
For Use with MATLAB®

User’s Guide
Version 6

Signal Processing Toolbox

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Signal Processing Toolbox User’s Guide
© COPYRIGHT 1988 - 2005 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox are
registered trademarks of The MathWorks, Inc. Other product or brand names are trademarks
or registered trademarks of their respective holders.

Patents
The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
1988 First printing New
January 1997 Second printing Revised
January 1998 Third printing Revised
September 2000 Fourth printing Revised for Version 5.0 (Release 12)
July 2002 Fifth printing Revised for Version 6.0 (Release 13)
December 2002 Online only Revised for Version 6.1 (Release 13+)
June 2004 Online only Revised for Version 6.2 (Release 14)
October 2004 Online only Revised for Version 6.2.1 (Release 14SP1)
March 2005 Online only Revised for Version 6.3 (Release 14SP2)
September 2005 Online only Revised for Version 6.4 (Release 14SP3)

Contents
1
Signal Processing Basics

What Is the Signal Processing Toolbox? 1-2
Signal Processing Toolbox Central Features 1-2
Filtering and FFTs . 1-3
Signals and Systems . 1-3
Key Areas: Filter Design and Spectral Analysis 1-3
Interactive Tools . 1-4
Extensibility . 1-4

Representing Signals . 1-5
Vector Representation . 1-5

Waveform Generation: Time Vectors and Sinusoids 1-7
Common Sequences: Unit Impulse, Unit Step, and Unit Ramp 1-8
Multichannel Signals . 1-8
Common Periodic Waveforms . 1-9
Common Aperiodic Waveforms . 1-10
The pulstran Function . 1-11
The Sinc Function . 1-12
The Dirichlet Function . 1-13

Working with Data . 1-14

Filter Implementation and Analysis 1-15
Convolution and Filtering . 1-15
Filters and Transfer Functions . 1-16
Filtering with the filter Function . 1-17

The filter Function . 1-18

Other Functions for Filtering . 1-20
Multirate Filter Bank Implementation 1-20
Anti-Causal, Zero-Phase Filter Implementation 1-21
Frequency Domain Filter Implementation 1-23
i

ii Contents
Impulse Response . 1-24

Frequency Response . 1-26
Digital Domain . 1-26
Analog Domain . 1-28
Magnitude and Phase . 1-29
Delay . 1-30

Zero-Pole Analysis . 1-32

Linear System Models . 1-34
Discrete-Time System Models . 1-34
Continuous-Time System Models . 1-43
Linear System Transformations . 1-44

Discrete Fourier Transform . 1-46

Selected Bibliography . 1-49

2
Filter Design and Implementation

Filter Requirements and Specification 2-2

IIR Filter Design . 2-4
Classical IIR Filter Design Using Analog Prototyping 2-6
Comparison of Classical IIR Filter Types 2-9

FIR Filter Design . 2-17
Linear Phase Filters . 2-18
Windowing Method . 2-19
Multiband FIR Filter Design with Transition Bands 2-23
Constrained Least Squares FIR Filter Design 2-30
Arbitrary-Response Filter Design . 2-36

Special Topics in IIR Filter Design . 2-41
Analog Prototype Design . 2-42
Frequency Transformation . 2-42
Filter Discretization . 2-45

Filter Implementation . 2-50
Using dfilt . 2-50

Selected Bibliography . 2-52

3
Statistical Signal Processing

Correlation and Covariance . 3-2
Bias and Normalization . 3-3
Multiple Channels . 3-4

Spectral Analysis . 3-5
Spectral Estimation Method . 3-7
Nonparametric Methods . 3-9
Parametric Methods . 3-31

Selected Bibliography . 3-45

4
Special Topics

Windows . 4-2
Graphical User Interface Tools . 4-3
Basic Shapes . 4-3
Generalized Cosine Windows . 4-7
Kaiser Window . 4-9
Chebyshev Window . 4-14
iii

iv Contents
Parametric Modeling . 4-15
Time-Domain Based Modeling . 4-17
Frequency-Domain Based Modeling . 4-22

Resampling . 4-26

Cepstrum Analysis . 4-28
Inverse Complex Cepstrum . 4-30

FFT-Based Time-Frequency Analysis 4-33

Median Filtering . 4-34

Communications Applications . 4-35

Deconvolution . 4-41

Specialized Transforms . 4-42
Chirp z-Transform . 4-42
Discrete Cosine Transform . 4-44
Hilbert Transform . 4-46

Selected Bibliography . 4-48

5
FDATool: A Filter Design and Analysis GUI

Overview . 5-2
Filter Design Methods . 5-3
Using the Filter Design and Analysis Tool 5-4
Analyzing Filter Responses . 5-4
Filter Design and Analysis Tool Panels 5-5
Getting Help . 5-6

Opening FDATool . 5-7

Choosing a Response Type . 5-8

Choosing a Filter Design Method . 5-9

Setting the Filter Design Specifications 5-10
Filter Order . 5-10
Options . 5-11
Bandpass Filter Frequency Specifications 5-12
Bandpass Filter Magnitude Specifications 5-13

Computing the Filter Coefficients . 5-14

Analyzing the Filter . 5-15
Using Data Markers . 5-17
Drawing Spectral Masks . 5-18
Changing the Sampling Frequency . 5-19
Displaying the Response in FVTool . 5-20

Editing the Filter Using the Pole/Zero Editor 5-22

Converting the Filter Structure . 5-26
Converting to a New Structure . 5-26
Converting to Second-Order Sections . 5-27

Importing a Filter Design . 5-29
Filter Structures . 5-30

Exporting a Filter Design . 5-32
Exporting Coefficients or Objects to the Workspace 5-32
Exporting Coefficients to an ASCII File 5-34
Exporting Coefficients or Objects to a MAT-File 5-34
Exporting to SPTool . 5-35
Exporting to Simulink . 5-36

Generating a C Header File . 5-40

Generating an M-File . 5-43
v

vi Contents
Managing Filters in the Current Session 5-44

Saving and Opening Filter Design Sessions 5-46

6
SPTool: A Signal Processing GUI Suite

SPTool: An Interactive Signal Processing Environment . . 6-3
SPTool Data Structures . 6-3

Opening SPTool . 6-5

Getting Context-Sensitive Help . 6-7

Signal Browser . 6-8
Opening the Signal Browser . 6-8

Filter Designer . 6-11
Filter Types . 6-11
FIR Filter Methods . 6-11
IIR Filter Methods . 6-11
Pole/Zero Editor . 6-12
Spectral Overlay Feature . 6-12
Opening the Filter Designer . 6-12

Filter Visualization Tool . 6-14
Opening the Filter Visualization Tool 6-14
Filter Visualization Tool Components 6-15
Using Data Markers . 6-17
Analysis Parameters . 6-17

Spectrum Viewer . 6-18
Opening the Spectrum Viewer . 6-18

Filtering and Analysis of Noise . 6-21
Step 1: Importing a Signal into SPTool 6-21
Step 2: Designing a Filter . 6-23
Step 3: Applying a Filter to a Signal . 6-25
Step 4: Analyzing a Signal . 6-27
Step 5: Spectral Analysis in the Spectrum Viewer 6-29

Exporting Signals, Filters, and Spectra 6-33
Opening the Export Dialog Box . 6-33
Exporting a Filter to the MATLAB Workspace 6-34

Accessing Filter Parameters . 6-35
Accessing Filter Parameters in a Saved Filter 6-35
Accessing Parameters in a Saved Spectrum 6-38

Importing Filters and Spectra into SPTool 6-40
Importing Filters . 6-40
Importing Spectra . 6-42

Loading Variables from the Disk . 6-44

Selecting Signals, Filters, and Spectra in SPTool 6-45

Editing Signals, Filters, or Spectra in SPTool 6-46

Designing a Filter with the Pole/Zero Editor 6-47
Positioning Poles and Zeros . 6-48

Redesigning a Filter Using the Magnitude Plot 6-50

Setting Preferences . 6-51

Making Signal Measurements with Markers 6-53
vii

viii Contents
7
Function Reference

Functions — Categorical List . 7-2
FIR Digital Filter Design . 7-3
IIR Digital Filter Design . 7-4
IIR FIlter Order Estimation . 7-4
Filter Analysis . 7-5
Filter Implementation . 7-5
Analog Lowpass Filter Prototypes . 7-6
Analog Filter Design . 7-7
Analog Filter Transformation . 7-7
Filter Discretization . 7-7
Linear System Transformations . 7-7
Windows . 7-9
Transforms . 7-10
Cepstral Analysis . 7-10
Statistical Signal Processing and Spectral Analysis 7-11
Parametric Modeling . 7-12
Linear Prediction . 7-12
Multirate Signal Processing . 7-14
Waveform Generation . 7-14
Specialized Operations . 7-14
Graphical User Interfaces . 7-16

Functions — Alphabetical List . 7-17

A
Technical Conventions

Index

1

Signal Processing Basics

The following chapter describes how to begin using MATLAB® and the Signal Processing Toolbox for
your signal processing applications. It is assumed that you have basic knowledge and understanding
of signals and systems, including such topics as filter and linear system theory and basic Fourier
analysis.

What Is the Signal Processing Toolbox?
(p. 1-2)

Major features and key areas of the toolbox

Representing Signals (p. 1-5) Vector and matrix represtation of signals

Waveform Generation: Time Vectors
and Sinusoids (p. 1-7)

Periodic and aperiodic waveforms, sequences (impulse,
step, ramp), multichannel signals, pulse trains, sinc and
Dirichlet functions

Working with Data (p. 1-14) Methods of inputting and importing data

Filter Implementation and Analysis
(p. 1-15)

Filtering discrete signals

The filter Function (p. 1-18) Mathemetical information on the filter function

Other Functions for Filtering (p. 1-20) Other types of filter functions available in the toolbox

Impulse Response (p. 1-24) Impulse response details

Frequency Response (p. 1-26) Frequency response details

Zero-Pole Analysis (p. 1-32) Z-plane poles and zeros

Linear System Models (p. 1-34) Discrete-time and continuous-time linear system models
and transformations

Discrete Fourier Transform (p. 1-46) DFT details

Selected Bibliography (p. 1-49) Sources for additional information

1 Signal Processing Basics

1-2
What Is the Signal Processing Toolbox?
The Signal Processing Toolbox is a collection of tools built on the MATLAB

numeric computing environment. The toolbox supports a wide range of signal
processing operations, from waveform generation to filter design and
implementation, parametric modeling, and spectral analysis. The toolbox
provides two categories of tools:

Command line functions in the following categories:

• Analog and digital filter analysis

• Digital filter implementation

• FIR and IIR digital filter design

• Analog filter design

• Filter discretization

• Spectral Windows Transforms

• Cepstral analysis

• Statistical signal processing and spectral analysis

• Parametric modeling

• Linear Prediction

• Waveform generation

A suite of interactive graphical user interfaces for

• Filter design and analysis

• Window design and analysis

• Signal plotting and analysis

• Spectral analysis

• Filtering signals

Signal Processing Toolbox Central Features
The Signal Processing Toolbox functions are algorithms, expressed mostly in
M-files, that implement a variety of signal processing tasks. These toolbox
functions are a specialized extension of the MATLAB computational and
graphical environment.

What Is the Signal Processing Toolbox?
Filtering and FFTs
Two of the most important functions for signal processing are not in the Signal
Processing Toolbox at all, but are built-in MATLAB functions:

• filter applies a digital filter to a data sequence.

• fft calculates the discrete Fourier transform of a sequence.

The operations these functions perform are the main computational
workhorses of classical signal processing. Both are described in this chapter.
The Signal Processing Toolbox uses many other standard MATLAB functions
and language features, including polynomial root finding, complex arithmetic,
matrix inversion and manipulation, and graphics tools.

Signals and Systems
The basic entities that toolbox functions work with are signals and systems.
The functions emphasize digital, or discrete, signals and filters, as opposed to
analog, or continuous, signals. The principal filter type the toolbox supports is
the linear, time-invariant digital filter with a single input and a single output.
You can represent linear time-invariant systems using one of several models
(such as transfer function, state-space, zero-pole-gain, and second-order
section) and convert between representations.

Key Areas: Filter Design and Spectral Analysis
In addition to its core functions, the toolbox provides rich, customizable support
for the key areas of filter design and spectral analysis. It is easy to implement
a design technique that suits your application, design digital filters directly, or
create analog prototypes and discretize them. Toolbox functions also estimate
power spectral density and cross spectral density, using either parametric or
nonparametric techniques. Chapter 2, “Filter Design and Implementation” and
Chapter 3, “Statistical Signal Processing,” respectively detail toolbox functions
for filter design and spectral analysis.

Some filter design and spectral analysis functions included in the toolbox are

• Computation and graphical display of frequency response

• System identification

• Generating signals

• Discrete cosine, chirp-z, and Hilbert transforms
1-3

1 Signal Processing Basics

1-4
• Lattice filters

• Resampling

• Time-frequency analysis

• Basic communication systems simulation

Interactive Tools
The power of the Signal Processing Toolbox is greatly enhanced by its
easy-to-use interactive tools. SPTool provides a rich graphical environment for
signal viewing, filter design, and spectral analysis. The Filter Design and
Analysis Tool (FDATool) provides a more comprehensive collection of features
for addressing the problem of filter design. The FDATool also offers seamless
access to the additional filter design methods and quantization features of the
Filter Design Toolbox when that product is installed. The Window Design and
Analysis Tool (WinTool) provides an environment for designing and comparing
spectral windows.

Extensibility
Perhaps the most important feature of the MATLAB environment is that it is
extensible. MATLAB lets you create your own M-files to meet numeric
computation needs for research, design, or engineering of signal processing
systems. Simply copy the M-files provided with the Signal Processing Toolbox
and modify them as needed, or create new functions to expand the functionality
of the toolbox.

Representing Signals
Representing Signals
The central data construct in MATLAB is the numeric array, an ordered
collection of real or complex numeric data with two or more dimensions. The
basic data objects of signal processing (one-dimensional signals or sequences,
multichannel signals, and two-dimensional signals) are all naturally suited to
array representation.

Vector Representation
MATLAB represents ordinary one-dimensional sampled data signals, or
sequences, as vectors. Vectors are 1-by-n or n-by-1 arrays, where n is the
number of samples in the sequence. One way to introduce a sequence into
MATLAB is to enter it as a list of elements at the command prompt. The
statement

x = [4 3 7 -9 1]

creates a simple five-element real sequence in a row vector. Transposition
turns the sequence into a column vector

x = x'

resulting in

x =
4
3
7

-9
1

Column orientation is preferable for single channel signals because it extends
naturally to the multichannel case. For multichannel data, each column of a
matrix represents one channel. Each row of such a matrix then corresponds to
a sample point. A three-channel signal that consists of x, 2x, and x/π is

y = [x 2*x x/pi]
1-5

1 Signal Processing Basics

1-6
This results in

y =
4.0000 8.0000 1.2732
3.0000 6.0000 0.9549
7.0000 14.0000 2.2282

-9.0000 -18.0000 -2.8648
1.0000 2.0000 0.3183

Waveform Generation: Time Vectors and Sinusoids
Waveform Generation: Time Vectors and Sinusoids
A variety of toolbox functions generate waveforms. Most require you to begin
with a vector representing a time base. Consider generating data with a 1000
Hz sample frequency, for example. An appropriate time vector is

t = (0:0.001:1)';

where the MATLAB colon operator creates a 1001-element row vector that
represents time running from zero to one second in steps of one millisecond.
The transpose operator (') changes the row vector into a column; the
semicolon (;) tells MATLAB to compute but not display the result.

Given t you can create a sample signal y consisting of two sinusoids, one at 50
Hz and one at 120 Hz with twice the amplitude.

y = sin(2*pi*50*t) + 2*sin(2*pi*120*t);

The new variable y, formed from vector t, is also 1001 elements long. You can
add normally distributed white noise to the signal and graph the first fifty
points using

randn('state',0);
yn = y + 0.5*randn(size(t));
plot(t(1:50),yn(1:50))

0 0.01 0.02 0.03 0.04 0.05
−3

−2

−1

0

1

2

3

4

1-7

1 Signal Processing Basics

1-8
Common Sequences: Unit Impulse, Unit Step, and
Unit Ramp
Since MATLAB is a programming language, an endless variety of different
signals is possible. Here are some statements that generate several commonly
used sequences, including the unit impulse, unit step, and unit ramp functions:

t = (0:0.001:1)';
y = [1; zeros(99,1)]; % impulse
y = ones(100,1); % step (filter assumes 0 initial cond.)
y = t; % ramp
y = t.^2;
y = square(4*t);

All of these sequences are column vectors. The last three inherit their shapes
from t.

Multichannel Signals
Use standard MATLAB array syntax to work with multichannel signals. For
example, a multichannel signal consisting of the last three signals generated
above is

z = [t t.^2 square(4*t)];

You can generate a multichannel unit sample function using the outer product
operator. For example, a six-element column vector whose first element is one,
and whose remaining five elements are zeros, is

a = [1 zeros(1,5)]';

To duplicate column vector a into a matrix without performing any
multiplication, use the MATLAB colon operator and the ones function:

c = a(:,ones(1,3));

Waveform Generation: Time Vectors and Sinusoids
Common Periodic Waveforms
The toolbox provides functions for generating widely used periodic waveforms:

• sawtooth generates a sawtooth wave with peaks at ±1 and a period of . An
optional width parameter specifies a fractional multiple of at which the
signal’s maximum occurs.

• square generates a square wave with a period of . An optional parameter
specifies duty cycle, the percent of the period for which the signal is positive.

To generate 1.5 seconds of a 50 Hz sawtooth wave with a sample rate of 10 kHz
and plot 0.2 seconds of the generated waveform, use

fs = 10000;
t = 0:1/fs:1.5;
x = sawtooth(2*pi*50*t);
plot(t,x), axis([0 0.2 -1 1])

2π
2π

2π

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
-1

-0.5

0

0.5

1

1-9

1 Signal Processing Basics

1-1
Common Aperiodic Waveforms
The toolbox also provides functions for generating several widely used
aperiodic waveforms:

• gauspuls generates a Gaussian-modulated sinusoidal pulse with a specified
time, center frequency, and fractional bandwidth. Optional parameters
return in-phase and quadrature pulses, the RF signal envelope, and the
cutoff time for the trailing pulse envelope.

• chirp generates a linear swept-frequency cosine signal. An optional
parameter specifies alternative sweep methods. An optional parameter phi
allows initial phase to be specified in degrees.

To compute 2 seconds of a linear chirp signal with a sample rate of 1 kHz, that
starts at DC and crosses 150 Hz at 1 second, use

t = 0:1/1000:2;
y = chirp(t,0,1,150);

To plot the spectrogram, use

spectrogram(y,256,250,256,1000,'yaxis')
0

Waveform Generation: Time Vectors and Sinusoids
The pulstran Function
The pulstran function generates pulse trains from either continuous or
sampled prototype pulses. The following example generates a pulse train
consisting of the sum of multiple delayed interpolations of a Gaussian pulse.
The pulse train is defined to have a sample rate of 50 kHz, a pulse train length
of 10 ms, and a pulse repetition rate of 1 kHz; D specifies the delay to each pulse
repetition in column 1 and an optional attenuation for each repetition in
column 2. The pulse train is constructed by passing the name of the gauspuls
function to pulstran, along with additional parameters that specify a 10 kHz
Gaussian pulse with 50% bandwidth:

T = 0:1/50E3:10E-3;
D = [0:1/1E3:10E-3;0.8.^(0:10)]';
Y = pulstran(T,D,'gauspuls',10E3,0.5);
plot(T,Y)

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1-11

1 Signal Processing Basics

1-1
The Sinc Function
The sinc function computes the mathematical sinc function for an input vector
or matrix x. The sinc function is the continuous inverse Fourier transform of
the rectangular pulse of width and height 1.

The sinc function has a value of 1 where x is zero, and a value of

for all other elements of x.

To plot the sinc function for a linearly spaced vector with values ranging from
-5 to 5, use the following commands:

x = linspace(-5,5);
y = sinc(x);
plot(x,y)

2π

πx()sin
πx

-5 -4 -3 -2 -1 0 1 2 3 4 5
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

2

Waveform Generation: Time Vectors and Sinusoids
The Dirichlet Function
The toolbox function diric computes the Dirichlet function, sometimes called
the periodic sinc or aliased sinc function, for an input vector or matrix x. The
Dirichlet function is

where n is a user-specified positive integer. For n odd, the Dirichlet function
has a period of ; for n even, its period is . The magnitude of this function
is (1/n) times the magnitude of the discrete-time Fourier transform of the
n-point rectangular window.

To plot the Dirichlet function over the range 0 to 4π for n = 7 and n = 8, use

x = linspace(0,4*pi,300);
plot(x,diric(x,7)); axis tight;
plot(x,diric(x,8)); axis tight;

diric x()
1– k n 1–() x 2πk k 0 1± 2± …, , ,=,=

nx 2⁄()sin
n x 2⁄()sin
---------------------------- otherwise

⎩
⎪
⎨
⎪
⎧

=

2π 4π

0 5 10 15
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
n = 7

0 5 10 15
-1

-0.5

0

0.5

1
n = 8
1-13

1 Signal Processing Basics

1-1
Working with Data
The examples in the preceding sections obtain data in one of two ways:

• By direct input, that is, entering the data manually at the keyboard

• By using a MATLAB or toolbox function, such as sin, cos, sawtooth, square,
or sinc

Some applications, however, may need to import data from outside MATLAB.
Depending on your data format, you can do this in the following ways:

• Load data from an ASCII file or MAT-file with the MATLAB load command.

