1978.

See Also lsf2poly
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7poly2rcPurpose Convert prediction filter polynomial to reflection coefficients

Syntax k = poly2rc(a)
[k,r0] = poly2rc(a,efinal)

Description k = poly2rc(a) converts the prediction filter polynomial a to the reflection 
coefficients of the corresponding lattice structure. a can be real or complex, and 
a(1) cannot be 0. If a(1) is not equal to 1, poly2rc normalizes the prediction 
filter polynomial by a(1). k is a row vector of size length(a)-1.

[k,r0] = poly2rc(a,efinal) returns the zero-lag autocorrelation, r0, based 
on the final prediction error, efinal.

A simple, fast way to check if a has all of its roots inside the unit circle is to 
check if each of the elements of k has magnitude less than 1.

stable = all(abs(poly2rc(a))<1)

Examples a = [1.0000   0.6149   0.9899   0.0000   0.0031  -0.0082];
efinal = 0.2;

[k,r0] = poly2rc(a,efinal)

k =

    0.3090
    0.9801
    0.0031
    0.0081
   -0.0082

r0 =

    5.6032

Limitations If abs(k(i)) == 1 for any i, finding the reflection coefficients is an 
ill-conditioned problem. poly2rc returns some NaNs and provide a warning 
message in this case.

Algorithm poly2rc implements this recursive relationship:
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This relationship is based on Levinson’s recursion [1]. To implement it, 
poly2rc loops through a in reverse order after discarding its first element. For 
each loop iteration i, the function:

1 Sets k(i) equal to a(i)

2 Applies the second relationship above to elements 1 through i of the 
vector a.
a = (a k(i)*fliplr(a))/(1 k(i)^2);

References [1] Kay, S.M. Modern Spectral Estimation, Englewood Cliffs, NJ, 
Prentice-Hall, 1988.

See Also ac2rc, latc2tf, latcfilt, poly2ac, rc2poly, tf2latc
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7polyscalePurpose Scale the roots of a polynomial

Syntax b = polyscale(a,alpha)

Description b = polyscale(a,alpha) scales the roots of a polynomial in the z-plane, 
where a is a vector containing the polynomial coefficients and alpha is the 
scaling factor.

If alpha is a real value in the range [0 1], then the roots of a are radially scaled 
toward the origin in the z-plane. Complex values for alpha allow arbitrary 
changes to the root locations.

Remark By reducing the radius of the roots in an autoregressive polynomial, the 
bandwidth of the spectral peaks in the frequency response is expanded 
(flattened). This operation is often referred to as bandwidth expansion.

See Also polystab, roots
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7polystabPurpose Stabilize polynomial

Syntax b = polystab(a)

Description polystab stabilizes a polynomial with respect to the unit circle; it reflects roots 
with magnitudes greater than 1 inside the unit circle.

b = polystab(a) returns a row vector b containing the stabilized polynomial, 
where a is a vector of polynomial coefficients, normally in the z-domain.

Examples polystab can convert a linear-phase filter into a minimum-phase filter with 
the same magnitude response:

h = fir1(25,0.4);
hmin = polystab(h) * norm(h)/norm(polystab(h));

Algorithm polystab finds the roots of the polynomial and maps those roots found outside 
the unit circle to the inside of the unit circle:

v = roots(a);
vs = 0.5*(sign(abs(v)-1)+1);
v = (1-vs).*v + vs./conj(v);
b = a(1)*poly(v);

See Also roots

a z( ) a 1( ) a 2( )z 1– a m 1+( )z m–+ + +=
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7pronyPurpose Prony’s method for time domain IIR filter design

Syntax [b,a] = prony(h,n,m)

Description Prony’s method is an algorithm for finding an IIR filter with a prescribed time 
domain impulse response. It has applications in filter design, exponential 
signal modeling, and system identification (parametric modeling).

[b,a] = prony(h,n,m) finds a filter with numerator order n, denominator 
order m, and the time domain impulse response in h. If the length of h is less 
than the largest order (n or m), h is padded with zeros. prony returns the filter 
coefficients in row vectors b and a, of length n + 1 and m + 1, respectively. The 
filter coefficients are in descending powers of z.

Examples Recover the coefficients of a Butterworth filter from its impulse response:

[b,a] = butter(4,0.2)

b =
0.0048 0.0193 0.0289 0.0193 0.0048

a =
1.0000 -2.3695 2.3140 -1.0547 0.1874

h = filter(b,a,[1 zeros(1,25)]);
[bb,aa] = prony(h,4,4)

bb =
0.0048 0.0193 0.0289 0.0193 0.0048

ab =
1.0000 -2.3695 2.3140 -1.0547 0.1874

Algorithm prony implements the method described in reference [1]. This method uses a 
variation of the covariance method of AR modeling to find the denominator 
coefficients a and then finds the numerator coefficients b for which the impulse 

H z( ) B z( )
A z( )
----------- b 1( ) b 2( )z 1– b n 1+( )z n–+ + +

a 1( ) a 2( )z 1– a m 1+( )z m–+ + +
----------------------------------------------------------------------------------------= =
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response of the output filter matches exactly the first n + 1 samples of x. The 
filter is not necessarily stable, but potentially can recover the coefficients 
exactly if the data sequence is truly an autoregressive moving-average (ARMA) 
process of the correct order.

References [1] Parks, T.W., and C.S. Burrus, Digital Filter Design, John Wiley & Sons, 
1987, pp. 226-228.

See Also butter, cheby1, cheby2, ellip, invfreqz, levinson, lpc, stmcb
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7pulstranPurpose Pulse train

Syntax y = pulstran(t,d,'func')
y = pulstran(t,d,'func',p1,p2,...)
y = pulstran(t,d,p,fs)
y = pulstran(t,d,p)

Description pulstran generates pulse trains from continuous functions or sampled 
prototype pulses.

y = pulstran(t,d,'func') generates a pulse train based on samples of a 
continuous function, 'func', where 'func' is

• 'gauspuls', for generating a Gaussian-modulated sinusoidal pulse

• 'rectpuls', for generating a sampled aperiodic rectangle 

• 'tripuls', for generating a sampled aperiodic triangle 

pulstran is evaluated length(d) times and returns the sum of the evaluations 
y = func(t-d(1)) + func(t-d(2)) + ...

The function is evaluated over the range of argument values specified in 
array t, after removing a scalar argument offset taken from the vector d. Note 
that func must be a vectorized function that can take an array t as an 
argument.

An optional gain factor may be applied to each delayed evaluation by specifying 
d as a two-column matrix, with the offset defined in column 1 and associated 
gain in column 2 of d. Note that a row vector will be interpreted as specifying 
delays only. 

pulstran(t,d,'func',p1,p2,...) allows additional parameters to be passed 
to 'func' as necessary. For example:

func(t-d(1),p1,p2,...) + func(t-d(2),p1,p2,...) + ...

pulstran(t,d,p,fs) generates a pulse train that is the sum of multiple 
delayed interpolations of the prototype pulse in vector p, sampled at the 
rate fs, where p spans the time interval [0,(length(p)-1)/fs], and its 
samples are identically 0 outside this interval. By default, linear interpolation 
is used for generating delays.
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pulstran(t,d,p) assumes that the sampling rate fs is equal to 1 Hz.

pulstran(...,'func') specifies alternative interpolation methods. See 
interp1 for a list of available methods.

Examples Example 1
This example generates an asymmetric sawtooth waveform with a repetition 
frequency of 3 Hz and a sawtooth width of 0.1s. It has a signal length of 1s and 
a 1 kHz sample rate:

t = 0 : 1/1e3 : 1; % 1 kHz sample freq for 1 sec 
d = 0 : 1/3 : 1; % 3 Hz repetition freq 
y = pulstran(t,d,'tripuls',0.1,-1);
plot(t,y)
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Example 2
This example generates a periodic Gaussian pulse signal at 10 kHz, with 50% 
bandwidth. The pulse repetition frequency is 1 kHz, sample rate is 50 kHz, and 
pulse train length is 10 msec. The repetition amplitude should attenuate by 0.8 
each time:

t = 0 : 1/50E3 : 10e-3;
d = [0 : 1/1E3 : 10e-3 ; 0.8.^(0:10)]';
y = pulstran(t,d,'gauspuls',10e3,0.5); 
plot(t,y)
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Example 3
This example generates a train of 10 Hamming windows:

p = hamming(32);
t = 0:320; d = (0:9)'*32;
y = pulstran(t,d,p);
plot(t,y)

See Also chirp, cos, diric, gauspuls, rectpuls, sawtooth, sin, sinc, square, tripuls

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7-482



pwelch
7pwelchPurpose Power spectral density (PSD) using Welch’s method

Syntax [Pxx,w] = pwelch(x)
[Pxx,w] = pwelch(x,window)
[Pxx,w] = pwelch(x,window,noverlap)
[Pxx,w] = pwelch(x,window,noverlap,nfft)
[Pxx,f] = pwelch(x,window,noverlap,nfft,fs)
[...] = pwelch(x,window,noverlap,...,'range')
pwelch(...)

Description Note  pwelch computes the power spectral density, not the power spectrum. 
The difference between them is discussed in “Spectral Analysis” on page 3-5.

[Pxx,w] = pwelch(x) estimates the power spectral density Pxx of the input 
signal vector x using Welch’s averaged modified periodogram method of 
spectral estimation. With this syntax:

• The vector x is segmented into eight sections of equal length, each with 50% 
overlap. 

• Any remaining (trailing) entries in x that cannot be included in the eight 
segments of equal length are discarded.

• Each segment is windowed with a Hamming window (see hamming) that is 
the same length as the segment.

The power spectral density is calculated in units of power per radians per 
sample. The corresponding vector of frequencies w is computed in radians per 
sample, and has the same length as Pxx. 

A real-valued input vector x produces a full power one-sided (in frequency) PSD 
(by default), while a complex-valued x produces a two-sided PSD. 

In general, the length N of the FFT and the values of the input x determine the 
length of Pxx and the range of the corresponding normalized frequencies. For 
this syntax, the (default) length N of the FFT is the larger of 256 and the next 
power of 2 greater than the length of the segment. The following table indicates 
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the length of Pxx and the range of the corresponding normalized frequencies for 
this syntax.

[Pxx,w] = pwelch(x,window) calculates the modified periodogram using 
either:

• The window length window for the Hamming window when window is a 
positive integer

• The window weights specified in window when window is a vector

With this syntax, the input vector x is divided into an integer number of 
segments with 50% overlap, and each segment is the same length as the 
window. Entries in x that are left over after it is divided into segments are 
discarded. If you specify window as the empty vector [], then the signal data is 
divided into eight segments, and a Hamming window is used on each one.

[Pxx,w] = pwelch(x,window,noverlap) divides x into segments according to 
window, and uses the integer noverlap to specify the number of signal samples 
(elements of x) that are common to two adjacent segments. noverlap must be 
less than the length of the window you specify. If you specify noverlap as the 
empty vector [], then pwelch determines the segments of x so that there is 50% 
overlap (default).

[Pxx,w] = pwelch(x,window,noverlap,nfft) uses Welch’s method to 
estimate the PSD while specifying the length of the FFT with the integer nfft. 
If you set nfft to the empty vector [], it adopts the default value for N listed 
in the previous syntax. 

PSD Vector Characteristics for an FFT Length of N (Default)

Real/Complex 
Input Data 

 Length of Pxx Range of the Corresponding 
Normalized Frequencies 

Real-valued (N/2) +1 [0, π]

Complex-valued N [0, 2π)
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The length of Pxx and the frequency range for w depend on nfft and the values 
of the input x. The following table indicates the length of Pxx and the frequency 
range for w for this syntax.

[Pxx,f] = pwelch(x,window,noverlap,nfft,fs) uses the sampling 
frequency fs specified in hertz (Hz) to compute the PSD vector (Pxx) and the 
corresponding vector of frequencies (f). In this case, the units for the frequency 
vector are in Hz. The spectral density produced is calculated in units of power 
per Hz. If you specify fs as the empty vector [], the sampling frequency 
defaults to 1 Hz.

The frequency range for f depends on nfft, fs, and the values of the input x. 
The length of Pxx is the same as in the Table , PSD and Frequency Vector 
Characteristics above. The following table indicates the frequency range for f 
for this syntax.

[...] = pwelch(x,window,noverlap,...,'range') specifies the range of 
frequency values. This syntax is useful when x is real. The string 'range' can be 
either:

PSD and Frequency Vector Characteristics 

Real/Complex 
Input Data 

nfft Even/Odd  Length of Pxx Range of w

Real-valued Even (nfft/2 + 1) [0, π]

Real-valued Odd (nfft + 1)/2 [0, π)

Complex-valued Even or odd nfft [0, 2π)

PSD and Frequency Vector Characteristics with fs Specified

Real/Complex Input Data nfft Even/Odd Range of f

Real-valued Even [0,fs/2]

Real-valued Odd [0,fs/2)

Complex-valued Even or odd [0,fs)
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• 'twosided': Compute the two-sided PSD over the frequency range [0,fs). 
This is the default for determining the frequency range for complex-valued x.

- If you specify fs as the empty vector, [], the frequency range is [0,1). 

- If you don’t specify fs, the frequency range is [0, 2π). 

• 'onesided': Compute the one-sided PSD over the frequency ranges specified 
for real x. This is the default for determining the frequency range for 
real-valued x.

The string 'range' can appear anywhere in the syntax after noverlap.

pwelch(x,...) with no output arguments plots the PSD estimate in dB per 
unit frequency in the current figure window. 

Examples Estimate the PSD of a signal composed of a sinusoid plus noise, sampled at 
1000 Hz. Use 33-sample windows with 32-sample overlap, and the default FFT 
length, and display the two-sided PSD estimate:

randn('state',0);
Fs = 1000;   t = 0:1/Fs:.3;
x = cos(2*pi*t*200) + randn(size(t));  % 200Hz cosine plus noise
pwelch(x,33,32,[],Fs,'twosided')
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Algorithm pwelch calculates the power spectral density using Welch’s method (see 
references):

1 The input signal vector x is divided into k overlapping segments according 
to window and noverlap (or their default values).

2 The specified (or default) window is applied to each segment of x.

3 An nfft-point FFT is applied to the windowed data.

4 The (modified) periodogram of each windowed segment is computed.

5 The set of modified periodograms is averaged to form the spectrum estimate 
S(ejω).

6 The resulting spectrum estimate is scaled to compute the power spectral 
density as , where F isS ejω( ) F⁄
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- 2π when you do not supply the sampling frequency

- fs when you supply the sampling frequency

The number of segments k that x is divided into is calculated as:

• Eight if you don’t specify window, or if you specify it as the empty vector []

•  if you specify window as a nonempty vector or a scalar

In this equation, m is the length of the signal vector x, o is the number of 
overlapping samples (noverlap), and l is the length of each segment (the 
window length).

References [1] Hayes, M., Statistical Digital Signal Processing and Modeling, John Wiley 
& Sons, 1996.

[2] Stoica, P., and R.L. Moses, Introduction to Spectral Analysis, Prentice-Hall, 
Englewood Cliffs, NJ, 1997, pp. 52-54.

[3] Welch, P.D, “The Use of Fast Fourier Transform for the Estimation of Power 
Spectra: A Method Based on Time Averaging Over Short, Modified 
Periodograms,” IEEE Trans. Audio Electroacoustics, Vol. AU-15 (June 1967), 
pp. 70-73.

See Also dspdata.msspectrum, pburg, pcov, peig, periodogram, pmcov, pmtm, pmusic,  
pyulear
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7pyulearPurpose Power spectral density using Yule-Walker AR method

Syntax Pxx = pyulear(x,p)
[Pxx,w] = pyulear(x,p,nfft)
[Pxx,f] = pyulear(x,p,nfft,fs)
[Pxx,f] = pyulear(x,p,nfft,fs,'range')
[Pxx,w] = pyulear(x,p,nfft,'range')
pyulear(...)

Description Pxx = pyulear(x,p) implements the Yule-Walker algorithm, a parametric 
spectral estimation method, and returns Pxx, an estimate of the power spectral 
density (PSD) of the vector x. The entries of x represent samples of a 
discrete-time signal. p is the integer specifying the order of an autoregressive 
(AR) prediction model for the signal, used in estimating the PSD. This estimate 
is also an estimate of the maximum entropy.

The power spectral density is calculated in units of power per radians per 
sample. Real-valued inputs produce full power one-sided (in frequency) PSDs 
(by default), while complex-valued inputs produce two-sided PSDs. 

In general, the length of the FFT and the values of the input x determine the 
length of Pxx and the range of the corresponding normalized frequencies. For 
this syntax, the (default) FFT length is 256. The following table indicates the 
length of Pxx and the range of the corresponding normalized frequencies for 
this syntax.

[Pxx,w] = pyulear(x,p) also returns w, a vector of frequencies at which the 
PSD is estimated. Pxx and w have the same length. The units for frequency are 
rad/sample. 

PSD Vector Characteristics for an FFT Length of 256 (Default)

Real/Complex 
Input Data 

 Length of Pxx Range of the Corresponding 
Normalized Frequencies 

Real-valued 129 [0, π]

Complex-valued 256 [0, 2π)
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[Pxx,w] = pyulear(x,p,nfft) uses the Yule-walker method to estimate the 
PSD while specifying the length of the FFT with the integer nfft. If you specify 
nfft as the empty vector [], it adopts the default value of 256.

The length of Pxx and the frequency range for w depend on nfft and the values 
of the input x. The following table indicates the length of Pxx and the frequency 
range for w for this syntax.

[Pxx,f] = pyulear(x,p,nfft,fs) uses the sampling frequency fs specified 
as an integer in hertz (Hz) to compute the PSD vector (Pxx) and the 
corresponding vector of frequencies (f). In this case, the units for the frequency 
vector are in Hz. The spectral density produced is calculated in units of power 
per Hz. If you specify fs as the empty vector [], the sampling frequency 
defaults to 1 Hz.

The frequency range for f depends on nfft, fs, and the values of the input x. 
The length of Pxx is the same as in the Table , PSD and Frequency Vector 
Characteristics above. The following table indicates the frequency range for f 
for this syntax.

[Pxx,f] = pyulear(x,p,nfft,fs,'range') or

PSD and Frequency Vector Characteristics 

Real/Complex 
Input Data 

nfft Even/Odd  Length of Pxx Range of w

Real-valued Even (nfft/2 + 1) [0, π]

Real-valued Odd (nfft + 1)/2 [0, π)

Complex-valued Even or odd nfft [0, 2π)

PSD and Frequency Vector Characteristics with fs Specified

Real/Complex Input Data nfft Even/Odd Range of f

Real-valued Even [0,fs/2]

Real-valued Odd [0,fs/2)

Complex-valued Even or odd [0,fs)
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[Pxx,w] = pyulear(x,p,nfft,'range') specifies the range of frequency 
values to include in f or w. This syntax is useful when x is real. 'range' can be 
either:

• 'twosided': Compute the two-sided PSD over the frequency range [0,fs). 
This is the default for determining the frequency range for complex-valued x.

- If you specify fs as the empty vector, [], the frequency range is [0,1). 

- If you don’t specify fs, the frequency range is [0, 2π). 

• 'onesided': Compute the one-sided PSD over the frequency ranges specified 
for real x. This is the default for determining the frequency range for 
real-valued x.

Note  You can put the string argument 'range' anywhere in the input 
argument list after p.

pyulear(...) plots the power spectral density in the current figure window. 
The frequency range on the plot is the same as the range of output w (or f) for 
a given set of parameters. 

Remarks The power spectral density is computed as the distribution of power per unit 
frequency. 

This algorithm depends on your selecting an appropriate model order for your 
signal. 

Examples Because the Yule-walker method estimates the spectral density by fitting an 
AR prediction model of a given order to the signal, first generate a signal from 
an AR (all-pole) model of a given order. You can use freqz to check the 
magnitude of the frequency response of your AR filter. This will give you an 
idea of what to expect when you estimate the PSD using pyulear:

a = [1 -2.2137 2.9403 -2.1697 0.9606]; % AR filter coefficients
freqz(1,a) % AR filter frequency response
title('AR System Frequency Response')
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Now generate the input signal x by filtering white noise through the AR filter. 
Estimate the PSD of x based on a fourth-order AR prediction model, since in 
this case, we know that the original AR system model a has order 4:

randn('state',1);
x = filter(1,a,randn(256,1));  % AR system output
pyulear(x,4) % Fourth-order estimate
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Algorithm Linear prediction filters can be used to model the second-order statistical 
characteristics of a signal. The prediction filter output can be used to model the 
signal when the input is white noise. 

pyulear estimates the PSD of an input signal vector using the Yule-Walker AR 
method. This method, also called the autocorrelation or windowed method, fits 
an autoregressive (AR) linear prediction filter model to the signal by 
minimizing the forward prediction error (based on all observations of the in put 
sequence) in the least squares sense. This formulation leads to the 
Yule-Walker equations, which are solved by the Levinson-Durbin recursion. 
The spectral estimate returned by pyulear is the squared magnitude of the 
frequency response of this AR model.
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References [1] Marple, S.L., Digital Spectral Analysis, Prentice-Hall, 1987, Chapter 7.

[2] Stoica, P., and R.L. Moses, Introduction to Spectral Analysis, Prentice-Hall, 
1997.

See Also aryule, lpc, pburg, pcov, peig, periodogram, pmcov, pmtm, pmusic, prony, 
pwelch
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7rc2acPurpose Convert reflection coefficients to autocorrelation sequence

Syntax r = rc2ac(k,r0)

Description r = rc2ac(k,r0) finds the autocorrelation coefficients, r, of the output of the 
discrete-time prediction error filter from the lattice-form reflection coefficients 
k and initial zero-lag autocorrelation r0. 

Examples k = [0.3090    0.9800    0.0031    0.0082   -0.0082];
r0 = 0.1;
a = rc2ac(k,r0)

a =
    0.1000
   -0.0309
   -0.0791
    0.0787
    0.0294
   -0.0950

References [1] Kay, S.M., Modern Spectral Estimation, Prentice-Hall, Englewood Cliffs, 
NJ, 1988.

See Also ac2rc, poly2ac, rc2poly
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7rc2isPurpose Convert reflection coefficients to inverse sine parameters

Syntax isin = rc2is(k)

Description isin = is2rc(k) returns a vector of inverse sine parameters isin from a 
vector of reflection coefficients k. 

Examples k = [0.3090 0.9801 0.0031 0.0082 -0.0082];
isin = rc2is(k)

isin =

    0.2000    0.8728    0.0020    0.0052   -0.0052

References [1] Deller, J.R., J.G. Proakis, and J.H.L. Hansen, “Discrete-Time Processing of 
Speech Signals,” Prentice-Hall, 1993.

See Also is2rc
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7rc2larPurpose Convert reflection coefficients to log area ratio parameters

Syntax g = rc2lar(k)

Description g = rc2lar(k) returns a vector of log area ratio parameters g from a vector of 
reflection coefficients k. 

Examples k = [0.3090 0.9801 0.0031 0.0082 -0.0082];
g = rc2lar(k)

g =
    0.6389    4.6002    0.0062    0.0164   -0.0164

References [1] Deller, J.R., J.G. Proakis, and J.H.L. Hansen, “Discrete-Time Processing of 
Speech Signals,” Prentice-Hall, 1993.

See Also lar2rc
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7rc2polyPurpose Convert reflection coefficients to prediction filter polynomial

Syntax a = rc2poly(k)
[a,efinal] = rc2poly(k,r0)

Description a = rc2poly(k) converts the reflection coefficients k corresponding to the 
lattice structure to the prediction filter polynomial a, with a(1) = 1. The output 
a is row vector of length length(k)+1.

[a,efinal] = rc2poly(k,r0) returns the final prediction error efinal based 
on the zero-lag autocorrelation, r0.

Examples Consider a lattice IIR filter given by reflection coefficients k:

k = [0.3090    0.9800    0.0031    0.0082   -0.0082];

Its equivalent prediction filter representation is given by

a = rc2poly(k)

a =
    1.0000    0.6148    0.9899    0.0000    0.0032   -0.0082

Algorithm rc2poly computes output a using Levinson’s recursion [1]. The function:

1 Sets the output vector a to the first element of k

2 Loops through the remaining elements of k

For each loop iteration i, a = [a + a(i-1:-1:1)*k(i) k(i)].

3 Implements a = [1 a]

References [1] Kay, S.M., Modern Spectral Estimation, Prentice-Hall, Englewood Cliffs, 
NJ, 1988.

See Also ac2poly, latc2tf, latcfilt, poly2rc, rc2ac, rc2is, rc2lar, tf2latc
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7rcepsPurpose Real cepstrum and minimum phase reconstruction

Syntax y = rceps(x)
[y,ym] = rceps(x)

Description The real cepstrum is the inverse Fourier transform of the real logarithm of the 
magnitude of the Fourier transform of a sequence.

Note  rceps only works on real data.

rceps(x) returns the real cepstrum of the real sequence x. The real cepstrum 
is a real-valued function.

[y,ym] = rceps(x) returns both the real cepstrum y and a minimum phase 
reconstructed version ym of the input sequence.

Algorithm rceps is an M-file implementation of algorithm 7.2 in [2], that is,

y = real(ifft(log(abs(fft(x)))));

Appropriate windowing in the cepstral domain forms the reconstructed 
minimum phase signal:

w = [1; 2*ones(n/2-1,1); ones(1 - rem(n,2),1); zeros(n/2-1,1)];
ym = real(ifft(exp(fft(w.*y))));

References [1] Oppenheim, A.V., and R.W. Schafer, Digital Signal Processing, Englewood 
Cliffs, NJ, Prentice-Hall, 1975.

[2] Programs for Digital Signal Processing, IEEE Press, New York, 1979.

See Also cceps, fft, hilbert, icceps, unwrap
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7rectpulsPurpose Sampled aperiodic rectangle

Syntax y = rectpuls(t)
y = rectpuls(t,w)

Description y = rectpuls(t) returns a continuous, aperiodic, unity-height rectangular 
pulse at the sample times indicated in array t, centered about t = 0 and with a 
default width of 1. Note that the interval of non-zero amplitude is defined to be 
open on the right, that is, rectpuls(-0.5) = 1 while rectpuls(0.5) = 0. 

y = rectpuls(t,w) generates a rectangle of width w.

rectpuls is typically used in conjunction with the pulse train generating 
function pulstran.

See Also chirp, cos, diric, gauspuls, pulstran, sawtooth, sin, sinc, square, tripuls
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7rectwinPurpose Rectangular window

Syntax w = rectwin(n)

Description w = rectwin(n) returns a rectangular window of length n in the column 
vector w. This function is provided for completeness; a rectangular window is 
equivalent to no window at all.

Algorithm w = ones(n,1);

References [1] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. 
Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 468-471.

See Also barthannwin, bartlett, blackmanharris, bohmanwin, nuttallwin, parzenwin, 
triang, window, wintool, wvtool
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7resamplePurpose Change sampling rate by rational factor

Syntax y = resample(x,p,q)
y = resample(x,p,q,n)
y = resample(x,p,q,n,beta)
y = resample(x,p,q,b)
[y,b] = resample(x,p,q)

Description y = resample(x,p,q) resamples the sequence in vector x at p/q times the 
original sampling rate, using a polyphase filter implementation. p and q must 
be positive integers. The length of y is equal to ceil(length(x)*p/q). If x is a 
matrix, resample works down the columns of x.

resample applies an anti-aliasing (lowpass) FIR filter to x during the 
resampling process. It designs the filter using firls with a Kaiser window.

y = resample(x,p,q,n) uses n terms on either side of the current sample, 
x(k), to perform the resampling. The length of the FIR filter resample uses is 
proportional to n; larger values of n provide better accuracy at the expense of 
more computation time. The default for n is 10. If you let n = 0, resample 
performs a nearest-neighbor interpolation

y(k) = x(round((k-1)*q/p)+1)

where y(k) = 0 if the index to x is greater than length(x).

y = resample(x,p,q,n,beta) uses beta as the design parameter for the 
Kaiser window that resample employs in designing the lowpass filter. The 
default for beta is 5.

y = resample(x,p,q,b) filters x using the vector of filter coefficients b.

[y,b] = resample(x,p,q) returns the vector b, which contains the 
coefficients of the filter applied to x during the resampling process.

Examples Resample a simple linear sequence at 3/2 the original rate:

fs1 = 10;            % Original sampling frequency in Hz
t1 = 0:1/fs1:1;      % Time vector
x = t1;              % Define a linear sequence
y = resample(x,3,2); % Now resample it
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t2 = (0:(length(y)-1))*2/(3*fs1); % New time vector
plot(t1,x,'*',t2,y,'o',-0.5:0.01:1.5,-0.5:0.01:1.5,':')
legend('original','resampled'); xlabel('Time')

Notice that the last few points of the output y are inaccurate. In its filtering 
process, resample assumes the samples at times before and after the given 
samples in x are equal to zero. Thus large deviations from zero at the end 
points of the sequence x can cause inaccuracies in y at its end points. The 
following two plots illustrate this side effect of resample:

x = [1:10 9:-1:1]; y = resample(x,3,2);
subplot(2,1,1);
plot(1:19,x,'*',(0:28)*2/3 + 1,y,'o');
title('Edge Effects Not Noticeable');
legend('original','resampled');

x = [10:-1:1 2:10]; y = resample(x,3,2);
subplot(2,1,2);
plot(1:19,x,'*',(0:28)*2/3 + 1,y,'o')
title('Edge Effects Very Noticeable');
legend('original','resampled');
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Algorithm resample performs an FIR design using firls, followed by rate changing 
implemented with upfirdn.

See Also decimate, downsample, firls, interp, interp1, intfilt, kaiser, mfilt, 
spline, upfirdn, upsample
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7residuezPurpose z-transform partial-fraction expansion

Syntax [r,p,k] = residuez(b,a)
[b,a] = residuez(r,p,k)

Description residuez converts a discrete time system, expressed as the ratio of two 
polynomials, to partial fraction expansion, or residue, form. It also converts the 
partial fraction expansion back to the original polynomial coefficients.

[r,p,k] = residuez(b,a) finds the residues, poles, and direct terms of a 
partial fraction expansion of the ratio of two polynomials, b(z) and a(z). 
Vectors b and a specify the coefficients of the polynomials of the discrete-time 
system b(z)/a(z) in descending powers of z.

If there are no multiple roots and a > n-1,

The returned column vector r contains the residues, column vector p contains 
the pole locations, and row vector k contains the direct terms. The number of 
poles is

n = length(a)-1 = length(r) = length(p)

The direct term coefficient vector k is empty if length(b) is less than 
length(a); otherwise:

length(k) = length(b) - length(a) + 1

If p(j) = ... = p(j+s-1) is a pole of multiplicity s, then the expansion 
includes terms of the form

b z( ) b0 b1z 1– b2z 2– bmz m–+ + + +=

a z( ) a0 a1z 1– a2z 2– anz n–+ + + +=

b z( )
a z( )
---------- r 1( )

1 p 1( )z 1––
---------------------------- r n( )

1 p n( )z 1––
----------------------------- k 1( ) k 2( )z 1– k m n 1+–( )z m n–( )–+ + + + + +=

r j( )
1 p j( )z 1––
--------------------------- r j 1+( )

1 p j( )z 1––( )2
-----------------------------------

r j sr 1–+( )

1 p j( )z 1––( )sr
------------------------------------+ + +
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[b,a] = residuez(r,p,k) with three input arguments and two output 
arguments, converts the partial fraction expansion back to polynomials with 
coefficients in row vectors b and a.

The residue function in the standard MATLAB language is very similar to 
residuez. It computes the partial fraction expansion of continuous-time 
systems in the Laplace domain (see reference [1]), rather than discrete-time 
systems in the z-domain as does residuez.

Algorithm residuez applies standard MATLAB functions and partial fraction techniques 
to find r, p, and k from b and a. It finds

• The direct terms a using deconv (polynomial long division) when 
length(b) > length(a)-1.

• The poles using p = roots(a). 

• Any repeated poles, reordering the poles according to their multiplicities.

• The residue for each nonrepeating pole pi by multiplying b(z)/a(z) by 
1/(1 - piz

-1) and evaluating the resulting rational function at z = pi. 

• The residues for the repeated poles by solving

S2*r2 = h - S1*r1

for r2 using \. h is the impulse response of the reduced b(z)/a(z), S1 is a 
matrix whose columns are impulse responses of the first-order systems made 
up of the nonrepeating roots, and r1 is a column containing the residues for 
the nonrepeating roots. Each column of matrix S2 is an impulse response. 
For each root pj of multiplicity sj, S2 contains sj columns representing the 
impulse responses of each of the following systems.

The vector h and matrices S1 and S2 have n + xtra rows, where n is the total 
number of roots and the internal parameter xtra, set to 1 by default, 
determines the degree of overdetermination of the system of equations. 

References [1] Oppenheim, A.V., and R.W. Schafer, Digital Signal Processing, 
Prentice-Hall, Englewood Cliffs, NJ, 1975, pp. 166-170.

1
1 pjz 1––
----------------------- 1

1 pjz 1––( )2
------------------------------- 1

1 pjz 1––( )sj
--------------------------------, , ,
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See Also convmtx, deconv, poly, prony, residue, roots, ss2tf, tf2ss, tf2zp, tf2zpk, 
zp2ss
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7rlevinsonPurpose Reverse Levinson-Durbin recursion

Syntax r = rlevinson(a,efinal)
[r,u] = rlevinson(a,efinal)
[r,u,k] = rlevinson(a,efinal)
[r,u,k,e] = rlevinson(a,efinal)

Description The reverse Levinson-Durbin recursion implements the step-down algorithm 
for solving the following symmetric Toeplitz system of linear equations for r, 
where r = [r(1)   r(p+1)] and r(i)* denotes the complex conjugate of r(i).

r = rlevinson(a,efinal) solves the above system of equations for r given 
vector a, where a = [1 a(2) a(p+1)]. In linear prediction applications, r 
represents the autocorrelation sequence of the input to the prediction error 
filter, where r(1) is the zero-lag element. The figure below shows the typical 
filter of this type, where H(z) is the optimal linear predictor, x(n) is the input 
signal,  is the predicted signal, and e(n) is the prediction error. 

 

Input vector a represents the polynomial coefficients of this prediction error 
filter in descending powers of z.

r 1( ) r 2( )∗ r p( )∗

r 2( ) r 1( ) r p 1–( )∗

r p( ) r 2( ) r 1( )

a 2( )
a 3( )

a p 1+( )

r 2( )–

r 3( )–

r p 1+( )–

=

x̂ n( )

H z( ) a– 2( )z
1–

a– 3( )z
2– – a– n 1+( )z

p–
= Σ

x̂ n( )x n( )
–

+
e n( )

Prediction Error 

A z( )

A z( ) 1 a 2( )z 1– a n 1+( )z p–+ + +=
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The filter must be minimum phase to generate a valid autocorrelation 
sequence. efinal is the scalar prediction error power, which is equal to the 
variance of the prediction error signal, σ2(e).

[r,u] = rlevinson(a,efinal) returns upper triangular matrix U from the 
UDU* decomposition 

where 

and E is a diagonal matrix with elements returned in output e (see below). This 
decomposition permits the efficient evaluation of the inverse of the 
autocorrelation matrix, R-1. 

Output matrix u contains the prediction filter polynomial, a, from each 
iteration of the reverse Levinson-Durbin recursion

where ai(j) is the jth coefficient of the ith order prediction filter polynomial (i.e., 
step i in the recursion). For example, the 5th order prediction filter polynomial 
is 

a5 = u(5:-1:1,5)'

Note that u(p+1:-1:1,p+1)' is the input polynomial coefficient vector a.

R 1– UE 1– U∗
=

R

r 1( ) r 2( )∗ r p( )∗

r 2( ) r 1( ) r p 1–( )∗

r p( ) r 2( ) r 1( )

=

U

a1 1( )∗ a2 2( )∗ ap 1+ p 1+( )∗

0 a2 1( )∗ ap 1+ p( )∗

0 0 ap 1+ p 1–( )∗

0 0 ap 1+ 1( )∗

=
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[r,u,k] = rlevinson(a,efinal) returns a vector k of length (p+1) containing 
the reflection coefficients. The reflection coefficients are the conjugates of the 
values in the first row of u.

k = conj(u(1,2:end))

[r,u,k,e] = rlevinson(a,efinal) returns a vector of length p+1 containing 
the prediction errors from each iteration of the reverse Levinson-Durbin 
recursion: e(1) is the prediction error from the first-order model, e(2) is the 
prediction error from the second-order model, and so on. 

These prediction error values form the diagonal of the matrix E in the UDU* 
decomposition of R-1.

References [1] Kay, S.M., Modern Spectral Estimation: Theory and Application, 
Prentice-Hall, Englewood Cliffs, NJ, 1988.

See Also levinson, lpc, prony, stmcb

R 1– UE 1– U∗
=
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7rooteigPurpose Frequency and power content using eigenvector method

Syntax [w,pow] = rooteig(x,p)
[f,pow] = rooteig(...,fs)
[w,pow] = rooteig(...,'corr')

Description [w,pow] = rooteig(x,p) estimates the frequency content in the time samples 
of a signal x, and returns w, a vector of frequencies in rad/sample, and the 
corresponding signal power in the vector pow in units of power, such as volts^2. 
The input signal x is specified either as:

• A row or column vector representing one observation of the signal

• A rectangular array for which each row of x represents a separate 
observation of the signal (for example, each row is one output of an array of 
sensors, as in array processing), such that x'*x is an estimate of the 
correlation matrix 

Note  You can use the output of corrmtx to generate such an array x.

You can specify the second input argument p as either:

• A scalar integer. In this case, the signal subspace dimension is p.

• A two-element vector. In this case, p(2), the second element of p, represents 
a threshold that is multiplied by λmin, the smallest estimated eigenvalue of 
the signal’s correlation matrix. Eigenvalues below the threshold λmin*p(2) 
are assigned to the noise subspace. In this case, p(1) specifies the maximum 
dimension of the signal subspace.

The extra threshold parameter in the second entry in p provides you more 
flexibility and control in assigning the noise and signal subspaces. 

The length of the vector w is the computed dimension of the signal subspace. 
For real-valued input data x, the length of the corresponding power vector pow 
is given by 

length(pow) = 0.5*length(w)

For complex-valued input data x, pow and w have the same length.
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[f,pow] = rooteig(...,fs) returns the vector of frequencies f calculated 
in Hz. You supply the sampling frequency fs in Hz. If you specify fs with the 
empty vector [], the sampling frequency defaults to 1 Hz.

[w,pow] = rooteig(...,'corr') forces the input argument x to be 
interpreted as a correlation matrix rather than a matrix of signal data. For this 
syntax, you must supply a square matrix for x, and all of its eigenvalues must 
be nonnegative. 

Note  You can place the string 'corr' anywhere after p.

Examples Find the frequency content in a signal composed of three complex exponentials 
in noise. Use the modified covariance method to estimate the correlation 
matrix used by the eigenvector method:

randn('state',1); n=0:99;   
s = exp(i*pi/2*n)+2*exp(i*pi/4*n)+exp(i*pi/3*n)+randn(1,100); 

% Estimate correlation matrix using modified covariance method.

X=corrmtx(s,12,'mod'); 
[W,P] = rooteig(X,3)

W =
    0.7811
    1.5767
    1.0554

P =
    3.9971
    1.1362
    1.4102

Algorithm The eigenvector method used by rooteig is the same as that used by peig. The 
algorithm performs eigenspace analysis of the signal’s correlation matrix in 
order to estimate the signal’s frequency content. 

The difference between peig and rooteig is:
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• peig returns the pseudospectrum at all frequency samples.

• rooteig returns the estimated discrete frequency spectrum, along with the 
corresponding signal power estimates.

rooteig is most useful for frequency estimation of signals made up of a sum of 
sinusoids embedded in additive white Gaussian noise.

See Also corrmtx, peig, pmusic, powerest method of spectrum, rootmusic, 
spectrum.eigenvector
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7rootmusicPurpose Ffrequency and power content using root MUSIC algorithm

Syntax [w,pow] = rootmusic(x,p)
[f,pow] = rootmusic(...,fs)
[w,pow] = rootmusic(...,'corr')

Description [w,pow] = rootmusic(x,p) estimates the frequency content in the time 
samples of a signal x, and returns w, a vector of frequencies in rad/sample, and 
the corresponding signal power in the vector pow in dB per rad/sample. The 
input signal x is specified either as:

• A row or column vector representing one observation of the signal

• A rectangular array for which each row of x represents a separate 
observation of the signal (for example, each row is one output of an array of 
sensors, as in array processing), such that x'*x is an estimate of the 
correlation matrix 

Note  You can use the output of corrmtx to generate such an array x.

The second input argument, p is the number of complex sinusoids in x. You can 
specify p as either:

• A scalar integer. In this case, the signal subspace dimension is p.

• A two-element vector. In this case, p(2), the second element of p, represents 
a threshold that is multiplied by λmin, the smallest estimated eigenvalue of 
the signal’s correlation matrix. Eigenvalues below the threshold λmin*p(2) 
are assigned to the noise subspace. In this case, p(1) specifies the maximum 
dimension of the signal subspace.

The extra threshold parameter in the second entry in p provides you more 
flexibility and control in assigning the noise and signal subspaces. 

The length of the vector w is the computed dimension of the signal subspace. 
For real-valued input data x, the length of the corresponding power vector pow 
is given by 

length(pow) = 0.5*length(w)
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For complex-valued input data x, pow and w have the same length.

[f,pow] = rootmusic(...,fs) returns the vector of frequencies f calculated 
in Hz. You supply the sampling frequency fs in Hz. If you specify fs with the 
empty vector [], the sampling frequency defaults to 1 Hz.

[w,pow] = rootmusic(...,'corr') forces the input argument x to be 
interpreted as a correlation matrix rather than a matrix of signal data. For this 
syntax, you must supply a square matrix for x, and all of its eigenvalues must 
be nonnegative. 

Note  You can place the string 'corr' anywhere after p.

Examples Find the frequency content in a signal composed of three complex exponentials 
in noise. Use the modified covariance method to estimate the correlation 
matrix used by the MUSIC algorithm:

randn('state',1); n=0:99;   
s = exp(i*pi/2*n)+2*exp(i*pi/4*n)+exp(i*pi/3*n)+randn(1,100);

% Estimate correlation matrix using modified covariance method.

X=corrmtx(s,12,'mod'); 
[W,P] = rootmusic(X,3)

W =
    1.5769
    0.7817
    1.0561

P =
    1.1358
    3.9975
    1.4102

Algorithm The MUSIC algorithm used by rootmusic is the same as that used by pmusic. 
The algorithm performs eigenspace analysis of the signal’s correlation matrix 
in order to estimate the signal’s frequency content. 
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The difference between pmusic and rootmusic is:

• pmusic returns the pseudospectrum at all frequency samples.

• rootmusic returns the estimated discrete frequency spectrum, along with 
the corresponding signal power estimates.

rootmusic is most useful for frequency estimation of signals made up of a sum 
of sinusoids embedded in additive white Gaussian noise.

Diagnostics If the input signal, x is real and an odd number of sinusoids, p is specified, this 
error message is displayed

Real signals require an even number p of complex sinusoids.

See Also corrmtx, peig, pmusic, powerest method of spectrum, rooteig, 
spectrum.music
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7sawtoothPurpose Sawtooth or triangle wave

Syntax x = sawtooth(t)
x = sawtooth(t,width)

Description sawtooth(t) generates a sawtooth wave with period 2π for the elements of 
time vector t. sawtooth(t) is similar to sin(t), but creates a sawtooth wave 
with peaks of -1 and 1 instead of a sine wave. The sawtooth wave is defined to 
be -1 at multiples of 2π and to increase linearly with time with a slope of 1/π at 
all other times.

sawtooth(t,width) generates a modified triangle wave where width, a scalar 
parameter between 0 and 1, determines the point between 0 and 2π at which 
the maximum occurs. The function increases from -1 to 1 on the interval 0 to 
2π*width, then decreases linearly from 1 to -1 on the interval 2π*width to 2π. 
Thus a parameter of 0.5 specifies a standard triangle wave, symmetric about 
time instant π with peak-to-peak amplitude of 1. sawtooth(t,1) is equivalent 
to sawtooth(t).

See Also chirp, cos, diric, gauspuls, pulstran, rectpuls, sin, sinc, square, tripuls
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7schurrcPurpose Compute reflection coefficients from autocorrelation sequence

Syntax k = schurrc(r)
[k,e] = schurrc(r)

Description k = schurrc(r) uses the Schur algorithm to compute a vector k of reflection 
coefficients from a vector r representing an autocorrelation sequence. k and r 
are the same size. The reflection coefficients represent the lattice parameters 
of a prediction filter for a signal with the given autocorrelation sequence, r. 
When r is a matrix, schurrc treats each column of r as an independent 
autocorrelation sequence, and produces a matrix k, the same size as r. Each 
column of k represents the reflection coefficients for the lattice filter for 
predicting the process with the corresponding autocorrelation sequence r.

[k,e] = schurrc(r) also computes the scalar e, the prediction error variance. 
When r is a matrix, e is a row vector. The length of e is the same as the number 
of columns of r. 

Examples Create an autocorrelation sequence from the MATLAB speech signal contained 
in mtlb.mat, and use the Schur algorithm to compute the reflection coefficients 
of a lattice prediction filter for this autocorrelation sequence:

load mtlb
r = xcorr(mtlb(1:5),'unbiased');
k = schurrc(r(5:end))

k =
   -0.7583
    0.1384
    0.7042
   -0.3699

References [1] Proakis, J. and D. Manolakis, Digital Signal Processing: Principles, 
Algorithms, and Applications, Third edition, Prentice-Hall, 1996, pp. 868-873.

See Also levinson
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7seqperiodPurpose Compute the period of a sequence

Syntax p = seqperiod(x)
[p,num] = seqperiod(x)

Description p = seqperiod(x) returns the integer p that corresponds to the period of the 
sequence in a vector x. The period p is computed as the minimum length of a 
subsequence x(1:p) of x that repeats itself continuously every p samples in x. 
The length of x does not have to be a multiple of p, so that an incomplete 
repetition is permitted at the end of x. If the sequence x is not periodic, then 
p = length(x).

• If x is a matrix, then seqperiod checks for periodicity along each column of x. 
The resulting output p is a row vector with the same number of columns as x.

• If x is a multidimensional array, then seqperiod checks for periodicity along 
the first nonsingleton dimension of x. In this case:

- p is a multidimensional array of integers with a leading singleton 
dimension.

- The lengths of the remaining dimensions of p correspond to those of the 
dimensions of x after the first nonsingleton one.

[p,num] = seqperiod(x) also returns the number num of repetitions of x(1:p) 
in x. num might not be an integer. 

Examples x = [4 0 1 6; 
2 0 2 7; 
4 0 1 5; 
2 0 5 6];

p = seqperiod(x)

p =
     2     1     4 3

The result implies:

• The first column of x has period 2.

• The second column of x has period 1.

• The third column of x is not periodic, so p(3) is just the number of rows of x.
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• The fourth column of x has period 3, although the last (second) repetition of 
the periodic sequence is incomplete.
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7sgolayPurpose Savitzky-Golay filter design

Syntax b = sgolay(k,f)
b = sgolay(k,f,w)
[b,g] = sgolay(...)

Description b = sgolay(k,f) designs a Savitzky-Golay FIR smoothing filter b. The 
polynomial order k must be less than the frame size, f, which must be odd. If 
k = f-1, the designed filter produces no smoothing. The output, b, is an f-by-f 
matrix whose rows represent the time-varying FIR filter coefficients. In a 
smoothing filter implementation (for example, sgolayfilt), the last (f-1)/2 
rows (each an FIR filter) are applied to the signal during the startup transient, 
and the first (f-1)/2 rows are applied to the signal during the terminal 
transient. The center row is applied to the signal in the steady state.

b = sgolay(k,f,w) specifies a weighting vector w with length f, which 
contains the real, positive-valued weights to be used during the least-squares 
minimization.

[b,g] = sgolay(...) returns the matrix g of differentiation filters. Each 
column of g is a differentiation filter for derivatives of order p-1 where p is the 
column index.  Given a signal x of length f, you can find an estimate of the pth 
order derivative, xp, of its middle value from:

xp((f+1)/2) = (factorial(p)) * g(:,p+1)' * x

Remarks Savitzky-Golay smoothing filters (also called digital smoothing polynomial 
filters or least squares smoothing filters) are typically used to “smooth out” a 
noisy signal whose frequency span (without noise) is large. In this type of 
application, Savitzky-Golay smoothing filters perform much better than 
standard averaging FIR filters, which tend to filter out a significant portion of 
the signal’s high frequency content along with the noise. Although 
Savitzky-Golay filters are more effective at preserving the pertinent high 
frequency components of the signal, they are less successful than standard 
averaging FIR filters at rejecting noise. 

Savitzky-Golay filters are optimal in the sense that they minimize the 
least-squares error in fitting a polynomial to each frame of noisy data. 
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Examples Use sgolay to smooth a noisy sinusoid and display the result and the first and 
second derivatives:

N = 4;
F = 21;
[b,g]=sgolay(N,F);
x=5*sin(.4*pi*0:.2:199);
y=x+randn(1,996); % Noisy sinusoid

for n = (F+1)/2:996-(F+1)/2,
% Zero-th order derivative (equivalent to sgolayfilt except
% that it doesn't compute transients)

z0(n)=g(:,1)'*y(n - (F+1)/2 + 1: n + (F+1)/2 - 1)';
% 1st order derivative

z1(n)=g(:,2)'*y(n - (F+1)/2 + 1: n + (F+1)/2 - 1)';
% 2nd order derivative

z2(n)=2*g(:,3)'*y(n - (F+1)/2 + 1: n + (F+1)/2 - 1)';
end

plot([x(1:length(z0))',y(1:length(z0))',z0'])
legend('Noiseless sinusoid','Noisy sinusoid',...
'Smoothed sinusoid')
figure
plot([diff(x(1:length(z0)+1))',z1'])
legend('Noiseless first-order derivative',...
'Smoothed first-order derivative')
figure
plot([diff(diff(x(1:length(z0)+2)))',z2'])
legend('Noiseless second-order derivative',...
'Smoothed second-order derivative')

Note  The figures below are zoomed in the figure window to show more detail.
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Zeroth Order
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First Derivative
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Second Derivative

References [1] Orfanidis, S.J., Introduction to Signal Processing, Prentice-Hall, Englewood 
Cliffs, NJ, 1996.

See Also fir1, firls, filter, sgolayfilt
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7sgolayfiltPurpose Savitzky-Golay filtering

Syntax y = sgolayfilt(x,k,f)
y = sgolayfilt(x,k,f,w)
y = sgolayfilt(x,k,f,w,dim)

Description y = sgolayfilt(x,k,f) applies a Savitzky-Golay FIR smoothing filter to the 
data in vector x. If x is a matrix, sgolayfilt operates on each column. The 
polynomial order k must be less than the frame size, f, which must be odd. If 
k = f-1, the filter produces no smoothing. 

y = sgolayfilt(x,k,f,w) specifies a weighting vector w with length f, which 
contains the real, positive-valued weights to be used during the least-squares 
minimization. If w is not specified or if it is specified as empty, [], w defaults to 
an identity matrix.

y = sgolayfilt(x,k,f,w,dim) specifies the dimension, dim, along which the 
filter operates. If dim is not specified, sgolayfilt operates along the first 
non-singleton dimension; that is, dimension 1 for column vectors and 
nontrivial matrices, and dimension 2 for row vectors.

Remarks Savitzky-Golay smoothing filters (also called digital smoothing polynomial 
filters or least-squares smoothing filters) are typically used to “smooth out” a 
noisy signal whose frequency span (without noise) is large. In this type of 
application, Savitzky-Golay smoothing filters perform much better than 
standard averaging FIR filters, which tend to filter out a significant portion of 
the signal’s high frequency content along with the noise. Although 
Savitzky-Golay filters are more effective at preserving the pertinent high 
frequency components of the signal, they are less successful than standard 
averaging FIR filters at rejecting noise. 

Savitzky-Golay filters are optimal in the sense that they minimize the 
least-squares error in fitting a polynomial to frames of noisy data. 

Examples Smooth the mtlb signal by applying a cubic Savitzky-Golay filter to data 
frames of length 41:

load mtlb % Load the data.
smtlb = sgolayfilt(mtlb,3,41); % Apply the 3rd-order filter.
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subplot(2,1,1)
plot([1:2000],mtlb(1:2000)); axis([0 2000 -4 4]);
title('mtlb'); grid;

subplot(2,1,2)
plot([1:2000],smtlb(1:2000)); axis([0 2000 -4 4]);
title('smtlb'); grid;

References [1] Orfanidis, S.J., Introduction to Signal Processing, Prentice-Hall, Englewood 
Cliffs, NJ, 1996.

See Also medfilt1, filter, sgolay, sosfilt
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7sigwinPurpose Signal processing windows  

Syntax w = sigwin.window(input1,...)

Description w = sigwin.window returns a window object, w, of type window. Each window 
takes one or more inputs. If you specify a sigwin.window with no inputs, a 
default window of length 64 is created.

Note  You must use a window with sigwin. 

Constructors
window for sigwin specifies the type of window. All windows in the Signal 
Processing Toolbox are available for use with sigwin. For a complete list, see 
the window reference page.

Methods
Methods provide ways of performing functions directly on your sigwin object 
without having to specify the window parameters again. You can apply this 
method directly on the variable you assigned to your sigwin object. 

Method Description

generate Returns a column vector of values representing the window.

info Returns information about the window object.

winwrite Writes an ASCII file that contains window weights for a 
single window object or a vector of window objects. Default 
filename is untitled.wf.

winwrite(Hd,filename) writes to a disk file named 
filename in the current working directory.  The .wf 
extension is added automatically.
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Viewing Object Parameters
As with any object, you can use get to view a sigwin object’s parameters. To 
see a specific parameter,

 get(w,'parameter') 

or to see all parameters for an object, 

get(w)

Changing Object Parameters
To set specific parameters, 

set(w,'parameter1',value,'parameter2',value,...) 

Note that you must use single quotation marks around the parameter name.  

Examples Create a default Bartlett window and view the results in the Window 
Visualization Tool (wvtool). See bartlett for information on Bartlett windows:

w=sigwin.bartlett

w = 
    Length: 64
      Name: 'Bartlett'

wvtool(w)
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Create a 128-point Chebyshev window with 100 dB of sidelobe attenuation. 
(See chebwin for information on Chebyshev windows.) View the results of this 
and the above Bartlett window in the Window Design and Analysis Tool 
(wintool):

w1=sigwin.chebwin(128,100)

w1 =
 
            Length: 128
              Name: 'Chebyshev'

SidelobeAtten: 100

wintool(w,w1)
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To save the window values in a vector, use:

d = generate(w);

See Also window, wintool, wvtool
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7sincPurpose Sinc function

Syntax y = sinc(x)

Description sinc computes the sinc function of an input vector or array, where the sinc 
function is 

This function is the continuous inverse Fourier transform of the rectangular 
pulse of width 2π and height 1.

y = sinc(x) returns an array y the same size as x, whose elements are the 
sinc function of the elements of x.

The space of functions bandlimited in the frequency range  is 
spanned by the infinite (yet countable) set of sinc functions shifted by integers. 
Thus any such bandlimited function g(t) can be reconstructed from its samples 
at integer spacings.

Examples Perform ideal bandlimited interpolation by assuming that the signal to be 
interpolated is 0 outside of the given time interval and that it has been sampled 
at exactly the Nyquist frequency:

t = (1:10)'; % A column vector of time samples
randn('state',0);
x = randn(size(t)); % A column vector of data

ts = linspace(-5,15,600)'; % times at which to interpolate data

sinc t( )
1 t 0=,

πt( )sin
πt

------------------- t 0≠,
⎩
⎪
⎨
⎪
⎧

=

sinc t( ) 1
2π
------ ejωt ωd

π–

π

∫=

ω π– π[ , ]∈

g t( ) g n( )sinc t n–( )

n ∞–=

∞

∑=
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y = sinc(ts(:,ones(size(t))) - t(:,ones(size(ts)))')*x;
plot(t,x,'o',ts,y)

See Also chirp, cos, diric, gauspuls, pulstran, rectpuls, sawtooth, sin, square, 
tripuls
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7sos2cellPurpose Convert second-order sections matrix to cell arrays

Syntax c = sos2cell(m)

c = sos2cell(m,g)

Description c = sos2cell(m) changes an L-by-6 second-order section matrix m generated 
by tf2sos into a 1-by-L cell array of 1-by-2 cell arrays c. You can use c to 
specify a quantized filter with L cascaded second-order sections.

The matrix m should have the form

m = [b1 a1;b2 a2; ... ;bL aL]

where both bi and ai, with i = 1, ..., L, are 1-by-3 row vectors. The resulting c 
is a 1-by-L cell array of cells of the form

c = { {b1 a1} {b2 a2} ... {bL aL} }

c = sos2cell(m,g) with the optional gain term g, prepends the constant 
value g to c. When you use the added gain term in the command, c is a 1-by-L 
cell array of cells of the form

c = {{g,1} {b1,a1} {b2,a2}...{bL,aL} }

Examples Use sos2cell to convert the 2-by-6 second-order section matrix produced by 
tf2sos into a 1-by-2 cell array c of cells. Display the second entry in the first 
cell in c:

[b,a] = ellip(4,0.5,20,0.6);
m = tf2sos(b,a);
c = sos2cell(m);
c{1}{2}

ans =

    1.0000    0.1677    0.2575

See Also tf2sos, cell2sos
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7sos2ssPurpose Convert digital filter second-order section parameters to state-space form

Syntax [A,B,C,D] = sos2ss(sos)
[A,B,C,D] = sos2ss(sos,g)

Description sos2ss converts a second-order section representation of a given digital filter 
to an equivalent state-space representation.

[A,B,C,D] = sos2ss(sos) converts the system sos, in second-order section 
form, to a single-input, single-output state-space representation.

The discrete transfer function in second-order section form is given by

sos is a L-by-6 matrix organized as

The entries of sos must be real for proper conversion to state space. The 
returned matrix A is size N-by-N, where N = 2L-1, B is a length N-1 column 
vector, C is a length N-1 row vector, and D is a scalar.

[A,B,C,D] = sos2ss(sos,g) converts the system sos in second-order section 
form with gain g.

x n 1+[ ] Ax n[ ] Bu n[ ]+=

y n[ ] Cx n[ ] Du n[ ]+=

H z( ) Hk z( )

k 1=

L

∏
b0k b1kz 1– b2kz 2–+ +

1 a1kz 1– a2kz 2–+ +
----------------------------------------------------------

k 1=

L

∏= =

sos

b01 b11 b21 1 a11 a21

b02 b12 b22 1 a12 a22

b0L b1L b2L 1 a1L a2L

=

H z( ) g Hk z( )

k 1=

L

∏=
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Examples Compute the state-space representation of a simple second-order section 
system with a gain of 2:

sos = [1  1  1  1  0 -1; -2  3  1  1 10  1];
[A,B,C,D] = sos2ss(sos)

A =
   -10     0    10     1
     1     0     0     0
     0     1     0     0
     0     0     1     0

B =
     1
     0
     0
     0

C =
    21     2   -16    -1

D =
    -2

Algorithm sos2ss first converts from second-order sections to transfer function using 
sos2tf, and then from transfer function to state-space using tf2ss.