• Read the data into MATLAB with a low-level file I/O function, such as fopen,
fread, and fscanf.

• Develop a MEX-file to read the data.

Other resources are also useful, such as a high-level language program (in
Fortran or C, for example) that converts your data into MAT-file format – see
the MATLAB External Interfaces/API Reference documentation for details.
MATLAB reads such files using the load command.

Similar techniques are available for exporting data generated within
MATLAB. See the MATLAB documentation for more details on importing and
exporting data.

Note All Signal Processing Toolbox functions accept double-precision inputs.
The Filter Design Toolbox, along with the Fixed-Point Toolbox, enables
single-precision floating-point and fixed-point support for most dfilt
structures.
4

Filter Implementation and Analysis
Filter Implementation and Analysis
This section describes how to filter discrete signals using the MATLAB filter
function and other functions in the Signal Processing Toolbox. It also discusses
how to use the toolbox functions to analyze filter characteristics, including
impulse response, magnitude and phase response, group delay, and zero-pole
locations.

Convolution and Filtering
The mathematical foundation of filtering is convolution. The MATLAB conv
function performs standard one-dimensional convolution, convolving one
vector with another:

conv([1 1 1],[1 1 1])

ans =

 1 2 3 2 1

Note Convolve rectangular matrices for two-dimensional signal processing
using the conv2 function.

A digital filter’s output y(k) is related to its input x(k) by convolution with its
impulse response h(k).

If a digital filter’s impulse response h(k) is finite length, and the input x(k) is
also finite length, you can implement the filter using conv. Store x(k) in a vector
x, h(k) in a vector h, and convolve the two:

x = randn(5,1); % A random vector of length 5
h = [1 1 1 1]/4; % Length 4 averaging filter
y = conv(h,x);

y k() h k() x k()∗ h k l–()x l()

l ∞–=

∞

∑= =
1-15

1 Signal Processing Basics

1-1
Filters and Transfer Functions
In general, the z-transform Y(z) of a digital filter’s output y(n) is related to the
z-transform X(z) of the input by

where H(z) is the filter’s transfer function. Here, the constants b(i) and a(i) are
the filter coefficients and the order of the filter is the maximum of n and m.

Note The filter coefficients start with subscript 1, rather than 0. This reflects
the standard indexing scheme used for vectors in MATLAB.

MATLAB stores the coefficients in two vectors, one for the numerator and one
for the denominator. By convention, MATLAB uses row vectors for filter
coefficients.

Filter Coefficients and Filter Names
Many standard names for filters reflect the number of a and b coefficients
present:

• When n = 0 (that is, b is a scalar), the filter is an Infinite Impulse Response
(IIR), all-pole, recursive, or autoregressive (AR) filter.

• When m = 0 (that is, a is a scalar), the filter is a Finite Impulse Response
(FIR), all-zero, nonrecursive, or moving-average (MA) filter.

• If both n and m are greater than zero, the filter is an IIR, pole-zero, recursive,
or autoregressive moving-average (ARMA) filter.

The acronyms AR, MA, and ARMA are usually applied to filters associated
with filtered stochastic processes.

Y z() H z()X z()
b 1() b 2()z 1– b n 1+()z n–+ + +
a 1() a 2()z 1– a m 1+()z m–+ + +
--X z()= =
6

Filter Implementation and Analysis

)

Filtering with the filter Function
It is simple to work back to a difference equation from the z-transform relation
shown earlier. Assume that a(1) = 1. Move the denominator to the left-hand
side and take the inverse z-transform.

In terms of current and past inputs, and past outputs, y(n) is

This is the standard time-domain representation of a digital filter, computed
starting with y(1) and assuming zero initial conditions. This representation’s
progression is

A filter in this form is easy to implement with the filter function. For
example, a simple single-pole filter (lowpass) is

b = 1; % Numerator
a = [1 -0.9]; % Denominator

where the vectors b and a represent the coefficients of a filter in transfer
function form. To apply this filter to your data, use

y = filter(b,a,x);

filter gives you as many output samples as there are input samples, that is,
the length of y is the same as the length of x. If the first element of a is not 1,
filter divides the coefficients by a(1) before implementing the difference
equation.

y k() a2y k 1–() am 1+ y k m–()+ + + b1x k() b2x k 1–() bn 1+ x k m–(+ + +=

y k() b1x k() b2x k 1–() bn 1+ x k n–() a2y k 1–()– am 1+ y k n–()––+ + +=

y 1() b1x 1()=

y 2() b1x 2() b2x 1() a2y 1()–+=

y 3() b1x 3() b2x 2() b3x 1() a2y 2() a3y 1()––+ +=

=

1-17

1 Signal Processing Basics

1-1
The filter Function
filter is implemented as the transposed direct-form II structure, where n-1 is
the filter order. This is a canonical form that has the minimum number of delay
elements.

At sample m, filter computes the difference equations

In its most basic form, filter initializes the delay outputs zi(1), i = 1, ..., n-1
to 0. This is equivalent to assuming both past inputs and outputs are zero. Set
the initial delay outputs using a fourth input parameter to filter, or access
the final delay outputs using a second output parameter:

[y,zf] = filter(b,a,x,zi)

Access to initial and final conditions is useful for filtering data in sections,
especially if memory limitations are a consideration. Suppose you have
collected data in two segments of 5000 points each:

x1 = randn(5000,1); % Generate two random data sequences.
x2 = randn(5000,1);

Perhaps the first sequence, x1, corresponds to the first 10 minutes of data and
the second, x2, to an additional 10 minutes. The whole sequence is x = [x1;x2].
If there is not sufficient memory to hold the combined sequence, filter the

Σ Σ Σz -1 z -1

x(m)

y(m)

b(3) b(2) b(1)

– a(3) – a(2)

z1(m)z2(m)
Σ z -1

b(n)

–a(n)

zn -1(m)

...

...

...

y m() b 1()x m() z1 m 1–()+=

z1 m() b 2()x m() z2 m 1–() a 2()y m()–+=

=

zn 2– m() b n 1–()x m() zn 1– m 1–() a n 1–()y m()–+=

zn 1– m() b n()x m() a n()y m()–=
8

The filter Function
subsequences x1 and x2 one at a time. To ensure continuity of the filtered
sequences, use the final conditions from x1 as initial conditions to filter x2:

[y1,zf] = filter(b,a,x1);
y2 = filter(b,a,x2,zf);

The filtic function generates initial conditions for filter. filtic computes
the delay vector to make the behavior of the filter reflect past inputs and
outputs that you specify. To obtain the same output delay values zf as above
using filtic, use

zf = filtic(b,a,flipud(y1),flipud(x1));

This can be useful when filtering short data sequences, as appropriate initial
conditions help reduce transient startup effects.
1-19

1 Signal Processing Basics

1-2
Other Functions for Filtering
In addition to filter, several other functions in the Signal Processing Toolbox
perform the basic filtering operation. These functions include upfirdn, which
performs FIR filtering with resampling, filtfilt, which eliminates phase
distortion in the filtering process, fftfilt, which performs the FIR filtering
operation in the frequency domain, and latcfilt, which filters using a lattice
implementation.

Multirate Filter Bank Implementation
The function upfirdn alters the sampling rate of a signal by an integer ratio
P/Q. It computes the result of a cascade of three systems that performs the
following tasks:

• Upsampling (zero insertion) by integer factor p

• Filtering by FIR filter h

• Downsampling by integer factor q

For example, to change the sample rate of a signal from 44.1 kHz to 48 kHz, we
first find the smallest integer conversion ratio p/q. Set

d = gcd(48000,44100);
p = 48000/d;
q = 44100/d;

In this example, p = 160 and q = 147. Sample rate conversion is then
accomplished by typing

y = upfirdn(x,h,p,q)

This cascade of operations is implemented in an efficient manner using
polyphase filtering techniques, and it is a central concept of multirate filtering
(see reference [1] for details on multirate filter theory). Note that the quality of
the resampling result relies on the quality of the FIR filter h.

Px(n) y(n)
FIR
H Q
0

Other Functions for Filtering
Filter banks may be implemented using upfirdn by allowing the filter h to be
a matrix, with one FIR filter per column. A signal vector is passed
independently through each FIR filter, resulting in a matrix of output signals.

Other functions that perform multirate filtering (with fixed filter) include
resample, interp, and decimate.

Anti-Causal, Zero-Phase Filter Implementation
In the case of FIR filters, it is possible to design linear phase filters that, when
applied to data (using filter or conv), simply delay the output by a fixed
number of samples. For IIR filters, however, the phase distortion is usually
highly nonlinear. The filtfilt function uses the information in the signal at
points before and after the current point, in essence “looking into the future,”
to eliminate phase distortion.

To see how filtfilt does this, recall that if the z-transform of a real sequence
x(n) is X(z), the z-transform of the time reversed sequence x(n) is X(1/z).
Consider the processing scheme.

When |z| = 1, that is z = ejω, the output reduces to X(ejω)|H(ejω)|2. Given all
the samples of the sequence x(n), a doubly filtered version of x that has
zero-phase distortion is possible.

For example, a 1-second duration signal sampled at 100 Hz, composed of two
sinusoidal components at 3 Hz and 40 Hz, is

fs = 100;
t = 0:1/fs:1;
x = sin(2*pi*t*3)+.25*sin(2*pi*t*40);

Now create a 10-point averaging FIR filter, and filter x using both filter and
filtfilt for comparison:

b = ones(1,10)/10; % 10 point averaging filter
y = filtfilt(b,1,x); % Noncausal filtering
yy = filter(b,1,x); % Normal filtering

H(z)X(z)

X(z)H(z) X(1/z)H(1/z) X(1/z)H(1/z)H(z)

X(z)H(1/z)H(z)H(z)Time
Reverse

Time
Reverse
1-21

1 Signal Processing Basics

1-2
plot(t,x,t,y,'--',t,yy,':')

Both filtered versions eliminate the 40 Hz sinusoid evident in the original,
solid line. The plot also shows how filter and filtfilt differ; the dashed
(filtfilt) line is in phase with the original 3 Hz sinusoid, while the dotted
(filter) line is delayed by about five samples. Also, the amplitude of the
dashed line is smaller due to the magnitude squared effects of filtfilt.

filtfilt reduces filter startup transients by carefully choosing initial
conditions, and by prepending onto the input sequence a short, reflected piece
of the input sequence. For best results, make sure the sequence you are
filtering has length at least three times the filter order and tapers to zero on
both edges.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1.5

-1

-0.5

0

0.5

1

1.5
2

Other Functions for Filtering
Frequency Domain Filter Implementation
Duality between the time domain and the frequency domain makes it possible
to perform any operation in either domain. Usually one domain or the other is
more convenient for a particular operation, but you can always accomplish a
given operation in either domain.

To implement general IIR filtering in the frequency domain, multiply the
discrete Fourier transform (DFT) of the input sequence with the quotient of the
DFT of the filter:

n = length(x);
y = ifft(fft(x).*fft(b,n)./fft(a,n));

This computes results that are identical to filter, but with different startup
transients (edge effects). For long sequences, this computation is very
inefficient because of the large zero-padded FFT operations on the filter
coefficients, and because the FFT algorithm becomes less efficient as the
number of points n increases.

For FIR filters, however, it is possible to break longer sequences into shorter,
computationally efficient FFT lengths. The function

y = fftfilt(b,x)

uses the overlap add method (see reference [1] at the end of this chapter) to
filter a long sequence with multiple medium-length FFTs. Its output is
equivalent to filter(b,1,x).
1-23

1 Signal Processing Basics

1-2
Impulse Response
The impulse response of a digital filter is the output arising from the unit
impulse input sequence defined as

In MATLAB, you can generate an impulse sequence a number of ways; one
straightforward way is

imp = [1; zeros(49,1)];

The impulse response of the simple filter b = 1 and a = [1 -0.9] is

h = filter(b,a,imp);

A simple way to display the impulse response is with the Filter Visualization
Tool (fvtool):

fvtool(b,a)

Then click the Impulse Response button on the toolbar or select Impulse
Response from the Analysis menu. This plot shows the exponential decay
h(n) = 0.9n of the single pole system:

x n()
1 n 1=,
0 n 1≠,⎩

⎨
⎧

=

4

Impulse Response
1-25

1 Signal Processing Basics

1-2
Frequency Response
The Signal Processing Toolbox enables you to perform frequency domain
analysis of both analog and digital filters.

Digital Domain
freqz uses an FFT-based algorithm to calculate the z-transform frequency
response of a digital filter. Specifically, the statement

[h,w] = freqz(b,a,p)

returns the p-point complex frequency response, , of the digital filter.

In its simplest form, freqz accepts the filter coefficient vectors b and a, and an
integer p specifying the number of points at which to calculate the frequency
response. freqz returns the complex frequency response in vector h, and the
actual frequency points in vector w in rad/s.

freqz can accept other parameters, such as a sampling frequency or a vector of
arbitrary frequency points. The example below finds the 256-point frequency
response for a 12th-order Chebyshev Type I filter. The call to freqz specifies a
sampling frequency fs of 1000 Hz:

[b,a] = cheby1(12,0.5,200/500);
[h,f] = freqz(b,a,256,1000);

Because the parameter list includes a sampling frequency, freqz returns a
vector f that contains the 256 frequency points between 0 and fs/2 used in the
frequency response calculation.

H ejω()

H ejω() b 1() b 2()e j– ω b n 1+()e j– ω n()+ + +

a 1() a 2()e j– ω a m 1+()e j– ω m()+ + +
---=
6

Frequency Response
Note This toolbox uses the convention that unit frequency is the Nyquist
frequency, defined as half the sampling frequency. The cutoff frequency
parameter for all basic filter design functions is normalized by the Nyquist
frequency. For a system with a 1000 Hz sampling frequency, for example,
300 Hz is 300/500 = 0.6. To convert normalized frequency to angular frequency
around the unit circle, multiply by π. To convert normalized frequency back to
hertz, multiply by half the sample frequency.

If you call freqz with no output arguments, it plots both magnitude versus
frequency and phase versus frequency. For example, a ninth-order
Butterworth lowpass filter with a cutoff frequency of 400 Hz, based on a 2000
Hz sampling frequency, is

[b,a] = butter(9,400/1000);

To calculate the 256-point complex frequency response for this filter, and plot
the magnitude and phase with freqz, use

freqz(b,a,256,2000)

or to display the magnitude and phase responses in fvtool, which provides
additional analysis tools, use

fvtool(b,a)

and click the Magnitude and Phase Response button on the toolbar or select
Magnitude and Phase Response from the Analysis menu.
1-27

1 Signal Processing Basics

1-2
freqz can also accept a vector of arbitrary frequency points for use in the
frequency response calculation. For example,

w = linspace(0,pi);
h = freqz(b,a,w);

calculates the complex frequency response at the frequency points in w for the
filter defined by vectors b and a. The frequency points can range from 0 to .
To specify a frequency vector that ranges from zero to your sampling frequency,
include both the frequency vector and the sampling frequency value in the
parameter list.

Analog Domain
freqs evaluates frequency response for an analog filter defined by two input
coefficient vectors, b and a. Its operation is similar to that of freqz; you can
specify a number of frequency points to use, supply a vector of arbitrary
frequency points, and plot the magnitude and phase response of the filter.

2π
8

Frequency Response
Magnitude and Phase
MATLAB provides functions to extract magnitude and phase from a frequency
response vector h. The function abs returns the magnitude of the response;
angle returns the phase angle in radians. To extract the magnitude and phase
of a Butterworth filter:

[b,a] = butter(9,400/1000);
fvtool(b,a)

and click the Magnitude and Phase Response button on the toolbar or select
Magnitude and Phase Response from the Analysis menu to display the plot.

The unwrap function is also useful in frequency analysis. unwrap unwraps the
phase to make it continuous across 360° phase discontinuities by adding
multiples of ±360°, as needed. To see how unwrap is useful, design a 25th-order
lowpass FIR filter:

h = fir1(25,0.4);
1-29

1 Signal Processing Basics

1-3
Obtain the filter’s frequency response with freqz, and plot the phase in
degrees:

[H,f] = freqz(h,1,512,2);
plot(f,angle(H)*180/pi); grid

It is difficult to distinguish the 360° jumps (an artifact of the arctangent
function inside angle) from the 180° jumps that signify zeros in the frequency
response.

unwrap eliminates the 360° jumps:

plot(f,unwrap(angle(H))*180/pi);

or you can use phasez to see the unwrapped phase.

Delay
The group delay of a filter is a measure of the average delay of the filter as a
function of frequency. It is defined as the negative first derivative of a filter’s
phase response. If the complex frequency response of a filter is , then
the group delay is

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-200

-150

-100

-50

0

50

100

150

200

H ejω()

τg ω() dθ ω()
dω

---------------–=
0

Frequency Response
where θ is the phase angle of . Compute group delay with

[gd,w] = grpdelay(b,a,n)

which returns the n-point group delay, , of the digital filter specified by b
and a, evaluated at the frequencies in vector w.

The phase delay of a filter is the negative of phase divided by frequency:

To plot both the group and phase delays of a system on the same FVTool graph,
type

[b,a] = butter(10,200/1000);
hFVT = fvtool(b,a,'Analysis','grpdelay');
set(hFVT,'NumberofPoints',128,'OverlayedAnalysis','phasedelay');
legend(hFVT)

H ejω()

τg ω()

τp ω() θ ω()
ω

-----------–=
1-31

1 Signal Processing Basics

1-3
Zero-Pole Analysis
The zplane function plots poles and zeros of a linear system. For example, a
simple filter with a zero at -1/2 and a complex pole pair at and

 is

zer = -0.5;
pol = 0.9*exp(j*2*pi*[-0.3 0.3]');

To view the pole-zero plot for this filter you can use

zplane(zer,pol)

or, for access to additional tools, use fvtool. First convert the poles and zeros
to transfer function form, then call fvtool,

[b,a] = zp2tf(zer,pol,1);
fvtool(b,a)

and click the Pole/Zero Plot toolbar button on the toolbar or select
Pole/Zero Plot from the Analysis menu to see the plot.

0.9ej2π 0.3()

0.9e j– 2π 0.3()
2

Zero-Pole Analysis
For a system in zero-pole form, supply column vector arguments z and p to
zplane:

zplane(z,p)

For a system in transfer function form, supply row vectors b and a as
arguments to zplane:

zplane(b,a)

In this case zplane finds the roots of b and a using the roots function and plots
the resulting zeros and poles.

See “Linear System Models” on page 1-34 for details on zero-pole and transfer
function representation of systems.
1-33

1 Signal Processing Basics

1-3
Linear System Models
The Signal Processing Toolbox provides several models for representing linear
time-invariant systems. This flexibility lets you choose the representational
scheme that best suits your application and, within the bounds of numeric
stability, convert freely to and from most other models. This section provides a
brief overview of supported linear system models and describes how to work
with these models in MATLAB.

Discrete-Time System Models
The discrete-time system models are representational schemes for digital
filters. MATLAB supports several discrete-time system models, which are
described in the following sections:

• “Transfer Function”

• “Zero-Pole-Gain”

• “State-Space”

• “Partial Fraction Expansion (Residue Form)”

• “Second-Order Sections (SOS)”

• “Lattice Structure”

• “Convolution Matrix”

Transfer Function
The transfer function is a basic z-domain representation of a digital filter,
expressing the filter as a ratio of two polynomials. It is the principal
discrete-time model for this toolbox. The transfer function model description
for the z-transform of a digital filter’s difference equation is

Here, the constants b(i) and a(i) are the filter coefficients, and the order of the
filter is the maximum of n and m. In MATLAB, you store these coefficients in
two vectors (row vectors by convention), one row vector for the numerator and
one for the denominator. See “Filters and Transfer Functions” on page 1-16 for
more details on the transfer function form.

Y z()
b 1() b 2()z 1– b n 1+()z n–+ + +
a 1() a 2()z 1– a m 1+()z m–+ + +
--X z()=
4

Linear System Models
Zero-Pole-Gain
The factored or zero-pole-gain form of a transfer function is

By convention, MATLAB stores polynomial coefficients in row vectors and
polynomial roots in column vectors. In zero-pole-gain form, therefore, the zero
and pole locations for the numerator and denominator of a transfer function
reside in column vectors. The factored transfer function gain k is a MATLAB
scalar.

The poly and roots functions convert between polynomial and zero-pole-gain
representations. For example, a simple IIR filter is

b = [2 3 4];
a = [1 3 3 1];

The zeros and poles of this filter are

q = roots(b)

q =
-0.7500 + 1.1990i
-0.7500 - 1.1990i

p = roots(a)

p =
-1.0000
-1.0000 + 0.0000i
-1.0000 - 0.0000i

k = b(1)/a(1)

k =
2

H z() q z()
p z()
---------- k z q 1()–() z q 2()–() z q n()–()

z p 1()–() z p 2()–() z p n()–()
--= =
1-35

1 Signal Processing Basics

1-3
Returning to the original polynomials,

bb = k*poly(q)

bb =
2.0000 3.0000 4.0000

aa = poly(p)

aa =
1.0000 3.0000 3.0000 1.0000

Note that b and a in this case represent the transfer function:

For b = [2 3 4], the roots function misses the zero for z equal to 0. In fact, it
misses poles and zeros for z equal to 0 whenever the input transfer function has
more poles than zeros, or vice versa. This is acceptable in most cases. To
circumvent the problem, however, simply append zeros to make the vectors the
same length before using the roots function; for example, b = [b 0].

State-Space
It is always possible to represent a digital filter, or a system of difference
equations, as a set of first-order difference equations. In matrix or state-space
form, you can write the equations as

where u is the input, x is the state vector, and y is the output. For
single-channel systems, A is an m-by-m matrix where m is the order of the filter,
B is a column vector, C is a row vector, and D is a scalar. State-space notation is
especially convenient for multichannel systems where input u and output y
become vectors, and B, C, and D become matrices.

State-space representation extends easily to the MATLAB environment. In
MATLAB, A, B, C, and D are rectangular arrays; MATLAB treats them as
individual variables.

H z() 2 3z 1– 4z 2–+ +

1 3z 1– 3z 2– z 3–+ + +
-- 2z3 3z2 4z+ +

z3 3z2 3z 1+ + +
--= =

x n 1+() Ax n() Bu n()+=

y n() Cx n() Du n()+=
6

Linear System Models
Taking the z-transform of the state-space equations and combining them shows
the equivalence of state-space and transfer function forms:

Don’t be concerned if you are not familiar with the state-space representation
of linear systems. Some of the filter design algorithms use state-space form
internally but do not require any knowledge of state-space concepts to use them
successfully. If your applications use state-space based signal processing
extensively, however, consult the Contr ol System Toolbox for a comprehensive
library of state-space tools.

Partial Fraction Expansion (Residue Form)
Each transfer function also has a corresponding partial fraction expansion or
residue form representation, given by

provided H(z) has no repeated poles. Here, n is the degree of the denominator
polynomial of the rational transfer function b(z)/a(z). If r is a pole of multiplicity
sr, then H(z) has terms of the form:

The residuez function in the Signal Processing Toolbox converts transfer
functions to and from the partial fraction expansion form. The “z” on the end of
residuez stands for z-domain, or discrete domain. residuez returns the poles
in a column vector p, the residues corresponding to the poles in a column
vector r, and any improper part of the original transfer function in a row
vector k. residuez determines that two poles are the same if the magnitude of
their difference is smaller than 0.1 percent of either of the poles’ magnitudes.

Y z() H z()U z()= where H z() C zI A–() 1– B D+=,

b z()
a z()
---------- r 1()

1 p 1()z 1––
---------------------------- r n()

1 p n()z 1––
----------------------------- k 1() k 2()z 1– k m n 1+–()z m n–()–+ + + + + +=

r j()

1 p j()z 1––
--------------------------- r j 1+()

1 p j()z 1––()2

r j sr 1–+()

1 p j()z 1––()sr
------------------------------------+ + +
1-37

1 Signal Processing Basics

1-3
Partial fraction expansion arises in signal processing as one method of finding
the inverse z-transform of a transfer function. For example, the partial fraction
expansion of

is

b = [-4 8];
a = [1 6 8];
[r,p,k] = residuez(b,a)

r =
-12
8

p =
-4
-2

k =
[]

which corresponds to

To find the inverse z-transform of H(z), find the sum of the inverse z-transforms
of the two addends of H(z), giving the causal impulse response:

To verify this in MATLAB, type

imp = [1 0 0 0 0];
resptf = filter(b,a,imp)

resptf =
-4 32 -160 704 -2944

respres = filter(r(1),[1 -p(1)],imp) + filter(r(2),[1 -p(2)],imp)

respres =
-4 32 -160 704 -2944

H z() 4– 8z 1–+
1 6z 1– 8z 2–+ +
--=

H z() 12–
1 4z 1–+
--------------------- 8

1 2z 1–+
---------------------+=

h n() 12– 4–()n 8 2–()n+ n 0 1 2 …, , ,=,=
8

Linear System Models
Second-Order Sections (SOS)
Any transfer function H(z) has a second-order sections representation

where L is the number of second-order sections that describe the system.
MATLAB represents the second-order section form of a discrete-time system as
an L-by-6 array sos. Each row of sos contains a single second-order section,
where the row elements are the three numerator and three denominator
coefficients that describe the second-order section.

There are many ways to represent a filter in second-order section form.
Through careful pairing of the pole and zero pairs, ordering of the sections in
the cascade, and multiplicative scaling of the sections, it is possible to reduce
quantization noise gain and avoid overflow in some fixed-point filter
implementations. The functions zp2sos and ss2sos, described in “Linear
System Transformations” on page 1-44, perform pole-zero pairing, section
scaling, and section ordering.

Note In the Signal Processing Toolbox, all second-order section
transformations apply only to digital filters.

Lattice Structure
For a discrete Nth order all-pole or all-zero filter described by the polynomial
coefficients a(n), n = 1, 2, …, N+1, there are N corresponding lattice structure
coefficients k(n), n = 1, 2, …, N. The parameters k(n) are also called the
reflection coefficients of the filter. Given these reflection coefficients, you can
implement a discrete filter as shown below.

H z() Hk z()

k 1=

L

∏
b0k b1kz 1– b2kz 2–+ +

a0k a1kz 1– a2kz 2–+ +
--

k 1=

L

∏= =

sos

b01 b11 b21 a01 a11 a21

b02 b12 b22 a02 a12 a22

b0L b1L b2L a0L a1L a2L

=

1-39

1 Signal Processing Basics

1-4
For a general pole-zero IIR filter described by polynomial coefficients a and b,
there are both lattice coefficients k(n) for the denominator a and ladder
coefficients v(n) for the numerator b. The lattice/ladder filter may be
implemented as

The toolbox function tf2latc accepts an FIR or IIR filter in polynomial form
and returns the corresponding reflection coefficients. An example FIR filter in
polynomial form is

b = [1.0000 0.6149 0.9899 0.0000 0.0031 -0.0082];

Σ

Σ

z -1

y(m)

k(1)

k(1)

Σ

Σ

k(n)

k(n)

. . .

. . . z -1

FIR Lattice Filter

x(m)

x(m)

Σ

Σ y(m)

k(1)

–k(1)
Σ

k(n)

–k(n)
. . .

. . .z -1 Σ z -1

IIR Lattice Filter

Minimum-phase output

All-pole output

Maximum-phase output

Allpass output

z-1+

+
x(m)

g(m)

+

k(N)

k(N)

z-1+

+

k(2)

k(2)

z-1+

+

k(1)

k(1)

++ +

v(N+1) v(N) v(3) v(2) v(1)

f(m)
ARMA output
0

Linear System Models
This filter’s lattice (reflection coefficient) representation is

k = tf2latc(b)

k =
 0.3090

0.9801
0.0031
0.0081

-0.0082

For IIR filters, the magnitude of the reflection coefficients provides an easy
stability check. If all the reflection coefficients corresponding to a polynomial
have magnitude less than 1, all of that polynomial’s roots are inside the unit
circle. For example, consider an IIR filter with numerator polynomial b from
above and denominator polynomial:

a = [1 1/2 1/3];

The filter’s lattice representation is

[k,v] = tf2latc(b,a)

k =
 0.3750
 0.3333
 0
 0
 0

v =
 0.6252
 0.1212
 0.9879
 -0.0009
 0.0072
 -0.0082

Because abs(k) < 1 for all reflection coefficients in k, the filter is stable.
1-41

1 Signal Processing Basics

1-4
The function latc2tf calculates the polynomial coefficients for a filter from its
lattice (reflection) coefficients. Given the reflection coefficient vector k(above),
the corresponding polynomial form is

b = latc2tf(k)

b =
 1.0000 0.6149 0.9899 -0.0000 0.0031 -0.0082

The lattice or lattice/ladder coefficients can be used to implement the filter
using the function latcfilt.

Convolution Matrix
In signal processing, convolving two vectors or matrices is equivalent to
filtering one of the input operands by the other. This relationship permits the
representation of a digital filter as a convolution matrix.

Given any vector, the toolbox function convmtx generates a matrix whose inner
product with another vector is equivalent to the convolution of the two vectors.
The generated matrix represents a digital filter that you can apply to any
vector of appropriate length; the inner dimension of the operands must agree
to compute the inner product.

The convolution matrix for a vector b, representing the numerator coefficients
for a digital filter, is

b = [1 2 3]; x = randn(3,1);
C = convmtx(b',3)

C =
1 0 0
2 1 0
3 2 1
0 3 2
0 0 3

Two equivalent ways to convolve b with x are as follows.

y1 = C*x;
y2 = conv(b,x);
2

Linear System Models
Continuous-Time System Models
The continuous-time system models are representational schemes for analog
filters. Many of the discrete-time system models described earlier are also
appropriate for the representation of continuous-time systems:

• State-space form

• Partial fraction expansion

• Transfer function

• Zero-pole-gain form

It is possible to represent any system of linear time-invariant differential
equations as a set of first-order differential equations. In matrix or state-space
form, you can express the equations as

where u is a vector of nu inputs, x is an nx-element state vector, and y is a vector
of ny outputs. In MATLAB, store A, B, C, and D in separate rectangular arrays.

An equivalent representation of the state-space system is the Laplace
transform transfer function description

where

For single-input, single-output systems, this form is given by

Given the coefficients of a Laplace transform transfer function, residue
determines the partial fraction expansion of the system. See the description of
residue in the MATLAB documentation for details.

The factored zero-pole-gain form is

x· Ax Bu+=

y Cx Du+=

Y s() H s()U s()=

H s() C sI A–() 1– B D+=

H s() b s()
a s()
---------- b 1()sn b 2()sn 1– b n 1+()+ + +

a 1()sm a 2()sm 1– a m 1+()+ + +
--= =

H s() z s()
p s()
---------- k s z 1()–() s z 2()–() s z n()–()

s p 1()–() s p 2()–() s p n()–()
--= =
1-43

1 Signal Processing Basics

1-4
As in the discrete-time case, MATLAB stores polynomial coefficients in row
vectors in descending powers of s. MATLAB stores polynomial roots, or zeros
and poles, in column vectors.

Linear System Transformations
The Signal Processing Toolbox provides a number of functions that convert
between the various linear system models. You can use the following chart to
find an appropriate transfer function: find the row of the model to convert from
on the left side of the chart and the column of the model to convert to on the top
of the chart and read the function name(s) at the intersection of the row and
column.

.

Note Converting from one filter structure or model to another may produce a
result with different characteristics than the original. This is due to the
computer’s finite-precision arithmetic and the variations in the conversion’s
round-off computations.

Transfer
Function

State-
Space

Zero-
Pole-
Gain

Partial
Fraction

Lattice
Filter

Second-
Order
Sections

Convolution
Matrix

Transfer
Function

tf2ss tf2zp
roots

residuez tf2latc none convmtx

State-Space ss2tf ss2zp none none ss2sos none

Zero-Pole-
Gain

zp2tf
poly

zp2ss none none zp2sos none

Partial
Fraction

residuez none none none none none

Lattice Filter latc2tf none none none none none

SOS sos2tf sos2ss sos2zp none none none
4

Linear System Models
Many of the toolbox filter design functions use these functions internally. For
example, the zp2ss function converts the poles and zeros of an analog
prototype into the state-space form required for creation of a Butterworth,
Chebyshev, or elliptic filter. Once in state-space form, the filter design function
performs any required frequency transformation, that is, it transforms the
initial lowpass design into a bandpass, highpass, or bandstop filter, or a
lowpass filter with the desired cutoff frequency.

Note In the Signal Processing Toolbox, all second-order section
transformations apply only to digital filters.
1-45

1 Signal Processing Basics

1-4
Discrete Fourier Transform
The discrete Fourier transform, or DFT, is the primary tool of digital signal
processing. The foundation of the Signal Processing Toolbox is the fast Fourier
transform (FFT), a method for computing the DFT with reduced execution
time. Many of the toolbox functions (including z-domain frequency response,
spectrum and cepstrum analysis, and some filter design and implementation
functions) incorporate the FFT.

MATLAB provides the functions fft and ifft to compute the discrete Fourier
transform and its inverse, respectively. For the input sequence x and its
transformed version X (the discrete-time Fourier transform at equally spaced
frequencies around the unit circle), the two functions implement the
relationships

In these equations, the series subscripts begin with 1 instead of 0 because of
the MATLAB vector indexing scheme, and

Note MATLAB uses a negative j for the fft function. This is an engineering
convention; physics and pure mathematics typically use a positive j.

fft, with a single input argument x, computes the DFT of the input vector or
matrix. If x is a vector, fft computes the DFT of the vector; if x is a rectangular
array, fft computes the DFT of each array column.

X k 1+() x n 1+()WN
kn

n 0=

N 1–

∑=

x n 1+()
1
N
---- X k 1+()WN

kn–

k 0=

N 1–

∑=

WN e
j–

2π
N
-------⎝ ⎠

⎛ ⎞

=

6

Discrete Fourier Transform
For example, create a time vector and signal:

t = (0:1/100:10-1/100); % Time vector
x = sin(2*pi*15*t) + sin(2*pi*40*t); % Signal

The DFT of the signal, and the magnitude and phase of the transformed
sequence, are then

y = fft(x); % Compute DFT of x
m = abs(y); p = unwrap(angle(y)); % Magnitude and phase

To plot the magnitude and phase, type the following commands:

f = (0:length(y)-1)*99/length(y); % Frequency vector
plot(f,m); title('Magnitude');
set(gca,'XTick',[15 40 60 85]);
figure; plot(f,p*180/pi); title('Phase');
set(gca,'XTick',[15 40 60 85]);

A second argument to fft specifies a number of points n for the transform,
representing DFT length:

y = fft(x,n);

In this case, fft pads the input sequence with zeros if it is shorter than n, or
truncates the sequence if it is longer than n. If n is not specified, it defaults to
the length of the input sequence. Execution time for fft depends on the
length, n, of the DFT it performs; see the fft reference page in the MATLAB
documentation for details about the algorithm.
1-47

1 Signal Processing Basics

1-4
Note The resulting FFT amplitude is A*n/2, where A is the original
amplitude and n is the number of FFT points. This is true only if the number
of FFT points is greater than or equal to the number of data samples. If the
number of FFT points is less, the FFT amplitude is lower than the original
amplitude by the above amount.

The inverse discrete Fourier transform function ifft also accepts an input
sequence and, optionally, the number of desired points for the transform. Try
the example below; the original sequence x and the reconstructed sequence are
identical (within rounding error).

t = (0:1/255:1);
x = sin(2*pi*120*t);
y = real(ifft(fft(x)));

This toolbox also includes functions for the two-dimensional FFT and its
inverse, fft2 and ifft2. These functions are useful for two-dimensional signal
or image processing. The goertzel function, which is another algorithm to
compute the DFT, also is included in the toolbox. This function is efficient for
computing the DFT of a portion of a long signal.

It is sometimes convenient to rearrange the output of the fft or fft2 function
so the zero frequency component is at the center of the sequence. The MATLAB
function fftshift moves the zero frequency component to the center of a vector
or matrix.
8

Selected Bibliography
Selected Bibliography
Algorithm development for the Signal Processing Toolbox has drawn heavily
upon the references listed below. All are recommended to the interested reader
who needs to know more about signal processing than is covered in this
manual.

[1] Crochiere, R.E., and L.R. Rabiner. Multi-Rate Signal Processing.
Englewood Cliffs, NJ: Prentice Hall, 1983. Pgs. 88-91.

[2] IEEE. Programs for Digital Signal Processing. IEEE Press. New York: John
Wiley & Sons, 1979.

[3] Jackson, L.B. Digital Filters and Signal Processing. Third Ed. Boston:
Kluwer Academic Publishers, 1989.

[4] Kay, S.M. Modern Spectral Estimation. Englewood Cliffs, NJ: Prentice Hall,
1988.

[5] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing.
Englewood Cliffs, NJ: Prentice Hall, 1989.

[6] Parks, T.W., and C.S. Burrus. Digital Filter Design. New York: John Wiley
& Sons, 1987.

[7] Percival, D.B., and A.T. Walden. Spectral Analysis for Physical
Applications: Multitaper and Conventional Univariate Techniques. Cambridge:
Cambridge University Press, 1993.

[8] Pratt,W.K. Digital Image Processing. New York: John Wiley & Sons, 1991.

[9] Proakis, J.G., and D.G. Manolakis. Digital Signal Processing: Principles,
Algorithms, and Applications. Upper Saddle River, NJ: Prentice Hall, 1996.

[10] Rabiner, L.R., and B. Gold. Theory and Application of Digital Signal
Processing. Englewood Cliffs, NJ: Prentice Hall, 1975.

[11] Welch, P.D. “The Use of Fast Fourier Transform for the Estimation of
Power Spectra: A Method Based on Time Averaging Over Short, Modified
Periodograms.” IEEE Trans. Audio Electroacoust. Vol. AU-15 (June 1967).
Pgs. 70-73.
1-49

1 Signal Processing Basics

1-5
0

2

Filter Design and
Implementation

Filter design is the process of creating the filter coefficients to meet specific filtering requirements.
Filter implementation involves choosing and applying a particular filter structure to those
coefficients. Only after both design and implementation have been performed can data be filtered.
The following chapter describes filter design and implementation in the Signal Processing Toolbox.

Filter Requirements and Specification
(p. 2-2)

Overview of filter design

IIR Filter Design (p. 2-4) Infinite impulse reponse filters (Butterworth, Chebyshev,
elliptic, Bessel, Yule-Walker, and parametric methods)

FIR Filter Design (p. 2-17) Finite impulse reponse filters (windowing, multiband,
least squares, nonlinear phase, complex filters, raised
cosine)

Special Topics in IIR Filter Design
(p. 2-41)

Analog design, frequency transformation, filter
discretization

Filter Implementation (p. 2-50) Filtering with your filter

Selected Bibliography (p. 2-52) Sources for additional information

2 Filter Design and Implementation

2-2
Filter Requirements and Specification
The goal of filter design is to perform frequency dependent alteration of a data
sequence. A possible requirement might be to remove noise above 30 Hz from
a data sequence sampled at 100 Hz. A more rigorous specification might call for
a specific amount of passband ripple, stopband attenuation, or transition
width. A very precise specification could ask to achieve the performance goals
with the minimum filter order, or it could call for an arbitrary magnitude
shape, or it might require an FIR filter.

Filter design methods differ primarily in how performance is specified. For
“loosely specified” requirements, as in the first case above, a Butterworth IIR
filter is often sufficient. To design a fifth-order 30 Hz lowpass Butterworth
filter and apply it to the data in vector x:

[b,a] = butter(5,30/50);
Hd = dfilt.df2t(b,a); %Direct-form II transposed structure
y = filter(Hd,x);

The second input argument to butter specifies the cutoff frequency,
normalized to half the sampling frequency (the Nyquist frequency).

All of the filter design functions operate with normalized frequencies, so they
do not require the system sampling rate as an extra input argument. This
toolbox uses the convention that unit frequency is the Nyquist frequency,
defined as half the sampling frequency. The normalized frequency, therefore,
is always in the interval 0 ≤ f ≤ 1. For a system with a 1000 Hz sampling
frequency, 300 Hz is 300/500 = 0.6. To convert normalized frequency to angular
frequency around the unit circle, multiply by π. To convert normalized
frequency back to hertz, multiply by half the sample frequency.

More rigorous filter requirements traditionally include passband ripple (Rp, in
decibels), stopband attenuation (Rs, in decibels), and transition width (Ws-Wp,
in hertz).

Filter Requirements and Specification
You can design Butterworth, Chebyshev Type I, Chebyshev Type II, and
elliptic filters that meet this type of performance specification. The toolbox
order selection functions estimate the minimum filter order that meets a given
set of requirements.

To meet specifications with more rigid constraints like linear phase or
arbitrary filter shape, use the FIR and direct IIR filter design routines.

10
-1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

Frequency(rad/sec)

M
ag

ni
tu

de
2-3

2 Filter Design and Implementation

2-4
IIR Filter Design
The primary advantage of IIR filters over FIR filters is that they typically meet
a given set of specifications with a much lower filter order than a corresponding
FIR filter. Although IIR filters have nonlinear phase, data processing within
MATLAB is commonly performed “off-line,” that is, the entire data sequence is
available prior to filtering. This allows for a noncausal, zero-phase filtering
approach (via the filtfilt function), which eliminates the nonlinear phase
distortion of an IIR filter.

The classical IIR filters, Butterworth, Chebyshev Types I and II, elliptic, and
Bessel, all approximate the ideal “brick wall” filter in different ways. This
toolbox provides functions to create all these types of classical IIR filters in both
the analog and digital domains (except Bessel, for which only the analog case
is supported), and in lowpass, highpass, bandpass, and bandstop
configurations. For most filter types, you can also find the lowest filter order
that fits a given filter specification in terms of passband and stopband
attenuation, and transition width(s).

The direct filter design function yulewalk finds a filter with magnitude
response approximating a desired function. This is one way to create a
multiband bandpass filter.

You can also use the parametric modeling or system identification functions to
design IIR filters. These functions are discussed in “Parametric Modeling” on
page 4-15.

The generalized Butterworth design function maxflat is discussed in the
section “Generalized Butterworth Filter Design” on page 2-15.