See Also sos2tf, sos2zp, ss2sos, tf2ss, zp2ss
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7sos2tfPurpose Convert digital filter second-order section data to transfer function form

Syntax [b,a] = sos2tf(sos)
[b,a] = sos2tf(sos,g)

Description sos2tf converts a second-order section representation of a given digital filter 
to an equivalent transfer function representation.

[b,a] = sos2tf(sos) returns the numerator coefficients b and denominator 
coefficients a of the transfer function that describes a discrete-time system 
given by sos in second-order section form. The second-order section format of 
H(z) is given by

sos is an L-by-6 matrix that contains the coefficients of each second-order 
section stored in its rows.

Row vectors b and a contain the numerator and denominator coefficients of 
H(z) stored in descending powers of z.

[b,a] = sos2tf(sos,g) returns the transfer function that describes a 
discrete-time system given by sos in second-order section form with gain g.

H z( ) Hk z( )

k 1=

L

∏
b0k b1kz 1– b2kz 2–+ +

1 a1kz 1– a2kz 2–+ +
----------------------------------------------------------

k 1=

L

∏= =

sos

b01 b11 b21 1 a11 a21

b02 b12 b22 1 a12 a22

b0L b1L b2L 1 a1L a2L

=

H z( ) B z( )
A z( )
-----------

b1 b2z 1– bn 1+ z n–+ + +

a1 a2z 1– am 1+ z m–+ + +
------------------------------------------------------------------------= =

H z( ) g Hk z( )

k 1=

L

∏=
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Examples Compute the transfer function representation of a simple second-order section 
system:

sos = [1  1  1  1  0 -1; -2  3  1  1 10  1];
[b,a] = sos2tf(sos)

b =
   -2     1     2     4     1

a =
    1    10     0    -10    -1 

Algorithm sos2tf uses the conv function to multiply all of the numerator and 
denominator second-order polynomials together.

See Also latc2tf, sos2ss, sos2zp, ss2tf, tf2sos, zp2tf
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7sos2zpPurpose Convert digital filter second-order section parameters to zero-pole-gain form

Syntax [z,p,k] = sos2zp(sos)
[z,p,k] = sos2zp(sos,g)

Description sos2zp converts a second-order section representation of a given digital filter 
to an equivalent zero-pole-gain representation.

[z,p,k] = sos2zp(sos) returns the zeros z, poles p, and gain k of the system 
given by sos in second-order section form. The second-order section format of 
H(z) is given by

sos is an L-by-6 matrix that contains the coefficients of each second-order 
section in its rows.

Column vectors z and p contain the zeros and poles of the transfer 
function H(z).

where the orders n and m are determined by the matrix sos. 

[z,p,k] = sos2zp(sos,g) returns the zeros z, poles p, and gain k of the 
system given by sos in second-order section form with gain g.

H z( ) Hk z( )

k 1=

L

∏
b0k b1kz 1– b2kz 2–+ +

1 a1kz 1– a2kz 2–+ +
----------------------------------------------------------

k 1=

L

∏= =

sos

b01 b11 b21 1 a11 a21

b02 b12 b22 1 a12 a22

b0L b1L b2L 1 a1L a2L

=

H z( ) k
z z1–( ) z z2–( ) z zn–( )

p p1–( ) p p2–( ) p pm–( )
----------------------------------------------------------------------=
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L

∏=
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Examples Compute the poles, zeros, and gain of a simple system in second-order section 
form:

sos = [1  1  1  1  0 -1; -2  3  1  1 10  1];
[z,p,k] = sos2zp(sos)

z =
  -0.5000 + 0.8660i
  -0.5000 - 0.8660i
   1.7808
  -0.2808

p =
   -1.0000
    1.0000
   -9.8990
   -0.1010

k =
    -2

Algorithm sos2zp finds the poles and zeros of each second-order section by repeatedly 
calling tf2zp.

See Also sos2ss, sos2tf, ss2zp, tf2zp, tf2zpk, zp2sos
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7sosfiltPurpose Second-order (biquadratic) IIR digital filtering

Syntax y = sosfilt(sos,x)

Description y = sosfilt(sos,x) applies the second-order section digital filter sos to the 
vector x. The output, y, is the same length as x. 

sos represents the second-order section digital filter H(z)

by an L-by-6 matrix containing the coefficients of each second-order section in 
its rows.

If x is a matrix, sosfilt applies the filter to each column of x independently. 
Output y is a matrix of the same size, containing the filtered data 
corresponding to each column of x.

References [1] Orfanidis, S.J., Introduction to Signal Processing, Prentice-Hall, Englewood 
Cliffs, NJ, 1996.

See Also filter, medfilt1, sgolayfilt
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7spectrogramPurpose Spectrogram using short-time Fourier transform  

Syntax S = spectrogram(x)
S = spectrogram(x,window)
S = spectrogram(x,window,noverlap)
S = spectrogram(x,window,noverlap,nfft)
S = spectrogram(x,window,noverlap,nfft,fs)
S = spectrogram(x,window,noverlap,F)
S = spectrogram(x,window,noverlap,F,fs)
[S,F,T] = spectrogram(...)
[S,F,T,P] = spectrogram(...)
spectrogram(...)

Description spectrogram computes the short-time Fourier transform of a signal. The 
spectrogram is the magnitude of this function.

S = spectrogram(x) returns the spectrogram of the input signal vector x. By 
default, x is divided into eight segments. If x cannot be divided exactly into 
eight segments, it is truncated. These default values are used.

• window is a Hamming window of length nfft.

• noverlap is the value that produces 50% overlap between segments.

• nfft is the FFT length and is the maximum of 256 or the next power of 2 
greater than the length of each segment of x.

• fs is the sampling frequency, which defaults to normalized frequency.

Each column of S contains an estimate of the short-term, time-localized 
frequency content of  x.  Time increases across the columns of S and frequency 
increases down the rows.  

If x is a length Nx complex signal, S is a complex matrix with nfft rows and k 
colums, where 

k = fix((Nx-noverlap)/(length(window-noverlap))

For real x, the output S has (nfft/2+1) rows if nfft is even, and (nfft+1)/2 rows 
if nfft is odd.

S = spectrogram(x,window) uses the window specified. If window is an 
integer, x is divided into segments equal to that integer value and a Hamming 
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window is used. If window is a vector, x is divided into segments equal to the 
length of window and then the segments are windowed using the window 
functions specified in the window vector. 

S = spectrogram(x,window,noverlap) overlaps noverlap samples of each 
segment. noverlap must be an integer smaller than window or if window is a 
vector, smaller than the length of window.

S = spectrogram(x,window,noverlap,nfft) uses the nfft number of 
sampling points to calculate the discrete Fourier transform. nfft must be a 
scalar.

S = spectrogram(x,window,noverlap,nfft,fs) uses fs sampling frequency 
in Hz. If fs is specified as empty [], it defaults to 1 Hz.

S = spectrogram(x,window,noverlap,F) uses a vector F of frequencies in Hz. 
F must be a vector with at least two elements. This case computes the 
spectrogram at the frequencies in F using the Goertzel algorithm. In all other 
syntax cases where nfft or a default for nfft is used, the short-time Fourier 
transform is used. 

S = spectrogram(x,window,noverlap,F,fs) uses a vector F of frequencies in 
Hz as above and uses the fs sampling frequency in Hz. If fs is specified as 
empty [], it defaults to 1 Hz. 

[S,F,T] = spectrogram(...) returns a vector of frequencies F and a vector of 
times T at which the spectrogram is computed. The length of F is equal to the 
number of rows of S. The length of T is equal to k, as defined above and each 
value corresponds to the center of each segment.

[S,F,T,P] = spectrogram(...) returns a matrix P containing the power 
spectral density (PSD) of each segment. For real x, P contains the one-sided 
modified periodogram estimate of the PSD of each segment. For complex x and 
when you specify a vector of frequencies F, P contains the two-sided PSD.

spectrogram(...) plots the PSD estimate for each segment on a surface in a 
figure window. The plot is created using surf(F,T,10*log10(abs(P)). 

Using spectrogram(...,'freqloc') syntax and adding a 'freqloc' string 
(either 'xaxis' or 'yaxis') controls where MATLAB displays the frequency 
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axis. Using 'xaxis' displays the frequency on the x-axis. Using 'yaxis' 
displays frequency on the y-axis and time on the x-axis.  The default is 'xaxis'. 
If you specify both a 'freqloc' string and output arguments, 'freqloc' is 
ignored.

Examples Compute and display the PSD of each segment of a quadratic chirp, which 
starts at 100 Hz and crosses 200 Hz at t = 1 sec.

T = 0:0.001:2;
X = chirp(T,100,1,200,'q');
spectrogram(X,128,120,128,1E3); 
title('Quadratic Chirp');
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Compute and display the PSD of each segment of a linear chirp, which starts 
at DC and crosses 150 Hz at t = 1 sec. Display the frequency on the y-axis.

T = 0:0.001:2;
X = chirp(T,0,1,150);
F = 0:.1:100;
[Y,F,T,P] = spectrogram(X,256,250,F,1E3,'yaxis');

% The following code produces the same result as calling
% spectrogram with no outputs:
surf(T,F,10*log10(abs(P)),'EdgeColor','none');
axis xy; axis tight; colormap(jet); view(0,90);
xlabel('Time');
ylabel('Frequency (Hz)');
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References [1] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing, 
Prentice-Hall, Englewood Cliffs, NJ, 1989, pp. 713-718.

[2] Rabiner, L.R., and R.W. Schafer, Digital Processing of Speech Signals, 
Prentice-Hall, Englewood Cliffs, NJ, 1978.

See Also goertzel, periodogram, pwelch, spectrum.periodogram, spectrum.welch
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7spectrumPurpose Spectral estimation functions

Syntax Hs = spectrum.estmethod(input1,...)

Description Hs = spectrum.estmethod(input1,...) returns a spectral estimation object 
Hs of type estmethod. This object contains all the parameter information 
needed for the specified estimation method. Each estimation method takes one 
or more inputs, which are described on the individual reference pages.

Note  If you need to obtain confidence intervals, use the pmtm function.

Estimation Methods

Note  You must use a spectral estmethod with spectrum. 

Estimation methods for spectrum specify the type of spectral estimation 
method to use. Available estimation methods for spectrum are listed below. 

spectrum.estmethod Description Corresponding Function

spectrum.burg Burg pburg

spectrum.cov Covariance pcov

spectrum.eigenvector Eigenvector peig

spectrum.mcov Modified covariance pmcov

spectrum.mtm Thompson multitaper pmtm

spectrum.music Multiple Signal Classification pmusic

spectrum.periodogram Periodogram periodogram

spectrum.welch Welch pwelch

spectrum.yulear Yule-Walker pyulear
7-547



spectrum
For more information on each estimation method, refer to its reference page.

Note  For estimation methods that use overlap and window length inputs, 
you specify the number of overlap samples as a percent overlap and you 
specify the segment length instead of the window length.

For estimation methods that use windows, if the window uses an additional 
parameter, a property is dynamically added to the spectrum object for that 
parameter. You can change that property using set (see Changing Object 
Properties on page 555).

Methods
Methods provide ways of performing functions directly on your spectrum object 
without having to specify the spectral estimation parameters again. You can 
apply these methods directly on the variable you assigned to your spectrum 
object. For more information on any of these methods, use the syntax 
help spectrum/estmethod at the MATLAB prompt.
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Method Options Description

msspectrum 'onesided'
'twosided'
Fs

Note that the msspectrum method is only available for the 
periodogram and welch spectrum estimation objects.

The mean-squared spectrum is intended for discrete 
spectra. Unlike the power spectral density (psd), the peaks 
in the mean-square spectrum reflect the power in the 
signal at a given frequency. 

Hmss = msspectrum(Hs,X) returns a mean-square 
spectrum object containing the mean-square (power) 
estimate of the discrete-time signal X using the spectrum 
object Hs. Default for real X is the 'onesided' and for 
complex X is the 'twosided' Nyquist frequency range. 
Hmss contains a vector of normalized frequencies W at 
which the mean-sqaure spectrum is estimated. For real 
signals, the range of W is [0,pi] if the number of FFT points 
(NFFT) is even and [0,pi) if NFFT is odd. For complex 
signals, the range of W is [0,2pi).

Hmss = msspectrum(Hs,X,'Fs',Fs) returns a 
mean-square spectrum object computed as a function of 
frequency, where Fs is the sampling frequency in Hz.

Hmss = msspectrum(...,'SpectrumType','twosided') 
returns the two-sided mean-square spectrum. The 
spectrum length (NFFT) is computed over [0,2pi), or if Fs 
is specified, [0,Fs) . Entering 'onesided' returns the 
one-sided mean-square spectrum, which contains the total 
signal power.
Hmss = msspectrum(...,'NFFT',nfft) specifes the 
number of FFT points to use.
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Hmss = msspectrum(...,'Centerdc',true) shifts the 
data and frequency values so that the DC component is at 
the center of the spectrum. The default value is false.

msspectrum(...) with no output arguments plots the 
mean-square spectrum in dB. 

msspectrumopts Hopts = msspectrumopts(Hs) returns an object that 
contains options for the spectrum object Hs.
Hopts = msspectrumopts(Hs,X) returns an object with 
data-specific options and defaults.
You can pass an Hopts options object as an argument to 
the msspectrum method. Any indivudual option you specify 
after the Hopts object overrides the value in Hopts. For 
example, 
Hmss = msspectrum(Hs,X,Hopts,'SpectrumType', 
'twosided') overrides the SpectrumType value in Hopts.

psd 'onesided'
'twosided'
Fs

Note that music and eigenvector spectrum objects do not 
support the psd method. See the pseudospectrum method 
below.

The power spectral density (PSD) is intended for 
continuous spectra.  The integral of the PSD over a given 
frequency band computes the average power in the signal 
over that frequency band. In contrast to the msspectrum, 
the peaks in this spectra do not reflect the power at a given 
frequency. See the avgpower method of dspdata for more 
information.

Hpsd = psd(Hs,X) returns a power spectral density object 
containing the power spectral density estimate of the 
discrete-time signal X using the spectrum object Hs. The 
PSD is the distribution of power per unit frequency. 
Default for real X is 'onesided'and for complex X is 
'twosided'. 

Method Options Description
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Hpsd contains a vector of normalized frequencies W at 
which the PSD is estimated. For real signals, the range of 
W is [0,pi] if the number of FFT points (NFFT) is even and 
[0,pi) if NFFT is odd. For complex signals, the range of W is 
[0,2pi).

Hpsd = psd(Hs,X,'Fs',Fs) returns a power spectral 
density object computed as a function of frequency, where 
Fs is the sampling frequency in Hz.
Hpsd = psd(...,'SpectrumType','twosided') returns 
the two-sided power spectral density of X. The spectrum 
length is NFFT and is computed over [0,2pi) if Fs is not 
specified or [0,Fs) if Fs is specified. Entering 'onesided' 
returns the one-sided psd, which contains the total signal 
power.

Hpsd = psd(...,'NFFT',nfft) specifes the number of 
FFT points to use.
Hpsd = psd(...,'Centerdc',true) shifts the data and 
frequency values so that the DC component is at the center 
of the spectrum. The default value is false.

psd(...) with no output arguments plots the power 
spectral density estimate in dB per unit frequency. 

Method Options Description
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psdopts Hopts = psdopts(Hs) returns an object that contains 
options for the spectrum object Hs.  See dspopts, which is 
simlar to psdopts, for an example.

Hopts = psdopts(Hs,X) returns an object with 
data-specific options and defaults.

You can pass an Hopts options object as an argument to 
the psd method. Any individual option you specify after 
the Hopts object overrides the value in Hopts. For example, 
Hpsd = psd(Hs,X,Hopts,'SpectrumType', 'twosided') 
overrides the SpectrumType value in Hopts.

pseudospectrum 'half'
'whole'
Fs

Note that this method is used for only music or 
eigenvector spectrum objects.

Hps = pseudospectrum(Hs,X) returns an object 
containing the pseudospectrum estimate of the 
discrete-time signal X using the spectrum object Hs. Hs 
must be a music or eigenvector object. Default for real X 
is 'half' and for complex X is the 'whole' Nyquist 
frequency range. 

Hps contains a vector of normalized frequencies W at which 
the pseudospectrum is estimated. For real signals, the 
range of W is [0,pi] if the number of FFT points (NFFT) is 
even and [0,pi) if NFFT is odd. For complex signals, the 
range of W is [0,2pi).

Method Options Description
7-552



spectrum
Hps = pseudospectrum(Hs,X,'Fs',Fs) returns a 
pseudospectrum object computed as a function of 
frequency, where Fs is the sampling frequency in Hz.
Hmps = pseudospectrum(...,'SpectrumRange','whole') 
returns the pseudospectrum over the whole Nyquist range. 
The spectrum length is NFFT and is computed over [0,2pi) 
if Fs is not specified or [0,Fs) if Fs is specified. Entering 
'half' returns the pseudospectrum calculated over half 
the Nyquist range.

Hps = pseudospectrum(...,'NFFT',nfft) specifes the 
number of FFT points to use

Hps = pseudospectrum(...,'Centerdc',true) shifts the 
data and frequency values so that the DC component is at 
the center of the spectrum. The default value is false.

pseudospectrum(...) with no output arguments plots the 
pseudospectrum in dB. 

Method Options Description
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Viewing Object Properties
As with any object, you can use get to view a spectrum object’s properties. To 
see a specific property, use

 get(Hs,'property') 

where 'property' is the specific property name.

pseudospecrumopts Hopts = pseudospectrumopts(Hs) returns an object that 
contains options for the spectrum object Hs.

Hopts = pseudospectrumopts(Hs,X) returns an object 
with data-specific options and defaults.

You can pass an Hopts options object as an argument to 
the pseudospectrum method. Any indivudual option you 
specify after the Hopts object overrides the value in Hopts. 
For example, Hpseudospectrum= pseudospectrum(Hs,X,
Hopts,'SpectrumRange', 'whole') overrides the 
SpectrumRange value in Hopts.

powerest Fs Note that powerest is available only for music and 
eigenvector spectrum objects.

POW = powerest(Hs,X) returns a vector POW containing 
estimates of the powers of the complex sinusoids in X. The 
input X can be a vector or a matrix. If it is a matrix it can 
be a data matrix, where X'*X=R or a correlation matrix R. 
The value the InputType property of Hs determines how X 
is interpreted. Hs must be a music or eigenvector 
spectrum object. 

[POW,W]=powerest(Hs,X) returns POW and a vector W of the 
frequencies in rad/sample of the sinusoids in X. 
[POW,F]=powerest(Hs,X,Fs) returns POW and a vector F of 
the frequencies in Hz of the sinusoids in X. Fs is the 
sampling frequency.

Method Options Description
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To see all properties for an object, use

get(Hs)

Changing Object Properties
To set specific properties, use

set(Hs,'property1',value, 'property2',value,...) 

where 'property1', 'property2', etc. are the specific property names.

To view the options for a property use set without specifying a value

set(Hs,'property')

Note that you must use single quotation marks around the property name. For 
example, to change the order of a Burg spectrum object Hs to 6, use

set(Hs,'order',6)

Another example of using set to change an object’s properties is this example 
of changing the dynamically created window property of a periodogram 
spectrum object.

Hs=spectrum.periodogram %Create periodogram object

Hs =

    EstimationMethod: 'Periodogram'
           FFTLength: 'NextPow2'
          WindowName: 'Rectangular'

set(Hs,'WindowName','Chebyshev')%Change window type
Hs %View changed object and

%Note changed property

Hs =

    EstimationMethod: 'Periodogram'
           FFTLength: 'NextPow2'
          WindowName: 'Chebyshev'
       SidelobeAtten: 100
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set(Hs,'SidelobeAtten',150) %Change dynamic property
Hs %View changed object

Hs =

    EstimationMethod: 'Periodogram'
           FFTLength: 'NextPow2'
          WindowName: 'Chebyshev'
       SidelobeAtten: 150 

All spectrum object properties can be changed using the set command, except 
for the EstimationMethod property.

Another way to change an object’s properties is by using the inspect command 
which opens the Property Inspector window where you can edit any property, 
except dynamic properties, such as those used with windows.

inspect(Hs)

Copying an Object
To create a copy of an object, use the copy method.

H2 = copy(Hs)

Note  Using the syntax H2 = Hs copies only the object handle and does not 
create a new object.

Examples Define a cosine of 200 Hz, add some noise and then view its power spectral 
density estimate generated with the periodogram algorithm.

Fs = 1000;
t = 0:1/Fs:.3;
x=cos(2*pi*t*200)+randn(size(t));
Hs=spectrum.periodogram;
psd(Hs,x,'Fs',Fs)
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Refer to the reference pages for each estimation method for more examples.

See Also dspdata, dspopts, spectrum.burg, spectrum.cov, spectrum.mcov, 
spectrum.yulear, spectrum.periodogram, spectrum.welch, spectrum.mtm, 
spectrum.eigenvector, spectrum.music
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7spectrum.burgPurpose Burg spectrum

Syntax Hs = spectrum.burg
Hs = spectrum.burg(order)
Hs = spectrum.burg(order,FFTLength)

Description Hs = spectrum.burg returns a default Burg spectrum object, Hs, that defines 
the parameters for the Burg parametric spectral estimation algorithm. The 
Burg algorithm estimates the spectral content by fitting an auto-regressive 
(AR) linear prediction filter model of a given order to the signal.

Hs = spectrum.burg(order) returns a spectrum object, Hs with the specified 
order and the FFTLength determined using NextPow2. The default value for 
order is 4.

Hs = spectrum.burg(order,FFTLength) returns a spectrum object, Hs with 
the specified order of the AR model and the specified way of determining the 
FFTLength. Valid values of the FFTLength string are:

Note  See pburg for more information on the Burg algorithm. 

Examples Define a fourth order auto-regressive model and view its power spectral density 
using the Burg algorithm.

FFTLength string Description

'InputLength' Use the length of the input signal as the 
FFT length

'NextPow2' Use the next power of 2 greater than the 
input signal length as the FFT length. This 
is the default value.

'UserDefined' Use the FFT length provided as an input to 
the psd method or via a dspopts object. See 
dspopts for an example.
7-558



spectrum.burg
randn('state',1);
x=randn(100,1);
x=filter(1,[1 1/2 1/3 1/4 1/5],x);%Fourth order AR filter
Hs=spectrum.burg; %Fourth order AR model
psd(Hs,x,'NFFT',512)

See Also dspdata, dspopts, spectrum, spectrum.cov, spectrum.mcov, 
spectrum.yulear, spectrum.periodogram, spectrum.welch, spectrum.mtm, 
spectrum.eigenvector, spectrum.music
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7spectrum.covPurpose  Covariance spectrum

Syntax Hs = spectrum.cov
Hs = spectrum.cov(order)
Hs = spectrum.cov(order,FFTLength)

Description Hs = spectrum.cov returns a default covariance spectrum object, Hs, that 
defines the parameters for the covariance spectral estimation algorithm. The 
covariance algorithm estimates the spectral content by fitting an 
auto-regressive (AR) linear prediction model of a given order to the signal. 

Hs = spectrum.cov(order) returns a spectrum object, Hs with the specified 
order and the FFTLength determined using NextPow2. The default value for 
order is 4.

Hs = spectrum.cov(order,FFTLength) returns a covariance spectrum object, 
Hs with the order of the covariance model and the specified way of determining 
the FFTLength. Valid values of the FFTLength string are:

Note  See pcov for more information on the covariance algorithm. 

Examples Define a fourth order auto-regressive model and view its power spectral density 
using the covariance algorithm.

FFTLength string Description

'InputLength' Use the length of the input signal as the 
FFT length

'NextPow2' Use the next power of 2 greater than the 
input signal length as the FFT length. This 
is the default value.

'UserDefined' Use the FFT length provided as an input to 
the psd method or via a dspopts object.   
See dspopts for an example.
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randn('state',1);
x=randn(100,1);
x=filter(1,[1 1/2 1/3 1/4 1/5],x);%Fourth order AR filter
Hs=spectrum.cov; %Fourth order AR model
psd(Hs,x,'NFFT',512)

See Also dspdata, dspopts, spectrum, spectrum.burg, spectrum.mcov, 
spectrum.yulear, spectrum.periodogram, spectrum.welch, spectrum.mtm, 
spectrum.eigenvector, spectrum.music
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7spectrum.eigenvectorPurpose  Eigenvector spectrum

Syntax Hs = spectrum.eigenvector
Hs = spectrum.eigenvector(NSinusoids)
Hs = spectrum.eigenvector(NSinusoids,SegmentLength)
Hs = spectrum.eigenvector(...,OverlapPercent)
Hs = spectrum.eigenvector(...,WindowName)
Hs = spectrum.eigenvector(...,SubspaceThreshold)
Hs = spectrum.eigenvector(...,FFTLength)
Hs = spectrum.eigenvector(...,InputType)

Description Hs = spectrum.eigenvector returns a default eigenvector spectrum object, 
Hs, that defines the parameters for an eigenanalysis spectral estimation 
method. This object uses the following default values:

Property Name Default Value Description

NSinusoids 2 Number of complex sinusoids

SegmentLength 4 Segment length

OverlapPercent 50 Percent overlap between 
segments
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WindowName 'Rectangular' Window name string or 'User 
Defined' (see window for valid 
window names). For more 
information on each window, 
refer to its reference page.

This argument can also be a cell 
array containing the window 
name string or 'User Defined' 
and, if used for the particular 
window, an optional parameter 
value. The syntax is 
{wname,wparam}.

You can use set to change the 
value of the additional 
parameter or to define the 
MATLAB expression and 
parameters for a user-defined 
window (see spectrum for 
information on using set). 

SubspaceThreshold 0 Threshold is the cutoff for signal 
and noise separation. The 
threshold is multiplied by λmin , 
the smallest estimated 
eigenvalue of the signal’s 
correlation matrix. Eigenvalues 
below the threshold 
(λmin*threshold) are assigned 
to the noise subspace.

Property Name Default Value Description
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Hs = spectrum.eigenvector(NSinusoids) returns a spectrum object, Hs, 
with the specified number of sinusoids and default values for all other 
properties. Refer to the table above for default values.

Hs = spectrum.eigenvector(NSinusoids,SegmentLength) returns a 
spectrum object, Hs, with the specified segment length.

Hs = spectrum.eigenvector(...,OverlapPercent) returns a spectrum 
object, Hs, with the specified overlap between segments.

Hs = spectrum.eigenvector(...,WindowName) returns a spectrum object, 
Hs, with the specified window.

FFTlength 'NextPow2' String defining how the number 
of FFT points is determined. The 
default is the next power of 2 
that is greater than the input 
length. Other valid values are 
'InputLength' and 
'UserDefined'. InputLength 
uses the length of the input 
signal as the FFT length. 
UserDefined uses the value 
provided via the 
pseudospectrum method or a 
dspopts object.   See dspopts for 
an example.

InputType 'Vector' Type of input that will be used 
with this spectrum object. Valid 
values are 'Vector', 
'DataMatrix' and 
'CorrelationMatrix'.

Property Name Default Value Description
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Note  Window names must be enclosed in single quotes, such as 
spectrum.eigenvector(3,32,50,'chebyshev') or 
spectrum.eigenvector(3,32,50,{'chebyshev',60})

Hs = spectrum.eigenvector(...,SubspaceThreshold) returns a spectrum 
object, Hs, with the specified subspace threshold.

Hs = spectrum.eigenvector(...,FFTLength) returns a spectrum object, Hs, 
with the specified way of the determing the FFT length.

Hs = spectrum.eigenvector(...,InputType) returns a spectrum object, Hs, 
with the specified input type.

Note  See peig for more information on the eigenanalysis algorithm. 

Examples Define a complex signal with three sinusoids, add noise, and view its 
pseudospectrum using eigenanalysis. Set the FFT length to 128.

randn('state',1);
n=0:99;
s=exp(i*pi/2*n)+2*exp(i*pi/4*n)+exp(i*pi/3*n)+randn(1,100);
Hs=spectrum.eigenvector(3,32,95,'rectangular',5);
pseudospectrum(Hs,s,'NFFT',128)
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See Also dspdata, dspopts, spectrum, spectrum.music, spectrum.burg, spectrum.cov, 
spectrum.mcov, spectrum.yulear, spectrum.periodogram, spectrum.welch, 
spectrum.mtm
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7spectrum.mcovPurpose  Modified covariance spectrum

Syntax Hs = spectrum.mcov
Hs = spectrum.mcov(order)
Hs = spectrum.mcov(order,FFTLength)

Description Hs = spectrum.mcov returns a default modified covariance spectrum object, 
Hs, that defines the parameters for the modified covariance spectral estimation 
algorithm. The modified covariance algorithm estimates the spectral content 
by fitting an auto-regressive (AR) linear prediction filter model of a given order 
to the signal. 

Hs = spectrum.mcov(order) returns a spectrum object, Hs with the specified 
order and the FFTLength determined using NextPow2. The default value for 
order is 4.

Hs = spectrum.mcov(order,FFTLength) returns a spectrum object, Hs with 
specified order and and the specified way of detrmining the FFTLength. Valid 
values of the FFTLength string are as follows:

Note  See pmcov for more information on the modified covariance algorithm. 