The following table summarizes the various filter methods in the toolbox and
lists the functions available to implement these methods.

IIR Filter Design
Filter Method Description Filter Functions

Analog
Prototyping

Using the poles and zeros of
a classical lowpass
prototype filter in the
continuous (Laplace)
domain, obtain a digital
filter through frequency
transformation and filter
discretization.

Complete design functions:

besself, butter, cheby1, cheby2, ellip

Order estimation functions:

buttord, cheb1ord, cheb2ord, ellipord

Lowpass analog prototype functions:

besselap, buttap, cheb1ap, cheb2ap, ellipap

Frequency transformation functions:

lp2bp, lp2bs, lp2hp, lp2lp

Filter discretization functions:

bilinear, impinvar

Direct Design Design digital filter directly
in the discrete time-domain
by approximating a
piecewise linear magnitude
response.

yulewalk

Generalized
Butterworth
Design

Design lowpass
Butterworth filters with
more zeros than poles.

maxflat

Parametric
Modeling

Find a digital filter that
approximates a prescribed
time or frequency domain
response. (See the System
Identification Toolbox
documentation for an
extensive collection of
parametric modeling tools.)

Time-domain modeling functions:

lpc, prony, stmcb

Frequency-domain modeling functions:

invfreqs, invfreqz
2-5

2 Filter Design and Implementation

2-6
Classical IIR Filter Design Using Analog Prototyping
The principal IIR digital filter design technique this toolbox provides is based
on the conversion of classical lowpass analog filters to their digital equivalents.
The following sections describe how to design filters and summarize the
characteristics of the supported filter types. See “Special Topics in IIR Filter
Design” on page 2-41 for detailed steps on the filter design process.

Complete Classical IIR Filter Design
You can easily create a filter of any order with a lowpass, highpass, bandpass,
or bandstop configuration using the filter design functions.

By default, each of these functions returns a lowpass filter; you need only
specify the desired cutoff frequency Wn in normalized frequency (Nyquist
frequency = 1 Hz). For a highpass filter, append the string 'high' to the
function’s parameter list. For a bandpass or bandstop filter, specify Wn as a
two-element vector containing the passband edge frequencies, appending the
string 'stop' for the bandstop configuration.

Filter Type Design Function

Bessel (analog only) [b,a] = besself(n,Wn,options)
[z,p,k] = besself(n,Wn,options)
[A,B,C,D] = besself(n,Wn,options)

Butterworth [b,a] = butter(n,Wn,options)
[z,p,k] = butter(n,Wn,options)
[A,B,C,D] = butter(n,Wn,options)

Chebyshev Type I [b,a] = cheby1(n,Rp,Wn,options)
[z,p,k] = cheby1(n,Rp,Wn,options)
[A,B,C,D] = cheby1(n,Rp,Wn,options)

Chebyshev Type II [b,a] = cheby2(n,Rs,Wn,options)
[z,p,k] = cheby2(n,Rs,Wn,options)
[A,B,C,D] = cheby2(n,Rs,Wn,options)

Elliptic [b,a] = ellip(n,Rp,Rs,Wn,options)
[z,p,k] = ellip(n,Rp,Rs,Wn,options)
[A,B,C,D] = ellip(n,Rp,Rs,Wn,options)

IIR Filter Design
Here are some example digital filters:

[b,a] = butter(5,0.4); % Lowpass Butterworth
[b,a] = cheby1(4,1,[0.4 0.7]); % Bandpass Chebyshev Type I
[b,a] = cheby2(6,60,0.8,'high'); % Highpass Chebyshev Type II
[b,a] = ellip(3,1,60,[0.4 0.7],'stop'); % Bandstop elliptic

To design an analog filter, perhaps for simulation, use a trailing 's' and
specify cutoff frequencies in rad/s:

[b,a] = butter(5,.4,'s'); % Analog Butterworth filter

All filter design functions return a filter in the transfer function,
zero-pole-gain, or state-space linear system model representation, depending
on how many output arguments are present.

Note All classical IIR lowpass filters are ill-conditioned for extremely low
cut-off frequencies. Therefore, instead of designing a lowpass IIR filter with a
very narrow passband, it can be better to design a wider passband and
decimate the input signal.

Designing IIR Filters to Frequency Domain Specifications
This toolbox provides order selection functions that calculate the minimum
filter order that meets a given set of requirements.

These are useful in conjunction with the filter design functions. Suppose you
want a bandpass filter with a passband from 1000 to 2000 Hz, stopbands
starting 500 Hz away on either side, a 10 kHz sampling frequency, at most 1 dB

Filter Type Order Estimation Function

Butterworth [n,Wn] = buttord(Wp,Ws,Rp,Rs)

Chebyshev Type I [n,Wn] = cheb1ord(Wp, Ws, Rp, Rs)

Chebyshev Type II [n,Wn] = cheb2ord(Wp, Ws, Rp, Rs)

Elliptic [n,Wn] = ellipord(Wp, Ws, Rp, Rs)
2-7

2 Filter Design and Implementation

2-8
of passband ripple, and at least 60 dB of stopband attenuation. You can meet
these specifications by using the butter function as follows.

[n,Wn] = buttord([1000 2000]/5000,[500 2500]/5000,1,60)

n =
 12
Wn =
 0.1951 0.4080

[b,a] = butter(n,Wn);

An elliptic filter that meets the same requirements is given by

[n,Wn] = ellipord([1000 2000]/5000,[500 2500]/5000,1,60)

n =
 5
Wn =
 0.2000 0.4000

[b,a] = ellip(n,1,60,Wn);

These functions also work with the other standard band configurations, as well
as for analog filters.

IIR Filter Design
Comparison of Classical IIR Filter Types
The toolbox provides five different types of classical IIR filters, each optimal in
some way. This section shows the basic analog prototype form for each and
summarizes major characteristics.

Butterworth Filter
The Butterworth filter provides the best Taylor Series approximation to the
ideal lowpass filter response at analog frequencies and ; for any
order N, the magnitude squared response has 2N-1 zero derivatives at these
locations (maximally flat at and). Response is monotonic
overall, decreasing smoothly from to . at

.

Ω 0= Ω ∞=

Ω 0= Ω ∞=
Ω 0= Ω ∞= H jΩ() 1 2⁄=

Ω 1=

10
-1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

Frequency(rad/sec)

M
ag

ni
tu

de
2-9

2 Filter Design and Implementation

2-1
Chebyshev Type I Filter
The Chebyshev Type I filter minimizes the absolute difference between the
ideal and actual frequency response over the entire passband by incorporating
an equal ripple of Rp dB in the passband. Stopband response is maximally flat.
The transition from passband to stopband is more rapid than for the
Butterworth filter. at .H jΩ() 10 Rp 20⁄–

= Ω 1=

10
-1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

Frequency(rad/sec)

M
ag

ni
tu

de
0

IIR Filter Design
Chebyshev Type II Filter
The Chebyshev Type II filter minimizes the absolute difference between the
ideal and actual frequency response over the entire stopband by incorporating
an equal ripple of Rs dB in the stopband. Passband response is maximally flat.

The stopband does not approach zero as quickly as the type I filter (and does
not approach zero at all for even-valued filter order n). The absence of ripple in
the passband, however, is often an important advantage.
at .

H jΩ() 10 Rs 20⁄–
=

Ω 1=

10
-1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

Frequency(rad/sec)

M
ag

ni
tu

de
2-11

2 Filter Design and Implementation

2-1
Elliptic Filter
Elliptic filters are equiripple in both the passband and stopband. They
generally meet filter requirements with the lowest order of any supported filter
type. Given a filter order n, passband ripple Rp in decibels, and stopband ripple
Rs in decibels, elliptic filters minimize transition width. at

.
H jΩ() 10 Rp 20⁄–

=
Ω 1=

10
-1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

Frequency(rad/sec)

M
ag

ni
tu

de
2

IIR Filter Design
Bessel Filter
Analog Bessel lowpass filters have maximally flat group delay at zero
frequency and retain nearly constant group delay across the entire passband.
Filtered signals therefore maintain their waveshapes in the passband
frequency range. Frequency mapped and digital Bessel filters, however, do not
have this maximally flat property; this toolbox supports only the analog case
for the complete Bessel filter design function.

Bessel filters generally require a higher filter order than other filters for
satisfactory stopband attenuation. at and decreases as
filter order n increases.

Note The lowpass filters shown above were created with the analog
prototype functions besselap, buttap, cheb1ap, cheb2ap, and ellipap. These
functions find the zeros, poles, and gain of an order n analog filter of the
appropriate type with cutoff frequency of 1 rad/s. The complete filter design
functions (besself, butter, cheby1, cheby2, and ellip) call the prototyping
functions as a first step in the design process. See ““Special Topics in IIR
Filter Design” on page 2-41” for details.

H jΩ() 1 2⁄< Ω 1=

10
-1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

Frequency(rad/sec)

M
ag

ni
tu

de
2-13

2 Filter Design and Implementation

2-1
To create similar plots, use n = 5 and, as needed, Rp = 0.5 and Rs = 20. For
example, to create the elliptic filter plot:

[z,p,k] = ellipap(5,0.5,20);
w = logspace(-1,1,1000);
h = freqs(k*poly(z),poly(p),w);
semilogx(w,abs(h)), grid

Direct IIR Filter Design
This toolbox uses the term direct methods to describe techniques for IIR design
that find a filter based on specifications in the discrete domain. Unlike the
analog prototyping method, direct design methods are not constrained to the
standard lowpass, highpass, bandpass, or bandstop configurations. Rather,
these functions design filters with an arbitrary, perhaps multiband, frequency
response. This section discusses the yulewalk function, which is intended
specifically for filter design; “Parametric Modeling” on page 4-15 discusses
other methods that may also be considered direct, such as Prony’s method,
Linear Prediction, the Steiglitz-McBride method, and inverse frequency
design.

The yulewalk function designs recursive IIR digital filters by fitting a specified
frequency response. yulewalk’s name reflects its method for finding the filter’s
denominator coefficients: it finds the inverse FFT of the ideal desired power
spectrum and solves the “modified Yule-Walker equations” using the resulting
autocorrelation function samples. The statement

[b,a] = yulewalk(n,f,m)

returns row vectors b and a containing the n+1 numerator and denominator
coefficients of the order n IIR filter whose frequency-magnitude characteristics
approximate those given in vectors f and m. f is a vector of frequency points
ranging from 0 to 1, where 1 represents the Nyquist frequency. m is a vector
containing the desired magnitude response at the points in f. f and m can
describe any piecewise linear shape magnitude response, including a
multiband response. The FIR counterpart of this function is fir2, which also
designs a filter based on an arbitrary piecewise linear magnitude response. See
““FIR Filter Design” on page 2-17” for details.

Note that yulewalk does not accept phase information, and no statements are
made about the optimality of the resulting filter.
4

IIR Filter Design
Design a multiband filter with yulewalk, and plot the desired and actual
frequency response:

m = [0 0 1 1 0 0 1 1 0 0];
f = [0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1];
[b,a] = yulewalk(10,f,m);
[h,w] = freqz(b,a,128)
plot(f,m,w/pi,abs(h))

Generalized Butterworth Filter Design
The toolbox function maxflat enables you to design generalized Butterworth
filters, that is, Butterworth filters with differing numbers of zeros and poles.
This is desirable in some implementations where poles are more expensive
computationally than zeros. maxflat is just like the butter function, except
that it you can specify two orders (one for the numerator and one for the
denominator) instead of just one. These filters are maximally flat. This means
that the resulting filter is optimal for any numerator and denominator orders,
with the maximum number of derivatives at 0 and the Nyquist frequency ω = π
both set to 0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2
2-15

2 Filter Design and Implementation

2-1
For example, when the two orders are the same, maxflat is the same as butter:

[b,a] = maxflat(3,3,0.25)

b =
 0.0317 0.0951 0.0951 0.0317

a =
 1.0000 -1.4590 0.9104 -0.1978

[b,a] = butter(3,0.25)

b =
 0.0317 0.0951 0.0951 0.0317

a =
 1.0000 -1.4590 0.9104 -0.1978

However, maxflat is more versatile because it allows you to design a filter with
more zeros than poles:

[b,a] = maxflat(3,1,0.25)

b =
 0.0950 0.2849 0.2849 0.0950

a =
 1.0000 -0.2402

The third input to maxflat is the half-power frequency, a frequency between
0 and 1 with a desired magnitude response of .

You can also design linear phase filters that have the maximally flat property
using the 'sym' option:

maxflat(4,'sym',0.3)

ans =
 0.0331 0.2500 0.4337 0.2500 0.0331

 For complete details of the maxflat algorithm, see Selesnick and Burrus [2].

1 2⁄
6

FIR Filter Design
FIR Filter Design
Digital filters with finite-duration impulse response (all-zero, or FIR filters)
have both advantages and disadvantages compared to infinite-duration
impulse response (IIR) filters.

FIR filters have the following primary advantages:

• They can have exactly linear phase.

• They are always stable.

• The design methods are generally linear.

• They can be realized efficiently in hardware.

• The filter startup transients have finite duration.

The primary disadvantage of FIR filters is that they often require a much
higher filter order than IIR filters to achieve a given level of performance.
Correspondingly, the delay of these filters is often much greater than for an
equal performance IIR filter.

Filter Design
Method

Description Filter Functions

Windowing Apply window to truncated
inverse Fourier transform of
desired “brick wall” filter

fir1, fir2,
kaiserord

Multiband with
Transition
Bands

Equiripple or least squares
approach over sub-bands of the
frequency range

firls, firpm,
firpmord

Constrained
Least Squares

Minimize squared integral
error over entire frequency
range subject to maximum
error constraints

fircls, fircls1
2-17

2 Filter Design and Implementation

2-1
Linear Phase Filters
Except for cfirpm, all of the FIR filter design functions design linear phase
filters only. The filter coefficients, or “taps,” of such filters obey either an even
or odd symmetry relation. Depending on this symmetry, and on whether the
order n of the filter is even or odd, a linear phase filter (stored in length n+1
vector b) has certain inherent restrictions on its frequency response.

The phase delay and group delay of linear phase FIR filters are equal and
constant over the frequency band. For an order n linear phase FIR filter, the
group delay is n/2, and the filtered signal is simply delayed by n/2 time steps
(and the magnitude of its Fourier transform is scaled by the filter’s magnitude
response). This property preserves the wave shape of signals in the passband;
that is, there is no phase distortion.

The functions fir1, fir2, firls, firpm, fircls, fircls1, and firrcos all
design type I and II linear phase FIR filters by default. Both firls and firpm
design type III and IV linear phase FIR filters given a 'hilbert' or
'differentiator' flag. cfirpm can design any type of linear phase filter, and
nonlinear phase filters as well.

Arbitrary
Response

Arbitrary responses, including
nonlinear phase and complex
filters

cfirpm

Raised Cosine Lowpass response with
smooth, sinusoidal transition

firrcos

Filter Design
Method

Description Filter Functions

Linear Phase
Filter Type

Filter
Order Symmetry of Coefficients

Response H(f),
f = 0

Response H(f),
f = 1 (Nyquist)

Type I Even even: No restriction No restriction

Type II Odd No restriction H(1) = 0

Type III Even odd: H(0) = 0 H(1) = 0

Type IV Odd H(0) = 0 No restriction

b k() b n 2 k–+() k 1= … n 1+, , ,=

b k() b– n 2 k–+() k 1= … n 1+, , ,=
8

FIR Filter Design
Note Because the frequency response of a type II filter is zero at the Nyquist
frequency (“high” frequency), fir1 does not design type II highpass and
bandstop filters. For odd-valued n in these cases, fir1 adds 1 to the order and
returns a type I filter.

Windowing Method
Consider the ideal, or “brick wall,” digital lowpass filter with a cutoff frequency
of ω0 rad/s. This filter has magnitude 1 at all frequencies with magnitude less
than ω0, and magnitude 0 at frequencies with magnitude between ω0 and π. Its
impulse response sequence h(n) is

This filter is not implementable since its impulse response is infinite and
noncausal. To create a finite-duration impulse response, truncate it by
applying a window. By retaining the central section of impulse response in this
truncation, you obtain a linear phase FIR filter. For example, a length 51 filter
with a lowpass cutoff frequency ω0 of rad/s is

b = 0.4*sinc(0.4*(-25:25));

The window applied here is a simple rectangular window. By Parseval’s
theorem, this is the length 51 filter that best approximates the ideal lowpass
filter, in the integrated least squares sense. The following command displays
the filter’s frequency response in FVTool:

fvtool(b,1)

Note that the y-axis shown in the figure below is in Magnitude Squared. You
can set this by right-clicking on the axis label and selecting Magnitude
Squared from the menu.

h n()
1

2π
------ H ω()ejωn ωd

π–

π

∫
1

2π
------ ejωn ωd

ω0–

ω0

∫
ω0
π

-------sinc
ω0
π

-------n()= = =

0.4π
2-19

2 Filter Design and Implementation

2-2
Ringing and ripples occur in the response, especially near the band edge. This
“Gibbs effect” does not vanish as the filter length increases, but a
nonrectangular window reduces its magnitude. Multiplication by a window in
the time domain causes a convolution or smoothing in the frequency domain.
Apply a length 51 Hamming window to the filter and display the result using
FVTool:

b = 0.4*sinc(0.4*(-25:25));
b = b.*hamming(51)';
fvtool(b,1)

Note that the y-axis shown in the figure below is in Magnitude Squared. You
can set this by right-clicking on the axis label and selecting Magnitude
Squared from the menu.
0

FIR Filter Design
Using a Hamming window greatly reduces the ringing. This improvement is at
the expense of transition width (the windowed version takes longer to ramp
from passband to stopband) and optimality (the windowed version does not
minimize the integrated squared error).

The functions fir1 and fir2 are based on this windowing process. Given a
filter order and description of an ideal desired filter, these functions return a
windowed inverse Fourier transform of that ideal filter. Both use a Hamming
window by default, but they accept any window function. See the “Windows” on
page 4-2 for an overview of windows and their properties.

Standard Band FIR Filter Design: fir1
fir1 implements the classical method of windowed linear phase FIR digital
filter design. It resembles the IIR filter design functions in that it is formulated
to design filters in standard band configurations: lowpass, bandpass, highpass,
and bandstop.
2-21

2 Filter Design and Implementation

2-2
The statements

n = 50;
Wn = 0.4;
b = fir1(n,Wn);

create row vector b containing the coefficients of the order n
Hamming-windowed filter. This is a lowpass, linear phase FIR filter with cutoff
frequency Wn. Wn is a number between 0 and 1, where 1 corresponds to the
Nyquist frequency, half the sampling frequency. (Unlike other methods, here
Wn corresponds to the 6 dB point.) For a highpass filter, simply append the
string 'high' to the function’s parameter list. For a bandpass or bandstop
filter, specify Wn as a two-element vector containing the passband edge
frequencies; append the string 'stop' for the bandstop configuration.

b = fir1(n,Wn,window) uses the window specified in column vector window for
the design. The vector window must be n+1 elements long. If you do not specify
a window, fir1 applies a Hamming window.

Kaiser Window Order Estimation. The kaiserord function estimates the filter
order, cutoff frequency, and Kaiser window beta parameter needed to meet a
given set of specifications. Given a vector of frequency band edges and a
corresponding vector of magnitudes, as well as maximum allowable ripple,
kaiserord returns appropriate input parameters for the fir1 function.

Multiband FIR Filter Design: fir2
The fir2 function also designs windowed FIR filters, but with an arbitrarily
shaped piecewise linear frequency response. This is in contrast to fir1, which
only designs filters in standard lowpass, highpass, bandpass, and bandstop
configurations.
2

FIR Filter Design
The commands

n = 50;
f = [0 .4 .5 1];
m = [1 1 0 0];
b = fir2(n,f,m);

return row vector b containing the n+1 coefficients of the order n FIR filter
whose frequency-magnitude characteristics match those given by vectors f
and m. f is a vector of frequency points ranging from 0 to 1, where 1 represents
the Nyquist frequency. m is a vector containing the desired magnitude response
at the points specified in f. (The IIR counterpart of this function is yulewalk,
which also designs filters based on arbitrary piecewise linear magnitude
responses. See “IIR Filter Design” on page 2-4 for details.)

Multiband FIR Filter Design with Transition Bands
The firls and firpm functions provide a more general means of specifying the
ideal desired filter than the fir1 and fir2 functions. These functions design
Hilbert transformers, differentiators, and other filters with odd symmetric
coefficients (type III and type IV linear phase). They also let you include
transition or “don’t care” regions in which the error is not minimized, and
perform band dependent weighting of the minimization.

The firls function is an extension of the fir1 and fir2 functions in that it
minimizes the integral of the square of the error between the desired frequency
response and the actual frequency response.

The firpm function implements the Parks-McClellan algorithm, which uses
the Remez exchange algorithm and Chebyshev approximation theory to design
filters with optimal fits between the desired and actual frequency responses.
The filters are optimal in the sense that they minimize the maximum error
between the desired frequency response and the actual frequency response;
they are sometimes called minimax filters. Filters designed in this way exhibit
an equiripple behavior in their frequency response, and hence are also known
as equiripple filters. The Parks-McClellan FIR filter design algorithm is
perhaps the most popular and widely used FIR filter design methodology.

The syntax for firls and firpm is the same; the only difference is their
minimization schemes. The next example shows how filters designed with
firls and firpm reflect these different schemes.
2-23

2 Filter Design and Implementation

2-2
Basic Configurations
The default mode of operation of firls and firpm is to design type I or type II
linear phase filters, depending on whether the order you desire is even or odd,
respectively. A lowpass example with approximate amplitude 1 from 0 to
0.4 Hz, and approximate amplitude 0 from 0.5 to 1.0 Hz is

n = 20; % Filter order
f = [0 0.4 0.5 1]; % Frequency band edges
a = [1 1 0 0]; % Desired amplitudes
b = firpm(n,f,a);

From 0.4 to 0.5 Hz, firpm performs no error minimization; this is a transition
band or “don’t care” region. A transition band minimizes the error more in the
bands that you do care about, at the expense of a slower transition rate. In this
way, these types of filters have an inherent trade-off similar to FIR design by
windowing.

To compare least squares to equiripple filter design, use firls to create a
similar filter. Type

bb = firls(n,f,a);

and compare their frequency responses using FVTool:

fvtool(b,1,bb,1)

Note that the y-axis shown in the figure below is in Magnitude Squared. You
can set this by right-clicking on the axis label and selecting Magnitude
Squared from the menu.
4

FIR Filter Design
The filter designed with firpm exhibits equiripple behavior. Also note that the
firls filter has a better response over most of the passband and stopband, but
at the band edges (f = 0.4 and f = 0.5), the response is further away from the
ideal than the firpm filter. This shows that the firpm filter’s maximum error
over the passband and stopband is smaller and, in fact, it is the smallest
possible for this band edge configuration and filter length.
2-25

2 Filter Design and Implementation

2-2
Think of frequency bands as lines over short frequency intervals. firpm and
firls use this scheme to represent any piecewise linear desired function with
any transition bands. firls and firpm design lowpass, highpass, bandpass,
and bandstop filters; a bandpass example is

f = [0 0.3 0.4 0.7 0.8 1]; % Band edges in pairs
a = [0 0 1 1 0 0]; % Bandpass filter amplitude

Technically, these f and a vectors define five bands:

• Two stopbands, from 0.0 to 0.3 and from 0.8 to 1.0

• A passband from 0.4 to 0.7

• Two transition bands, from 0.3 to 0.4 and from 0.7 to 0.8

Example highpass and bandstop filters are

f = [0 0.7 0.8 1]; % Band edges in pairs
a = [0 0 1 1]; % Highpass filter amplitude

f = [0 0.3 0.4 0.5 0.8 1]; % Band edges in pairs
a = [1 1 0 0 1 1]; % Bandstop filter amplitude

An example multiband bandpass filter is

f = [0 0.1 0.15 0.25 0.3 0.4 0.45 0.55 0.6 0.7 0.75 0.85 0.9 1];
a = [1 1 0 0 1 1 0 0 1 1 0 0 1 1];

Another possibility is a filter that has as a transition region the line connecting
the passband with the stopband; this can help control “runaway” magnitude
response in wide transition regions:

f = [0 0.4 0.42 0.48 0.5 1];
a = [1 1 0.8 0.2 0 0]; % Passband,linear transition,stopband
6

FIR Filter Design
The Weight Vector
Both firls and firpm allow you to place more or less emphasis on minimizing
the error in certain frequency bands relative to others. To do this, specify a
weight vector following the frequency and amplitude vectors. An example
lowpass equiripple filter with 10 times less ripple in the stopband than the
passband is

n = 20; % Filter order
f = [0 0.4 0.5 1]; % Frequency band edges
a = [1 1 0 0]; % Desired amplitudes
w = [1 10]; % Weight vector
b = firpm(n,f,a,w);

A legal weight vector is always half the length of the f and a vectors; there must
be exactly one weight per band.

Anti-Symmetric Filters / Hilbert Transformers
When called with a trailing 'h' or 'Hilbert' option, firpm and firls design
FIR filters with odd symmetry, that is, type III (for even order) or type IV (for
odd order) linear phase filters. An ideal Hilbert transformer has this
anti-symmetry property and an amplitude of 1 across the entire frequency
range. Try the following approximate Hilbert transformers and plot them
using FVTool:

b = firpm(21,[0.05 1],[1 1],'h'); % Highpass Hilbert
bb = firpm(20,[0.05 0.95],[1 1],'h'); % Bandpass Hilbert
fvtool(b,1,bb,1)
2-27

2 Filter Design and Implementation

2-2
You can find the delayed Hilbert transform of a signal x by passing it through
these filters.

fs = 1000; % Sampling frequency
t = (0:1/fs:2)'; % Two second time vector
x = sin(2*pi*300*t); % 300 Hz sine wave example signal
xh = filter(bb,1,x); % Hilbert transform of x

The analytic signal corresponding to x is the complex signal that has x as its
real part and the Hilbert transform of x as its imaginary part. For this FIR
method (an alternative to the hilbert function), you must delay x by half the
filter order to create the analytic signal:

xd = [zeros(10,1); x(1:length(x)-10)]; % Delay 10 samples
xa = xd + j*xh; % Analytic signal

This method does not work directly for filters of odd order, which require a
noninteger delay. In this case, the hilbert function, described in “Specialized
8

FIR Filter Design
Transforms” on page 4-42, estimates the analytic signal. Alternatively, use the
resample function to delay the signal by a noninteger number of samples.

Differentiators
Differentiation of a signal in the time domain is equivalent to multiplication of
the signal’s Fourier transform by an imaginary ramp function. That is, to
differentiate a signal, pass it through a filter that has a response H(ω) = jω.
Approximate the ideal differentiator (with a delay) using firpm or firls with
a 'd' or 'differentiator' option:

b = firpm(21,[0 1],[0 pi],'d');

For a type III filter, the differentiation band should stop short of the Nyquist
frequency, and the amplitude vector must reflect that change to ensure the
correct slope:

bb = firpm(20,[0 0.9],[0 0.9*pi],'d');

In the 'd' mode, firpm weights the error by 1/ω in nonzero amplitude bands to
minimize the maximum relative error. firls weights the error by (1/ω)2 in
nonzero amplitude bands in the 'd' mode.
2-29

2 Filter Design and Implementation

2-3
The following plots show the magnitude responses for the differentiators
above.

fvtool(b,1,bb,1)

Constrained Least Squares FIR Filter Design
The Constrained Least Squares (CLS) FIR filter design functions implement a
technique that enables you to design FIR filters without explicitly defining the
transition bands for the magnitude response. The ability to omit the
specification of transition bands is useful in several situations. For example, it
may not be clear where a rigidly defined transition band should appear if noise
and signal information appear together in the same frequency band. Similarly,
it may make sense to omit the specification of transition bands if they appear
only to control the results of Gibbs phenomena that appear in the filter’s
response. See Selesnick, Lang, and Burrus [2] for discussion of this method.
0

FIR Filter Design
Instead of defining passbands, stopbands, and transition regions, the CLS
method accepts a cutoff frequency (for the highpass, lowpass, bandpass, or
bandstop cases), or passband and stopband edges (for multiband cases), for the
desired response. In this way, the CLS method defines transition regions
implicitly, rather than explicitly.

The key feature of the CLS method is that it enables you to define upper and
lower thresholds that contain the maximum allowable ripple in the magnitude
response. Given this constraint, the technique applies the least square error
minimization technique over the frequency range of the filter’s response,
instead of over specific bands. The error minimization includes any areas of
discontinuity in the ideal, “brick wall” response. An additional benefit is that
the technique enables you to specify arbitrarily small peaks resulting from
Gibbs’ phenomena.

There are two toolbox functions that implement this design technique.

For details on the calling syntax for these functions, see their reference
descriptions in the Function Reference.

Basic Lowpass and Highpass CLS Filter Design
The most basic of the CLS design functions, fircls1, uses this technique to
design lowpass and highpass FIR filters. As an example, consider designing a
filter with order 61 impulse response and cutoff frequency of 0.3 (normalized).
Further, define the upper and lower bounds that constrain the design process
as:

• Maximum passband deviation from 1 (passband ripple) of 0.02.

• Maximum stopband deviation from 0 (stopband ripple) of 0.008.

Description Function

Constrained least square multiband FIR filter design fircls

Constrained least square filter design for lowpass and
highpass linear phase filters

fircls1
2-31

2 Filter Design and Implementation

2-3
To approach this design problem using fircls1, use the following commands:

n = 61;
wo = 0.3;
dp = 0.02;
ds = 0.008;
h = fircls1(n,wo,dp,ds);
fvtool(h,1)

Note that the y-axis shown below is in Magnitude Squared. You can set this by
right-clicking on the axis label and selecting Magnitude Squared from the
menu.

0 ds = 0.0081
dp = 0.02
2

FIR Filter Design
Multiband CLS Filter Design
fircls uses the same technique to design FIR filters with a desired piecewise
constant magnitude response. In this case, you can specify a vector of band
edges and a corresponding vector of band amplitudes. In addition, you can
specify the maximum amount of ripple for each band.

For example, assume the specifications for a filter call for:

• From 0 to 0.3 (normalized): amplitude 0, upper bound 0.005, lower
bound -0.005

• From 0.3 to 0.5: amplitude 0.5, upper bound 0.51, lower bound 0.49

• From 0.5 to 0.7: amplitude 0, upper bound 0.03, lower bound -0.03

• From 0.7 to 0.9: amplitude 1, upper bound 1.02, lower bound 0.98

• From 0.9 to 1: amplitude 0, upper bound 0.05, lower bound -0.05

Design a CLS filter with impulse response order 129 that meets these
specifications:

n = 129;
f = [0 0.3 0.5 0.7 0.9 1];
a = [0 0.5 0 1 0];
up = [0.005 0.51 0.03 1.02 0.05];
lo = [-0.005 0.49 -0.03 0.98 -0.05];
h = fircls(n,f,a,up,lo);
fvtool(h,1)

Note that the y-axis shown below is in Magnitude Squared. You can set this by
right-clicking on the axis label and selecting Magnitude Squared from the
menu.
2-33

2 Filter Design and Implementation

2-3
Weighted CLS Filter Design
Weighted CLS filter design lets you design lowpass or highpass FIR filters with
relative weighting of the error minimization in each band. The fircls1
function enables you to specify the passband and stopband edges for the least
squares weighting function, as well as a constant k that specifies the ratio of
the stopband to passband weighting.

For example, consider specifications that call for an FIR filter with impulse
response order of 55 and cutoff frequency of 0.3 (normalized). Also assume
maximum allowable passband ripple of 0.02 and maximum allowable stopband
ripple of 0.004. In addition, add weighting requirements:

• Passband edge for the weight function of 0.28 (normalized)

• Stopband edge for the weight function of 0.32

• Weight error minimization 10 times as much in the stopband as in the
passband
4

FIR Filter Design
To approach this using fircls1, type

n = 55;
wo = 0.3;
dp = 0.02;
ds = 0.004;
wp = 0.28;
ws = 0.32;
k = 10;
h = fircls1(n,wo,dp,ds,wp,ws,k);
fvtool(h,1)

Note that the y-axis shown below is in Magnitude Squared. You can set this by
right-clicking on the axis label and selecting Magnitude Squared from the
menu.
2-35

2 Filter Design and Implementation

2-3
Arbitrary-Response Filter Design
The cfirpm filter design function provides a tool for designing FIR filters with
arbitrary complex responses. It differs from the other filter design functions in
how the frequency response of the filter is specified: it accepts the name of a
function which returns the filter response calculated over a grid of frequencies.
This capability makes cfirpm a highly versatile and powerful technique for
filter design.

This design technique may be used to produce nonlinear-phase FIR filters,
asymmetric frequency-response filters (with complex coefficients), or more
symmetric filters with custom frequency responses.

The design algorithm optimizes the Chebyshev (or minimax) error using an
extended Remez-exchange algorithm for an initial estimate. If this exchange
method fails to obtain the optimal filter, the algorithm switches to an
ascent-descent algorithm that takes over to finish the convergence to the
optimal solution.

Multiband Filter Design
Consider a multiband filter with the following special frequency-domain
characteristics.

A linear-phase multiband filter may be designed using the predefined
frequency-response function multiband, as follows:

b = cfirpm(38, [-1 -0.5 -0.4 0.3 0.4 0.8], ...
 {'multiband', [5 1 2 2 2 1]}, [1 10 5]);

Band Amplitude Optimization
Weighting

[-1 -0.5] [5 1] 1

[-0.4 +0.3] [2 2] 10

[+0.4 +0.8] [2 1] 5
6

FIR Filter Design
For the specific case of a multiband filter, we can use a shorthand filter design
notation similar to the syntax for firpm:

b = cfirpm(38,[-1 -0.5 -0.4 0.3 0.4 0.8], ...
 [5 1 2 2 2 1], [1 10 5]);

As with firpm, a vector of band edges is passed to cfirpm. This vector defines
the frequency bands over which optimization is performed; note that there are
two transition bands, from -0.5 to -0.4 and from 0.3 to 0.4.

In either case, the frequency response is obtained and plotted using linear scale
in FVTool:

fvtool(b,1)

Note that the range of data shown below is (-Fs/2,Fs/2). You can set this
range by changing the x-axis units to Frequency (Fs = 1 Hz).
2-37

2 Filter Design and Implementation

2-3
The filter response for this multiband filter is complex, which is expected
because of the asymmetry in the frequency domain. The impulse response,
which you can select from the FVTool toolbar, is shown below.

Filter Design with Reduced Delay
Consider the design of a 62-tap lowpass filter with a half-Nyquist cutoff. If we
specify a negative offset value to the lowpass filter design function, the group
delay offset for the design is significantly less than that obtained for a standard
linear-phase design. This filter design may be computed as follows:

b = cfirpm(61,[0 0.5 0.55 1],{'lowpass',-16});

The resulting magnitude response is

fvtool(b,1)
8

FIR Filter Design
Note that the range of data in this plot is (-Fs/2,Fs/2), which you can set
changing the x-axis units to Frequency. The y-axis is in Magnitude Squared,
which you can set by right-clicking on the axis label and selecting Magnitude
Squared from the menu.

The group delay of the filter reveals that the offset has been reduced from N/2
to N/2-16 (i.e., from 30.5 to 14.5). Now, however, the group delay is no longer
flat in the passband region. To create this plot, click the Group Delay button
on the toolbar.
2-39

2 Filter Design and Implementation

2-4
If we compare this nonlinear-phase filter to a linear-phase filter that has
exactly 14.5 samples of group delay, the resulting filter is of order 2*14.5, or 29.
Using b = cfirpm(29,[0 0.5 0.55 1],'lowpass'), the passband and
stopband ripple is much greater for the order 29 filter. These comparisons can
assist you in deciding which filter is more appropriate for a specific application.
0

Special Topics in IIR Filter Design
Special Topics in IIR Filter Design
The classic IIR filter design technique includes the following steps.

1 Find an analog lowpass filter with cutoff frequency of 1 and translate this
“prototype” filter to the desired band configuration

2 Transform the filter to the digital domain.

3 Discretize the filter.

The toolbox provides functions for each of these steps.

Alternatively, the butter, cheby1, cheb2ord, ellip, and besself functions
perform all steps of the filter design and the buttord, cheb1ord, cheb2ord, and
ellipord functions provide minimum order computation for IIR filters. These
functions are sufficient for many design problems, and the lower level functions
are generally not needed. But if you do have an application where you need to
transform the band edges of an analog filter, or discretize a rational transfer
function, this section describes the tools with which to do so.

Design Task Available functions

Analog lowpass prototype buttap, cheb1ap, besselap, ellipap, cheb2ap

Frequency
transformation

lp2lp, lp2hp, lp2bp, lp2bs

Discretization bilinear, impinvar
2-41

2 Filter Design and Implementation

2-4
Analog Prototype Design
This toolbox provides a number of functions to create lowpass analog prototype
filters with cutoff frequency of 1, the first step in the classical approach to IIR
filter design. The table below summarizes the analog prototype design
functions for each supported filter type; plots for each type are shown in “IIR
Filter Design” on page 2-4.

Frequency Transformation
The second step in the analog prototyping design technique is the frequency
transformation of a lowpass prototype. The toolbox provides a set of functions
to transform analog lowpass prototypes (with cutoff frequency of 1 rad/s) into
bandpass, highpass, bandstop, and lowpass filters of the desired cutoff
frequency.

Filter Type Analog Prototype Function

Bessel [z,p,k] = besselap(n)

Butterworth [z,p,k] = buttap(n)

Chebyshev Type I [z,p,k] = cheb1ap(n,Rp)

Chebyshev Type II [z,p,k] = cheb2ap(n,Rs)

Elliptic [z,p,k] = ellipap(n,Rp,Rs)
2

Special Topics in IIR Filter Design
As shown, all of the frequency transformation functions can accept two linear
system models: transfer function and state-space form. For the bandpass and
bandstop cases

and

where ω1 is the lower band edge and ω2 is the upper band edge.

The frequency transformation functions perform frequency variable
substitution. In the case of lp2bp and lp2bs, this is a second-order

Freq. Transformation Transformation Function

Lowpass to lowpass [numt,dent] = lp2lp(num,den,Wo)
[At,Bt,Ct,Dt] = lp2lp(A,B,C,D,Wo)

Lowpass to highpass [numt,dent] = lp2hp(num,den,Wo)
[At,Bt,Ct,Dt] = lp2hp(A,B,C,D,Wo)

Lowpass to bandpass [numt,dent] = lp2bp(num,den,Wo,Bw)
[At,Bt,Ct,Dt] = lp2bp(A,B,C,D,Wo,Bw)

Lowpass to bandstop [numt,dent] = lp2bs(num,den,Wo,Bw)
[At,Bt,Ct,Dt] = lp2bs(A,B,C,D,Wo,Bw)

s' s ω0⁄=

s'
ω0
s

-------=

s'
ω0
Bω

s ω0⁄()2 1+

s ω0⁄
-------------------------------=

s'
Bω
ω0

s ω0⁄

s ω0⁄()2 1+
-------------------------------=

ω0 ω1ω2=

Bω ω2 ω1–=
2-43

2 Filter Design and Implementation

2-4
substitution, so the output filter is twice the order of the input. For lp2lp and
lp2hp, the output filter is the same order as the input.

To begin designing an order 10 bandpass Chebyshev Type I filter with a value
of 3 dB for passband ripple, enter

[z,p,k] = cheb1ap(5,3);

Outputs z, p, and k contain the zeros, poles, and gain of a lowpass analog filter
with cutoff frequency Ωc equal to 1 rad/s. Use the lp2bp function to transform
this lowpass prototype to a bandpass analog filter with band edges
and . First, convert the filter to state-space form so the lp2bp function
can accept it:

[A,B,C,D] = zp2ss(z,p,k); % Convert to state-space form.

Now, find the bandwidth and center frequency, and call lp2bp:

u1 = 0.1*2*pi; u2 = 0.5*2*pi; % In radians per second
Bw = u2-u1;
Wo = sqrt(u1*u2);
[At,Bt,Ct,Dt] = lp2bp(A,B,C,D,Wo,Bw);

Finally, calculate the frequency response and plot its magnitude:

[b,a] = ss2tf(At,Bt,Ct,Dt); % Convert to TF form.
w = linspace(0.01,1,500)*2*pi; % Generate frequency vector.
h = freqs(b,a,w); % Compute frequency response.
semilogy(w/2/pi,abs(h)), grid % Plot log magnitude vs. freq.
xlabel('Frequency (Hz)');

Ω1 π 5⁄=
Ω2 π=
4

Special Topics in IIR Filter Design
Filter Discretization
The third step in the analog prototyping technique is the transformation of the
filter to the discrete-time domain. The toolbox provides two methods for this:
the impulse invariant and bilinear transformations. The filter design functions
butter, cheby1, cheby2, and ellip use the bilinear transformation for
discretization in this step.

Impulse Invariance
The toolbox function impinvar creates a digital filter whose impulse response
is the samples of the continuous impulse response of an analog filter. This
function works only on filters in transfer function form. For best results, the
analog filter should have negligible frequency content above half the sampling
frequency, because such high frequency content is aliased into lower bands

Analog to Digital
Transformation

Transformation Function

Impulse invariance [numd,dend] = impinvar(num,den,fs)

Bilinear transform [zd,pd,kd] = bilinear(z,p,k,fs,Fp)
[numd,dend] = bilinear(num,den,fs,Fp)
[Ad,Bd,Cd,Dd] = bilinear(At,Bt,Ct,Dt,fs,Fp)

0 0.2 0.4 0.6 0.8 1
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Frequency (Hz)
2-45

2 Filter Design and Implementation

2-4
upon sampling. Impulse invariance works for some lowpass and bandpass
filters, but is not appropriate for highpass and bandstop filters.

Design a Chebyshev Type I filter and plot its frequency and phase response
using FVTool:

[bz,az] = impinvar(b,a,2);
fvtool(bz,az)

Click on the Magnitude and Phase Response toolbar button.