FFTLength string Description

'InputLength' Use the length of the input signal as the 
FFT length

'NextPow2' Use the next power of 2 greater than the 
input signal length as the FFT length. This 
is the default value.

'UserDefined' Use the FFT length provided as an input to 
the psd method or via a dspopts object.   
See dspopts for an example.
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Examples Define a fourth order auto-regressive model and view its power spectral density 
using the modified covariance algorithm.

randn('state',1);
x=randn(100,1);
x=filter(1,[1 1/2 1/3 1/4 1/5],x); %Fourth order AR filter
Hs=spectrum.mcov; %Fourth order AR model
psd(Hs,x,'NFFT',512)

See Also dspdata, dspopts, spectrum, spectrum.burg, spectrum.cov, 
spectrum.yulear, spectrum.periodogram, spectrum.welch, spectrum.mtm, 
spectrum.eigenvector, spectrum.music
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7spectrum.mtmPurpose  Thompson multitaper spectrum

Syntax Hs = spectrum.mtm
Hs = spectrum.mtm(TimeBW)
Hs = spectrum.mtm(DPSS,Concentrations)
Hs = spectrum.mtm(...,CombineMethod)
Hs = spectrum.mtm(...,FFTLength)

Description Hs = spectrum.mtm returns a default Thompson multitaper spectrum object, 
Hs that defines the parameters for the Thompson multitaper spectral 
estimation algorithm, which uses a linear or nonlinear combination of modified 
periodograms. The periodograms are computed using a sequence of orthogonal 
tapers (windows in the frequency domain) specified from discrete prolate 
spheroidal sequences (dpss). This object uses the following default values:

Property Name Default Value Description

TimeBW 4 Product of time and bandwidth for 
the discrete prolate spheroidal 
sequences (or Slepian sequences) 
used as data windows
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Hs = spectrum.mtm(TimeBW) returns a spectrum object, Hs with the specified 
time-bandwidth product.

Hs = spectrum.mtm(DPSS,Concentrations) returns a spectrum object, Hs 
with the specified dpss data tapers and their concentrations.

Note  You can either specify the time-bandwidth product (TimeBW) or the DPSS 
data tapers and their Concentrations. See dpss and pmtm for more 
information.

Hs = spectrum.mtm(...,CombineMethod) returns a spectrum object, Hs, 
with the specified method for combining the spectral estimates. Refer to the 
table above for valid CombineMethod values.

CombineMethod 'adaptive' Algorithm for combining the 
individual spectral estimates. Valid 
values are 
'adaptive'—adaptive (nonlinear)
'unity'—unity weights (linear)
'eigenvector'—Eigenvalue 
weights (linear)

FFTlength 'NextPow2' String defining how the number of 
FFT points is determined. The 
default is the next power of 2 that is 
greater than the input length. Other 
valid values are: 'InputLength' 
and 'UserDefined'. InputLength 
uses the length of the input signal 
as the FFT length. UserDefined 
uses the value provided via a psd 
method or dspopts object.    See 
dspopts for an example.

Property Name Default Value Description
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Hs = spectrum.mtm(...,FFTLength) returns a spectrum object, Hs with the 
specified way of determining the FFTLength. Refer to the table above for valid 
FFTLength values.

Examples Define a cosine of 200 Hz, add noise and view its power spectral density using 
the Thompson multitaper algorithm with a time-bandwidth product of 3.5.

Fs=1000;
t=0:1/Fs:.3;
x=cos(2*pi*t*200)+randn(size(t));
Hs=spectrum.mtm(3.5);
psd(Hs,x,'Fs',Fs)
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The above example could be done by specifying the data tapers and 
concentrations instead of the time-bandwidth product.

Fs=1000;
t=0:1/Fs:.3;
x=cos(2*pi*t*200)+randn(size(t));
[e,v]=dpss(length(x),3.5);
Hs=spectrum.mtm(e,v);
psd(Hs,x,'Fs',Fs)

See Also dspdata, dspopts, spectrum, spectrum.periodogram, spectrum.welch, 
spectrum.burg, spectrum.cov, spectrum.mcov, spectrum.yulear, 
spectrum.eigenvector, spectrum.music
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7spectrum.musicPurpose  Multiple signal classification spectrum

Syntax Hs = spectrum.music
Hs = spectrum.music(NSinusoids)
Hs = spectrum.music(NSinusoids,SegmentLength)
Hs = spectrum.music(...,OverlapPercent)
Hs = spectrum.music(...,WindowName)
Hs = spectrum.music(...,SubspaceThreshold)
Hs = spectrum.music(...,FFTLength)
Hs = spectrum.music(...,InputType)

Description Hs = spectrum.music returns a default multiple signal classification 
(MUSIC) spectrum object, Hs, that defines the parameters for the MUSIC 
spectral estimation algorithm, which uses Schmidt’s eigenspace analysis 
algorithm. This object uses the following default values.

Property Name Default Value Description

NSinusoids 2 Number of complex sinusoids

SegmentLength 4 Segment length

OverlapPercent 50 Percent overlap between 
segments
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WindowName 'Rectangular' Window name string or 'User 
Defined' (see window for valid 
window names). For more 
information on each window, 
refer to its reference page).

This argument can also be a cell 
array containing the window 
name string or 'User Defined' 
and, if used for the particular 
window, an optional parameter 
value. The syntax is 
{wname,wparam}.

You can use set to change the 
value of the additional 
parameter or to define the 
MATLAB expression and 
parameters for a user-defined 
window (see spectrum for 
information on using set). 

SubspaceThreshold 0 Threshold is the cutoff for signal 
and noise separation. The 
threshold is multiplied by λmin , 
the smallest estimated 
eigenvalue of the signal’s 
correlation matrix. Eigenvalues 
below the threshold 
(λmin*threshold) are assigned 
to the noise subspace.

Property Name Default Value Description
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Hs = spectrum.music(NSinusoids) returns a spectrum object, Hs, with the 
specified number of sinusoids and default values for all other properties. Refer 
to the table above for default values.

Hs = spectrum.eigenvector(NSinusoids,SegmentLength) returns a 
spectrum object, Hs, with the specified segment length.

Hs = spectrum.music(...,OverlapPercent) returns a spectrum object, Hs, 
with the specified overlap between segments.

Hs = spectrum.music(...,WindowName) returns a spectrum object, Hs, with 
the specified window.

FFTlength 'NextPow2' String defining how the number 
of FFT points is determined. The 
default is the next power of 2 
that is greater than the input 
length. Other valid values are 
'InputLength' and 
'UserDefined'. InputLength 
uses the length of the input 
signal as the FFT length. 
UserDefined uses the value 
provided via a pseudospectrum 
method or dspopts object. See 
dspopts for an example.

InputType 'Vector' Type of input that will be used 
with this spectrum object. Valid 
values are 'Vector', 
'DataMatrix' and 
'CorrelationMatrix'.

Property Name Default Value Description
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Note  Window names must be enclosed in single quotes, such as 
spectrum.music(3,32,50,'chebyshev') or 
spectrum.music(3,32,50,{'chebyshev',60})

Hs = spectrum.music(...,SubspaceThreshold) returns a spectrum object, 
Hs, with the specified subspace threshold.

Hs = spectrum.music(...,FFTLength) returns a spectrum object, Hs, with 
the specified FFT length type.

Hs = spectrum.music(...,InputType) returns a spectrum object, Hs, with 
the specified input type.

Note  See pmusic for more information on the MUSIC algorithm. 

Examples Define a complex signal with three sinusoids, add noise, and estimate its 
pseudospectrum using the MUSIC algorithm.

randn('state',1);
n=0:99;
s=exp(i*pi/2*n)+2*exp(i*pi/4*n)+exp(i*pi/3*n)+randn(1,100);
Hs=spectrum.music(3);
pseudospectrum(Hs,s,'NFFT',512)
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See Also dspdata, dspopts, spectrum, spectrum.eigenvector, spectrum.burg, 
spectrum.cov, spectrum.mcov, spectrum.yulear, spectrum.periodogram, 
spectrum.welch, spectrum.mtm
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7spectrum.periodogramPurpose Periodogram spectrum

Syntax Hs = spectrum.periodogram
Hs = spectrum.periodogram(winname)
Hs = spectrum.periodogram({winname,winparameter})
Hs = spectrum.periodogram(...,FFTLength)

Description Hs = spectrum.periodogram returns a default periodogram spectrum object, 
Hs, that defines the parameters for theperiodogram spectral estimation 
method. This default object uses a rectangular window and a default FFT 
length equal to the next power of 2 (NextPow2) that is greater than the input 
length.

Hs = spectrum.periodogram(winname) returns a spectrum object, Hs, that 
uses the specified window. If the window uses an optional associated window 
parameter, it is set to the default value. This object uses the default FFT 
length. 

Hs = spectrum.periodogram({winname,winparameter}) returns a 
spectrum object, Hs, that uses the specified window and optional associated 
window parameter, if any. You specify the window and window parameter in a 
cell array with a windowname string and the parameter value. This object uses 
the default FFT length. 

Valid windowname strings are any valid window in the Signal Processing 
Toolbox or a user-defined window. Refer to the corresponding window function 
page for window parameter information. 

You can use set to change the value of the additional parameter or to define 
the MATLAB expression and parameters for a user-defined window (see 
spectrum for information on using set). 

Note  Window names must be enclosed in single quotes, such as 
spectrum.periodogram('tukey') or
spectrum.periodogram({'tukey',0.7})
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Hs = spectrum.periodogram(...,FFTLength) returns a spectrum object, Hs 
that uses the specified way of determining the FFTLength. Valid values of the 
FFTLength string are as follows.

Note  See periodogram for more information on the periodogram algorithm. 

Examples Define a cosine of 200 Hz, add noise and view its spectral content using the 
periodogram spectral estimation technique.

Fs=1000;
t=0:1/Fs:.3;
x=cos(2*pi*t*200)+randn(size(t));
Hs=spectrum.periodogram; % Use default values
psd(Hs,x,'Fs',Fs)

FFTLength string Description

'InputLength' Use the length of the input signal as the 
FFT length

'NextPow2' Use the next power of 2 greater than the 
input signal length as the FFT length. This 
is the default value.

'UserDefined' Use the FFT length provided as an input to 
the psd method or via a dspopts object. See 
dspopts for an example.
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See Also dspdata, dspopts, spectrum, spectrum.welch, spectrum.mtm, spectrum.burg, 
spectrum.cov, spectrum.mcov, spectrum.yulear, spectrum.eigenvector, 
spectrum.music
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7spectrum.welchPurpose  Welch spectrum

Syntax Hs = spectrum.welch
Hs = spectrum.welch(WindowName)
Hs = spectrum.welch({WindowName,winparam})
Hs = spectrum.welch(...,SegmentLength)
Hs = spectrum.welch(...,OverlapPercent)
Hs = spectrum.welch(...,FFTLength)

Description Hs = spectrum.welch returns a default Welch spectrum object, Hs, that 
defines the parameters for Welch’s averaged, modified periodogram spectral 
estimation method. The object uses these default values.

Property Name Default Value Description

WindowName 'Hamming',
SamplingFlag: 
symmetric

Window name string or 'User 
Defined' (see window for valid 
window names). If the window uses 
an optional property, it is set to the 
default value.

{WindowName,
winparam}

Cell array 
containing 
WindowName 
and optional 
window 
parameter

'Hamming',
SamplingFlag: 
symmetric

Cell array containing the window 
name string or 'User Defined' 
and, if used for the particular 
window, an optional parameter 
value. (See window for valid window 
names and for more information on 
each window, refer to its reference 
page.)

You can use set to change the 
value of the additional parameter 
or to define the MATLAB 
expression and parameters for a 
user-defined window. (See 
spectrum for information on using 
set.) 
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Hs = spectrum.welch(WindowName) returns a spectrum object, Hs, using 
Welch’s method with the specified window and the default values for all other 
parameters

Note  Window names must be enclosed in single quotes, such as 
spectrum.welch('chebyshev',32,50) or 
spectrum.music({'chebyshev',60},32,50)

Hs = spectrum.welch({WindowName,winparam}) returns a spectrum object, 
Hs with the specified window and associated parameter. 

Hs = spectrum.welch(...,SegmentLength) returns a spectrum object, Hs 
with the specified segment length.

Hs = spectrum.welch(...,OverlapPercent) returns a spectrum object, Hs 
with the specified percentage overlap between segments.

SegmentLength 64 Segment length

OverlapPercent 50% Percent overlap between segments

FFTlength 'NextPow2' String defining how the number of 
FFT points is determined. The 
default is the next power of 2 that 
is greater than the input length. 
Other valid values are 
'InputLength' and 
'UserDefined'. InputLength uses 
the length of the input signal as the 
FFT length. UserDefined uses the 
value provided via the psd method 
or dspopts object.  See dspopts for 
an example.

Property Name Default Value Description
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Hs = spectrum.welch(...,FFTLength) returns a spectrum object, Hs with 
the specified FFT length type.

Note  See pwelch for more information on the Welch algorithm. 

Examples Define a cosine of 200 Hz, add noise and view its spectral content using the 
Welch algorithm.

Fs=1000;
t=0:1/Fs:.3;
x=cos(2*pi*t*200)+randn(size(t));
Hs=spectrum.welch;
psd(Hs,x,'Fs',Fs)
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See Also dspdata, dspopts, spectrum, spectrum.periodogram, spectrum.mtm, 
spectrum.burg, spectrum.cov, spectrum.mcov, spectrum.yulear, 
spectrum.eigenvector, spectrum.music
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7spectrum.yulearPurpose  Yule-Walker spectrum object

Syntax Hs = spectrum.yulear
Hs = spectrum.yulear(order)
Hs = spectrum.yulear(order,FFTLength)

Description Hs = spectrum.yulear returns a default Yule-Walker spectrum object, Hs, 
that defines the parameters for the Yule-Walker spectral estimation algorithm. 
This method is also called the auto-correlation or windowed method. The 
Yule-Walker algorithm estimates the spectral content by fitting an 
auto-regressive (AR) linear prediction filter model of a given order to the 
signal. This leads to a set of Yule-Walker equations, which are solved using 
Levinson-Durbin recursion. 

Hs = spectrum.yulear(order) returns a spectrum object, Hs, with the 
specified order and the FFTLength determined using NextPow2. The default 
value for order is 4.

Hs = spectrum.yulear(order,FFTLength) returns a spectrum object, Hs, 
with the specified order of the AR model and the specified way of determining 
the FFTLength. Valid values of the FFTLength string are as follows.

Note  See pyulear for more information on the Yule-Walker algorithm. 

FFTLength string Description

'InputLength' Use the length of the input signal as the 
FFT length

'NextPow2' Use the next power of 2 greater than the 
input signal length as the FFT length. This 
is the default value.

'UserDefined' Use the FFT length provided as an input to 
the psd method or via a dspopts object. See 
dspopts for an example.
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Examples Define a fourth order auto-regressive model and view its spectral content using 
the Yule-Walker algorithm.

randn('state',1);
x=randn(100,1);
x=filter(1,[1 1/2 1/3 1/4 1/5],x);%Fourth order AR filter
Hs=spectrum.yulear; %Fourth order AR model
psd(Hs,x,'NFFT',512)

See Also dspdata, dspopts, spectrum, spectrum.burg, spectrum.cov, spectrum.mcov, 
spectrum.periodogram, spectrum.welch, spectrum.mtm, 
spectrum.eigenvector, spectrum.music
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7sptoolPurpose Interactive digital signal processing tool

Syntax sptool

Description sptool opens SPTool, a graphical user interface (GUI) that manages a suite of 
four other GUIs: Signal Browser, Filter Designer, FVTool, and Spectrum 
Viewer. These GUIs provide access to many of the signal, filter, and spectral 
analysis functions in the toolbox. When you type sptool at the command line, 
the SPTool GUI opens.

Using SPTool you can

• Analyze signals listed in the Signals list box with the Signal Browser

• Design or edit filters with the Filter Designer (includes a Pole/Zero Editor)

• Analyze filter responses for filters listed in the Filters list box with FVTool

• Apply filters in the Filters list box to signals in the Signals list box

• Create and analyze signal spectra with the Spectrum Viewer

• Print the Signal Browser, Filter Designer, and Spectrum Viewer

You can activate the four integrated signal processing GUIs from SPTool.
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Signal Browser
The Signal Browser allows you to view, measure, and analyze the time-domain 
information of one or more signals. To activate the Signal Browser, press the 
View button under the Signals list box in SPTool.

Filter Designer
The Filter Designer allows you to design and edit FIR and IIR filters of various 
lengths and types, with standard (lowpass, highpass, bandpass, bandstop, and 
multiband) configurations. To activate the Filter Designer, press either the 
New button or the Edit button under the Filters list box in SPTool.

The Filter Designer has a Pole/Zero Editor you can access from the Algorithms 
pulldown.
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Filter Visualization Tool
The Filter Visualization Tool (fvtool) allows you to view the characteristics of 
a designed or imported filter, including its magnitude response, phase 
response, group delay, phase delay, pole-zero plot, impulse response, and step 
response. To activate FVTool, click the View button under the Filters list box 
in SPTool.
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Spectrum Viewer
The Spectrum Viewer allows you to analyze frequency-domain data graphically 
using a variety of methods of spectral density estimation, including the Burg 
method, the FFT method, the multitaper method, the MUSIC eigenvector 
method, Welch’s method, and the Yule-Walker autogressive method. To 
activate the Spectrum Viewer:

• Click the Create button under the Spectra list box to compute the power 
spectral density for a signal selected in the Signals list box in SPTool. You 
may need to click Apply to view the spectra.

• Click the View button to analyze spectra selected under the Spectra list box 
in SPTool.

• Click the Update button under the Spectra list box in SPTool to modify a 
selected power spectral density signal.
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In addition, you can right-click in any plot display area of the GUIs to modify 
signal properties. 

See Chapter 6, “SPTool: A Signal Processing GUI Suite,” for a full discussion of 
how to use SPTool.

See Also fdatool, fvtool
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7squarePurpose Square wave

Syntax x = square(t)
x = square(t,duty)

Description x = square(t) generates a square wave with period 2π for the elements of 
time vector t. square(t) is similar to sin(t), but creates a square wave with 
peaks of ±1 instead of a sine wave.

x = square(t,duty) generates a square wave with specified duty cycle, duty, 
which is a number between 0 and 100. The duty cycle is the percent of the 
period in which the signal is positive. 

See Also chirp, cos, diric, gauspuls, pulstran, rectpuls, sawtooth, sin, square, 
tripuls
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7ss2sosPurpose Convert digital filter state-space parameters to second-order sections form

Syntax [sos,g] = ss2sos(A,B,C,D)
[sos,g] = ss2sos(A,B,C,D,iu)
[sos,g] = ss2sos(A,B,C,D,'order')
[sos,g] = ss2sos(A,B,C,D,iu,'order')
[sos,g] = ss2sos(A,B,C,D,iu,'order','scale')
sos = ss2sos(...)

Description ss2sos converts a state-space representation of a given digital filter to an 
equivalent second-order section representation.

[sos,g] = ss2sos(A,B,C,D) finds a matrix sos in second-order section form 
with gain g that is equivalent to the state-space system represented by input 
arguments A, B, C, and D. The input system must be single output and real. sos 
is an L-by-6 matrix

whose rows contain the numerator and denominator coefficients bik and aik of 
the second-order sections of H(z).

[sos,g] = ss2sos(A,B,C,D,iu) specifies a scalar iu that determines which 
input of the state-space system A, B, C, D is used in the conversion. The default 
for iu is 1. 

[sos,g] = ss2sos(A,B,C,D,'order') and 

[sos,g] = ss2sos(A,B,C,D,iu,'order') specify the order of the rows in sos, 
where 'order' is

sos

b01 b11 b21 1 a11 a21

b02 b12 b22 1 a12 a22

b0L b1L b2L 1 a1L a2L

=

H z( ) g Hk z( )

k 1=

L

∏ g
b0k b1kz 1– b2kz 2–+ +

1 a1kz 1– a2kz 2–+ +
----------------------------------------------------------

k 1=

L

∏= =
7-593



ss2sos
• 'down', to order the sections so the first row of sos contains the poles closest 
to the unit circle

• 'up', to order the sections so the first row of sos contains the poles farthest 
from the unit circle (default)

The zeros are always paired with the poles closest to them.

[sos,g] = ss2sos(A,B,C,D,iu,'order','scale') specifies the desired 
scaling of the gain and the numerator coefficients of all second-order sections, 
where 'scale' is

• 'none', to apply no scaling (default)

• 'inf', to apply infinity-norm scaling

• 'two', to apply 2-norm scaling

Using infinity-norm scaling in conjunction with up-ordering minimizes the 
probability of overflow in the realization. Using 2-norm scaling in conjunction 
with down-ordering minimizes the peak round-off noise.

Note  Infinity-norm and 2-norm scaling are appropriate only for 
direct-form II implementations.

sos = ss2sos(...) embeds the overall system gain, g, in the first section, 
H1(z), so that 

Note  Embedding the gain in the first section when scaling a direct-form II 
structure is not recommended and may result in erratic scaling. To avoid 
embedding the gain, use ss2sos with two outputs.

Examples Find a second-order section form of a Butterworth lowpass filter:

H z( ) Hk z( )

k 1=

L

∏=
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[A,B,C,D] = butter(5,0.2);
sos = ss2sos(A,B,C,D)

sos =

    0.0013    0.0013         0    1.0000   -0.5095         0
    1.0000    2.0008    1.0008    1.0000   -1.0966    0.3554
    1.0000    1.9979    0.9979    1.0000   -1.3693    0.6926

Algorithm ss2sos uses a four-step algorithm to determine the second-order section 
representation for an input state-space system:

1 It finds the poles and zeros of the system given by A, B, C, and D.

2 It uses the function zp2sos, which first groups the zeros and poles into 
complex conjugate pairs using the cplxpair function. zp2sos then forms the 
second-order sections by matching the pole and zero pairs according to the 
following rules:

a Match the poles closest to the unit circle with the zeros closest to those 
poles.

b Match the poles next closest to the unit circle with the zeros closest to 
those poles.

c Continue until all of the poles and zeros are matched.

ss2sos groups real poles into sections with the real poles closest to them in 
absolute value. The same rule holds for real zeros.

3 It orders the sections according to the proximity of the pole pairs to the unit 
circle. ss2sos normally orders the sections with poles closest to the unit 
circle last in the cascade. You can tell ss2sos to order the sections in the 
reverse order by specifying the 'down' flag.

4 ss2sos scales the sections by the norm specified in the 'scale' argument. 
For arbitrary H(ω), the scaling is defined by

where p can be either ∞ or 2. See the references for details. This scaling is 
an attempt to minimize overflow or peak round-off noise in fixed point filter 
implementations.

H p
1

2π
------ H ω( ) p ωd

0

2π

∫

1
p
---

=
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Diagnostics If there is more than one input to the system, ss2sos gives the following error 
message:

State-space system must have only one input.

References [1] Jackson, L.B., Digital Filters and Signal Processing, 3rd ed., Kluwer 
Academic Publishers, Boston, 1996. Chapter 11.

[2] Mitra, S.K., Digital Signal Processing: A Computer-Based Approach, 
McGraw-Hill, New York, 1998. Chapter 9.

[3] Vaidyanathan, P.P.,“Robust Digital Filter Structures,” Handbook for 
Digital Signal Processing, S.K. Mitra and J.F. Kaiser, ed., John Wiley & Sons, 
New York, 1993, Chapter 7.

See Also cplxpair, sos2ss, ss2tf, ss2zp, tf2sos, zp2sos
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7ss2tfPurpose Convert state-space filter parameters to transfer function form

Syntax [b,a] = ss2tf(A,B,C,D,iu)

Description ss2tf converts a state-space representation of a given system to an equivalent 
transfer function representation.

[b,a] = ss2tf(A,B,C,D,iu) returns the transfer function

of the system

from the iu-th input. Vector a contains the coefficients of the denominator in 
descending powers of s. The numerator coefficients are returned in array b with 
as many rows as there are outputs y. ss2tf also works with systems in discrete 
time, in which case it returns the z-transform representation.

The ss2tf function is part of the standard MATLAB language.

Algorithm The ss2tf function uses poly to find the characteristic polynomial det(sI-A) 
and the equality:

See Also latc2tf, sos2tf, ss2sos, ss2zp, tf2ss, zp2tf

H s( ) B s( )
A s( )
----------- C sI A–( ) 1– B D+= =

x· Ax Bu+=

y Cx Du+=

H s( ) C sI A–( ) 1– B det sI A– BC+( ) det sI A–( )–
det sI A–( )

------------------------------------------------------------------------------= =
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7ss2zpPurpose Convert state-space filter parameters to zero-pole-gain form

Syntax [z,p,k] = ss2zp(A,B,C,D,i)

Description ss2zp converts a state-space representation of a given system to an equivalent 
zero-pole-gain representation. The zeros, poles, and gains of state-space 
systems represent the transfer function in factored form.

[z,p,k] = ss2zp(A,B,C,D,i) calculates the transfer function in factored 
form 

of the continuous-time system

from the ith input (using the ith columns of B and D). The column vector p 
contains the pole locations of the denominator coefficients of the transfer 
function. The matrix z contains the numerator zeros in its columns, with as 
many columns as there are outputs y (rows in C). The column vector k contains 
the gains for each numerator transfer function.

ss2zp also works for discrete time systems. The input state-space system must 
be real.

The ss2zp function is part of the standard MATLAB language.

Examples Here are two ways of finding the zeros, poles, and gains of a discrete-time 
transfer function:

b = [2 3]; 
a = [1 0.4 1];
[b,a] = eqtflength(b,a);
[z,p,k] = tf2zp(b,a)

H s( ) Z s( )
P s( )
---------- k

s z1–( ) s z2–( ) s zn–( )
s p1–( ) s p2–( ) s pn–( )

------------------------------------------------------------------= =

x· Ax Bu+=

y Cx Du+=

H z( ) 2 3z 1–
+

1 0.4z 1– z 2–
+ +

-----------------------------------------=
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z =
    0.0000
   -1.5000

p =
-0.2000 + 0.9798i
-0.2000 - 0.9798i

k =
2

[A,B,C,D] = tf2ss(b,a);
[z,p,k] = ss2zp(A,B,C,D,1)

z =
    0.0000
   -1.5000

p =
-0.2000 + 0.9798i
-0.2000 - 0.9798i

k =
2

Algorithm ss2zp finds the poles from the eigenvalues of the A array. The zeros are the 
finite solutions to a generalized eigenvalue problem:

z = eig([A B;C D], diag([ones(1,n) 0]);

In many situations this algorithm produces spurious large, but finite, zeros. 
ss2zp interprets these large zeros as infinite.

ss2zp finds the gains by solving for the first nonzero Markov parameters.

References [1] Laub, A.J., and B.C. Moore, “Calculation of Transmission Zeros Using QZ 
Techniques,” Automatica 14 (1978), p. 557.

See Also pzmap, sos2zp, ss2sos, ss2tf, tf2zp, tf2zpk, zp2ss
7-599



stepz
7stepzPurpose Step response of digital filters

Syntax [h,t] = stepz(b,a)
[h,t] = stepz(b,a,n)
[h,t] = stepz(b,a,n,fs)
stepz(b,a)
stepz(Hd)

Description [h,t] = stepz(b,a) computes the step response of the filter with numerator 
coefficients b and denominator coefficients a. stepz chooses the number of 
samples and returns the response in the column vector h and sample times in 
the column vector t (where t = [0:n-1]', and n = length(t) is computed 
automatically).

[h,t] = stepz(b,a,n) computes the first n samples of the step response when 
n is an integer (t = [0:n-1]'). I

[h,t] = stepz(b,a,n,fs) computes n samples and produces a vector t of 
length n so that the samples are spaced 1/fs units apart. fs is assumed to be 
in Hz.

stepz(b,a) with no output arguments plots the step response in the current 
figure window.

stepz(Hd) plots the step responsee of the filter and displays the plot in fvtool. 
The input Hd is a dfilt filter object or an array of dfilt filter objects.

stepz works for both real and complex input systems.

Examples Example 1
Plot the step response of a Butterworth filter:

[b,a] = butter(3,.4);
stepz(b,a)
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The same example using a dfilt object and displaying the result in the Filter 
Visualization Tool (fvtool) is

[b,a] = butter(3,.4);
Hd=dfilt.df1(b,a);
stepz(Hd)
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Example 2
Plot the first 50 samples of the step response of a fourth-order lowpass elliptic 
filter with cutoff frequency of 0.4 times the Nyquist frequency:

[b,a] = ellip(4,0.5,20,0.4);
stepz(b,a,50)
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The same example using a dfilt object and displaying the result in the Filter 
Visualization Tool (fvtool) is

[b,a] = ellip(4,0.5,20,0.4);
Hd=dfilt.df1(b,a);
stepz(Hd,50)
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Algorithm stepz filters a length n step sequence using 

filter(b,a,ones(1,n))

and plots the results using stem.

To compute n in the auto-length case, stepz either uses n = length(b) for the 
FIR case or first finds the poles using p = roots(a), if length(a) is greater 
than 1.

If the filter is unstable, n is chosen to be the point at which the term from the 
largest pole reaches 10^6 times its original value.

If the filter is stable, n is chosen to be the point at which the term due to the 
largest amplitude pole is 5*10^-5 of its original amplitude.

If the filter is oscillatory (poles on the unit circle only), stepz computes five 
periods of the slowest oscillation.
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If the filter has both oscillatory and damped terms, n is chosen to equal five 
periods of the slowest oscillation or the point at which the term due to the 
largest (nonunity) amplitude pole is 5*10^-5 of its original amplitude, 
whichever is greater.

stepz also allows for delays in the numerator polynomial. The number of 
delays is incorporated into the computation for the number of samples. 

See Also freqz, grpdelay, impz, phasez, zplane
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7stmcbPurpose Compute linear model using Steiglitz-McBride iteration

Syntax [b,a] = stmcb(h,nb,na)
[b,a] = stmcb(y,x,nb,na)
[b,a] = stmcb(h,nb,na,niter)
[b,a] = stmcb(y,x,nb,na,niter)
[b,a] = stmcb(h,nb,na,niter,ai)
[b,a] = stmcb(y,x,nb,na,niter,ai)

Description Steiglitz-McBride iteration is an algorithm for finding an IIR filter with a 
prescribed time domain impulse response. It has applications in both filter 
design and system identification (parametric modeling).

[b,a] = stmcb(h,nb,na) finds the coefficients b and a of the system b(z)/a(z) 
with approximate impulse response h, exactly nb zeros, and exactly na poles.

[b,a] = stmcb(y,x,nb,na) finds the system coefficients b and a of the system 
that, given x as input, has y as output. x and y must be the same length.

[b,a] = stmcb(h,nb,na,niter) and

[b,a] = stmcb(y,x,nb,na,niter) use niter iterations. The default for niter 
is 5.

[b,a] = stmcb(h,nb,na,niter,ai) and

[b,a] = stmcb(y,x,nb,na,niter,ai) use the vector ai as the initial estimate 
of the denominator coefficients. If ai is not specified, stmcb uses the output 
argument from [b,ai] = prony(h,0,na) as the vector ai.

stmcb returns the IIR filter coefficients in length nb+1 and na+1 row vectors b 
and a. The filter coefficients are ordered in descending powers of z.

Examples Approximate the impulse response of a Butterworth filter with a system of 
lower order:

[b,a] = butter(6,0.2);

H z( ) B z( )
A z( )
----------- b 1( ) b 2( )z 1– b nb 1+( )z nb–+ + +

a 1( ) a 2( )z 1– a na 1+( )z na–+ + +
--------------------------------------------------------------------------------------------= =
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h = filter(b,a,[1 zeros(1,100)]);
freqz(b,a,128)

[bb,aa] = stmcb(h,4,4);
freqz(bb,aa,128)
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Algorithm stmcb attempts to minimize the squared error between the impulse response h 
of b(z)/a(z) and the input signal x.

stmcb iterates using two steps:

1 It prefilters h and x using 1/a(z).

2 It solves a system of linear equations for b and a using \.

stmcb repeats this process niter times. No checking is done to see if the b and a 
coefficients have converged in fewer than niter iterations.

Diagnostics If x and y have different lengths, stmcb produces this error message,

Input signal X and output signal Y must have the same length.

References [1] Steiglitz, K., and L.E. McBride, “A Technique for the Identification of Linear 
Systems,” IEEE Trans. Automatic Control, Vol. AC-10 (1965), pp. 461-464.

[2] Ljung, L., System Identification: Theory for the User, Prentice-Hall, 
Englewood Cliffs, NJ, 1987, p. 297.

See Also levinson, lpc, aryule, prony

min
a b,

x i( ) h i( )– 2

i 0=

∞

∑

7-608



strips
7stripsPurpose Strip plot

Syntax strips(x)
strips(x,n)
strips(x,sd,fs)
strips(x,sd,fs,scale)

Description strips(x) plots vector x in horizontal strips of length 250. If x is a matrix, 
strips(x) plots each column of x. The left-most column (column 1) is the top 
horizontal strip.

strips(x,n) plots vector x in strips that are each n samples long.

strips(x,sd,fs) plots vector x in strips of duration sd seconds, given a 
sampling frequency of fs samples per second.

strips(x,sd,fs,scale) scales the vertical axes.

If x is a matrix, strips(x,n), strips(x,sd,fs), and strips(x,sd,fs,scale) 
plot the different columns of x on the same strip plot.

strips ignores the imaginary part of complex-valued x.

Examples Plot two seconds of a frequency modulated sinusoid in 0.25 second strips:

fs = 1000; % Sampling frequency
t = 0:1/fs:2; % Time vector
x = vco(sin(2*pi*t),[10 490],fs); % FM waveform
strips(x,0.25,fs)
7-609



strips
See Also plot, stem

0 0.05 0.1 0.15 0.2 0.25

1.75

 1.5

1.25

   1

0.75

 0.5

0.25

   0
7-610



tf2latc
7tf2latcPurpose Convert transfer function filter parameters to lattice filter form

Syntax [k,v] = tf2latc(b,a)
k = tf2latc(1,a)
[k,v] = tf2latc(1,a)
k = tf2latc(b)
k = tf2latc(b,'phase')

Description [k,v] = tf2latc(b,a) finds the lattice parameters k and the ladder 
parameters v for an IIR (ARMA) lattice-ladder filter, normalized by a(1). Note 
that an error is generated if one or more of the lattice parameters are exactly 
equal to 1.

k = tf2latc(1,a) finds the lattice parameters k for an IIR all-pole (AR) 
lattice filter.

[k,v] = tf2latc(1,a) returns the scalar ladder coefficient at the correct 
position in vector v. All other elements of v are zero.

k = tf2latc(b) finds the lattice parameters k for an FIR (MA) lattice filter, 
normalized by b(1).

k = tf2latc(b,'phase') specifies the type of FIR (MA) lattice filter, where 
'phase' is

• 'max', for a maximum phase filter. 

• 'min', for a minimum phase filter. 

See Also latc2tf, latcfilt, tf2sos, tf2ss, tf2zp, tf2zpk
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7tf2sosPurpose Convert digital filter transfer function data to second-order sections form

Syntax [sos,g] = tf2sos(b,a)
[sos,g] = tf2sos(b,a,'order')
[sos,g] = tf2sos(b,a,'order','scale')
sos = tf2sos(...)

Description tf2sos converts a transfer function representation of a given digital filter to an 
equivalent second-order section representation.

[sos,g] = tf2sos(b,a) finds a matrix sos in second-order section form with 
gain g that is equivalent to the digital filter represented by transfer function 
coefficient vectors a and b.

sos is an L-by-6 matrix

whose rows contain the numerator and denominator coefficients bik and aik of 
the second-order sections of H(z).

[sos,g] = tf2sos(b,a,'order') specifies the order of the rows in sos, where 
'order' is

• 'down', to order the sections so the first row of sos contains the poles closest 
to the unit circle

H z( ) B z( )
A z( )
-----------

b1 b2z 1– bn 1+ z n–+ + +

a1 a2z 1– am 1+ z m–+ + +
------------------------------------------------------------------------= =

sos

b01 b11 b21 1 a11 a21

b02 b12 b22 1 a12 a22

b0L b1L b2L 1 a1L a2L

=

H z( ) g Hk z( )

k 1=

L

∏ g
b0k b1kz 1– b2kz 2–+ +

1 a1kz 1– a2kz 2–+ +
----------------------------------------------------------

k 1=

L

∏= =
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• 'up', to order the sections so the first row of sos contains the poles farthest 
from the unit circle (default)

[sos,g] = tf2sos(b,a,'order','scale') specifies the desired scaling of the 
gain and numerator coefficients of all second-order sections, where 'scale' is:

• 'none', to apply no scaling (default)

• 'inf', to apply infinity-norm scaling

• 'two', to apply 2-norm scaling

Using infinity-norm scaling in conjunction with up-ordering minimizes the 
probability of overflow in the realization. Using 2-norm scaling in conjunction 
with down-ordering minimizes the peak round-off noise.

Note  Infinity-norm and 2-norm scaling are appropriate only for 
direct-form II implementations.

sos = tf2sos(...) embeds the overall system gain, g, in the first section, 
H1(z), so that

Note  Embedding the gain in the first section when scaling a direct-form II 
structure is not recommended and may result in erratic scaling. To avoid 
embedding the gain, use ss2sos with two outputs.

Algorithm tf2sos uses a four-step algorithm to determine the second-order section 
representation for an input transfer function system:

1 It finds the poles and zeros of the system given by b and a.

2 It uses the function zp2sos, which first groups the zeros and poles into 
complex conjugate pairs using the cplxpair function. zp2sos then forms the 

H z( ) Hk z( )

k 1=

L

∏=
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second-order sections by matching the pole and zero pairs according to the 
following rules:

a Match the poles closest to the unit circle with the zeros closest to those 
poles.

b Match the poles next closest to the unit circle with the zeros closest to 
those poles.

c Continue until all of the poles and zeros are matched.

tf2sos groups real poles into sections with the real poles closest to them in 
absolute value. The same rule holds for real zeros.

3 It orders the sections according to the proximity of the pole pairs to the unit 
circle. tf2sos normally orders the sections with poles closest to the unit 
circle last in the cascade. You can tell tf2sos to order the sections in the 
reverse order by specifying the 'down' flag.

4 tf2sos scales the sections by the norm specified in the 'scale' argument. 
For arbitrary H(ω), the scaling is defined by

where p can be either ∞ or 2. See the references for details on the scaling. 
This scaling is an attempt to minimize overflow or peak round-off noise in 
fixed point filter implementations.

References [1] Jackson, L.B., Digital Filters and Signal Processing, 3rd ed., Kluwer 
Academic Publishers, Boston, 1996, Chapter 11.

[2] Mitra, S.K., Digital Signal Processing: A Computer-Based Approach, 
McGraw-Hill, New York, 1998, Chapter 9.

[3] Vaidyanathan, P.P., “Robust Digital Filter Structures,” Handbook for 
Digital Signal Processing, S.K. Mitra and J.F. Kaiser, ed., John Wiley & Sons, 
New York, 1993, Chapter 7.

See Also cplxpair, sos2tf, ss2sos, tf2ss, tf2zp, tf2zpk, zp2sos

H p
1

2π
------ H ω( ) p ωd

0

2π

∫

1
p
---

=
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7tf2ssPurpose Convert transfer function filter parameters to state-space form

Syntax [A,B,C,D] = tf2ss(b,a)

Description tf2ss converts the parameters of a transfer function representation of a given 
system to those of an equivalent state-space representation.

[A,B,C,D] = tf2ss(b,a) returns the A, B, C, and D matrices of a state space 
representation for the single-input transfer function 

in controller canonical form

The input vector a contains the denominator coefficients in descending powers 
of s. The rows of the matrix b contain the vectors of numerator coefficients (each 
row corresponds to an output). In the discrete-time case, you must supply b and 
a to correspond to the numerator and denominator polynomials with 
coefficients in descending powers of z.

For discrete-time systems you must make b have the same number of columns 
as the length of a. You can do this by padding each numerator represented in b 
(and possibly the denominator represented in the vector a) with trailing zeros. 
You can use the function eqtflength to accomplish this if b and a are vectors 
of unequal lengths. 

The tf2ss function is part of the standard MATLAB language.

Examples Consider the system:

To convert this system to state-space, type

H s( ) B s( )
A s( )
-----------

b1sn 1– bn 1– s bn+ + +

a1sm 1– am 1– s am+ + +
------------------------------------------------------------------------ C sI A–( ) 1– B D+= = =

x· Ax Bu+=

y Cx Du+=

H s( )

2s 3+

s2 2s 1+ +

s2 0.4s 1+ +
---------------------------------=
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b = [0 2 3; 1 2 1];
a = [1 0.4 1];
[A,B,C,D] = tf2ss(b,a)

A =
   -0.4000   -1.0000
    1.0000         0

B =
     1
     0

C =
    2.0000    3.0000
    1.6000         0

D =
     0
     1

Note  There is disagreement in the literature on naming conventions for the 
canonical forms. It is easy, however, to generate similarity transformations 
that convert these results to other forms. 

See Also sos2ss, ss2tf, tf2sos, tf2zp, tf2zpk, zp2ss
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7tf2zpPurpose Convert transfer function filter parameters to zero-pole-gain form

Syntax [z,p,k] = tf2zp(b,a) 

Description tf2zp finds the zeros, poles, and gains of a continuous-time transfer function. 

Note  You should use tf2zp when working with positive powers (s2 + s + 1), 
such as in continuous-time transfer functions. A similar function, tf2zpk, is 
more useful when working with transfer functions expressed in inverse 
powers (1 + z-1 + z-2), which is how transfer functions are usually expressed in 
DSP.

[z,p,k] = tf2zp(b,a) finds the matrix of zeros z, the vector of poles p, and 
the associated vector of gains k from the transfer function parameters b and a:

• The numerator polynomials are represented as columns of the matrix b. 

• The denominator polynomial is represented in the vector a.

Given a SIMO continuous-time system in polynomial transfer function form

you can use the output of tf2zp to produce the single-input, multioutput 
(SIMO) factored transfer function form

The following describes the input and output arguments for tf2zp:

• The vector a specifies the coefficients of the denominator polynomial A(s) 
(or A(z)) in descending powers of s (z-1). 

• The ith row of the matrix b represents the coefficients of the ith numerator 
polynomial (the ith row of B(s) or B(z)). Specify as many rows of b as there 
are outputs. 

H s( ) B s( )
A s( )
-----------

b1sn 1– bn 1– s bn+ + +

a1sm 1– am 1– s am+ + +
------------------------------------------------------------------------= =

H s( ) Z s( )
P s( )
---------- k

s z1–( ) s z2–( ) s zm–( )
s p1–( ) s p2–( ) s pn–( )

------------------------------------------------------------------= =
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• For continuous-time systems, choose the number nb of columns of b to be less 
than or equal to the length na of the vector a.

• For discrete-time systems, choose the number nb of columns of b to be equal 
to the length na of the vector a. You can use the function eqtflength to 
provide equal length vectors in the case that b and a are vectors of unequal 
lengths. Otherwise, pad the numerators in the matrix b (and, possibly, the 
denominator vector a) with zeros.

• The zero locations are returned in the columns of the matrix z, with as many 
columns as there are rows in b. 

• The pole locations are returned in the column vector p and the gains for each 
numerator transfer function in the vector k. 

The tf2zp function is part of the standard MATLAB language.

Examples Find the zeros, poles, and gains of this continuous-time system: 

b = [2 3];
a = [1 0.4 1];

[b,a] = eqtflength(b,a); % Make lengths equal.
[z,p,k] = tf2zp(b,a) % Obtain the zero-pole-gain form.

z =
         0
   -1.5000

p =
   -0.2000 + 0.9798i
   -0.2000 - 0.9798i

k =
   2

See Also sos2zp, ss2zp, tf2sos, tf2ss, tf2zpk, zp2tf

H s( ) 2s2 3s+

s2 0.4s 1+ +
---------------------------------=
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7tf2zpkPurpose Convert transfer function filter parameters to zero-pole-gain form

Syntax [z,p,k] = tf2zpk(b,a) 

Description tf2zpk finds the zeros, poles, and gains of a discrete-time transfer function. 

Note  You should use tf2zpk when working with transfer functions expressed 
in inverse powers (1 + z-1 + z-2), which is how transfer functions are usually 
expressed in DSP. A similar function, tf2zp, is more useful for working with 
positive powers (s2 + s + 1), such as in continuous-time transfer functions.

[z,p,k] = tf2zpk(b,a) finds the matrix of zeros z, the vector of poles p, and 
the associated vector of gains k from the transfer function parameters b and a:

• The numerator polynomials are represented as columns of the matrix b. 

• The denominator polynomial is represented in the vector a.

Given a single-input, multiple output (SIMO) discrete-time system in 
polynomial transfer function form

you can use the output of tf2zpk to produce the single-input, multioutput 
(SIMO) factored transfer function form

The following describes the input and output arguments for tf2zpk:

• The vector a specifies the coefficients of the denominator polynomial A(z) in 
descending powers of z. 

• The ith row of the matrix b represents the coefficients of the ith numerator 
polynomial (the ith row of B(s) or B(z)). Specify as many rows of b as there 
are outputs. 

H z( ) B z( )
A z( )
------------

b1 b2z 1– bn 1– z n– bnz n– 1–+ + +

a1 a2z 1– am 1– z m– amz m– 1–+ + +
---------------------------------------------------------------------------------------------------= =

H z( ) Z z( )
P z( )
---------- k

z z1–( ) z z2–( ) z zm–( )
z p1–( ) z p2–( ) z pn–( )

-------------------------------------------------------------------= =
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• The zero locations are returned in the columns of the matrix z, with as many 
columns as there are rows in b. 

• The pole locations are returned in the column vector p and the gains for each 
numerator transfer function in the vector k. 

Examples Find the poles, zeros, and gain of a Butterworth filter:

[b,a] = butter(3,.4);
[z,p,k] = tf2zpk(b,a)

z =
  -1.0000          
  -1.0000 + 0.0000i
  -1.0000 - 0.0000i

p =
   0.2094 + 0.5582i
   0.2094 - 0.5582i
   0.1584          

k =
    0.0985

See Also sos2zp, ss2zp, tf2sos, tf2ss, tf2zp, zp2tf
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7tfestimatePurpose Transfer function estimate

Syntax Txy = tfestimate(x,y)
Txy = tfestimate(x,y,window)
Txy = tfestimate(x,y,window,noverlap)
[Txy,W] = tfestimate(x,y,window,noverlap,nfft)
[Txy,F] = tfestimate(x,y,window,noverlap,nfft,fs)
[...] = tfestimate(x,y,...,'whole')
tfestimate(...)

Description Txy = tfestimate(x,y) finds a transfer function estimate Txy given input 
signal vector x and output signal vector y. Vectors x and y must be the same 
length. The relationship between the input x and output y is modeled by the 
linear, time-invariant transfer function Txy. The transfer function is the 
quotient of the cross power spectral density (Pxy) of x and y and the power 
spectral density (Pxx) of x. 

If x is real, tfestimate estimates the transfer function at positive frequencies 
only; in this case, the output Txy is a column vector of length nfft/2+1 for nfft 
even and (nfft+1)/2 for nfft odd. If x or y is complex, tfestimate estimates 
the transfer function for both positive and negative frequencies and Txy has 
length nfft.

Txy f( )
Pxy f( )
Pxx f( )
---------------=
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tfestimate uses the following default values:

Note  You can use the empty matrix [] to specify the default value for any 
input argument except x or y. For example, 
Txy = tfestimate(x,y,[],[],128 uses a Hamming window, default 
noverlap to obtain 50% overlap, and the specified 128 nfft.

Txy = tfestimate(x,y,window) specifies a windowing function, divides x and 
y into overlapping sections of the specified window length, and windows each 
section using the specified window function. If you supply a scalar for window, 
Txy uses a Hamming window of that length. The length of the window must be 
less than or equal to nfft. If the length of the window exceeds nfft, 
tfestimate zero pads the sections 

Parameter Description Default Value

nfft FFT length which determines 
the frequencies at which the 
power spectrum is estimated

For real x and y, the length of 
Txy is (nfft/2+1) if nfft is 
even or (nfft+1)/2 if nfft is 
odd. For complex x or y, the 
length of Txy is nfft.

Maximum of 256 or the 
next power of 2 greater 
than the length of each 
section of x or y

fs Sampling frequency 1

window Windowing function and 
number of samples to use to 
section x and y

Periodic Hamming 
window of length nfft

noverlap Number of samples by which 
the sections overlap

Value to obtain 50% 
overlap
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Txy = tfestimate(x,y,window,noverlap) overlaps the sections of x by 
noverlap samples. noverlap must be an integer smaller than the length of 
window.

[Txy,W] = tfestimate(x,y,window,noverlap,nfft) uses the specified FFT 
length nfft in estimating the PSD and CPSD estimates for the transfer 
function. It also returns W, which is the vector of normalized frequencies 
(inrad/sample) at which the tfestimate is estimated. For real signals, the 
range of W is [0, pi] when nfft is even and [0, pi) when nfft is odd. For complex 
signals, the range of W is [0, 2pi).

[Txy,F] = tfestimate(x,y,window,noverlap,nfft,fs) returns Txy as a 
function of frequency and a vector F of frequencies at which tfestimate 
estimates the transfer function. fs is the sampling frequency in Hz. F is the 
same size as Txy, so plot(f,Txy) plots the transfer function estimate versus 
properly scaled frequency. For real signals, the range of F is [0, fs/2] when nfft 
is even and [0, fs/2) when nfft is odd. For complex signals, the range of F is 
[0, fs).

[...] = tfestimate(x,y,...,'whole') returns a transfer function estimate 
with frequencies that range over the whole Nyquist interval. Specifying 'half' 
uses half the Nyquist interval.

tfestimate(...) with no output arguments plots the transfer function 
estimate in the current figure window. 

Examples Compute and plot the transfer function estimate between two colored noise 
sequences x and y:

h = fir1(30,0.2,rectwin(31));
x = randn(16384,1);
y = filter(h,1,x);
tfestimate(x,y,1024,[],[],512)
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Algorithm tfestimate uses Welch’s averaged periodogram method. See pwelch for 
details.

See Also cpsd, mscohere, periodogram, pwelch, spectrum.welch
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7triangPurpose Triangular window

Syntax w = triang(n)

Description triang(n) returns an n-point triangular window in the column vector w. The 
coefficients of a triangular window are:

For n odd:

For n even:

The triangular window is very similar to a Bartlett window. The Bartlett 
window always ends with zeros at samples 1 and n, while the triangular 
window is nonzero at those points. For n odd, the center n-2 points of 
triang(n-2) are equivalent to bartlett(n).

Examples Create a 200-point triangular window and plot the result using WVTool.

N=200;
wvtool(triang(N)) 
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References [1] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing, 
Prentice-Hall, Englewood Cliffs, NJ, 1989, pp. 447-448.

See Also barthannwin, bartlett, blackmanharris, bohmanwin, nuttallwin, parzenwin, 
rectwin, window, wintool, wvtool
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7tripulsPurpose Sampled aperiodic triangle

Syntax y = tripuls(T)
y = tripuls(T,w)
y = tripuls(T,w,s)

Description y = tripuls(T) returns a continuous, aperiodic, symmetric, unity-height 
triangular pulse at the times indicated in array T, centered about T=0 and with 
a default width of 1.

y = tripuls(T,w) generates a triangular pulse of width w. 

y = tripuls(T,w,s) generates a triangular pulse with skew s, where 
-1 < s < 1. When s is 0, a symmetric triangular pulse is generated. 

See Also chirp, cos, diric, gauspuls, pulstran, rectpuls, sawtooth, sin, square, 
tripuls
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7tukeywinPurpose Tukey  (tapered cosine) window

Syntax w = tukeywin(n,r)

Description w = tukeywin(n,r) returns an n-point, Tukey window in column vector w. 
Tukey windows are cosine-tapered windows. r is the ratio of taper to constant 
sections and is between 0 and 1.  is a rectwin window and  is a hann 
window. The default value for r is 0.5.

Examples Compute 128-point Tukey windows with five different tapers and display the 
results using WVTool:

N=128;
t0=tukeywin(N,0); %Equivalent to rectangular window
t25=tukeywin(N,0.25);
t5=tukeywin(N); %r=0.5
t75=tukeywin(N,0.75);
t1=tukeywin(N,1); %Equivalent to Hann window
wvtool(t0,t25,t5,t75,t1)

Algorithm The equation for computing the coefficients of a Tukey window is

r 0≤ r 1≥
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References [1] Harris, F. J. “On the Use of Windows for Harmonic Analysis with the 
Discrete Fourier Transform.” Proceedings of the IEEE. Vol. 66 (January 1978). 
pp. 66-67.

See Also chebwin, gausswin, kaiser, window, wintool, wvtool
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7udecodePurpose Decode 2n-level quantized integer inputs to floating-point outputs

Syntax y = udecode(u,n)
y = udecode(u,n,v)
y = udecode(u,n,v,'saturatemode')

Description y = udecode(u,n) inverts the operation of uencode and reconstructs 
quantized floating-point values from an encoded multidimensional array of 
integers u. The input argument n must be an integer between 2 and 32. The 
integer n specifies that there are 2n quantization levels for the inputs, so that 
entries in u must be either:

• Signed integers in the range [-2n/2, (2n/2) - 1]

• Unsigned integers in the range [0, 2n-1]

Inputs can be real or complex values of any integer data type (uint8, uint16, 
uint32, int8, int16, int32). Overflows (entries in u outside of the ranges 
specified above) are saturated to the endpoints of the range interval. The 
output y has the same dimensions as u. Its entries have values in the range 
[-1,1]. 

y = udecode(u,n,v) decodes u such that the output y has values in the range 
[-v,v], where the default value for v is 1.

y = udecode(u,n,v,'SaturateMode') decodes u and treats input overflows 
(entries in u outside of [-v,v]) according to the string 'saturatemode', which 
can be one of the following: 

• 'saturate': Saturate overflows. This is the default method for treating 
overflows.

- Entries in signed inputs u whose values are outside of the range 
[-2n/2, (2n/2) - 1] are assigned the value determined by the closest endpoint 
of this interval. 

- Entries in unsigned inputs u whose values are outside of the range 
[0, 2n-1] are assigned the value determined by the closest endpoint of this 
interval. 

• 'wrap': Wrap all overflows according to the following:
7-630



udecode
- Entries in signed inputs u whose values are outside of the range 
[-2n/2, (2n/2) - 1] are wrapped back into that range using modulo 2n 

arithmetic (calculated using u = mod(u+2^n/2,2^n)-(2^n/2)).

- Entries in unsigned inputs u whose values are outside of the range 
[0, 2n-1] are wrapped back into the required range before decoding using 
modulo 2n arithmetic (calculated using u = mod(u,2^n)).

Examples u = int8([-1 1 2 -5]); % Create a signed 8-bit integer string.
ysat = udecode(u,3) % Decode with 3 bits.
ysat =

   -0.2500    0.2500    0.5000   -1.0000

Notice the last entry in u saturates to 1, the default peak input magnitude. 
Change the peak input magnitude:

ysatv = udecode(u,3,6) % Set the peak input magnitude to 6.
ysatv =

   -1.5000    1.5000    3.0000   -6.0000

The last input entry still saturates. Try wrapping the overflows:

ywrap = udecode(u,3,6,'wrap')
ywrap =

   -1.5000    1.5000    3.0000    4.5000

Try adding more quantization levels:

yprec = udecode(u,5)
yprec =

   -0.0625    0.0625    0.1250   -0.3125

Algorithm The algorithm adheres to the definition for uniform decoding specified in ITU-T 
Recommendation G.701. Integer input values are uniquely mapped (decoded) 
from one of 2n uniformly spaced integer values to quantized floating-point 
values in the range [-v,v]. The smallest integer input value allowed is 
mapped to -v and the largest integer input value allowed is mapped to v. 
Values outside of the allowable input range are either saturated or wrapped, 
according to specification.
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The real and imaginary components of complex inputs are decoded 
independently.

References General Aspects of Digital Transmission Systems: Vocabulary of Digital 
Transmission and Multiplexing, and Pulse Code Modulation (PCM) Terms, 
International Telecommunication Union, ITU-T Recommendation G.701, 
March, 1993.

See Also uencode
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7uencodePurpose Quantize and encode floating-point inputs to integer outputs

Syntax y = uencode(u,n)
y = uencode(u,n,v)
y = uencode(u,n,v,'SignFlag')

Description y = uencode(u,n) quantizes the entries in a multidimensional array of 
floating-point numbers u and encodes them as integers using 2n-level 
quantization. n must be an integer between 2 and 32 (inclusive). Inputs can be 
real or complex, double- or single-precision. The output y and the input u are 
arrays of the same size. The elements of the output y are unsigned integers 
with magnitudes in the range [0, 2n-1]. Elements of the input u outside of the 
range [-1,1] are treated as overflows and are saturated. 

• For entries in the input u that are less than -1, the value of the output of 
uencode is 0. 

• For entries in the input u that are greater than 1, the value of the output of 
uencode is 2n-1. 

y = uencode(u,n,v) allows the input u to have entries with floating-point 
values in the range [-v,v] before saturating them (the default value for v is 1). 
Elements of the input u outside of the range [-v,v] are treated as overflows 
and are saturated:

• For input entries less than -v, the value of the output of uencode is 0. 

• For input entries greater than v, the value of the output of uencode is 2n-1. 

y = uencode(u,n,v,'SignFlag') maps entries in a multidimensional array of 
floating-point numbers u whose entries have values in the range [-v,v] to an 
integer output y. Input entries outside this range are saturated. The integer 
type of the output depends on the string 'SignFlag' and the number of 
quantization levels 2n. The string 'SignFlag' can be one of the following:

• 'signed': Outputs are signed integers with magnitudes in the range 
[-2n/2, (2n/2) - 1].

• 'unsigned' (default): Outputs are unsigned integers with magnitudes in the 
range [0, 2n-1].
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The output data types are optimized for the number of bits as shown in the 
table below.

Examples Map floating-point scalars in [-1, 1] to uint8 (unsigned) integers, and produce 
a staircase plot. Note that the horizontal axis plots from -1 to 1 and the vertical 
axis plots from 0 to 7 (2^3-1):

u = [-1:0.01:1];
y = uencode(u,3);
plot(u,y,'.')

Now look at saturation effects when you under specify the peak value for the 
input:

u = [-2:0.5:2];
y = uencode(u,5,1)

n Unsigned Integer Signed Integer

2 to 8 uint8 int8

9 to 16 uint16 int16

17 to 32 uint32 int32

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7
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y =
     0    0    0    8   16   24   31   31   31

Now look at the output for 

u = [-2:0.5:2];
y = uencode(u,5,2,'signed')

y =
     -16  -12   -8   -4    0    4    8   12   15

Algorithm uencode maps the floating-point input value to an integer value determined by 
the requirement for 2n levels of quantization. This encoding adheres to the 
definition for uniform encoding specified in ITU-T Recommendation G.701. 
The input range [-v,v] is divided into 2n evenly spaced intervals. Input 
entries in the range [-v,v] are first quantized according to this subdivision of 
the input range, and then mapped to one of 2n integers. The range of the output 
depends on whether or not you specify that you want signed integers.