Impulse invariance retains the cutoff frequencies of 0.1 Hz and 0.5 Hz.
6

Special Topics in IIR Filter Design
Bilinear Transformation
The bilinear transformation is a nonlinear mapping of the continuous domain
to the discrete domain; it maps the s-plane into the z-plane by

Bilinear transformation maps the -axis of the continuous domain to the unit
circle of the discrete domain according to

The toolbox function bilinear implements this operation, where the frequency
warping constant k is equal to twice the sampling frequency (2*fs) by default,
and equal to if you give bilinear a trailing argument that
represents a “match” frequency Fp. If a match frequency Fp (in hertz) is
present, bilinear maps the frequency (in rad/s) to the same
frequency in the discrete domain, normalized to the sampling rate:

 (in rad/sample).

The bilinear function can perform this transformation on three different
linear system representations: zero-pole-gain, transfer function, and
state-space form. Try calling bilinear with the state-space matrices that
describe the Chebyshev Type I filter from the previous section, using a
sampling frequency of 2 Hz, and retaining the lower band edge of 0.1 Hz:

[Ad,Bd,Cd,Dd] = bilinear(At,Bt,Ct,Dt,2,0.1);

The frequency response of the resulting digital filter is

[bz,az] = ss2tf(Ad,Bd,Cd,Dd); % convert to TF
fvtool(bz,az)

Click on the Magnitude and Phase Response toolbar button.

H z() H s()
s kz 1–

z 1+
------------=

=

jΩ

ω 2tan 1– Ω
k
----⎝ ⎠

⎛ ⎞=

2πfp πfp fs⁄()tan⁄

Ω 2πfp=

ω 2πfp fs⁄=
2-47

2 Filter Design and Implementation

2-4
The lower band edge is at 0.1 Hz as expected. Notice, however, that the upper
band edge is slightly less than 0.5 Hz, although in the analog domain it was
exactly 0.5 Hz. This illustrates the nonlinear nature of the bilinear
transformation. To counteract this nonlinearity, it is necessary to create analog
domain filters with “prewarped” band edges, which map to the correct locations
upon bilinear transformation. Here the prewarped frequencies u1 and u2
generate Bw and Wo for the lp2bp function:

fs = 2; % Sampling frequency (hertz)
u1 = 2*fs*tan(0.1*(2*pi/fs)/2); % Lower band edge (rad/s)
u2 = 2*fs*tan(0.5*(2*pi/fs)/2); % Upper band edge (rad/s)
Bw = u2 - u1; % Bandwidth
Wo = sqrt(u1*u2); % Center frequency
8

Special Topics in IIR Filter Design
[At,Bt,Ct,Dt] = lp2bp(A,B,C,D,Wo,Bw);

A digital bandpass filter with correct band edges 0.1 and 0.5 times the Nyquist
frequency is

[Ad,Bd,Cd,Dd] = bilinear(At,Bt,Ct,Dt,fs);

The example bandpass filters from the last two sections could also be created
in one statement using the complete IIR design function cheby1. For instance,
an analog version of the example Chebyshev filter is

[b,a] = cheby1(5,3,[0.1 0.5]*2*pi,'s');

Note that the band edges are in rad/s for analog filters, whereas for the digital
case, frequency is normalized:

[bz,az] = cheby1(5,3,[0.1 0.5]);

All of the complete design functions call bilinear internally. They prewarp the
band edges as needed to obtain the correct digital filter.
2-49

2 Filter Design and Implementation

2-5
Filter Implementation
After the filter design process has generated the filter coefficient vectors, b and
a, two functions are available in the Signal Processing Toolbox for
implementing your filter:

• dfilt—lets you specify the filter structure and creates a digital filter object.

• filter—for b and a coefficient input, implements a direct-form II transposed
structure and filters the data. For dfilt input, filter uses the structure
specified with dfilt and filters the data.

Note Using filter on b and a coefficients normalizes the filter by forcing the
a0 coefficient to be equal to 1. Using filter on a dfilt object does not
normalize the filter.

Choosing the best filter structure depends on the task the filter will perform.
Some structures are more suited to or may be more computationally efficient
for particular tasks. For example, often it is not possible to build recursive (IIR)
filters to run at very high speeds and instead, you would use a nonrecursive
(FIR) filter. FIR filters are always stable and have well-behaved roundoff noise
characteristics. Direct-form IIR filters are usually realized in
second-order-sections because they are sensitive to roundoff noise.

Using dfilt
Implementing your digital filter using dfilt lets you specify the filter
structure and creates a single filter object from the filter coefficient vectors.
dfilt objects have many predefined methods which can provide information
about the filter that is not easily obtained directly from the filter coefficients
alone. For a complete list of these methods and for more information, see dfilt.
0

Filter Implementation
After you have created a dfilt object, you can use filter to apply your
implemented filter to data. The complete process of designing, implementing,
and applying a filter using a dfilt object is described below:

1 Generate the filter coefficients using any IIR or FIR filter design function.

2 Create the filter object from the filter coefficients and the specified filter
structure using dfilt.

3 Apply the dfilt filter object to the data, x using filter.

For example, to design, implement as a direct-form II transposed structure,
and apply a Butterworth filter to the data in x:

[b,a] = butter(5,0.4);
Hd = dfilt.df2t(b,a); %Implement direct-form II transposed
filter(Hd,x)

Another way to implement a direct-form II structure is with filter:

[b,a] = butter(5,0.4);
filter(b,a,x)

Note filter implements only a direct-form II structure and does not create
a filter object.
2-51

2 Filter Design and Implementation

2-5
Selected Bibliography
[1] Karam, L.J., and J.H. McClellan. “Complex Chebyshev Approximation for
FIR Filter Design.” IEEE Trans. on Circuits and Systems II. March 1995.

[2] Selesnick, I.W., and C.S. Burrus. “Generalized Digital Butterworth Filter
Design.” Proceedings of the IEEE Int. Conf. Acoust., Speech, Signal Processing.
Vol. 3 (May 1996).

[3] Selesnick, I.W., M. Lang, and C.S. Burrus. “Constrained Least Square
Design of FIR Filters without Specified Transition Bands.” Proceedings of the
IEEE Int. Conf. Acoust., Speech, Signal Processing. Vol. 2 (May 1995).
Pgs. 1260-1263.
2

3

Statistical Signal
Processing

The following chapter discusses statistical signal processing tools and applications, including
correlations, covariance, and spectral estimation.

Correlation and Covariance (p. 3-2) Correlation and covariance background information and
toolbox functions

Spectral Analysis (p. 3-5) Spectral estimation techniques and toolbox functions

Selected Bibliography (p. 3-45) Sources of additional information

3 Statistical Signal Processing

3-2
Correlation and Covariance
The functions xcorr and xcov estimate the cross-correlation and
cross-covariance sequences of random processes. They also handle
autocorrelation and autocovariance as special cases.

The true cross-correlation sequence is a statistical quantity defined as

where xn and yn are stationary random processes, , and E{⋅} is the
expected value operator. The covariance sequence is the mean-removed
cross-correlation sequence

or, in terms of the cross-correlation,

In practice, you must estimate these sequences, because it is possible to access
only a finite segment of the infinite-length random process. A common estimate
based on N samples of xn and yn is the deterministic cross-correlation sequence
(also called the time-ambiguity function)

where we assume for this discussion that xn and yn are indexed from 0 to N-1,

and from -(N-1) to N-1. The xcorr function evaluates this sum with an
efficient FFT-based algorithm, given inputs xn and yn stored in length N
vectors x and y. Its operation is equivalent to convolution with one of the two
subsequences reversed in time.

Rxy m() E{xn m+ y*n} E{xny*n m– } ==

∞– n ∞< <

Cxy m() E{ xn m+ µx–() yn µy–()*}=

Cxy m() Rxy m() µxµ*y–=

R
ˆ

xy m()
xn m+ yn

*

n 0=

N m– 1–

∑ m 0≥

R
ˆ

yx
*

m–() m 0<⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

R
ˆ

xy m()

Correlation and Covariance
For example:

x = [1 1 1 1 1]';
y = x;
xyc = xcorr(x,y)

xyc =

 1.0000
 2.0000
 3.0000
 4.0000
 5.0000
 4.0000
 3.0000
 2.0000
 1.0000

Notice that the resulting sequence length is one less than twice the length of
the input sequence. Thus, the Nth element is the correlation at lag 0. Also
notice the triangular pulse of the output that results when convolving two
square pulses.

The xcov function estimates autocovariance and cross-covariance sequences.
This function has the same options and evaluates the same sum as xcorr, but
first removes the means of x and y.

Bias and Normalization
An estimate of a quantity is biased if its expected value is not equal to the
quantity it estimates. The expected value of the output of xcorr is

xcorr provides the unbiased estimate, dividing by N-|m|, when you specify an
'unbiased' flag after the input sequences.

xcorr(x,y,'unbiased')

E{R
ˆ

xy m()} E{xn m+ y*n}

n 0=

N m– 1–

∑ N m–()Rxy m()= =
3-3

3 Statistical Signal Processing

3-4
Although this estimate is unbiased, the end points (near -(N-1) and N-1) suffer
from large variance because xcorr computes them using only a few data points.
A possible trade-off is to simply divide by N using the 'biased' flag:

xcorr(x,y,'biased')

With this scheme, only the sample of the correlation at zero lag (the Nth output
element) is unbiased. This estimate is often more desirable than the unbiased
one because it avoids random large variations at the end points of the
correlation sequence.

xcorr provides one other normalization scheme. The syntax

xcorr(x,y,'coeff')

divides the output by norm(x)*norm(y) so that, for autocorrelations, the
sample at zero lag is 1.

Multiple Channels
For a multichannel signal, xcorr and xcov estimate the autocorrelation and
cross-correlation and covariance sequences for all of the channels at once. If S
is an M-by-N signal matrix representing N channels in its columns, xcorr(S)
returns a (2M-1)-by-N2 matrix with the autocorrelations and cross-correlations
of the channels of S in its N2 columns. If S is a three-channel signal

S = [s1 s2 s3]

then the result of xcorr(S) is organized as

R = [Rs1s1 Rs1s2 Rs1s3 Rs2s1 Rs2s2 Rs2s3 Rs3s1 Rs3s2 Rs3s3]

Two related functions, cov and corrcoef, are available in the standard
MATLAB environment. They estimate covariance and normalized covariance
respectively between the different channels at lag 0 and arrange them in a
square matrix.

Spectral Analysis
Spectral Analysis
The goal of spectral estimation is to describe the distribution (over frequency)
of the power contained in a signal, based on a finite set of data. Estimation of
power spectra is useful in a variety of applications, including the detection of
signals buried in wide-band noise.

The power spectrum of a stationary random process xn is mathematically
related to the correlation sequence by the discrete-time Fourier transform. In
terms of normalized frequency, this is given by

This can be written as a function of physical frequency f (e.g., in hertz) by using
the relation ω = 2πf/fs, where fs is the sampling frequency.

The correlation sequence can be derived from the power spectrum by use of the
inverse discrete-time Fourier transform:

The average power of the sequence xn over the entire Nyquist interval is
represented by

Sxx ω() Rxx m()e jωm–

m ∞–=

∞

∑=

Sxx f() Rxx m()e 2πjfm– fs⁄

m ∞–=

∞

∑=

Rxx m()
Sxx ω()ejωm

2π
------------------------------ ωd

π–

π

∫
Sxx f()e2πjfm fs⁄

fs
--------------------------------------- fd

fs 2⁄–

fs 2⁄

∫= =

Rxx 0()
Sxx ω()

2π
----------------- ωd

π–

π

∫
Sxx f()

fs
--------------- fd

fs 2⁄–

fs 2⁄

∫= =
3-5

3 Statistical Signal Processing

3-6
The quantities

from the above expression are defined as the power spectral density (PSD) of
the stationary random signal xn.

The average power of a signal over a particular frequency band ,
, can be found by integrating the PSD over that band:

You can see from the above expression that Pxx(ω) represents the power content
of a signal in an infinitesimal frequency band, which is why it is called the
power spectral density.

The units of the PSD are power (e.g., watts) per unit of frequency. In the case
of Pxx(ω), this is watts/radian/sample or simply watts/radian. In the case of
Pxx(f), the units are watts/hertz. Integration of the PSD with respect to
frequency yields units of watts, as expected for the average power .

For real signals, the PSD is symmetric about DC, and thus Pxx(ω) for
is sufficient to completely characterize the PSD. However, to obtain the
average power over the entire Nyquist interval, it is necessary to introduce the
concept of the one-sided PSD.

The one-sided PSD is given by

The average power of a signal over the frequency band , ,
can be computed using the one-sided PSD as

Pxx ω()
Sxx ω()

2π
-----------------= Pxx f()

Sxx f()

fs
---------------=and

ω1 ω2[,]
0 ω1 ω2 π≤<≤

P ω1 ω2,[] Pxx ω() ωd

ω1

ω2

∫ Pxx ω() ωd

ω– 2

ω– 1

∫+=

P ω1 ω2,[]

0 ω π<≤

Ponesided ω()
0 -π ω≤ 0<,
2Pxx ω() 0 ω≤ π<,⎩

⎨
⎧

=

ω1 ω2[,] 0 ω1 ω2 π≤<≤

P ω1 ω2,[] Ponesided ω() ωd

ω1

ω2

∫=

Spectral Analysis
Spectral Estimation Method
The various methods of spectrum estimation available in the Signal Processing
Toolbox are categorized as follows:

• Nonparametric methods

• Parametric methods

• Subspace methods

Nonparametric methods are those in which the PSD is estimated directly from
the signal itself. The simplest such method is the periodogram. An improved
version of the periodogram is Welch’s method [8]. A more modern
nonparametric technique is the multitaper method (MTM).

Parametric methods are those in which the PSD is estimated from a signal that
is assumed to be output of a linear system driven by white noise. Examples are
the Yule-Walker autoregressive (AR) method and the Burg method. These
methods estimate the PSD by first estimating the parameters (coefficients) of
the linear system that hypothetically “generates” the signal. They tend to
produce better results than classical nonparametric methods when the data
length of the available signal is relatively short.

Subspace methods, also known as high-resolution methods or super-resolution
methods, generate frequency component estimates for a signal based on an
eigenanalysis or eigendecomposition of the correlation matrix. Examples are
the multiple signal classification (MUSIC) method or the eigenvector (EV)
method. These methods are best suited for line spectra — that is, spectra of
sinusoidal signals — and are effective in the detection of sinusoids buried in
noise, especially when the signal to noise ratios are low.

All three categories of methods are listed in the table below with the
corresponding toolbox function and spectrum object names. See “Parametric
Modeling” on page 4-15 for details about lpc and other parametric estimation
functions.
3-7

3 Statistical Signal Processing

3-8
.

Method Description Functions

Periodogram Power spectral density
estimate

spectrum.periodogram,
periodogram

Welch Averaged periodograms of
overlapped, windowed signal
sections

spectrum.welch,
pwelch, cpsd,
tfestimate, mscohere

Multitaper) Spectral estimate from
combination of multiple
orthogonal windows (or
“tapers”)

spectrum.mtm, pmtm

Yule-Walker
AR

Autoregressive (AR) spectral
estimate of a time-series from
its estimated autocorrelation
function

spectrum.yulear,
pyulear

Burg Autoregressive (AR) spectral
estimation of a time-series by
minimization of linear
prediction errors

spectrum.burg, pburg

Covariance Autoregressive (AR) spectral
estimation of a time-series by
minimization of the forward
prediction errors

spectrum.cov, pcov

Modified
Covariance

Autoregressive (AR) spectral
estimation of a time-series by
minimization of the forward
and backward prediction
errors

spectrum.mcov, pmcov

Spectral Analysis
Nonparametric Methods
The following sections discuss the periodogram, modified periodogram, Welch,
and multitaper methods of nonparametric estimation, along with the related
CPSD function, transfer function estimate, and coherence function.

Periodogram
One way of estimating the power spectrum of a process is to simply find the
discrete-time Fourier transform of the samples of the process (usually done on
a grid with an FFT) and take the magnitude squared of the result. This
estimate is called the periodogram.

The periodogram estimate of the PSD of a length-L signal xL[n] is

where

The actual computation of XL(f) can be performed only at a finite number of
frequency points, N, and usually employs the FFT. In practice, most
implementations of the periodogram method compute the N-point PSD
estimate

MUSIC Multiple signal classification spectrum.music,
pmusic

Eigenvector Pseudospectrum estimate spectrum.eigenvector,
peig

Method Description Functions

P̂xx f()
XL f() 2

fsL
--------------------=

XL f() xL n[]e
2πjfn– fs⁄

n 0=

L 1–

∑=

P̂xx fk[]
XL fk[] 2

fsL
-----------------------,= fk

kfs
N

--------,= k 0 1 … N 1–, , ,=
3-9

3 Statistical Signal Processing

3-1
where

It is wise to choose N > L so that N is the next power of two larger than L. To
evaluate XL[fk], we simply pad xL[n] with zeros to length N. If L > N, we must
wrap xL[n] modulo-N prior to computing XL[fk].

As an example, consider the following 1001-element signal xn, which consists
of two sinusoids plus noise:

randn('state',0);
fs = 1000; % Sampling frequency
t = (0:fs)/fs; % One second worth of samples
A = [1 2]; % Sinusoid amplitudes (row vector)
f = [150;140]; % Sinusoid frequencies (column vector)
xn = A*sin(2*pi*f*t) + 0.1*randn(size(t));

Note The three last lines illustrate a convenient and general way to express
the sum of sinusoids. Together they are equivalent to

xn = sin(2*pi*150*t) + 2*sin(2*pi*140*t) + 0.1*randn(size(t));

The periodogram estimate of the PSD can be computed by creating a
periodogram object

Hs = spectrum.periodogram('Hamming');

and a plot of the estimate can be displayed with the psd method:

psd(Hs,xn,'Fs',fs,'NFFT',1024,'SpectrumType','twosided')

XL fk[] xL n[]e 2πjkn– N⁄

n 0=

N 1–

∑=
0

Spectral Analysis
The average power can be computed by approximating the integral with the
following sum:

Hdsp2= psd(Hs,xn,'Fs',fs,'NFFT',1024,'SpectrumType','twosided');
Pow = avgpower(Hdsp2)

Pow =
 2.5059

You can also compute the average power from the one-sided PSD estimate:

Hdsp3= psd(Hs,xn,'Fs',fs,'NFFT',1024,'SpectrumType','onesided');
Pow = avgpower(Hdsp3)

Pow =
 2.5059

Performance of the Periodogram
The following sections discuss the performance of the periodogram with regard
to the issues of leakage, resolution, bias, and variance.
3-11

3 Statistical Signal Processing

3-1
Spectral Leakage. Consider the power spectrum or PSD of a finite-length signal
xL[n], as discussed in the “Periodogram” on page 3-9. It is frequently useful to
interpret xL[n] as the result of multiplying an infinite signal, x[n], by a
finite-length rectangular window, wR[n]:

Because multiplication in the time domain corresponds to convolution in the
frequency domain, the Fourier transform of the expression above is

The expression developed earlier for the periodogram,

illustrates that the periodogram is also influenced by this convolution.

The effect of the convolution is best understood for sinusoidal data. Suppose
that x[n] is composed of a sum of M complex sinusoids:

Its spectrum is

which for a finite-length sequence becomes

xL n[] x n[] wR n[]⋅=

XL f() 1
fs
---- X ρ()WR f ρ–() ρd

fs 2⁄–

fs 2⁄

∫=

Pˆ xx f()
XL f() 2

fsL
--------------------=

x n[] Ake
jωkn

k 1=

M

∑=

X f() fs Akδ f fk–()

k 1=

M

∑=

XL f() Akδ ρ fk–()

k 1=

M

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

WR f ρ–() ρd

fs 2⁄–

fs 2⁄

∫ AkWR f fk–()

k 1=

M

∑= =
2

Spectral Analysis
So in the spectrum of the finite-length signal, the Dirac deltas have been
replaced by terms of the form , which corresponds to the frequency
response of a rectangular window centered on the frequency fk.

The frequency response of a rectangular window has the shape of a sinc signal,
as shown below.

The plot displays a main lobe and several side lobes, the largest of which is
approximately 13.5 dB below the mainlobe peak. These lobes account for the
effect known as spectral leakage. While the infinite-length signal has its power
concentrated exactly at the discrete frequency points fk, the windowed (or
truncated) signal has a continuum of power “leaked” around the discrete
frequency points fk.

Because the frequency response of a short rectangular window is a much poorer
approximation to the Dirac delta function than that of a longer window,
spectral leakage is especially evident when data records are short. Consider the
following sequence of 100 samples:

randn('state',0)
fs = 1000; % Sampling frequency
t = (0:fs/10)/fs; % One-tenth of a second worth of samples
A = [1 2]; % Sinusoid amplitudes
f = [150;140]; % Sinusoid frequencies
xn = A*sin(2*pi*f*t) + 0.1*randn(size(t));
Hs = spectrum.periodogram;

WR f fk–()

−0.5 0 0.5
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

3-13

3 Statistical Signal Processing

3-1
psd(Hs,xn,'Fs',fs,'NFFT',1024)

It is important to note that the effect of spectral leakage is contingent solely on
the length of the data record. It is not a consequence of the fact that the
periodogram is computed at a finite number of frequency samples.

Resolution. Resolution refers to the ability to discriminate spectral features, and
is a key concept on the analysis of spectral estimator performance.

In order to resolve two sinusoids that are relatively close together in frequency,
it is necessary for the difference between the two frequencies to be greater than
the width of the mainlobe of the leaked spectra for either one of these sinusoids.
The mainlobe width is defined to be the width of the mainlobe at the point
where the power is half the peak mainlobe power (i.e., 3 dB width). This width
is approximately equal to fs / L.