References General Aspects of Digital Transmission Systems: Vocabulary of Digital 
Transmission and Multiplexing, and Pulse Code Modulation (PCM) Terms, 
International Telecommunication Union, ITU-T Recommendation G.701, 
March, 1993.

See Also udecode
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7unwrapPurpose Unwrap phase angles

unwrap is a MATLAB function.
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7upfirdnPurpose Upsample, apply FIR filter, and downsample

Syntax yout = upfirdn(xin,h)
yout = upfirdn(xin,h,p)
yout = upfirdn(xin,h,p,q)

Description upfirdn performs a cascade of three operations:

1 Upsampling the input data in the matrix xin by a factor of the integer p 
(inserting zeros)

2 FIR filtering the upsampled signal data with the impulse response sequence 
given in the vector or matrix h

3 Downsampling the result by a factor of the integer q (throwing away 
samples)

upfirdn has been implemented as a MEX-file for maximum speed, so only the 
outputs actually needed are computed. The FIR filter is usually a lowpass 
filter, which you must design using another function such as firpm or fir1.

Note  The function resample performs an FIR design using firls, followed 
by rate changing implemented with upfirdn.

yout = upfirdn(xin,h) filters the input signal xin with the FIR filter having 
impulse response h. If xin is a row or column vector, then it represents a single 
signal. If xin is a matrix, then each column is filtered independently. If h is a 
row or column vector, then it represents one FIR filter. If h is a matrix, then 
each column is a separate FIR impulse response sequence. If yout is a row or 
column vector, then it represents one signal. If yout is a matrix, then each 
column is a separate output. No upsampling or downsampling is implemented 
with this syntax.

yout = upfirdn(xin,h,p) specifies the integer upsampling factor p, where p 
has a default value of 1.

yout = upfirdn(xin,h,p,q) specifies the integer downsampling factor q, 
where q has a default value of 1.
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Note  Since upfirdn performs convolution and rate changing, the yout 
signals have a different length than xin. The number of rows of yout is 
approximately p/q times the number of rows of xin.

Remarks Usually the inputs xin and the filter h are vectors, in which case only one 
output signal is produced. However, when these arguments are arrays, each 
column is treated as a separate signal or filter. Valid combinations are:

1 xin is a vector and h is a vector.

There is one filter and one signal, so the function convolves xin with h. The 
output signal yout is a row vector if xin is a row; otherwise, yout is a column 
vector.

2 xin is a matrix and h is a vector.

There is one filter and many signals, so the function convolves h with each 
column of xin. The resulting yout will be an matrix with the same number 
of columns as xin.

3 xin is a vector and h is a matrix.

There are many filters and one signal, so the function convolves each column 
of h with xin. The resulting yout will be an matrix with the same number of 
columns as h.

4 xin is a matrix and h is a matrix, both with the same number of columns.

There are many filters and many signals, so the function convolves 
corresponding columns of xin and h. The resulting yout is an matrix with 
the same number of columns as xin and h.

Examples Change the sampling rate by a factor of 147/160. This factor is used to convert 
from 48kHz (DAT rate) to 44.1kHz (CD sampling rate).

L = 147; M = 160; % Interpolation/decimation factors.
N = 24*M;
h = fir1(N,1/M,kaiser(N+1,7.8562));
h = L*h; % Passband gain = L
Fs = 48e3; % Original sampling frequency-48kHz
n = 0:10239; % 10240 samples, 0.213 seconds long
x  = sin(2*pi*1e3/Fs*n); % Original signal, sinusoid at 1kHz
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y = upfirdn(x,h,L,M); % 9408 samples, still 0.213 seconds

% Overlay original (48kHz) with resampled signal (44.1kHz) in red.

stem(n(1:49)/Fs,x(1:49)); hold on 
stem(n(1:45)/(Fs*L/M),y(13:57),'r','filled'); 
xlabel('Time (sec)');ylabel('Signal value');

Algorithm upfirdn uses a polyphase interpolation structure. The number of multiply-add 
operations in the polyphase structure is approximately (LhLx-pLx)/q where Lh 
and Lx are the lengths of h[n] and x[n], respectively.

A more accurate flops count is computed in the program, but the actual count 
is still approximate. For long signals x[n], the formula is often exact.

Diagnostics If p and q are large and do not have many common factors, you may see this 
message:

Filter length is too large - reduce problem complexity.

Instead, you should use an interpolation function, such as interp1, to perform 
the resampling and then filter the input.

References [1] Crochiere, R.E., and L.R. Rabiner, Multi-Rate Signal Processing, 
Prentice-Hall, Englewood Cliffs, NJ, 1983, pp. 88-91.

[2] Crochiere, R.E., “A General Program to Perform Sampling Rate Conversion 
of Data by Rational Ratios,” Programs for Digital Signal Processing, IEEE 
Press, New York, 1979, pp. 8.2-1 to 8.2-7.

See Also conv, decimate, downsample, filter, interp, intfilt, resample, upsample
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7upsamplePurpose Increase sampling rate by integer factor  

Syntax y = upsample(x,n)
y = upsample(x,n,phase)

Description y = upsample(x,n) increases the sampling rate of x by inserting n-1 zeros 
between samples. x can be a vector or a matrix. If x is a matrix, each column is 
considered a separate sequence. The upsampled y has x*n samples.

y = upsample(x,n,phase) specifies the number of samples by which to offset 
the upsampled sequence. phase must be an integer from 0 to n-1.

Examples Increase the sampling rate of a sequence by 3:

x = [1 2 3 4];
y = upsample(x,3);
x,y

x =
1 2 3 4

y =
1 0 0 2 0 0 3 0 0 4 0 0

Increase the sampling rate of the sequence by 3 and add a phase offset of 2:

x = [1 2 3 4];
y = upsample(x,3,2);
x,y

x =
1 2 3 4

y =
0 0 1 0 0 2 0 0 3 0 0 4

Increase the sampling rate of a matrix by 3:

x = [1 2; 3 4; 5 6;];
y = upsample(x,3);
x,y

x =
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1 2
3 4
5 6

y = 
1 2
0 0
0 0
3 4
0 0
0 0
5 6
0 0
0 0

See Also decimate, downsample, interp, interp1, resample, spline, upfirdn
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7vcoPurpose Voltage controlled oscillator

Syntax y = vco(x,fc,fs)
y = vco(x,[Fmin Fmax],fs)

Description y = vco(x,fc,fs) creates a signal that oscillates at a frequency determined 
by the real input vector or array x with sampling frequency fs. fc is the carrier 
or reference frequency; when x is 0, y is an fc Hz cosine with amplitude 1 
sampled at fs Hz. x ranges from -1 to 1, where x = -1 corresponds to 
0 frequency output, x = 0 corresponds to fc, and x = 1 corresponds to 2*fc. 
Output y is the same size as x.

y = vco(x,[Fmin Fmax],fs) scales the frequency modulation range so that 
±1 values of x yield oscillations of Fmin Hz and Fmax Hz respectively. For best 
results, Fmin and Fmax should be in the range 0 to fs/2.

By default, fs is 1 and fc is fs/4.

If x is a matrix, vco produces a matrix whose columns oscillate according to the 
columns of x.

Examples Generate two seconds of a signal sampled at 10,000 samples/second whose 
instantaneous frequency is a triangle function of time:

fs = 10000;
t = 0:1/fs:2;
x = vco(sawtooth(2*pi*t,0.75),[0.1 0.4]*fs,fs);

Plot the spectrogram of the generated signal:

spectrogram(x,kaiser(256,5),220,512,fs,'yaxis')
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Algorithm vco performs FM modulation using the modulate function.

Diagnostics If any values of x lie outside [-1, 1], vco gives the following error message.

X outside of range [-1,1].

See Also demod, modulate
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7windowPurpose Window function gateway

Syntax window
w = window(fhandle,n)
w = window(fhandle,n,winopt)

Description window opens the Window Design and Analysis Tool (wintool).

w = window(fhandle,n) returns the n-point window, specified by its function 
handle, fhandle, in column vector w. Function handles are window function 
names preceded by an @.

@barthannwin 
@bartlett  
@blackman 
@blackmanharris 
@bohmanwin 
@chebwin 
@flattopwin 
@gausswin 
@hamming 
@hann 
@kaiser 
@nuttallwin 
@parzenwin 
@rectwin 
@triang 
@tukeywin 

Note  For chebwin, kaiser, and tukeywin, you must use include a window 
parameter using the syntax below.

For more information on each window function and its option(s), refer to its 
reference page.

w = window(fhandle,n,winopt) returns the window specified by its function 
handle, fhandle, and its winopt value or sampling flag string. For chebwin, 
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kaiser, and tukeywin, you must enter a winopt value. For the other windows 
listed below, winopt values are optional.

Examples Create Blackman Harris, Hamming, and Gaussian windows and plot them in 
the same WVTool.

N = 65;
w = window(@blackmanharris,N);
w1 = window(@hamming,N); 
w2 = window(@gausswin,N,2.5); 
wvtool(w,w1,w2)

Window winopt Description winopt Value

blackman sampling flag string 'periodic'or 'symmetric'

chebwin sidelobe attenuation 
relative to mainlobe

numeric

flattopwin sampling flag string 'periodic'or 'symmetric'

gausswin alpha value (reciprocal of 
standard deviation)

numeric

hamming sampling flag string 'periodic'or 'symmetric'

hann sampling flag string 'periodic'or 'symmetric'

kaiser beta value numeric

tukeywin ratio of taper to constant 
sections

numeric
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See Also barthannwin, bartlett, blackman, blackmanharris, bohmanwin, chebwin, 
flattopwin, gausswin, hamming, hann, kaiser, nuttallwin, parzenwin, 
rectwin, triang, tukeywin
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7wintoolPurpose Window Design and Analysis Tool (WinTool)

Syntax wintool
wintool(obj1,obj2,...)

Description wintool opens WinTool, a graphical user interface (GUI) for designing and 
analyzing spectral windows. It opens with a default 64-point Hamming 
window. 

wintool(obj1,obj2,...) opens WinTool with the sigwin window object(s) 
specified in obj1, obj2, etc.

Note  A related tool, wvtool, is available for displaying, annotating, or 
printing windows.
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wintool has three panels:

• Window Viewer displays the time domain and frequency domain 
representations of the selected window(s). The currently active window is 
shown in bold. Three window measurements are shown below the plots.

- Leakage factor—ratio of power in the sidelobes to the total window power

- Relative sidelobe attenuation—difference in height from the mainlobe 
peak to the highest sidelobe peak

- Mainlobe width (-3dB)—width of the mainlobe at 3 dB below the mainlobe 
peak

Legend What’s This HelpZoom

Launch a 
new WinTool

Print and Preview Full View Analysis
7-648



wintool
• Window List lists the windows available for display in the Window Viewer. 
Highlight one or more windows to display them. The Window List buttons 
are:

- Add a new window—adds a default Hamming window with length 64 and 
symmetric sampling. You can change the information for this window by 
applying changes made in the Current Window Information panel.

- Copy window—copies the selected window(s).

- Save to workspace—saves the selected window(s) as vector(s) to the 
MATLAB workspace. The name of the window in wintool is used as the 
vector name.

- Delete—removes the selected window(s) from the window list.

• Current Window Information displays information about the currently 
active window. The active window name is shown in the Name field. To make 
another window active, select its name from the Name menu. 

Window Parameters
Each window is defined by the parameters in the Current Window 
Information panel. You can change the current window’s characteristics by 
changing its parameters and clicking Apply. The parameters of the current 
window are

- Name—name of the window. The name is used for the legend in the 
Window Viewer, in the Window List, and for the vector saved to the 
workspace. You can either select a name from the menu or type the desired 
name in the edit box.

- Type—algorithm for the window. Select the type from the menu. All 
windows in the Signal Processing Toolbox are available.

- MATLAB code—any valid MATLAB expression that returns a vector 
defining the window if Type = User Defined.

- Length—number of samples.

- Parameter—additional parameter for windows that require it, such as 
Chebyshev, which requires you to specify the sidelobe attenuation. Note 
that the title “Parameter” changes to the appropriate parameter name.

- Sampling—type of sampling to use for generalized cosine windows 
(Hamming, Hann, and Blackman)—Periodic or Symmetric. Periodic 
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computes a length n+1 window and returns the first n points, and 
Symmetric computes and returns the n points specified in Length.

WinTool Menus
In addition to the usual menus items, wintool contains these wintool-specific 
menu commands:

File menu: 

• Export—exports window coefficent vectors or sigwin window objects to the 
MATLAB workspace, a text file, or a MAT-file.

In the Window List in WinTool, highlight the window(s) you want to export 
and then select Export from the File menu. For exporting to the workspace 
or a MAT-file, specify the variable name for each window coefficient or object. 
To overwrite variables in the workspace, select the Overwrite variables 
check box.

• Full View Analysis—copies the windows shown in both plots to a separate 
wvtool figure window. This is useful for printing and annotating. This option 
is also available with the Full View Analysis toolbar button.

View menu: 

• Time domain—select to show the time domain plot in the Window Viewer 
panel.

• Frequency domain—select to show the frequency domain plot in the 
Window Viewer panel. 

• Legend—toggles the window name legend on and off. This option is also 
available with the Legend toolbar button.

• Analysis Parameters—controls the response plot parameters, including 
number of points, range, x- and y-axis units, sampling frequency, and 
normalized magnitude. 

Checked plot(s) are displayed.
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You can also access the Analysis Parameters by right-clicking on the x-axis 
label of a plot in the Window Viewer panel. The X-axis units for the time 
domain plot depend on the selected Sampling Frequency units.

Tools menu: 

• Zoom In—zooms in along both x- and y-axes.

• Zoom X—zooms in along the x-axis only. Drag the mouse in the x direction 
to select the zoom area.

• Zoom Y—zooms in along the y-axis only. Drag the mouse in the y direction 
to select the zoom area.

• Full View—returns to full view.

See Also window, wvtool

Frequency Domain Time Domain

Hz sec

kHz ms

MHz µs

GHz picosec
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7wvtoolPurpose Window Visualization Tool   

Syntax wvtool(winname(n))
wvtool(winname1(n),winname2(n),...winnamem(n))
wvtool(w)
h = wvtool(...)

Description wvtool(winname(n)) opens WVTool with the time and frequency domain plots 
of the n-length window specified in winname, which can be any window in the 
Signal Processing Toolbox. For a list of valid window names, see the window 
function. In the wvtool command, do not precede the window name with @.

wvtool(winname1(n),winname2(n),...winnamem(n)) opens WVTool with a 
time-domain plot and a frequency-domain plot that contain all the windows 
specified in winname1,...winnamem. The plots are shown on the same axes so 
that window characteristics can be compared and contrasted easily. WVTool is 
useful for displaying, annotating, and printing window responses.

wvtool(w)  launches the Window Visualization Tool with sigwin object w.

h = wvtool(...) returns the Handle Graphics figure handle h.

Note  A related tool, wintool, is available for designing and analyzing 
windows.
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Note  If you launch WVTool from FDATool, an Add/Replace icon, which 
controls how new windows are added from FDATool, appears on the toolbar.

WinTool Menus
In addition to the usual menus items, wintool contains these wintool-specific 
menu commands:

File menu: 

• Export—exports the displayed plot(s) to a graphic file.

Legend What’s This? HelpZoom
Print and 
Preview

Edit 
plot

Add 
text

Add 
arrow

Add 
line
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Edit menu:

• Copy figure—copies the displayed plot(s) to the clipboard.

• Copy options—diplays the Preferences dialog box. 

• Figure, Axes, and Current Object Properties—displays the Property 
Editor.

View menu: 

• Time domain—check to show the time domain plot.

• Frequency domain—check to show the frequency domain plot. 

• Legend—toggles the window name legend on and off. This option is also 
available with the Legend toolbar button.

• Analysis Parameters—controls the response plot parameters, including 
number of points, range, x- and y-axis units, sampling frequency, and 
normalized magnitude. 

You can also access the Analysis Parameters by right-clicking on the x-axis 
label of a plot in the Window Viewer panel.

• Insert menu:

You use the Insert menu to add labels, titles, arrows, lines, text, and axes to 
your plots.

Tools menu: 

• Edit Plot—turns on plot editing mode

• Zoom In—zooms in along both x- and y-axes.

• Zoom X—zooms in along the x-axis only. Drag the mouse in the x direction 
to select the zoom area.

Checked plot(s) are displayed
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• Zoom Y—zooms in along the y-axis only. Drag the mouse in the y direction 
to select the zoom area.

• Full View—returns to full view.

Examples Compare Hamming, Hann, and Gaussian windows:

wvtool(hamming(64),hann(64),gausswin(64))

See Also fdatool, window, wintool
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7xcorrPurpose Cross-correlation function

Syntax c = xcorr(x,y)
c = xcorr(x)
c = xcorr(x,y,'option')
c = xcorr(x,'option')
c = xcorr(x,y,maxlags)
c = xcorr(x,maxlags)
c = xcorr(x,y,maxlags,'option')
c = xcorr(x,maxlags,'option')
[c,lags] = xcorr(...)

Description xcorr estimates the cross-correlation sequence of a random process. 
Autocorrelation is handled as a special case.

The true cross-correlation sequence is

where xn and yn are jointly stationary random processes, , and E {·} 
is the expected value operator. xcorr must estimate the sequence because, in 
practice, only a finite segment of one realization of the infinite-length random 
process is available.

c = xcorr(x,y) returns the cross-correlation sequence in a length 2*N-1 
vector, where x and y are length N vectors (N>1). If x and y are not the same 
length, the shorter vector is zero-padded to the length of the longer vector.

By default, xcorr computes raw correlations with no normalization.

The output vector c has elements given by c(m) = Rxy(m-N), m=1, ..., 2N-1.
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In general, the correlation function requires normalization to produce an 
accurate estimate (see below).

c = xcorr(x) is the autocorrelation sequence for the vector x. If x is an N-by-P 
matrix, c is a matrix with 2N-1 rows whose P2 columns contain the 
cross-correlation sequences for all combinations of the columns of x. For more 
information on matrix processing with xcorr, see “Multiple Channels” on 
page 3-4.

c = xcorr(x,y,'option') specifies a normalization option for the 
cross-correlation, where 'option' is

• 'biased': Biased estimate of the cross-correlation function 

• 'unbiased': Unbiased estimate of the cross-correlation function 

• 'coeff': Normalizes the sequence so the autocorrelations at zero lag are 
identically 1.0. 

• 'none', to use the raw, unscaled cross-correlations (default)

See reference [1] for more information on the properties of biased and unbiased 
correlation estimates.

c = xcorr(x,'option') specifies one of the above normalization options for 
the autocorrelation.

c = xcorr(x,y,maxlags) returns the cross-correlation sequence over the lag 
range [-maxlags:maxlags]. Output c has length 2*maxlags+1.

c = xcorr(x,maxlags) returns the autocorrelation sequence over the lag 
range [-maxlags:maxlags]. Output c has length 2*maxlags+1. If x is an 
N-by-P matrix, c is a matrix with 2*maxlags+1 rows whose P2 columns contain 
the autocorrelation sequences for all combinations of the columns of x.

c = xcorr(x,y,maxlags,'option') specifies both a maximum number of lags 
and a scaling option for the cross-correlation.

Rxy biased, m( ) 1
N
----Rxy m( )=

Rxy unbiased, m( ) 1
N m–
-------------------Rxy m( )=
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c = xcorr(x,maxlags,'option') specifies both a maximum number of lags 
and a scaling option for the autocorrelation.

[c,lags] = xcorr(...) returns a vector of the lag indices at which c was 
estimated, with the range [-maxlags:maxlags]. When maxlags is not 
specified, the range of lags is [-N+1:N-1].

In all cases, the cross-correlation or autocorrelation computed by xcorr has the 
zeroth lag in the middle of the sequence, at element or row maxlags+1 (element 
or row N if maxlags is not specified).

Examples The second output, lags, is useful for plotting the cross-correlation or 
autocorrelation. For example, the estimated autocorrelation of zero-mean 
Gaussian white noise cww(m) can be displayed for -10 ≤ m ≤ 10 using:

ww = randn(1000,1);
[c_ww,lags] = xcorr(ww,10,'coeff');
stem(lags,c_ww)

Swapping the x and y input arguments reverses (and conjugates) the output 
correlation sequence. For row vectors, the resulting sequences are reversed left 
to right; for column vectors, up and down. The following example illustrates 
this property (mat2str is used for a compact display of complex numbers):

x = [1,2i,3]; y = [4,5,6];
[c1,lags] = xcorr(x,y);
c1 = mat2str(c1,2), lags
c1 =

[6-i*8.9e-016 5+i*12 22+i*10 15+i*8 12+i*8.9e-016]
lags =
    -2 -1     0     1     2
c2 = conj(fliplr(xcorr(y,x)));
c2 = mat2str(c2,2)
c2 =

[6-i*8.9e-016 5+i*12 22+i*10 15+i*8 12+i*8.9e-016]

For the case where input argument x is a matrix, the output columns are 
arranged so that extracting a row and rearranging it into a square array 
produces the cross-correlation matrix corresponding to the lag of the chosen 
row. For example, the cross-correlation at zero lag can be retrieved by:

randn('state',0)
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X = randn(2,2);
[M,P] = size(X);
c = xcorr(X);
c0 = zeros(P); c0(:) = c(M,:)   % Extract zero-lag row

c0 =
    2.9613   -0.5334
   -0.5334    0.0985

You can calculate the matrix of correlation coefficients that the MATLAB 
function corrcoef generates by substituting: 

c = xcov(X,'coef')

in the last example. The function xcov subtracts the mean and then calls 
xcorr.

Use fftshift to move the second half of the sequence starting at the zeroth lag 
to the front of the sequence. fftshift swaps the first and second halves of a 
sequence.

Algorithm For more information on estimating covariance and correlation functions, see 
[1].

References [1] Orfanidis, S.J., Optimum Signal Processing. An Introduction. 2nd Edition, 
Prentice-Hall, Englewood Cliffs, NJ, 1996.

See Also conv, corrcoef, cov, xcorr2, xcov
7-659



xcorr2
7xcorr2Purpose Two-dimensional cross-correlation

Syntax C = xcorr2(A)
C = xcorr2(A,B)

Description C = xcorr2(A,B) returns the cross-correlation of matrices A and B with no 
scaling. xcorr2 is the two-dimensional version of xcorr. It has its maximum 
value when the two matrices are aligned so that they are shaped as similarly 
as possible.

If matrix A has dimensions (Ma, Na) and matrix B has dimensions (Mb, Nb),  
the equation for the two-dimensional discrete cross-correlation is

where  and .

xcorr2(A) is the autocorrelation matrix of input matrix A. It is identical to xco

Examples Output Matrix Size
If matrix I1 has dimensions (4,3) and matrix I2 has dimensions (2,2), the 
following equations determine the number of rows and columns of the output 
matrix:

The resulting matrix is

C i j,( ) A m n( , ) conj B m i+ n j+( , )( )⋅

n 0=

Na 1–( )

∑
m 0=

Ma 1–( )

∑=

0 i Ma Mb 1–+<≤ 0 j Na Nb 1–+<≤

Cfullrows
I1rows I2rows 1–+ 4 2 1–+ 5= = =

Cfullcolumns
I1columns I2columns 1–+ 3 2 1–+ 4= = =

Cfull

c00 c01 c02 c03

c10 c11 c12 c13

c20 c21 c22 c23

c30 c31 c32 c33

c40 c41 c42 c43

=
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Computing a Specific Element

In cross-correlation, the value of an output element is computed as a weighted 
sum of neighboring elements.  For example, suppose the first input matrix 
represents an image and is defined as

I1 = [17  24   1   8  15
      23   5   7  14  16
       4   6  13  20  22
      10  12  19  21   3
      11  18  25   2   9]

The second input matrix also represents an image and is defined as

I2 = [8   1   6
      3   5   7
      4   9   2]

The following figure shows how to compute the (2,4) output element 
(zero-based indexing) using these steps:

1 Slide the center element of I2 so that lies on top of the (1,3) element of I1.

2 Multiply each weight in I2 by the element of I1 underneath.

3 Sum the individual products from step 2.

The (2,4) output element from the cross-correlation is

Cvalidcolumns
I1columns I2columns– 1+ 2= =

1 8⋅ 8 1⋅ 15 6⋅ 7 3⋅ 14 5⋅ 16 7⋅ 13 4⋅ 20 9⋅ 22 2⋅ 585=+ + + + + + + +
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The normalized cross-correlation of the (2,4) output element is

 585/sqrt(sum(dot(I1p,I1p))*sum(dot(I2,I2))) = 0.8070 

where I1p = [1 8 15; 7 14 16; 13 20 22].

See Also conv2, filter2, xcorr

Image pixel values
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7xcovPurpose Cross-covariance function (equal to mean-removed cross-correlation)

Syntax v = xcov(x,y)
v = xcov(x)
v = xcov(x,'option')
[c,lags] = xcov(x,y,maxlags)
[c,lags] = xcov(x,maxlags)
[c,lags] = xcov(x,y,maxlags,'option')

Description xcov estimates the cross-covariance sequence of random processes. 
Autocovariance is handled as a special case.

The true cross-covariance sequence is the cross-correlation of mean-removed 
sequences

where  and  are the mean values of the two stationary random processes, 
and E{·} is the expected value operator. xcov estimates the sequence because, 
in practice, access is available to only a finite segment of the infinite-length 
random process.

v = xcov(x,y) returns the cross-covariance sequence in a length 2N-1 vector, 
where x and y are length N vectors. For information on how arrays are 
processed with xcov, see “Multiple Channels” on page 3-4.

v = xcov(x) is the autocovariance sequence for the vector x. Where x is an 
N-by-P array, v = xcov(x) returns an array with 2N-1 rows whose P2 columns 
contain the cross-covariance sequences for all combinations of the columns of x.

By default, xcov computes raw covariances with no normalization. For a 
length N vector

φxy µ( ) E xn m+ µx–( ) yn µy–( )*{ }=

µx µy

cxy m( )
x n m+( ) 1

N
---- xi

i 0=

N 1–

∑–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

yn
* 1

N
---- yi

*

i 0=

N 1–

∑–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

n 0=

N m– 1–

∑ m 0≥

cyx
* m–( ) m 0<⎩

⎪
⎪
⎨
⎪
⎪
⎧

=
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The output vector c has elements given by c(m) = cxy(m-N), m = 1, ..., 2N-1.

The covariance function requires normalization to estimate the function 
properly.

v = xcov(x,'option') specifies a scaling option, where 'option' is

• 'biased', for biased estimates of the cross-covariance function

• 'unbiased', for unbiased estimates of the cross-covariance function

• 'coeff', to normalize the sequence so the auto-covariances at zero lag are 
identically 1.0

• 'none', to use the raw, unscaled cross-covariances (default)

See [1] for more information on the properties of biased and unbiased 
correlation and covariance estimates.

[c,lags] = xcov(x,y,maxlags) where x and y are length m vectors, returns 
the cross-covariance sequence in a length 2*maxlags+1 vector c. lags is a 
vector of the lag indices where c was estimated, that is, [-maxlags:maxlags].

[c,lags] = xcov(x,maxlags) is the autocovariance sequence over the range 
of lags [-maxlags:maxlags].

[c,lags] = xcov(x,maxlags) where x is an m-by-p array, returns array c with 
2*maxlags+1 rows whose P2 columns contain the cross-covariance sequences 
for all combinations of the columns of x. 

[c,lags] = xcov(x,y,maxlags,'option') specifies a scaling option, where 
'option' is the last input argument.

In all cases, xcov gives an output such that the zeroth lag of the covariance 
vector is in the middle of the sequence, at element or row maxlag+1 or at m.

Examples The second output lags is useful when plotting. For example, the estimated 
autocovariance of uniform white noise cww(m) can be displayed for -10 ≤ m ≤ 10 
using:

ww = randn(1000,1);  % Generate uniform noise with mean = 1/2.
[cov_ww,lags] = xcov(ww,10,'coeff');
stem(lags,cov_ww)
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Algorithm xcov computes the mean of its inputs, subtracts the mean, and then calls 
xcorr. For more information on estimating covariance and correlation 
functions, see [1].

Diagnostics xcov does not check for any errors other than the correct number of input 
arguments. Instead, it relies on the error checking in xcorr.

References [1] Orfanidis, S.J., Optimum Signal Processing. An Introduction. 2nd Edition, 
Prentice-Hall, Englewood Cliffs, NJ, 1996.

See Also conv, corrcoef, cov, xcorr, xcorr2
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7yulewalkPurpose Recursive digital filter design

Syntax [b,a] = yulewalk(n,f,m)

Description yulewalk designs recursive IIR digital filters using a least-squares fit to a 
specified frequency response.

[b,a] = yulewalk(n,f,m) returns row vectors b and a containing the n+1 
coefficients of the order n IIR filter whose frequency-magnitude characteristics 
approximately match those given in vectors f and m:

• f is a vector of frequency points, specified in the range between 0 and 1, 
where 1 corresponds to half the sample frequency (the Nyquist frequency). 
The first point of f must be 0 and the last point 1, with all intermediate 
points in increasing order. Duplicate frequency points are allowed, 
corresponding to steps in the frequency response.

• m is a vector containing the desired magnitude response at the points 
specified in f.

• f and m must be the same length.

• plot(f,m) displays the filter shape.

The output filter coefficients are ordered in descending powers of z.