In other words, for two sinusoids of frequencies f1 and f2, the resolvability
condition requires that
4

Spectral Analysis
In the example above, where two sinusoids are separated by only 10 Hz, the
data record must be greater than 100 samples to allow resolution of two
distinct sinusoids by a periodogram.

Consider a case where this criterion is not met, as for the sequence of 67
samples below:

randn('state',0)
fs = 1000; % Sampling frequency
t = (0:fs/15)./fs; % 67 samples
A = [1 2]; % Sinusoid amplitudes
f = [150;140]; % Sinusoid frequencies
xn = A*sin(2*pi*f*t) + 0.1*randn(size(t));
Hs=spectrum.periodogram;
psd(Hs,xn,'Fs',fs,'NFFT',1024)

∆f f1 f2–()
fs
L
---->=
3-15

3 Statistical Signal Processing

3-1
The above discussion about resolution did not consider the effects of noise since
the signal-to-noise ratio (SNR) has been relatively high thus far. When the
SNR is low, true spectral features are much harder to distinguish, and noise
artifacts appear in spectral estimates based on the periodogram. The example
below illustrates this:

randn('state',0)
fs = 1000; % Sampling frequency
t = (0:fs/10)./fs; % One-tenth of a second worth of samples
A = [1 2]; % Sinusoid amplitudes
f = [150;140]; % Sinusoid frequencies
xn = A*sin(2*pi*f*t) + 2*randn(size(t));
Hs=spectrum.periodogram;
psd(Hs,xn,'Fs',fs,'NFFT',1024)

Bias of the Periodogram. The periodogram is a biased estimator of the PSD. Its
expected value can be shown to be
6

Spectral Analysis
which is similar to the first expression for XL(f) in “Spectral Leakage” on
page 3-12, except that the expression here is in terms of average power rather
than magnitude. This suggests that the estimates produced by the
periodogram correspond to a leaky PSD rather than the true PSD.

Note that essentially yields a triangular Bartlett window (which
is apparent from the fact that the convolution of two rectangular pulses is a
triangular pulse). This results in a height for the largest sidelobes of the leaky
power spectra that is about 27 dB below the mainlobe peak; i.e., about twice the
frequency separation relative to the non-squared rectangular window.

The periodogram is asymptotically unbiased, which is evident from the earlier
observation that as the data record length tends to infinity, the frequency
response of the rectangular window more closely approximates the Dirac delta
function (also true for a Bartlett window). However, in some cases the
periodogram is a poor estimator of the PSD even when the data record is long.
This is due to the variance of the periodogram, as explained below.

Variance of the Periodogram. The variance of the periodogram can be shown to be
approximately

which indicates that the variance does not tend to zero as the data length L
tends to infinity. In statistical terms, the periodogram is not a consistent
estimator of the PSD. Nevertheless, the periodogram can be a useful tool for
spectral estimation in situations where the SNR is high, and especially if the
data record is long.

The Modified Periodogram
The modified periodogram windows the time-domain signal prior to computing
the FFT in order to smooth the edges of the signal. This has the effect of
reducing the height of the sidelobes or spectral leakage. This phenomenon
gives rise to the interpretation of sidelobes as spurious frequencies introduced
into the signal by the abrupt truncation that occurs when a rectangular

E
XL f() 2

fsL

⎩ ⎭
⎨ ⎬
⎧ ⎫ 1

fsL
-------- Pxx ρ() WR f ρ–() 2 ρd

fs 2⁄–

fs 2⁄

∫=

WR f ρ–() 2

var
XL f() 2

fsL

⎩ ⎭
⎨ ⎬
⎧ ⎫

Pxx
2 f() 1

2πLf fs⁄()sin
L 2πf fs⁄()sin
------------------------------------⎝ ⎠

⎛ ⎞
2

+≈
3-17

3 Statistical Signal Processing

3-1
window is used. For nonrectangular windows, the end points of the truncated
signal are attenuated smoothly, and hence the spurious frequencies introduced
are much less severe. On the other hand, nonrectangular windows also broaden
the mainlobe, which results in a net reduction of resolution.

The periodogram function allows you to compute a modified periodogram by
specifying the window to be used on the data. For example, compare a default
rectangular window and a Hamming window:

randn('state',0)
fs = 1000; % Sampling frequency
t = (0:fs/10)./fs; % One-tenth of a second worth of samples
A = [1 2]; % Sinusoid amplitudes
f = [150;140]; % Sinusoid frequencies
xn = A*sin(2*pi*f*t) + 0.1*randn(size(t));
Hrect = spectrum.periodogram;
psd(Hrect,xn,'Fs',fs,'NFFT',1024);

Hhamm = spectrum.periodogram('Hamming');
psd(Hhamm,xn,'Fs',fs,'NFFT',1024);
8

Spectral Analysis
You can verify that although the sidelobes are much less evident in the
Hamming-windowed periodogram, the two main peaks are wider. In fact, the
3 dB width of the mainlobe corresponding to a Hamming window is
approximately twice that of a rectangular window. Hence, for a fixed data
length, the PSD resolution attainable with a Hamming window is
approximately half that attainable with a rectangular window. The competing
interests of mainlobe width and sidelobe height can be resolved to some extent
by using variable windows such as the Kaiser window.

Nonrectangular windowing affects the average power of a signal because some
of the time samples are attenuated when multiplied by the window. To
compensate for this, the periodogram function normalizes the window to have
an average power of unity. This way the choice of window does not affect the
average power of the signal.

The modified periodogram estimate of the PSD is

P̂xx f()
XL f() 2

fsLU
--------------------=
3-19

3 Statistical Signal Processing

3-2
where U is the window normalization constant

which is independent of the choice of window. The addition of U as a
normalization constant ensures that the modified periodogram is
asymptotically unbiased.

Welch’s Method
An improved estimator of the PSD is the one proposed by Welch [8]. The
method consists of dividing the time series data into (possibly overlapping)
segments, computing a modified periodogram of each segment, and then
averaging the PSD estimates. The result is Welch’s PSD estimate.

Welch’s method is implemented in the Signal Processing Toolbox by the
spectrum.welch object or pwelch function. By default, the data is divided into
eight segments with 50% overlap between them. A Hamming window is used
to compute the modified periodogram of each segment.

The averaging of modified periodograms tends to decrease the variance of the
estimate relative to a single periodogram estimate of the entire data record.
Although overlap between segments tends to introduce redundant information,
this effect is diminished by the use of a nonrectangular window, which reduces
the importance or weight given to the end samples of segments (the samples
that overlap).

However, as mentioned above, the combined use of short data records and
nonrectangular windows results in reduced resolution of the estimator. In
summary, there is a tradeoff between variance reduction and resolution. One
can manipulate the parameters in Welch’s method to obtain improved
estimates relative to the periodogram, especially when the SNR is low. This is
illustrated in the following example.

Consider an original signal consisting of 301 samples:

randn('state',1)
fs = 1000; % Sampling frequency
t = (0:0.3*fs)./fs; % 301 samples
A = [2 8]; % Sinusoid amplitudes (row vector)
f = [150;140]; % Sinusoid frequencies (column vector)

U 1
L
---- w n() 2

n 0=

L 1–

∑=
0

Spectral Analysis
xn = A*sin(2*pi*f*t) + 5*randn(size(t));
Hs = spectrum.periodogram('rectangular')
psd(Hs,xn,'Fs',fs,'NFFT',1024);
3-21

3 Statistical Signal Processing

3-2
We can obtain Welch’s spectral estimate for 3 segments with 50% overlap with

Hs = spectrum.welch('rectangular',150,50);
psd(Hs,xn,'Fs',fs,'NFFT',512);

In the periodogram above, noise and the leakage make one of the sinusoids
essentially indistinguishable from the artificial peaks. In contrast, although
the PSD produced by Welch’s method has wider peaks, you can still distinguish
the two sinusoids, which stand out from the “noise floor.”

However, if we try to reduce the variance further, the loss of resolution causes
one of the sinusoids to be lost altogether:

Hs = spectrum.welch('rectangular',100,75);
psd(Hs,xn,'Fs',fs,'NFFT',512);
2

Spectral Analysis
For a more detailed discussion of Welch’s method of PSD estimation, see
Kay [2] and Welch [8].

Bias and Normalization in Welch’s Method
Welch’s method yields a biased estimator of the PSD. The expected value can
be found to be

where Ls is the length of the data segments and U is the same normalization
constant present in the definition of the modified periodogram. As is the case
for all periodograms, Welch’s estimator is asymptotically unbiased. For a fixed
length data record, the bias of Welch’s estimate is larger than that of the
periodogram because Ls < L.

The variance of Welch’s estimator is difficult to compute because it depends on
both the window used and the amount of overlap between segments. Basically,

E P̂welch{ } 1
fsLsU
---------------- Pxx ρ() W f ρ–() 2 ρd

fs 2⁄–

fs 2⁄

∫=
3-23

3 Statistical Signal Processing

3-2
the variance is inversely proportional to the number of segments whose
modified periodograms are being averaged.

Multitaper Method
The periodogram can be interpreted as filtering a length L signal, xL[n],
through a filter bank (a set of filters in parallel) of L FIR bandpass filters. The
3 dB bandwidth of each of these bandpass filters can be shown to be
approximately equal to fs / L. The magnitude response of each one of these
bandpass filters resembles that of the rectangular window discussed in
“Spectral Leakage” on page 3-12. The periodogram can thus be viewed as a
computation of the power of each filtered signal (i.e., the output of each
bandpass filter) that uses just one sample of each filtered signal and assumes
that the PSD of xL[n] is constant over the bandwidth of each bandpass filter.

As the length of the signal increases, the bandwidth of each bandpass filter
decreases, making it a more selective filter, and improving the approximation
of constant PSD over the bandwidth of the filter. This provides another
interpretation of why the PSD estimate of the periodogram improves as the
length of the signal increases. However, there are two factors apparent from
this standpoint that compromise the accuracy of the periodogram estimate.
First, the rectangular window yields a poor bandpass filter. Second, the
computation of the power at the output of each bandpass filter relies on a single
sample of the output signal, producing a very crude approximation.

Welch’s method can be given a similar interpretation in terms of a filter bank.
In Welch’s implementation, several samples are used to compute the output
power, resulting in reduced variance of the estimate. On the other hand, the
bandwidth of each bandpass filter is larger than that corresponding to the
periodogram method, which results in a loss of resolution. The filter bank
model thus provides a new interpretation of the compromise between variance
and resolution.

Thompson’s multitaper method (MTM) builds on these results to provide an
improved PSD estimate. Instead of using bandpass filters that are essentially
rectangular windows (as in the periodogram method), the MTM method uses a
bank of optimal bandpass filters to compute the estimate. These optimal FIR
filters are derived from a set of sequences known as discrete prolate spheroidal
sequences (DPSSs, also known as Slepian sequences).

In addition, the MTM method provides a time-bandwidth parameter with
which to balance the variance and resolution. This parameter is given by the
4

Spectral Analysis
time-bandwidth product, NW and it is directly related to the number of tapers
used to compute the spectrum. There are always 2*NW-1 tapers used to form
the estimate. This means that, as NW increases, there are more estimates of
the power spectrum, and the variance of the estimate decreases. However, the
bandwidth of each taper is also proportional to NW, so as NW increases, each
estimate exhibits more spectral leakage (i.e., wider peaks) and the overall
spectral estimate is more biased. For each data set, there is usually a value for
NW that allows an optimal trade-off between bias and variance.

The Signal Processing Toolbox function that implements the MTM method is
pmtm and the object that implements it is spectrum.mtm. Use spectrum.mtm to
compute the PSD of xn from the previous examples:

randn('state',0)
fs = 1000; % Sampling frequency
t = (0:fs)/fs; % One second worth of samples
A = [1 2]; % Sinusoid amplitudes
f = [150;140]; % Sinusoid frequencies
xn = A*sin(2*pi*f*t) + 0.1*randn(size(t));
Hs1 = spectrum.mtm(4,'adapt');
psd(Hs1,xn,'Fs',fs,'NFFT',1024)
3-25

3 Statistical Signal Processing

3-2
By lowering the time-bandwidth product, you can increase the resolution at the
expense of larger variance:

Hs2 = spectrum.mtm(3/2,'adapt');
psd(Hs2,xn,'Fs',fs,'NFFT',1024)

Note that the average power is conserved in both cases:

Hs1p = psd(Hs1,xn,'Fs',fs,'NFFT',1024);
Pow1 = avgpower(Hs1p)

Pow1 =

 2.4926

Hs2p = psd(Hs2,xn,'Fs',fs,'NFFT',1024);
Pow2 = avgpower(Hs2p)

Pow2 =

 2.4927
6

Spectral Analysis
This method is more computationally expensive than Welch’s method due to
the cost of computing the discrete prolate spheroidal sequences. For long data
series (10,000 points or more), it is useful to compute the DPSSs once and save
them in a MAT-file. The M-files dpsssave, dpssload, dpssdir, and dpssclear
are provided to keep a database of saved DPSSs in the MAT-file dpss.mat.

Cross-Spectral Density Function
The PSD is a special case of the cross spectral density (CPSD) function, defined
between two signals xn and yn as

As is the case for the correlation and covariance sequences, the toolbox
estimates the PSD and CPSD because signal lengths are finite.

To estimate the cross-spectral density of two equal length signals x and y using
Welch’s method, the cpsd function forms the periodogram as the product of the
FFT of x and the conjugate of the FFT of y. Unlike the real-valued PSD, the
CPSD is a complex function. cpsd handles the sectioning and windowing of x
and y in the same way as the pwelch function:

Sxy = cpsd(x,y,nwin,noverlap,nfft,fs)

Transfer Function Estimate
One application of Welch’s method is nonparametric system identification.
Assume that H is a linear, time invariant system, and x(n) and y(n) are the
input to and output of H, respectively. Then the power spectrum of x(n) is
related to the CPSD of x(n) and y(n) by

An estimate of the transfer function between x(n) and y(n) is

This method estimates both magnitude and phase information. The
tfestimate function uses Welch’s method to compute the CPSD and power

Sxy ω() Rxy m()e jωm–

m ∞–=

∞

∑=

Sxy ω() H ω()Sxx ω()=

Ĥ ω()
Sˆ xy ω()

Sˆ xx ω()
-----------------=
3-27

3 Statistical Signal Processing

3-2
spectrum, and then forms their quotient for the transfer function estimate. Use
tfestimate the same way that you use the cpsd function.

Filter the signal xn with an FIR filter, then plot the actual magnitude response
and the estimated response:

h = ones(1,10)/10; % Moving-average filter
yn = filter(h,1,xn);
[HEST,f] = tfestimate(xn,yn,256,128,256,fs);
H = freqz(h,1,f,fs);

subplot(2,1,1); plot(f,abs(H));
title('Actual Transfer Function Magnitude');

subplot(2,1,2); plot(f,abs(HEST));
title('Transfer Function Magnitude Estimate');
xlabel('Frequency (Hz)');

Coherence Function
The magnitude-squared coherence between two signals x(n) and y(n) is

This quotient is a real number between 0 and 1 that measures the correlation
between x(n) and y(n) at the frequency ω.

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1
Actual Transfer Function Magnitude

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1
Transfer Function Magnitude Estimate

Frequency (Hz)

Cxy ω()
Sxy ω() 2

Sxx ω()Syy ω()
-----------------------------------=
8

Spectral Analysis
The mscohere function takes sequences x and y, computes their power spectra
and CPSD, and returns the quotient of the magnitude squared of the CPSD and
the product of the power spectra. Its options and operation are similar to the
cpsd and tfestimate functions.

The coherence function of xn and the filter output yn versus frequency is

mscohere(xn,yn,256,128,256,fs)

If the input sequence length nfft, window length window, and the number of
overlapping data points in a window numoverlap, are such that mscohere
operates on only a single record, the function returns all ones. This is because
the coherence function for linearly dependent data is one.
3-29

3 Statistical Signal Processing

3-3
The following example shows how to use spectral analysis functions to compute
the coherence:

randn('state',0)
fs = 1000; % Sampling frequency
t = (0:fs)/fs; % One second worth of samples
A = [1 2]; % Sinusoid amplitudes
f = [150;140]; % Sinusoid frequencies
xn = A*sin(2*pi*f*t) + 0.1*randn(size(t));
h = ones(1,10)/10; % Moving average filter
yn = filter(h,1,xn);

% Parameters common to both CPSD and MSCOHERE:
nfft = 256;
noverlap = 128;
nwin = hanning(256);
CxyCohere = mscohere(xn,yn,nwin,noverlap,nfft,fs);

% Compute the PSDs using Welch's method, which is similar to the
% MSCOHERE function
[Sxx,F] = pwelch(xn,nwin,noverlap,nfft,fs);
[Syy,F] = pwelch(yn,nwin,noverlap,nfft,fs);

% Convert one-sided PSDs to Power Spectrums
Sxx = [Sxx(1); (Sxx(2:end-1)/2); Sxx(end)].*fs;
Syy = [Syy(1); (Syy(2:end-1)/2); Syy(end)].*fs;

% Call CPSD function with similar arguments as the MSCOHERE
function
% from above.
[Sxy,F] = cpsd(xn,yn,nwin,noverlap,nfft,fs);
Cxy = (abs(Sxy).^2)./(Sxx.*Syy);
plot(1:length(Cxy), [CxyCohere Cxy]); % Compare the estimates
0

Spectral Analysis
Parametric Methods
Parametric methods can yield higher resolutions than nonparametric methods
in cases when the signal length is short. These methods use a different
approach to spectral estimation; instead of trying to estimate the PSD directly
from the data, they model the data as the output of a linear system driven by
white noise, and then attempt to estimate the parameters of that linear
system.

The most commonly used linear system model is the all-pole model, a filter
with all of its zeroes at the origin in the z-plane. The output of such a filter for
white noise input is an autoregressive (AR) process. For this reason, these
methods are sometimes referred to as AR methods of spectral estimation.
3-31

3 Statistical Signal Processing

3-3
The AR methods tend to adequately describe spectra of data that is “peaky,”
that is, data whose PSD is large at certain frequencies. The data in many
practical applications (such as speech) tends to have “peaky spectra” so that AR
models are often useful. In addition, the AR models lead to a system of linear
equations which is relatively simple to solve.

The Signal Processing Toolbox offers the following AR methods for spectral
estimation:

• Yule-Walker AR method (autocorrelation method)

• Burg method

• Covariance method

• Modified covariance method

All AR methods yield a PSD estimate given by

The different AR methods estimate the AR parameters ap(k) slightly
differently, yielding different PSD estimates. The following table provides a
summary of the different AR methods.

P̂AR f() 1
fs

εp

1 âp k()e
2πjkf– fs⁄

k 1=

p

∑+

2
---=

Burg Covariance Modified Covariance Yule-Walker

Characteristics Does not apply window
to data

Does not apply window
to data

Does not apply window
to data

Applies window to data

Minimizes the forward
and backward prediction
errors in the least squares
sense, with the AR
coefficients constrained
to satisfy the L-D
recursion

Minimizes the forward
prediction error in the
least squares sense

Minimizes the forward
and backward prediction
errors in the least squares
sense

Minimizes the forward
prediction error in the
least squares sense
(also called
“Autocorrelation
method”)
2

Spectral Analysis
Advantages High resolution for short
data records

Better resolution than
Y-W for short data
records (more accurate
estimates)

High resolution for short
data records

Performs as well as other
methods for large data
records

Always produces a stable
model

Able to extract
frequencies from data
consisting of p or more
pure sinusoids

Able to extract
frequencies from data
consisting of p or more
pure sinusoids

Always produces a stable
model

Does not suffer spectral
line-splitting

Disadvantages Peak locations highly
dependent on initial
phase

May produce unstable
models

May produce unstable
models

Performs relatively
poorly for short data
records

May suffer spectral
line-splitting for
sinusoids in noise, or
when order is very large

Frequency bias for
estimates of sinusoids in
noise

Peak locations slightly
dependent on initial
phase

Frequency bias for
estimates of sinusoids in
noise

Frequency bias for
estimates of sinusoids in
noise

Minor frequency bias for
estimates of sinusoids in
noise

Conditions for
Nonsingularity

Order must be less than
or equal to half the input
frame size

Order must be less than
or equal to 2/3 the input
frame size

Because of the biased
estimate, the
autocorrelation matrix is
guaranteed to
positive-definite, hence
nonsingular

Burg Covariance Modified Covariance Yule-Walker
3-33

3 Statistical Signal Processing

3-3
Yule-Walker AR Method
The Yule-Walker AR method of spectral estimation computes the AR
parameters by forming a biased estimate of the signal’s autocorrelation
function, and solving the least squares minimization of the forward prediction
error. This results in the Yule-Walker equations.

The Yule-Walker AR method produces the same results as a maximum entropy
estimator. For more information, see page 155 of item [2] in the “Selected
Bibliography” on page 3-45.

The use of a biased estimate of the autocorrelation function ensures that the
autocorrelation matrix above is positive definite. Hence, the matrix is
invertible and a solution is guaranteed to exist. Moreover, the AR parameters
thus computed always result in a stable all-pole model. The Yule-Walker
equations can be solved efficiently via Levinson’s algorithm, which takes
advantage of the Toeplitz structure of the autocorrelation matrix.