When specifying the frequency response, avoid excessively sharp transitions 
from passband to stopband. You may need to experiment with the slope of the 
transition region to get the best filter design.

Examples Design an 8th-order lowpass filter and overplot the desired frequency response 
with the actual frequency response:

f = [0 0.6 0.6 1];
m = [1 1 0 0];
[b,a] = yulewalk(8,f,m);
[h,w] = freqz(b,a,128);
plot(f,m,w/pi,abs(h),'--')
legend('Ideal','yulewalk Designed')
title('Comparison of Frequency Response Magnitudes')

B z( )
A z( )
----------- b 1( ) b 2( )z 1– b n 1+( )z n–+ + +

a 1( ) a 2( )z 1– a n 1+( )z n–+ + +
-------------------------------------------------------------------------------------=
7-666



yulewalk
Algorithm yulewalk performs a least-squares fit in the time domain. It computes the 
denominator coefficients using modified Yule-Walker equations, with 
correlation coefficients computed by inverse Fourier transformation of the 
specified frequency response. To compute the numerator, yulewalk takes the 
following steps:

1 Computes a numerator polynomial corresponding to an additive 
decomposition of the power frequency response.

2 Evaluates the complete frequency response corresponding to the numerator 
and denominator polynomials.

3 Uses a spectral factorization technique to obtain the impulse response of the 
filter.

4 Obtains the numerator polynomial by a least-squares fit to this impulse 
response.

References [1] Friedlander, B., and B. Porat, “The Modified Yule-Walker Method of ARMA 
Spectral Estimation,” IEEE Transactions on Aerospace Electronic Systems, 
AES-20, No. 2 (March 1984), pp. 158-173.

See Also butter, cheby1, cheby2, ellip, fir2, firls, maxflat, firpm
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7zerophasePurpose Zero-phase response of a digital filters

Syntax [Hr,w] = zerophase(b,a)
[Hr,w] = zerophase(b,a,nfft)
[Hr,w] = zerophase(b,a,nfft,'whole')
[Hr,w] = zerophase(b,a,w)
[Hr,f] = zerophase(...,fs)
[Hr,w,phi] = zerophase(...)
zerophase(...)

Description [Hr,w] = zerophase(b,a) returns the zero-phase response Hr, and the 
frequency vector w (in radians/sample) at which Hr is computed, given a filter 
defined by numerator b and denominator a. For FIR filters where a=1, you can 
omit the value a from the command. The zero-phase response is evaluated at 
512 equally spaced points on the upper half of the unit circle.

The zero-phase response, Hr(w), is related to the frequency response, H(w) by

 ,

where  is the frequency response, Hr(ω) is the zero-phase response and 
ϕ(w) is the continuous phase.

Note  The zero-phase response is always real, but it is not the equivalent of 
the magnitude response. The former can be negative while the latter cannot 
be negative. 

[Hr,w] = zerophase(b,a,nfft) returns the zero-phase response Hr and 
frequency vector w (radians/sample), using nfft frequency points on the  upper 
half of the unit circle.

[Hr,w] = zerophase(b,a,nfft,'whole') returns the zero-phase response Hr 
and frequency vector w (radians/sample), using nfft frequency points around 
the whole unit circle.

[Hr,w] = zerophase(b,a,w) returns the zero-phase response Hr and 
frequency vector w (radians/sample) at frequencies in vector w.

H ejω( ) Hr ω( ) ejϕ ω( )
=

H ejω( )
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[Hr,f] = zerophase(...,fs) returns the zero-phase response Hr and 
frequency vector f (Hz), using the sampling frequency fs (in Hz), to determine 
the frequency vector f (in Hz) at which Hr is computed.

[Hr,w,phi] = zerophase(...) returns the zero-phase response Hr,  
frequency vector w (rad/sample), and the continuous phase component, phi. 
(Note that this quantity is not equivalent to the phase response of the filter 
when the zero-phase response is negative.)

zerophase(...) with no output arguments, plots the zero-phase response 
versus frequency.

Examples Example 1
Plot the zero-phase response of a constrained least squares FIR filter:

b=fircls1(54,.3,.02,.008);
zerophase(b);

Example 2
Plot the zero-phase response of an elliptic filter:

[b,a]=ellip(10,.5,20,.4);
zerophase(b,a,512,'whole');

See Also freqs, freqz, fvtool, grpdelay, invfreqz, phasedelay, phasez
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7zp2sosPurpose Convert zero-pole-gain filter parameters to second-order sections form

Syntax [sos,g] = zp2sos(z,p,k)
[sos,g] = zp2sos(z,p,k,'order')
[sos,g] = zp2sos(z,p,k,'order','scale')
sos = zp2sos(...)

Description zp2sos converts a discrete-time zero-pole-gain representation of a given digital 
filter to an equivalent second-order section representation.

Use [sos,g] = zp2sos(z,p,k) to obtain a matrix sos in second-order section 
form with gain g equivalent to the discrete-time zero-pole-gain filter 
represented by input arguments z, p, and k. Vectors z and p contain the zeros 
and poles of the filter’s transfer function H(z), not necessarily in any particular 
order. 

where n and m are the lengths of z and p, respectively, and k is a scalar gain. 
The zeros and poles must be real or complex conjugate pairs. sos is an L-by-6 
matrix

whose rows contain the numerator and denominator coefficients bik and aik of 
the second-order sections of H(z).

The number L of rows of the matrix sos is the closest integer greater than or 
equal to the maximum of n/2 and m/2. 

H z( ) k
z z1–( ) z z2–( ) z zn–( )

z p1–( ) z p2–( ) z pm–( )
--------------------------------------------------------------------=

sos

b01 b11 b21 1 a11 a21

b02 b12 b22 1 a12 a22

b0L b1L b2L 1 a1L a2L

=

H z( ) g Hk z( )

k 1=

L

∏ g
b0k b1kz 1– b2kz 2–+ +

1 a1kz 1– a2kz 2–+ +
----------------------------------------------------------

k 1=

L

∏= =
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[sos,g] = zp2sos(z,p,k,'order') specifies the order of the rows in sos, 
where 'order' is

• 'down', to order the sections so the first row of sos contains the poles closest 
to the unit circle

• 'up', to order the sections so the first row of sos contains the poles farthest 
from the unit circle (default)

[sos,g] = zp2sos(z,p,k,'order','scale') specifies the desired scaling of 
the gain and the numerator coefficients of all second-order sections, where 
'scale' is

• 'none', to apply no scaling (default)

• 'inf', to apply infinity-norm scaling

• 'two', to apply 2-norm scaling

Using infinity-norm scaling in conjunction with up-ordering minimizes the 
probability of overflow in the realization. Using 2-norm scaling in conjunction 
with down-ordering minimizes the peak round-off noise.

Note  Infinity-norm and 2-norm scaling are appropriate only for 
direct-form II implementations.

sos = zp2sos(...) embeds the overall system gain, g, in the first section, 
H1(z), so that 

Note  Embedding the gain in the first section when scaling a direct-form II 
structure is not recommended and may result in erratic scaling. To avoid 
embedding the gain, use ss2sos with two outputs.

H z( ) Hk z( )

k 1=

L

∏=
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Examples Find a second-order section form of a Butterworth lowpass filter:

[z,p,k] = butter(5,0.2);
sos = zp2sos(z,p,k);

Algorithm zp2sos uses a four-step algorithm to determine the second-order section 
representation for an input zero-pole-gain system:

1 It groups the zeros and poles into complex conjugate pairs using the 
cplxpair function. 

2 It forms the second-order section by matching the pole and zero pairs 
according to the following rules:

a Match the poles closest to the unit circle with the zeros closest to those 
poles.

b Match the poles next closest to the unit circle with the zeros closest to 
those poles.

c Continue until all of the poles and zeros are matched.

zp2sos groups real poles into sections with the real poles closest to them in 
absolute value. The same rule holds for real zeros.

3 It orders the sections according to the proximity of the pole pairs to the unit 
circle. zp2sos normally orders the sections with poles closest to the unit 
circle last in the cascade. You can tell zp2sos to order the sections in the 
reverse order by specifying the down flag.

4 zp2sos scales the sections by the norm specified in the 'scale' argument. 
For arbitrary H(ω), the scaling is defined by

where p can be either ∞ or 2. See the references for details on the scaling. 
This scaling is an attempt to minimize overflow or peak round-off noise in 
fixed point filter implementations.

References [1] Jackson, L.B., Digital Filters and Signal Processing, 3rd ed., Kluwer 
Academic Publishers, Boston, 1996, Chapter 11.

H p
1

2π
------ H ω( ) p ωd

0

2π

∫

1
p
---

=
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[2] Mitra, S.K., Digital Signal Processing: A Computer-Based Approach, 
McGraw-Hill, New York, 1998, Chapter 9.

[3] Vaidyanathan, P.P., “Robust Digital Filter Structures,” Handbook for 
Digital Signal Processing, S.K. Mitra and J.F. Kaiser, ed., John Wiley & Sons, 
New York, 1993, Chapter 7.

See Also cplxpair, filternorm, sos2zp, ss2sos, tf2sos, zp2ss, zp2tf
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7zp2ssPurpose Convert zero-pole-gain filter parameters to state-space form

Syntax [A,B,C,D] = zp2ss(z,p,k)

Description zp2ss converts a zero-pole-gain representation of a given system to an 
equivalent state-space representation. 

[A,B,C,D] = zp2ss(z,p,k) finds a single input, multiple output, state-space 
representation

given a system in factored transfer function form.

Column vector p specifies the pole locations, and matrix z the zero locations 
with as many columns as there are outputs. The gains for each numerator 
transfer function are in vector k. The A, B, C, and D matrices are returned in 
controller canonical form.

Inf values may be used as place holders in z if some columns have fewer zeros 
than others.

Algorithm zp2ss, for single-input systems, groups complex pairs together into two-by-two 
blocks down the diagonal of the A matrix. This requires the zeros and poles to 
be real or complex conjugate pairs.

See Also sos2ss, ss2zp, tf2ss, zp2sos, zp2tf

x· Ax Bu+=

y Cx Du+=

H s( ) Z s( )
P s( )
---------- k

s z1–( ) s z2–( ) s zn–( )
s p1–( ) s p2–( ) s pn–( )

------------------------------------------------------------------= =
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7zp2tfPurpose Convert zero-pole-gain filter parameters to transfer function form

Syntax [b,a] = zp2tf(z,p,k) 

Description zp2tf forms transfer function polynomials from the zeros, poles, and gains of a 
system in factored form. 

[b,a] = zp2tf(z,p,k) finds a rational transfer function 

given a system in factored transfer function form

Column vector p specifies the pole locations, and matrix z specifies the zero 
locations, with as many columns as there are outputs. The gains for each 
numerator transfer function are in vector k. The zeros and poles must be real 
or come in complex conjugate pairs. The polynomial denominator coefficients 
are returned in row vector a and the polynomial numerator coefficients are 
returned in matrix b, which has as many rows as there are columns of z.

Inf values can be used as place holders in z if some columns have fewer zeros 
than others.

Algorithm The system is converted to transfer function form using poly with p and the 
columns of z. 

See Also sos2tf, ss2tf, tf2zp, tf2zpk, zp2sos, zp2ss

B s( )
A s( )
-----------

b1s n 1–( ) b n 1–( )s bn+ + +

a1s m 1–( ) a m 1–( )s am+ + +
--------------------------------------------------------------------------------=

H s( ) Z s( )
P s( )
---------- k

s z1–( ) s z2–( ) s zm–( )
s p1–( ) s p2–( ) s pn–( )

------------------------------------------------------------------= =
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7zplanePurpose Zero-pole plot

Syntax zplane(z,p)
zplane(b,a)
zplane(Hd)
[hz,hp,ht] = zplane(z,p)

Description This function displays the poles and zeros of discrete-time systems. 

zplane(z,p) plots the zeros specified in column vector z and the poles specified 
in column vector p in the current figure window. The symbol 'o' represents a 
zero and the symbol 'x' represents a pole. The plot includes the unit circle for 
reference. If z and p are arrays, zplane plots the poles and zeros in the columns 
of z and p in different colors.

You can override the automatic scaling of zplane using

axis([xmin xmax ymin ymax])

or

set(gca,'ylim',[ymin ymax])

or

set(gca,'xlim',[xmin xmax])

after calling zplane. This is useful in the case where one or a few of the zeros 
or poles have such a large magnitude that the others are grouped tightly 
around the origin and are hard to distinguish.

zplane(b,a) where b and a are row vectors, first uses roots to find the zeros 
and poles of the transfer function represented by numerator coefficients b and 
denominator coefficients a.

zplane(Hd) finds the zeros and poles of the transfer function represented by 
the dfilt filter object Hd. The pole-zero plot is displayed in fvtool.

[hz,hp,ht] = zplane(z,p) returns vectors of handles to the zero lines, hz, 
and the pole lines, hp. ht is a vector of handles to the axes/unit circle line and 
to text objects, which are present when there are multiple zeros or poles. If 
there are no zeros or no poles, hz or hp is the empty matrix [].
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zplane
Examples For data sampled at 1000 Hz, plot the poles and zeros of a 4th-order elliptic 
lowpass digital filter with cutoff frequency of 200 Hz, 3 dB of ripple in the 
passband, and 30 dB of attenuation in the stopband:

[z,p,k] = ellip(4,3,30,200/500);
zplane(z,p);
title('4th-Order Elliptic Lowpass Digital Filter');

To generate the same plot with a transfer function representation of the filter, 
use:

[b,a] = ellip(4,3,30,200/500);   % Transfer function
zplane(b,a)

To generate the same plot using a dfilt object and displaying the result in the 
Filter Visualization Tool (fvtool) use:

[b,a] = ellip(4,3,30,200/500);
Hd=dfilt.df1(b,a);
zplane(Hd)
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See Also freqz
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A

Technical Conventions

This manual and the Signal Processing Toolbox functions use the following 
technical notations.

Term or Symbol Description

Nyquist frequency One-half the sampling frequency. Some 
toolbox functions normalize this value to 
1.

x(1) The first element of a data sequence or 
filter, corresponding to zero lag.

Ω or w Analog frequency in radians per second.

ω or w Digital frequency in radians per sample.

f Digital frequency in hertz.

[x, y) The interval from x to y, including x but 
not including y.

... Ellipses in the argument list for a given 
syntax on a function reference page 
indicate all possible argument lists for 
that function appearing prior to the given 
syntax are valid. 
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A-2



Index
Numerics
2-norm 7-265

A
A/D conversion 7-633
abs function 7-18
ac2poly function 7-19
ac2rc function 7-20
addstages method 7-138
aliasing

impulse invariance 2-45
preventing 4-27
reducing 4-46
sinc functions 1-13

all-pole filters
See IIR filters

all-zero filters
See FIR filters

AM
See amplitude modulation

amdsb function 7-409
amplitude demodulation 7-132
amplitude modulation 7-409
analog filters 2-42

bandpass 7-392
bandstop 7-395
Bessel 7-31
Bessel comparison 2-13
Bessel lowpass 7-30
bilinear transformation 2-47
Butterworth 7-56
Butterworth comparison 2-9
Butterworth lowpass 7-55
Butterworth order estimation 7-62
Chebyshev Type I 7-91
Chebyshev Type I comparison 2-10
Chebyshev Type I lowpass 7-78
Chebyshev Type I order estimation 7-80
Chebyshev Type II 7-97
Chebyshev Type II comparison 2-11
Chebyshev Type II order estimation 7-85
converting to digital 7-359
design 2-7
discretization 2-45
elliptic 7-242
elliptic order estimation 7-250
frequency response 7-307
frequency response example 2-14
highpass 7-397
impulse invariance 2-45
inverse 7-371
lowpass 7-399
models 1-43
plotting 2-14
See also IIR filters

analog frequency A-1
analog signals

See signals
analysis parameters 7-318
analytic signals 7-353
angle function 7-21
anti-symmetric filters 2-27
AR filter stability 7-473
AR models

See autoregressive (AR) models
arburg function 7-22
arcov function 7-23
ARMA filters

coefficients 1-16
Prony’s method 4-18
Steiglitz-McBride method 4-20
See also IIR filters
Index-1



Index

Ind
armcov function 7-24
ARX models 4-18
aryule function 7-25
ASCII files

importing 1-14
autocorrelation 7-657

convert from LP coefficients 7-471
convert from reflection coefficients 7-495
convert to LP coefficients 7-19
convert to reflection coefficients 7-20
estimation 3-4
multiple channel filters 3-4
two-dimensional 7-660
variance 3-4

autocovariance 7-663
multiple channels 3-4

autoregressive (AR) models
Burg method 7-22
coefficients 1-16
covariance method 7-23
modified covariance method 7-24
power spectral density (Burg method) 7-421
power spectral density (covariance method) 

7-426
power spectral density (modified covariance 

method) 7-451
power spectral density (Yule-Walker method) 

7-489
Yule-Walker method 7-25
See also IIR filters

autoregressive moving-average (ARMA) filters
See ARMA filters

avgpower method 7-219
ex-2
B
band edges

prewarping 2-48
bandpass filters

Butterworth 7-56
Chebyshev Type I 7-91
Chebyshev Type I example 2-44
Chebyshev Type II 7-96
design 2-6
elliptic 7-242
FIR 2-22
FIR example 7-275
impulse invariance 2-46
transform from lowpass 7-392

bandstop filters
Butterworth 7-57
Chebyshev Type I 7-92
Chebyshev Type II 7-97
elliptic 7-243
FIR 7-274
transform from lowpass 7-395

bandwidth 2-44
barthannwin Bartlett Hann window function 7-26

comparison 4-2
bartlett window function 7-28

comparison 4-2
Bessel filters

characteristics 2-13
limitations 7-32
lowpass 7-30
prototype 7-30

besselap function 7-30
besself function 7-31



Index
bias 3-3
linear prediction 4-17
power spectral density 3-16
variance trade-off 3-4
Welch 3-23

bilinear function 7-33
bilinear transformations 7-33

characteristics 2-47
output 7-34
prewarping 7-33
prewarping example 2-48

bit reversal 7-38
bitrevorder function 7-38
blackman window function 7-40

comparison 4-2
blackmanharris window function 7-42

comparison 4-2
Nuttall 7-417

block method 7-138
bohmanwin window function 7-44

comparison 4-2
boxcar windows

See rectangular windows
brackets A-1
buffer function 7-46
Burg method

characteristics 3-36
example 3-37
spectral estimation 3-7
Welch’s method comparison 3-38

Burg spectrum object 7-558
buttap function 7-55
butter function 7-56

Butterworth filters 7-56
characteristics 2-9
comparison 2-9
generalized 2-15
limitations 7-60
lowpass 7-55
order estimation 7-61

buttord function 7-61

C
C header files 5-40
canonical forms 1-18

naming conventions 7-616
carrier frequencies 4-35
cascade method 7-138
cascades 1-39
Cauer filters

See elliptic filters
cceps function 7-66
cell2sos function 7-68
center frequency 2-44
centerdc method 7-219
cepstrum 4-28

inverse function 7-499
cfirpm function 7-69
cheb1ap function 7-78
cheb1ord function 7-79
cheb2ap function 7-83
cheb2ord function 7-84
chebwin Chebyshev window function 7-89

comparison 4-2
cheby1 function 7-91
cheby2 function 7-96
Chebyshev error minimization 7-293
Index-3



Index

Ind
Chebyshev Type I filters 7-91
characteristics 2-10
example 2-44
lowpass 7-78
order estimation 7-79

Chebyshev Type II filters 7-96
characteristics 2-11
limitations 7-95
order estimation 2-7

chirp function 7-101
chirp signals 1-10
chirp z-transforms 7-123

characteristics 4-42
CIC filters

exporting from FDATool to Simulink 5-36
coding

PCM 7-633
coefficients

accessing filter 6-35
convert autocorrelation to filter 7-19
convert filter to autocorrelation 7-471
convert filter to reflection 7-473
convert reflection to autocorrelation 7-495
convert reflection to filter 7-498
filter 1-16
lattice 1-39
linear prediction 7-401
reflection 7-20

coefficients method 7-138
coherence 7-412

definition 3-29
linearly dependent data 3-29

colors
sptool GUI 6-51
ex-4
communications
applications 4-35
modeling 4-15
simulation 7-132
See also modulation, demodulation, voltage 

controlled oscillation
compaction

discrete cosine transform 4-45
complex envelope

See Hilbert transforms
context-sensitive help 6-7
continuous signals

See signals
continuous-time filters

See  analog filters
conv function 7-108
conv2 function 7-109
conversions

autocorrelation to filter coefficients 7-19
autocorrelation to reflection coefficients 7-20
errors 5-26
filter coefficients to autocorrelation 7-471
filter coefficients to reflection coefficients 7-473
functions (table) 1-44
reflection coefficients to autocorrelation 7-495
reflection coefficients to filter coefficients 7-498
second-order section to zero-pole-gain 7-539
second-order sections to state-space 7-535
second-order sections to transfer functions 

7-537
state-space to second-order sections 7-593
state-space to zero-pole-gain 7-598
transfer functions to lattice 7-611
transfer functions to second-order sections 

7-612
transfer functions to state-space 7-615



Index
zero-pole-gain to second-order sections 7-670
zero-pole-gain to state-space 7-674

convert method 7-138
convmtx function 7-110
convolution

cross-correlation 3-2
filtering 1-15
matrix 1-42
matrix function (convmtx) 7-110

corrcoef function 7-112
correlation

bias 3-3
cross-correlation 7-656
linear prediction 4-17
matrices 7-113
See also autocorrelation, cross-correlation

correlation matrices 7-113
corrmtx function 7-113
cosine windows 4-7
cov function 7-116
covariance

definition 3-8
methods 3-41
modified covariance spectrum object 7-567
spectrum object 7-560
See also autocovariance, cross-covariance, 

modified covariance method
cplxpair function 7-117
cpsd function 7-118
cross power spectral density 7-118

definition 3-27
cross spectral density

definition 3-27
See also power spectral density, spectral 

estimation

cross-correlation 7-656
discussion 3-2
two-dimensional 7-660

cross-covariance 7-663
comparison to cross-correlation 3-2
multiple channels 3-4

czt function
See also chirp z-transforms

 7-123

D
data

markers 5-17
multichannel matrix 1-5
multichannel signals 1-8
time vectors 1-7
vectors 1-5

DC component suppression 1-48
dct function 7-126
de la Valle-Poussin windows

See Parzen windows
decimate 7-128
decode 7-630
deconv function 7-131
deconvolution 4-41
default session

sptool GUI 6-51
delay 7-150
delays

group 1-30
noninteger 2-28
phase 1-31
signals 2-28

demod 7-132
demod function 7-132
Index-5
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Ind
demodulation 7-132
example 4-36

dfilt function 7-135
cascade 7-148
convert structures 7-145
copying 7-145
delay 7-150
direct-form antisymmetric FIR 7-173
direct-form FIR transposed 7-179
direct-form I 7-152
direct-form I sos 7-154
direct-form I transposed 7-157
direct-form I transposed sos 7-159
direct-form II 7-162
direct-form II sos 7-165
direct-form II transposed 7-168
direct-form II transposed sos 7-170
direct-form IIR 7-177
direct-form symmetric FIR 7-181
FFT FIR 7-185
filter implementation 2-50
lattice allpass 7-188
lattice ARMA 7-192
lattice autoregressive 7-190
lattice moving-average maximum 7-194
lattice moving-average minimum 7-196
methods 7-137
parallel 7-198
scalar 7-200
state space 7-203
structures 7-135, 7-270

dfilt.cascade function 7-148
dfilt.delay function 7-150
dfilt.df1 function 7-152
dfilt.df1sos function 7-154
dfilt.df1t function 7-157
dfilt.df1tsos function 7-159
ex-6
dfilt.df2 function 7-162
dfilt.df2sos function 7-165
dfilt.df2t function 7-168
dfilt.df2tsos function 7-170
dfilt.dfasymfir function 7-173
dfilt.dffir function 7-177
dfilt.dffirt function 7-179
dfilt.dfsymfir function 7-181
dfilt.fftfir function 7-185
dfilt.latticeallpass function 7-188
dfilt.latticear function 7-190
dfilt.latticearma function 7-192
dfilt.latticemamax function 7-194
dfilt.latticemamin function 7-196
dfilt.parallel function 7-198
dfilt.scalar function 7-200
dfilt.statespace function 7-203
dft

See discrete Fourier transforms
dftmtx function 7-205
difference equations 1-34
differentiators

definition 2-29
least square linear-phase FIR 7-289
Parks-McClellan FIR 7-295

digit reversal 7-206
digital audio tape standards 4-26
digital filters

anti-causal 1-21
Butterworth 7-56
Butterworth order estimation 7-61
cascade 1-39
Chebyshev Type I order estimation

 7-79
Chebyshev Type II 7-96
Chebyshev Type II order estimation 7-84
coefficients 1-16



Index
comparison to IIR 2-17
convolution 1-15
convolution matrices 1-42
design 2-2
elliptic 7-242
elliptic order estimation 7-249
equiripple FIR order estimation 7-300
FFT FIR overlap-add 7-259
FIR design 2-17
fixed-point implementation 1-39
frequency response 1-26
group delay description 1-30
group delay function 7-345
identification from frequency data 7-375
IIR design 2-4
implementation with filter 1-15
impulse response 7-362
impulse response definition 1-24
initial conditions 1-18
lattice/ladder structures 1-39
models 1-34
order 1-16
phase delay definition 1-31
poles 1-35
second-order sections 1-39
specifications 2-7
state-space 1-36
time-domain representation 1-17
transfer functions representation 1-16
transients 1-23
transposed direct-form II structures 1-18
types 1-16
zero-phase 7-267
zero-phase implementation 1-21
zero-pole analysis 1-32
zeros 1-35
See also FIR filters, IIR filters

digital frequency A-1
digitrevorder function 7-206
diric function 7-208
Dirichlet functions 7-208

definition 1-13
discrete cosine transforms 7-126

definition 4-44
energy compaction property 4-45
example 4-45
inverse 7-356
reconstruct signals 4-45

discrete Fourier transforms
algorithms 1-47
definition 1-46
eigenvector equivalent 3-43
goertzel 1-48
IIR filter implementation 1-23
inverse two-dimensional 1-48
magnitude 1-47
matrix 7-205
phase 1-47
power spectrum estimation 3-9
signal length dependencies 1-47
spectral analysis 3-5
time-dependent 4-33
two-dimensional 1-48
See also fast Fourier transforms

discrete prolate spheroidal sequences
 See dpss

discretization 7-359
bilinear transformations 2-47
filters 2-45
impulse invariance 2-45

downsample function 7-209
dpss function 7-211

example 3-27
dpssclear function 7-214
Index-7



Index

Ind
dpssdir function 7-215
dpssload function 7-216
dpsssave function 7-217
dspdata object 7-218

mean-square spectrum 7-223
psd 7-228
pseudospectrum 7-233

dspdata.msspectrumd function 7-223
dspdata.psd function 7-228
dspdata.pseudospectrum function 7-233
dspopts object 7-239
duty cycles 1-9

E
echo detection 4-28
edge effects 1-23
eigenanalysis 3-43
eigenvector method 7-432

definition 3-42
root MUSIC 7-511
spectral estimation 3-7
spectrum object 7-562
See also multiple signal classification method

ellip function 7-242
ellipap function 7-248
ellipord function 7-249
elliptic filters 7-242

definition 2-12
limitations 7-246
order estimation 7-249

encoding 7-633
eqtflength function 7-254
equiripple 2-23

Chebyshev Type I filters 2-10
Chebyshev Type II filters 2-11
Chebyshev windows 4-14
ex-8
elliptic filters 2-12
elliptic filters (analog) 7-248
elliptic filters (Cauer) 7-242
Parks-McClellan design 7-293

error minimization 2-23
weighted frequency bands 2-27

estimation 3-7
covariance method 7-23
cross spectral density 3-27
modified covariance method 7-24
Yule-Walker method 7-25
See also parametric modeling

export
filter 5-32
window 7-650

F
fast Fourier transforms 1-46

example 1-47
frequency response 1-26
Goertzel algorithm 7-341
implementation 1-23
output 1-48

fcfwrite method 7-139
FDATool

exporting to Simulink 5-36
fdatool GUI 7-255

analysis buttons 5-15
computing coefficients 5-14
design methods 5-9
exporting filters 5-32
filter architecture 5-26
filter design specification 5-10
filter implementation 5-26
filter order specification 5-10
filters structure 5-26



Index
frequency response specification 5-12
group delay 5-15
importing 5-29
impulse response 5-15
magnitude response 5-15
M-files 5-43
opening 5-7
phase delay 5-15
phase response 5-15
pole-zero plots 5-15
response type 5-8
saving coefficients 5-32
second analysis 5-15
sessions 5-46
step response 5-15

FFT
See fast Fourier transforms

fftcoeffs method 7-139
fftfilt function 7-259
fftshift function 7-262
Filter block 5-36
filter design

sptool Filter Designer GUI 6-11
See also  fdatool GUI

filter function 7-263
description 1-18

filter method 7-139
Filter Viewer

introduction 7-589
open 6-14
printing 6-28

Filter Visualization Tool
See fvtool GUI

filternorm function 7-265
filters

analog 2-9
analog lowpass 7-30

analog lowpass prototype 7-55
anti-causal 1-21
anti-symmetric 2-27
bit reversal 7-38
Butterworth 7-56
Butterworth (generalized) 2-15
Butterworth order 7-61
C header file 5-40
Chebyshev Type I 7-91
Chebyshev Type I lowpass prototype 7-78
Chebyshev Type I order 7-79
Chebyshev Type II 7-96
Chebyshev Type II order 7-84
coefficients 1-16, 1-17
coefficients in sptool GUI 6-35
convert coefficients to autocorrelation 7-471
convert from reflection coefficients 7-498
convert to reflection coefficients 7-473
convolution 1-15
design 2-5, 6-11
digit reversal 7-206
discretization 2-45
elliptic 7-242
elliptic order 7-249
equiripple 2-23
export 5-32
filter and filtfilt functions comparison 

1-21
filter function 1-17
filtstates object 7-270, 7-271
FIR 7-293
FIR design 2-23
FIR single band 2-21
frequency data 7-371
frequency domain 1-23
frequency transformations 2-42
fvtool GUI 7-314
Index-9



Index

Ind
implementation 2-50
importing to sptool GUI 6-40
initial conditions using dfilt 7-145
initial conditions using filter function 1-18
initial conditions using filtic function 

7-268
inverse analog 7-371
inverse discrete-time 7-375
lattice/ladder 1-39
linear phase 2-18
linear prediction 4-17
linear system models 1-34
linear time-invariant digital 1-3
median filtering 4-34
median function 7-408
minimax 2-23
minimum phase 7-476
norm 7-265
numerator and denominator length 7-254
objects 7-135
order 1-16
overlap-add using dfilt.fftfir 7-185
overlap-add using fftfilt 7-259
phase delay 7-444
phase distortion removal 1-20
phase modulation 4-30
phase response 7-447
pole-zero editor 5-22
sampling frequency 5-19
saving 5-44
Savitzky-Golay 7-526
Savitzky-Golay design 7-521
Schur realizations 7-518
second-order sections 1-39
second-order sections filtering 7-541
second-order sections IIR 7-541
specfications 2-7
ex-10
sptool GUI Filter Designer 6-11
states 7-145
step response 7-600
structures 2-50
types 1-16
viewing 7-314
zero-phase 7-267
zero-phase implementation 1-21
zero-phase response 7-668
See also fdatool GUI, FIR filters, IIR filters, 

digital filters, analog filters
filtfilt function 7-267

filter function comparison 1-21
filtic function 7-268
filtstates object 7-270, 7-271
FIR filters 2-17

arbitrary response 2-36
complex response 7-69
constrained least square 2-30
differentiators 2-29
equiripple 2-23
example 6-21
frequency domain 1-23
frequency response 7-277
Hilbert transformers 2-27
IIR filter comparison 2-17
implementation 1-18
interpolation 7-368
Kaiser windows 4-12
lattice/ladder 1-39
least square and equiripple comparison 2-24
least square linear phase 7-288
least square multiband 2-33
least square weighted 2-34
linear phase 2-18
linear phase Parks-McClellan 7-293
multiband 2-23



Index
multiband example 2-22
nonlinear phase response 7-69
order estimation 7-300
overlap-add 7-259
Parks-McClellan method 7-293
reduced delay response 2-38
resample 1-20
sptool GUI Filter Designer 6-11
standard band 2-21
types 7-298
window-based 7-273
windowing method 2-19

fir1 function 7-273
example 2-21

fir2 function 7-277
fircls function 7-280
fircls1 function 7-284
firls function 7-288

differentiators 2-29
firpm comparison 2-24
weight vectors 2-27

firpm function 7-293
differentiators 2-29
example 2-24
filter characteristics 7-298
firls comparison 2-24
Hilbert transformers 2-27
order estimation 7-300
weight vectors 2-27

firpmord function 7-300
example 2-17

firrcos function 7-303
firtype method 7-139
Filter Designer GUI

See  fdatool GUI
flattopwin flat top window function 7-305

FM
See frequency modulation

fopen function 1-14
Fourier transforms

See also discrete Fourier transforms, fast 
Fourier transforms

fread function 1-14
freqs function 7-307
frequency 7-294

analog A-1
angular 2-2
center 2-44
cutoff 2-42
demodulation 7-133
digital A-1
estimation 3-42
modulation 7-409
normalization 2-2
Nyquist 2-2, A-1
prewarping 7-33
spectrogram 7-542
vectors 2-26

frequency domain
duality with time-domain 1-23
filters 1-23
FIR filtering 1-20
lowpass to bandpass transformation 7-392
lowpass to bandstop transformation 7-395
lowpass to highpass transformation 7-397
transformation functions 2-42

frequency domain based modeling
See parametric modeling

frequency modulation 7-410
frequency response 1-26

Bessel filters 2-13
Butterworth filters 2-9
Chebyshev Type I filters 2-10
Index-11
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Ind
Chebyshev Type II filters 2-11
elliptic filters 2-12
error minimization 2-23
evaluating 1-26
example 1-27
inverse 7-371
Kaiser window 4-10
linear phase 2-18
magnitude 1-29
monotonic 2-9
multiband 2-14
phase 1-29
plotting 1-27
sampling frequency 1-26

freqz function 7-310
sampling frequencies 1-26

freqz method 7-139
From Disk radio button 6-44
FVTool

SOS view settings 7-321
fvtool GUI 7-314

G
gauspuls function 7-333

pulse trains 1-11
gaussfir 7-335
Gaussian monopulse 7-339
Gauss-Newton method

analog domain 7-374
discrete domain 7-377

gausswin Gaussian window function 7-337
generalized Butterworth filters 2-15
generalized cosine windows 4-7
generalized filters 2-5
generate method 7-528
ex-12
Gibbs effect 2-20
reduced by window 4-2

gmonopuls function 7-339
GMSK 7-335
goertzel function 7-341
graphical user interface (GUI) 1-4

See also sptool GUI, fdatool GUI, wintool 
GUI, fvtool GUI, wvtool GUI

group delay 1-30
comparison to phase delay 2-18
example 1-31
grpdelay function 7-345
passband 2-13

grpdelay function 7-345
example 1-31

grpdelay method 7-139

H
halfrange method 7-220
hamming window function 7-349

comparison to boxcar 3-18
comparison to Hann 4-7
example 2-20

hann window function 7-351
comparison to Hamming 4-7

hanning
See hann window function

highpass filters
Butterworth 7-56
Butterworth order 7-62
Chebyshev Type I 7-91
Chebyshev Type I order 7-80
Chebyshev Type II 7-96
Chebyshev Type II order 7-85
elliptic 7-243
elliptic order 7-250



Index
FIR 7-275
FIR example 2-22
lowpass transformation 7-397

hilbert transform function 7-353
analytic signals 2-28
description 4-46
example 2-28
using firpls 7-289
using firpm 7-295

homomorphic systems 4-28

I
icceps function 7-355

example 4-30
idct function 7-356

example 4-44
ideal lowpass filters 2-19

See also lowpass filters
ifft function

example 1-48
ifft2 function

example 1-48
IIR filters

analog prototype 2-6
Bessel 2-13
Butterworth 2-9
Chebyshev Type I 2-10
Chebyshev Type II 2-11
comparison 2-9
comparison to FIR 2-4
design 2-4
elliptic 2-12
Filter Designer GUI 6-11
frequency domain implementation 1-23
frequency response 2-14
generalized Butterworth 2-15

lattice/ladder 1-39
Levinson-Durbin recursion 7-390
maximally flat 2-15
multiband 2-14
order estimation 2-7
plotting responses 2-14
Prony’s method 7-477
specifications 2-7
Steiglitz-McBride iteration 7-606
yulewalk function 7-666
Yule-Walker example 2-14
zero-phase implementation 1-21
See also direct design

image processing 1-48
impinvar function 7-359
Import dialog box

sptool from disk 6-44
sptool from workspace 6-22

impulse invariance 7-359
example 2-45

impulse response 1-24
 impz function 7-362
ideal 2-19
impulse invariance 2-45

impz function 7-362
impz method 7-139
impzlength method 7-139
indexing 1-16
inf-norm 7-265
info method

dfilt function 7-139
sigwin function 7-528

initial conditions
using dfilt states 7-145
using filtfilt function 1-22
using filtic function 7-268

instantaneous attributes 4-47
Index-13
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Ind
interpolation
bandlimited 7-532
FIR filters 7-368
interp function 7-366

interval notation A-1
intfilt function 7-368
inverse cepstrum, complex 4-30
inverse discrete cosine transforms 7-356

accuracy of signal reconstruction 4-46
inverse discrete Fourier transforms 1-46

example 1-46
matrices 7-205
two-dimensional 1-48

inverse filters
analog 7-371
discrete 7-375

inverse Fourier transforms
 See sinc function

inverse-sine parameters
transformations from reflection coefficients 

7-378
transformations to reflection coefficients 

7-496
invfreqs function 7-371

example 4-22
invfreqz function 7-375

example 4-22
is2rc function 7-378
isallpass method 7-139
iscascade method 7-140
isfir method 7-140
islinphase method 7-140
ismaxphase method 7-140
isminphase method 7-140
isparallel method 7-140
isreal method 7-140
isscalar method 7-140
ex-14
issos method 7-140
isstable method 7-140

K
kaiser window function 7-379

discussion 4-9
example 3-19
FIR filters 4-12

kaiserord function 7-381

L
ladder filters

See lattice/ladder filters
Lagrange interpolation filter 7-368
Laplace transforms 1-43
lar2rc function 7-386
latc2tf function 7-387

example 1-42
latcfilt function 7-388

example 1-20
lattice/ladder filters 1-39

implementation 1-40
latcfilt function 1-42
Schur algorithm 7-518
transfer functions conversions 7-611

least squares method FIR 7-288
levinson function 7-390

example 4-17
parametric modeling 4-17

line
drawing in FDATool 5-18

line spectral frequencies
transformation from prediction polynomial 

7-472
transformation to prediction polynomial 7-405
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line style 6-51
linear models

See models
linear phase filters 2-18

least squares FIR 7-288
optimal FIR 7-293

linear prediction
coefficients 7-401
modeling 4-17

linear system transformations
See conversions

log area ratio parameters
transformation from reflection coefficients 

7-386
transformation to reflection coefficients 7-497

lowpass filters
Bessel 7-31
Butterworth 7-56
Butterworth order 7-62
Chebyshev Type I 7-91
Chebyshev Type I order 7-80
Chebyshev Type II 7-96
Chebyshev Type II order 7-85
cutoff frequency translation 7-399
decimation 7-128
elliptic 7-242
elliptic order 7-250
FIR 2-22
ideal 2-19
impulse invariance 2-46
impulse response 2-19
interpolation 7-366

lp2bp function 7-392
example 2-44

lp2bs function 7-395
lp2hp function 7-397
lp2lp function 7-399

lpc
See linear predictive coding, Prony’s method, 

linear prediction
lpc function 7-401
lse 7-339
lsf2poly function 7-405

M
magnitude

Fourier transforms 1-47
frequency response extraction 1-29
plots 6-50
transfer functions 3-27

match frequency prewarping 7-33
MAT-files

dpss.mat 3-27
format, converting to 1-14
importing 1-14
sptool GUI 6-44

matrices
convolution 1-42
convolution function 7-110
data 1-5
discrete Fourier transforms 7-205
inverse discrete Fourier transforms 7-205

matrix forms
See state-space forms

maxflat function 7-406
discussion 2-15

maximally flat filters
See  maxflat function

maximum entropy estimate 3-34
mean-square spectrum 7-223
medfilt1 function 7-408

example 4-34
Index-15
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median filters
See medfilt1 function

MEX-files 1-14
M-files 1-4, 5-43
minimax method

FIR filters 2-23
See also Parks-McClellan method

minimum phase 7-476
models 1-34

autoregressive Burg 7-22
autoregressive Burg PSD 7-421
autoregressive covariance 7-23
autoregressive covariance PSD 7-426
autoregressive modified covariance 7-24
autoregressive modified covariance PSD 

7-451
autoregressive Yule-Walker 7-25
autoregressive Yule-Walker PSD 7-489
bilinear transformations 2-47
transformations 2-47

modified covariance method 3-41
modulate function 7-409

definition 4-35
example 4-36
See also amplitude modulation

modulate function
time vector 4-36

modulation 4-35
moving-average (MA) filters 1-16

See also FIR filters
mscohere function 7-412
msspectrum method 7-549
msspectrumopts method 7-550
MTM

See  multitaper method
ex-16
multiband filters
FIR 2-22
IIR 2-14

multichannel data 1-8
multiple signal classification method (MUSIC)

correlation matrices 7-113
discussion 3-7
eigenvector method 7-432
example 3-42
pseudospectrum 7-463

multiplicity of zeros and poles 6-49
multirate filters 1-20
multitaper method (MTM) 3-24
multi-taper spectrum object 7-569
MUSIC algorithm

See multiple signal classification method
MUSIC spectrum object 7-573

N
nonrecursive filters

See FIR filters
normalization 3-3

cross-correlation 7-657
modified periodogram 3-17
periodogram bias 3-16
Welch’s power spectral density 3-23

normalizefreq method 7-220
nsections method 7-140
nstages method 7-140
nstate method 7-140
nuttallwin Nuttall window function 7-417
Nyquist frequency A-1



Index
O
object

changing properties 7-145
copying 7-556
dspdata 7-218
dspopts 7-239
filter 7-135
filtstates 7-270, 7-271
spectrum 7-547
viewing properties 7-144
window 7-528

onesided method 7-220
options object 7-239
order

bit reversed 7-38
Butterworth estimation 7-61
Chebyshev Type I estimation 7-79
digit reversed 7-206
elliptic estimation 7-249
estimation 2-7
FIR optimal estimation 7-300

order method 7-141
oscillators 7-642
overlap-add filter 7-185
overlap-add method

FIR filter implementation 1-23
FIR filters 7-259

P
Panner check box 6-51
parallel method 7-141
parametric modeling 4-15

applications 4-15
covariance method 7-23
frequency domain based 4-22
linear predictive coding 4-17

modified covariance method 7-24
Steiglitz-McBride method 4-20
summary 2-5
techniques 4-15
time-domain based 4-17
Yule-Walker method 7-25

parentheses A-1
Parks-McClellan method 7-293
partial fraction expansion 1-43

residue 1-37
z-transform 7-505

parzenwin Parzen window function 7-419
passband

Chebyshev Type I 2-10
equiripple 2-12
group delay 2-13

pburg function 7-421
example 3-37

PCM 7-633
pcov function 7-426

example 3-41
peig function 7-432
period in sequence 7-519
periodic sinc functions 7-208

See also Dirichlet functions
periodogram function 7-439

discussion 3-9
spectrum object 7-578

phase
delay 1-31
demodulation 7-133
distortion 1-21
Fourier transforms 1-47
frequency response 1-29
group delay 7-345
linear delay 2-18
modulation 7-410
Index-17
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transfer functions 3-27
unwrapping 1-29

phase response 7-447
phasedelay function 7-444
phasez function 7-447
phasez method 7-141
plot method 7-221
plots

analog filters 2-14
coherence function 3-29
complex cepstrum 4-29
DFT 1-47
frequency response 1-27
group delay 1-31
magnitude 6-50
magnitude and phase 1-29
phase 1-29
phase delays 1-31
strip plots 7-609
transfer functions 3-28
zero-pole 1-32
zplane functioin 7-676

plug-ins 6-51
pmcov function 7-451

example 3-41
p-model

See parametric modeling
pmtm function 7-457
pmusic function 7-463
pole-zero editor 5-22
pole-zero filters

See IIR filters
poly function

example 1-35
poly2ac function 7-471
poly2lsf function 7-472
poly2rc function 7-473
ex-18
polynomials
division 4-41
roots 1-35
scaling 7-476
stability check 7-473
stabilization 7-475

polyphase filtering techniques 1-20
polyscale function 7-475
polystab function 7-476
power spectral density 3-5

Burg estimation 7-421
Burg estimation example 3-36
covariance estimation 7-426
covariance estimation example 3-41
dspdata object 7-228
eigenvector stimation 7-511
modified covariance estimation 7-451
multitaper estimation 7-457
multitaper estimation example 3-24
MUSIC estimation 7-463
MUSIC estimation example 3-42
periodogram bias 3-16
periodogram normalization 3-16
plots 6-18
sptool GUI 6-42
units 3-6
Welch’s bias 3-23
Welch’s estimation 7-483
Welch’s estimation bias 3-23
Welch’s estimation example 3-20
Welch’s normalization 3-23
Yule-Walker estimation 7-489
Yule-Walker estimation example 3-34

powerest method 7-554
prediction filters 4-17
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prediction polynomials
transformations from line spectral frequencies 

7-405
transformations to line spectral frequencies 

7-472
Preferences menu item 6-51
prewarping 7-33
Print dialog box 6-31
print to figure 5-20
prolate-spheroidal windows 4-9
prony function 7-477

example 4-18
Prony’s method

See prony function
psd method 7-550
psdopts method 7-552
pseudospectrum object 7-233

eigenvector method 7-432
MUSIC algorithm 7-469

pseudospectrumopts object 7-554
pulse position demodulation 7-133
pulse position modulation 4-36
pulse time modulation 7-410
pulse train generator 7-479
pulse trains

example 1-11
Prony’s method 7-479
pulstran function 1-11

pulse width demodulation 7-133
pulse width modulation 7-410
pulse-shaping filter 7-335
pwelch function 7-483
pyulear function 7-489

Burg comparison 3-37
example 3-34

Q
quadrature amplitude demodulation 7-133
quadrature amplitude modulation 7-410
quantization

decoding 7-630
encoding 7-633
reduction with filter norms 7-265

quantized filters
cell arry coefficients 7-534
matrix coefficients 7-68

R
radar applications 4-33
raised cosine filters 7-303
range notation A-1
rc2ac function 7-495
rc2is function 7-496
rc2lar function 7-497
rc2poly function 7-498
rceps function 7-499
rceps  function

example 4-30
realizemdl method 7-142
rebuffering 7-46
rectangular windows 4-3

rectwin function 7-501
rectpuls function 7-500
rectwin function 7-501

example 4-3
recursive filters

See IIR filters
references

general DSP 1-49
special topics 4-48
statistical signal processing 3-45
Index-19
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reflection coefficients 1-40
autocorrelation sequence conversion 7-495
conversion from filter coefficients  7-473
conversion to prediction polynomial 7-498
definition 1-39
Schur algorithm 7-518
transformation from inverse sine parameters 

7-496
transformation from log area ratio parameters 

7-497
transformation to inverse sine parameters 

transformation to 7-378
transformation to log area ratio parameters 

7-386
rejection area 5-18
Remez exchange algorithm 7-293
removestage method 7-143
resample function 7-502

example 4-26
resampling

See decimation, interpolation
residue forms

See partial fraction expansion
residuez function 7-505
rlevinson function 7-508
rooteig function 7-511
rootmusic function 7-514

eigenvector method 7-511
roots

polynomials 1-35
rulers

sptool GUI 6-51
ex-20
S
sampling frequency 5-19

decrease 7-209
FIR filters 1-20
freqz function 1-28
increase 7-640
integer factor decrease 7-128
integer factor increase 7-366
irregularly spaced data 4-27
Nyquist interval 7-242
range 1-28
resample function 7-502
resampling discussion 4-26
spacing 1-28
using upfirdn  function 1-20

saved filters 5-44
saving data

Spectrum Viewer 6-38
Savitzky-Golay filters

design 7-521
filtering 7-526

sawtooth function 7-517
example 1-9

sawtooth wave 1-9
scaling 7-475
Schur algorithm 7-518
schurrc function 7-518
second-order section forms

zero-pole-gain conversion to 7-539
second-order sections 1-39

cell array coefficients 7-534
conversion from transfer function 7-612
conversion to in fdatool 5-27
conversion to transfer functions 7-537
filter 7-541
filters 7-541
matrices 1-39



Index
matrix coefficients 7-68
sptool GUI 6-41
state-space conversion from 7-593
state-space conversion to 7-535
view 7-321
zero-pole-gain conversion from 7-670

seqperiod function 7-519
setstage method 7-143
sgolay function 7-521
sgolayfilt function 7-526
Signal Browser 6-8

axis labels 6-51
markers preferences 6-51
overview 6-8
Panner preferences 6-51
printing 6-28
signals, measuring 6-53
zooming, preferences 6-51

signals 2-28
adding noise 1-7
analytic 4-46
aperiodic 1-10
applications 4-46
array 6-8
buffering 7-46
carrier 4-35
chirp 1-10
continuous (analog) 1-3
DCT coefficients reconstruction 4-45
differentiators 2-29
diric function 1-13
discrete (digital) 1-3
generating 1-8
measurements 6-53
minimum phase reconstruction example 

7-499
modulation 7-409

multichannel 3-4
periodic 1-9
plotting 1-7
properties 4-46
pulstran function 1-11
rebuffering 7-46
representing 1-5
sawtooth 1-9
sawtooth function 7-517
sinc 1-12
sinusoidal 1-7
square function 7-592
square wave 1-9
triangle 7-517

sigwin function 7-528
Simulink

exporting from FDATool 5-36
sinc function 7-532

Dirichlet 7-208
example 1-12

Slepian sequences
 See discrete prolate spheroidal sequences

sonar applications 4-33
sos method 7-143
SOS view settings 7-321
sos2cell function 7-534
sos2ss function 7-535
sos2tf function 7-537
sos2zp function 7-539
sosfilt function 7-541
spectral analysis 3-5

cross spectral density 3-27
power spectrum 3-5
Spectrum Viewer 6-18
See also spectral estimation
Index-21
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spectral density 3-5
measurements 6-53
plots 6-18
Spectrum Viewer 6-18
units 3-6
See also power spectral density, cross spectral 

density
spectral estimation 3-9

AR covariance method 7-23
AR modified covariance method 7-24
AR Yule-Walker method 7-25
Burg method 7-421
Burg method example 3-36
covariance method 7-426
eigenvector method 7-432
modified covariance method 7-451
multitaper method 7-457
MUSIC method 7-464
periodograms 7-443
root eigenvector 7-511
root MUSIC 7-514
Welch’s method bias 3-23
Welch’s method discussion 3-20
Welch’s method example 3-7
Yule-Walker AR method 7-489
Yule-Walker AR method example 3-34

spectrogram 7-542
definition 4-33
VCO example 7-642

spectrogram function 7-542
example 4-33

spectrum
mask 5-18

spectrum estimation methods 7-218
mean-square 7-223
psd 7-228
pseudospectrum 7-233
ex-22
spectrum function 7-547
burg 7-558
cov 7-560
eigenvector 7-562
estimation methods 7-547
mcov 7-567
methods 7-548
mtm 7-569
music 7-573
periodogram 7-578
welch 7-581
yulear 7-585

Spectrum Viewer 6-18
activating 6-18
axis parameters 6-51
markers, preferences 6-51
measurements 6-53
opening 6-18
overview 6-18
printing 6-31
rulers 6-53
spectra structures 6-38
spectral density plots 6-18
windows 6-19
zooming 6-51

spectrum.mtm function
example 3-25

speech processing
parametric modeling 4-15
resampling 4-27

spline function 4-27
sptool GUI 7-587

colors, customizing 6-51
context-sensitive help 6-7
customizing 6-51
data entering 1-14
data objects 6-45
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data structures 6-3
editing 6-46
example 6-21
exporting data 6-33
filter coefficients 6-35
filter design 6-23
filter importing 6-40
filter parameters 6-35
filter saving 6-34
filtering 6-25
filters 6-40
help 6-7
Import dialog 6-22
importing filters and spectra 6-40
importing signals 6-21
items, selecting 6-45
line style 6-51
MAT-files 6-44
MATLAB workspace 6-3
multiselection of items 6-45
operation 6-3
preferences 6-51
printing 6-31
rulers 6-53
sample frequency 6-36
saving 6-33
second-order section forms 6-41
signal analysis 6-27
signal measurement 6-53
signal playing 6-28
sound 6-28
spectra analysis 6-29
spectra import 6-42
spectral densities import 6-40
spectral densities plot 6-42
Spectrum Viewer 6-29
state-space forms 6-41

transfer functions 6-40
transfer functions export 6-35
tutorial 6-3
workspace 6-3
zero-pole-gain forms 6-41

square function 7-592
example 1-9

square wave
 See square function

ss method 7-143
ss2sos function 7-593
ss2tf function 7-597
ss2zp function 7-598
stability check

polynomials 7-473
stabilization 7-476
standards, digital audio tape 4-26
startup transients 1-22
state-space forms 1-36

continuous time 1-43
scalar 1-36
second-order section conversion from 7-535
second-order section conversion to 7-593
sptool GUI 6-41
transfer functions conversions to 7-615
zero-pole-gain conversion from 7-674
zero-pole-gain convertion to 7-598

statistical operations 3-2
See also autocorrelation sequences, 

cross-correlation sequences, 
cross-covariance

Steiglitz-McBride method 7-606
example 4-20

step response 7-600
stepz  method 7-144
stepz function 7-600
Index-23
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stmcb function 7-606
example 4-20

stopband
Chebyshev Type II 2-11
elliptic 2-12

strips function plots 7-609
structures

conversion 5-26
conversion round off 1-44
lattice/ladder 1-39
transposed direct-form II 1-18

swept-frequency cosine generator
See chirp

system identification 4-18

T
tapers (PSD estimates) 3-24
taps 2-18
tf method 7-144
tf2latc function 7-611

example 1-40
tf2sos function 7-612
tf2ss function 7-615
tf2zp function 7-617
tfestimate function 7-621

example 3-27
time series attributes 4-47
time-domain based modeling

See parametric modeling
transfer functions 1-16

coefficients 6-35
discrete time models 1-34
factoring 1-35
lattice conversion to 7-611
partial fractions  1-37
second-order sections conversion from 7-537
ex-24
second-order sections conversion to 7-612
sptool GUI 6-40
state-space conversion to 7-615
Welch’s estimation 3-27
zero-pole-gain forms 1-35

transformations
bilinear 2-47
bilinear function 7-33
frequency 2-42
lowpass analog to bandpass 7-392
lowpass analog to bandstop 7-395
lowpass analog to highpass 7-397
lowpass cutoff change 7-399
models 1-44

transforms 4-42
chirp z-transforms (CZT) 7-123
chirp z-transforms (CZT) discussion 4-42
discrete cosine 7-126
discrete Fourier 1-46
hilbert 7-353
Hilbert discussion 4-46
inverse discrete cosine 7-356
inverse discrete cosine discussion 4-44

transients 1-23
transition band 2-24
transposed direct-form II

initial conditions 7-268
transposed direct-form II structure 1-18
triang triangle window function 7-625

Bartlett comparison 4-4
tripuls function 7-627
Tukey window function

See tukeywin
tukeywin 7-628
two-dimensional operations 1-48
twosided method 7-221
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U
udecode function 7-630
uencode function 7-633
uniform encoding 7-633
unit circle 7-476
unit impulse function 1-8
unit ramp function 1-8
unit sample multichannel 1-8
unit step function 1-8
units of power spectral density (PSD) 3-6
unwrap function

example 1-29
upfirdn function 7-637

example 1-20
resampling 4-27

upsample function 7-640

V
variables

load from disk 6-44
variance 3-4
vco

example 4-39
vco function 7-642
vectors

data representation 1-5
frequency 2-26
indexing 1-16
waveform generation 1-7
weighting 7-289

voltage controlled oscillators 7-642
example 4-39

W
waveforms

See signals
Welch spectrum object 7-581
Welch’s method 3-20

AR Yule-Walker comparison 3-34
bias and normalization 3-23
Burg comparison 3-38
MTM comparison 3-27
nonparametric system identification 3-27
power spectral density estimation 3-27

white noise 1-7
wholerange method 7-221
window function 7-644
windows

Bartlett 7-28
Bartlett comparison 4-4
Bartlett-Hanning 7-26
Blackman 7-40
Blackman comparison 4-7
Blackman-Harris 7-42
Blackman-Harris vs. Nuttall 7-417
Bohman 7-44
boxcar 2-19
Chebyshev 4-14, 7-89
cosine 4-7
de la Valle-Poussin 7-419
designing 7-647
filters 2-19
FIR filters 2-19, 7-273

multiband filters 2-22
single band design 2-21

fir1 function 2-22
flat top weighted 7-305
Gaussian 7-337
Hamming 7-349
Hamming discussion 4-7
Index-25
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Hamming rectangular example 3-18
Hamming ringing example 2-20
Hann 7-351
Hann example 4-7
Kaiser 7-379
Kaiser discussion 4-9
Kaiser example 3-19
Nuttall 7-417
object 7-528
Parzen 7-419
prolate-spheroidal 4-9
rectangular 7-501
rectangular example 2-19
shapes 4-3
spectral leakage 3-12
triangular 7-625
Tukey 7-628
viewing 7-652
wintool GUI 7-647
wvtool GUI 7-652

wintool GUI 7-647
winwrite method 7-528
Workspace Contents list 6-22
wvtool GUI 7-652

X
xcorr function 7-656
xcorr2 function 7-660
xcov function 7-663
ex-26
Y
yulewalk function 7-666

example 2-15
Yule-Walker AR method

description 3-34
example 3-37
Welch’s method comparison 3-34

Yule-Walker spectrum object 7-585

Z
zero frequency component, centering 1-48
zero-order hold

See averaging filters
zero-phase

filtering 7-267
response 7-668

zerophase function 7-668
zerophase method 7-144
zero-pole

analysis 7-676
multiplicity 6-49
plots 1-32
transfer functions 1-35

zero-pole-gain 1-35
zero-pole-gain forms 1-43

convert from second-order sections 7-539
convert from state-space 7-598
convert to second-order sections 7-670
convert to state-space 7-674
sptool GUI 6-41

zoom
sptool GUI 6-51

zp2sos function 7-670
zp2ss function 7-674
zp2tf function 7-675
zpk method 7-144
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zplane function 7-676
zplane method 7-144
z-transforms

chirp z 4-42
czt function 7-123
definition 1-34
discrete Fourier transforms 1-46
equation 1-16
Index-27
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