The toolbox object spectrum.yulear and function pyulear implement the
Yule-Walker AR method.

For example, compare the spectrum of a speech signal using Welch’s method
and the Yule-Walker AR method:

load mtlb
Hwelch = spectrum.welch('hamming',256,50);
psd(Hwelch,mtlb,'Fs',Fs,'NFFT',1024)

r 1() r 2()
* r p()

*

r 2() r 1() r p 1–()
*

r p() r 2() r 1()

a 2()

a 3()

a p 1+()

r 2()–

r 3()–

r p 1+()–

=

4

Spectral Analysis
Hyulear = spectrum.yulear(14);
psd(Hyulear,mtlb,'Fs',Fs,'NFFT',1024)
3-35

3 Statistical Signal Processing

3-3
The Yule-Walker AR spectrum is smoother than the periodogram because of
the simple underlying all-pole model.

Burg Method
The Burg method for AR spectral estimation is based on minimizing the
forward and backward prediction errors while satisfying the Levinson-Durbin
recursion (see Marple [3], Chapter 7, and Proakis [6], Section 12.3.3). In
contrast to other AR estimation methods, the Burg method avoids calculating
the autocorrelation function, and instead estimates the reflection coefficients
directly.

The primary advantages of the Burg method are resolving closely spaced
sinusoids in signals with low noise levels, and estimating short data records, in
which case the AR power spectral density estimates are very close to the true
values. In addition, the Burg method ensures a stable AR model and is
computationally efficient.

The accuracy of the Burg method is lower for high-order models, long data
records, and high signal-to-noise ratios (which can cause line splitting, or the
6

Spectral Analysis
generation of extraneous peaks in the spectrum estimate). The spectral density
estimate computed by the Burg method is also susceptible to frequency shifts
(relative to the true frequency) resulting from the initial phase of noisy
sinusoidal signals. This effect is magnified when analyzing short data
sequences.

The toolbox object spectrum.burg and function pburg implement the Burg
method. Compare the spectrum of the speech signal generated by both the
Burg method and the Yule-Walker AR method. They are very similar for large
signal lengths:

load mtlb
Hburg = spectrum.burg(14); % 14th order model
psd(Hburg,mtlb(1:512),'Fs',Fs,'NFFT',1024)

Hyulear = spectrum.yulear(14); % 14th order model
psd(Hyulear,mtlb(1:512),'Fs',Fs,'NFFT',1024)
3-37

3 Statistical Signal Processing

3-3
Compare the spectrum of a noisy signal computed using the Burg method and
the Welch method:

randn('state',0)
fs = 1000; % Sampling frequency
t = (0:fs)/fs; % One second worth of samples
A = [1 2]; % Sinusoid amplitudes
f = [150;140]; % Sinusoid frequencies
xn = A*sin(2*pi*f*t) + 0.1*randn(size(t));

Hwelch = spectrum.welch('hamming',256,50);
psd(Hwelch,xn,'Fs',fs,'NFFT',1024)
8

Spectral Analysis
Hburg = spectrum.burg(14);
psd(Hburg,xn,'Fs',fs,'NFFT',1024)
3-39

3 Statistical Signal Processing

3-4
Note that, as the model order for the Burg method is reduced, a frequency shift
due to the initial phase of the sinusoids will become apparent.
0

Spectral Analysis
Covariance and Modified Covariance Methods
The covariance method for AR spectral estimation is based on minimizing the
forward prediction error. The modified covariance method is based on
minimizing the forward and backward prediction errors. The toolbox object
spectrum.cov and function pcov, and object spectrum.mcov and function
pmcov implement the respective methods.

Compare the spectrum of the speech signal generated by both the covariance
method and the modified covariance method. They are nearly identical, even
for a short signal length:

load mtlb
Hcov = spectrum.cov(14); % 14th order model
psd(Hcov,mtlb(1:64),'Fs',Fs,'NFFT',1024)

Hmcov = spectrum.mcov(14); % 14th order model
psd(Hmcov,mtlb(1:64),'Fs',Fs,'NFFT',1024)
3-41

3 Statistical Signal Processing

3-4
MUSIC and Eigenvector Analysis Methods
The spectrum.music object and pmusic function, and spectrum.eigenvector
object and peig function provide two related spectral analysis methods:

• spectrum.music and pmusic provide the multiple signal classification
(MUSIC) method developed by Schmidt

• spectrum.eigenvector and peig provides the eigenvector (EV) method
developed by Johnson

See Marple [3] (pgs. 373-378) for a summary of these methods.

Both of these methods are frequency estimator techniques based on
eigenanalysis of the autocorrelation matrix. This type of spectral analysis
categorizes the information in a correlation or data matrix, assigning
information to either a signal subspace or a noise subspace.
2

Spectral Analysis
Eigenanalysis Overview
Consider a number of complex sinusoids embedded in white noise. You can
write the autocorrelation matrix R for this system as the sum of the signal
autocorrelation matrix (S) and the noise autocorrelation matrix (W):

There is a close relationship between the eigenvectors of the signal
autocorrelation matrix and the signal and noise subspaces. The eigenvectors v
of S span the same signal subspace as the signal vectors. If the system contains
M complex sinusoids and the order of the autocorrelation matrix is p,
eigenvectors vM+1 through vp+1 span the noise subspace of the autocorrelation
matrix.

Frequency Estimator Functions. To generate their frequency estimates,
eigenanalysis methods calculate functions of the vectors in the signal and noise
subspaces. Both the MUSIC and EV techniques choose a function that goes to
infinity (denominator goes to zero) at one of the sinusoidal frequencies in the
input signal. Using digital technology, the resulting estimate has sharp peaks
at the frequencies of interest; this means that there might not be infinity
values in the vectors.

The MUSIC estimate is given by the formula

where N is the size of the eigenvectors and e(f) is a vector of complex sinusoids.

v represents the eigenvectors of the input signal’s correlation matrix; vk is the
kth eigenvector. H is the conjugate transpose operator. The eigenvectors used
in the sum correspond to the smallest eigenvalues and span the noise subspace
(p is the size of the signal subspace).

The expression is equivalent to a Fourier transform (the vector e(f)
consists of complex exponentials). This form is useful for numeric computation
because the FFT can be computed for each vk and then the squared magnitudes
can be summed.

R S W+=

Pmusic f() 1

eH f() vkvk
H

k p 1+=

N

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

e f()

-- 1

vk
He f() 2

k p 1+=

N

∑

--= =

e f() 1 exp j2πf() exp j2πf 2⋅() exp j2πf 4⋅() … exp j2πf n 1–()⋅()[]H=

vk
He f()
3-43

3 Statistical Signal Processing

3-4
The EV method weights the summation by the eigenvalues of the correlation
matrix:

The pmusic and peig functions in this toolbox use the svd (singular value
decomposition) function in the signal case and the eig function for analyzing
the correlation matrix and assigning eigenvectors to the signal or noise
subspaces. When svd is used, pmusic and peig never compute the correlation
matrix explicitly, but the singular values are the eigenvalues.

Pev f() 1

vk
He f() 2

k p 1+=

N

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

λk⁄

---=
4

Selected Bibliography
Selected Bibliography
[1] Hayes, M.H. Statistical Digital Signal Processing and Modeling. New York:
John Wiley & Sons, 1996.

[2] Kay, S.M. Modern Spectral Estimation. Englewood Cliffs, NJ: Prentice Hall,
1988.

[3] Marple, S.L. Digital Spectral Analysis. Englewood Cliffs, NJ: Prentice Hall,
1987.

[4] Orfanidis, S.J. Introduction to Signal Processing. Upper Saddle River, NJ:
Prentice Hall, 1996.

[5] Percival, D.B., and A.T. Walden. Spectral Analysis for Physical
Applications: Multitaper and Conventional Univariate Techniques. Cambridge:
Cambridge University Press, 1993.

[6] Proakis, J.G., and D.G. Manolakis. Digital Signal Processing: Principles,
Algorithms, and Applications. Englewood Cliffs, NJ: Prentice Hall, 1996.

[7] Stoica, P., and R. Moses. Introduction to Spectral Analysis. Upper Saddle
River, NJ: Prentice Hall, 1997.

[8] Welch, P.D. “The Use of Fast Fourier Transform for the Estimation of Power
Spectra: A Method Based on Time Averaging Over Short, Modified
Periodograms.” IEEE Trans. Audio Electroacoust. Vol. AU-15 (June 1967).
Pgs. 70-73.
3-45

3 Statistical Signal Processing

3-4
6

4

Special Topics

The following chapter describes specialized techniques and applications provided in the Signal
Processing Toolbox.

Windows (p. 4-2) Window background information and toolbox functions
and GUIs

Parametric Modeling (p. 4-15) Mathemical techniques for modeling systems

Resampling (p. 4-26) Functions for resampling a signal at a different sampling
rate

Cepstrum Analysis (p. 4-28) Functions for performing cepstrum analysis

FFT-Based Time-Frequency Analysis
(p. 4-33)

Spectrograms

Median Filtering (p. 4-34) Applying a sliding window to a sequence

Communications Applications (p. 4-35) Functions for communications simulations

Deconvolution (p. 4-41) Deconvolution information

Specialized Transforms (p. 4-42) Chirp Z, discrete-cosine, and Hilbert transforms

Selected Bibliography (p. 4-48) Sources of additional information

4 Special Topics

4-2
Windows
In both digital filter design and power spectrum estimation, the choice of a
windowing function can play an important role in determining the quality of
overall results. The main role of the window is to damp out the effects of the
Gibbs phenomenon that results from truncation of an infinite series.

The toolbox window functions are shown in the table below.

Window Function

Bartlett-Hann window barthannwin

Bartlett window bartlett

Blackman window blackman

Blackman-Harris window blackmanharris

Bohman window bohmanwin

Chebyshev window chebwin

Flat Top window flattopwin

Gaussian window gausswin

Hamming window hamming

Hann window hann

Kaiser window kaiser

Nuttall’s Blackman-Harris window nuttallwin

Parzen (de la Valle-Poussin) window parzenwin

Rectangular window rectwin

Tapered cosine window tukeywin

Triangular window triang

Windows
Graphical User Interface Tools
Two graphical user interface tools are provided for working with windows in
the Signal Processing toolbox:

• Window Design and Analysis Tool (wintool)

• Window Visualization Tool (wvtool)

Basic Shapes
The basic window is the rectangular window, a vector of ones of the appropriate
length. A rectangular window of length 50 is

n = 50;
w = rectwin(n);

This toolbox stores windows in column vectors by convention, so an equivalent
expression is

w = ones(50,1);

To use the Window Design and Analysis Tool to create this window, type

wintool

wintool opens with a default Hamming window. In the Current Window
Information panel, set Type = Rectangular and Length = 50 and then press
Apply.
4-3

4 Special Topics

4-4
The Bartlett (or triangular) window is the convolution of two rectangular
windows. The functions bartlett and triang compute similar triangular
windows, with three important differences. The bartlett function always
returns a window with two zeros on the ends of the sequence, so that for n odd,
the center section of bartlett(n+2) is equivalent to triang(n):

bartlett(7)

ans =
 0
 0.3333
 0.6667
 1.0000
 0.6667

Windows
 0.3333
 0

triang(5)

ans =

 0.3333
 0.6667
 1.0000
 0.6667
 0.3333

For n even, bartlett is still the convolution of two rectangular sequences.
There is no standard definition for the triangular window for n even; the slopes
of the line segments of the triang result are slightly steeper than those of
bartlett in this case:

w = bartlett(8);
[w(2:7) triang(6)]

ans =

 0.2857 0.1667
 0.5714 0.5000
 0.8571 0.8333
 0.8571 0.8333
 0.5714 0.5000
 0.2857 0.1667

You can see the difference between odd and even Bartlett windows in WinTool.
4-5

4 Special Topics

4-6
The final difference between the Bartlett and triangular windows is evident in
the Fourier transforms of these functions. The Fourier transform of a Bartlett
window is negative for n even. The Fourier transform of a triangular window,
however, is always nonnegative. The following figure, which is a zoomed
version of the Frequency domain plot of 8-point Bartlett and Triangular
windows with the y-axis set to Zerophase, illustrates this difference.

Windows
This difference can be important when choosing a window for some spectral
estimation techniques, such as the Blackman-Tukey method. Blackman-Tukey
forms the spectral estimate by calculating the Fourier transform of the
autocorrelation sequence. The resulting estimate might be negative at some
frequencies if the window’s Fourier transform is negative (see Kay [1], pg. 80).

Generalized Cosine Windows
Blackman, Flat Top, Hamming, Hann, and rectangular windows are all special
cases of the generalized cosine window. These windows are combinations of
sinusoidal sequences with frequencies 0, , and , where
N is the window length. One way to generate them is

ind = (0:n-1)'*2*pi/(n-1);
w = A - B*cos(ind) + C*cos(2*ind);

where A, B, and C are constants you define. The concept behind these windows
is that by summing the individual terms to form the window, the low frequency
peaks in the frequency domain combine in such a way as to decrease sidelobe
height. This has the side effect of increasing the mainlobe width.

The Hamming and Hann windows are two-term generalized cosine windows,
given by A = 0.54, B = 0.46 for Hamming and A = 0.5, B = 0.5 for Hann (C = 0
in both cases). The hamming and hann functions, respectively, compute these
windows.

2π N 1–()⁄ 4π N 1–()⁄
4-7

4 Special Topics

4-8
Note that the definition of the generalized cosine window shown in the earlier
MATLAB code yields zeros at samples 1 and n for A = 0.5 and B = 0.5.

The Blackman window is a popular three-term window, given by A = 0.42,
B = 0.5, C = 0.08. The blackman function computes this window.

The Flat Top window is a five-term window and is used for calibration. It is
given by A = 1, B = 1.93, C = 1.29, D =0.388, and E = 0.322.

This WinTool compares Blackman, Hamming, Hann, and Flat Top windows.

Windows
Kaiser Window
The Kaiser window is an approximation to the prolate-spheroidal window, for
which the ratio of the mainlobe energy to the sidelobe energy is maximized. For
a Kaiser window of a particular length, the parameter β controls the sidelobe
height. For a given β, the sidelobe height is fixed with respect to window length.
The statement kaiser(n,beta) computes a length n Kaiser window with
parameter beta.

Examples of Kaiser windows with length 50 and beta parameters of 1, 4, and
9 are shown in this wintool example.
4-9

4 Special Topics

4-1
To create these Kaiser windows using the MATLAB command line,

n = 50;
w1 = kaiser(n,1);
w2 = kaiser(n,4);
w3 = kaiser(n,9);
[W1,f] = freqz(w1/sum(w1),1,512,2);
[W2,f] = freqz(w2/sum(w2),1,512,2);
[W3,f] = freqz(w3/sum(w3),1,512,2);
plot(f,20*log10(abs([W1 W2 W3]))); grid;
legend('beta = 1','beta = 4','beta = 9',3)

As β increases, the sidelobe height decreases and the mainlobe width increases.
This wintool shows how the sidelobe height stays the same for a fixed β
parameter as the length is varied.
0

Windows
To create these Kaiser windows using the MATLAB command line:

w1 = kaiser(50,4);
w2 = kaiser(20,4);
w3 = kaiser(101,4);
[W1,f] = freqz(w1/sum(w1),1,512,2);
[W2,f] = freqz(w2/sum(w2),1,512,2);
[W3,f] = freqz(w3/sum(w3),1,512,2);
plot(f,20*log10(abs([W1 W2 W3]))); grid;
legend('length = 50','length = 20','length = 101')
4-11

4 Special Topics

4-1
Kaiser Windows in FIR Design
There are two design formulas that can help you design FIR filters to meet a
set of filter specifications using a Kaiser window. To achieve a sidelobe height
of −α dB, the beta parameter is

For a transition width of ∆ω rad/s, use the length

Filters designed using these heuristics will meet the specifications
approximately, but you should verify this. To design a lowpass filter with cutoff
frequency rad/s, transition width rad/s, and 40 dB of attenuation in
the stopband, try

[n,wn,beta] = kaiserord([0.4 0.6]*pi,[1 0],[0.01 0.01],2*pi);
h = fir1(n,wn,kaiser(n+1,beta),'noscale');

The kaiserord function estimates the filter order, cutoff frequency, and Kaiser
window beta parameter needed to meet a given set of frequency domain
specifications.

The ripple in the passband is roughly the same as the ripple in the stopband.
As you can see from the frequency response, this filter nearly meets the
specifications:

fvtool(h,1);

β
0.1102 α 8.7–(), α 50>

0.5842 α 21–()0.4 0.07886 α 21–()+ , 50 α 21≥ ≥
0, α 21<⎩

⎪
⎨
⎪
⎧

=

n α 8–
2.285 ω∆
----------------------- 1+=

0.5π 0.2π
2

Windows
4-13

4 Special Topics

4-1
Chebyshev Window
The Chebyshev window minimizes the mainlobe width, given a particular
sidelobe height. It is characterized by an equiripple behavior, that is, its
sidelobes all have the same height.

As shown in the Time Domain plot, the Chebyshev window has large spikes at
its outer samples.

For a detailed discussion of the characteristics and applications of the various
window types, see Oppenheim and Schafer [3], pgs. 444-462, and Parks and
Burrus [4], pgs. 71-73.
4

Parametric Modeling
Parametric Modeling
Parametric modeling techniques find the parameters for a mathematical model
describing a signal, system, or process. These techniques use known
information about the system to determine the model. Applications for
parametric modeling include speech and music synthesis, data compression,
high-resolution spectral estimation, communications, manufacturing, and
simulation.

The toolbox parametric modeling functions operate with the rational transfer
function model. Given appropriate information about an unknown system
(impulse or frequency response data, or input and output sequences), these
functions find the coefficients of a linear system that models the system.

One important application of the parametric modeling functions is in the
design of filters that have a prescribed time or frequency response. These
functions provide a data-oriented alternative to the IIR and FIR filter design
functions discussed in Chapter 2, “Filter Design and Implementation.”
4-15

4 Special Topics

4-1
Here is a summary of the parametric modeling functions in this toolbox. Note
that the System Identification Toolbox provides a more extensive collection of
parametric modeling functions.

Because yulewalk is geared explicitly toward ARMA filter design, it is
discussed in Chapter 2, “Filter Design and Implementation”.

pburg and pyulear are discussed in Chapter 3, “Statistical Signal Processing”
along with the other (nonparametric) spectral estimation methods.

Domain Functions Description

Time arburg Generate all-pole filter coefficients that model an input data
sequence using the Levinson-Durbin algorithm.

arcov Generate all-pole filter coefficients that model an input data
sequence by minimizing the forward prediction error.

armcov Generate all-pole filter coefficients that model an input data
sequence by minimizing the forward and backward prediction
errors.

aryule Generate all-pole filter coefficients that model an input data
sequence using an estimate of the autocorrelation function.

lpc,
levinson

Linear Predictive Coding. Generate all-pole recursive filter whose
impulse response matches a given sequence.

prony Generate IIR filter whose impulse response matches a given
sequence.

stmcb Find IIR filter whose output, given a specified input sequence,
matches a given output sequence.

Frequency invfreqz,
invfreqs

Generate digital or analog filter coefficients given complex
frequency response data.
6

Parametric Modeling
Time-Domain Based Modeling
The lpc, prony, and stmcb functions find the coefficients of a digital rational
transfer function that approximates a given time-domain impulse response.
The algorithms differ in complexity and accuracy of the resulting model.

Linear Prediction
Linear prediction modeling assumes that each output sample of a signal, x(k),
is a linear combination of the past n outputs (that is, it can be “linearly
predicted” from these outputs), and that the coefficients are constant from
sample to sample:

An nth-order all-pole model of a signal x is

a = lpc(x,n)

To illustrate lpc, create a sample signal that is the impulse response of an
all-pole filter with additive white noise:

randn('state',0);
x = impz(1,[1 0.1 0.1 0.1 0.1],10) + randn(10,1)/10;

The coefficients for a fourth-order all-pole filter that models the system are

a = lpc(x,4)

a =
1.0000 0.2574 0.1666 0.1203 0.2598

lpc first calls xcorr to find a biased estimate of the correlation function of x,
and then uses the Levinson-Durbin recursion, implemented in the levinson
function, to find the model coefficients a. The Levinson-Durbin recursion is a
fast algorithm for solving a system of symmetric Toeplitz linear equations.
lpc’s entire algorithm for n = 4 is

r = xcorr(x);
r(1:length(x)-1) = []; % Remove corr. at negative lags
a = levinson(r,4)

a =
 1.0000 0.2574 0.1666 0.1203 0.2598

x k() a 2()x k 1–()– a 3()x k 2–()– …– a n 1+()x k n–()–=
4-17

4 Special Topics

4-1
You could form the linear prediction coefficients with other assumptions by
passing a different correlation estimate to levinson, such as the biased
correlation estimate:

r = xcorr(x,'biased');
r(1:length(x)-1) = []; % Remove corr. at negative lags
a = levinson(r,4)

a =
 1.0000 0.2574 0.1666 0.1203 0.2598

Prony’s Method (ARMA Modeling)
The prony function models a signal using a specified number of poles and zeros.
Given a sequence x and numerator and denominator orders n and m,
respectively, the statement

[b,a] = prony(x,n,m)

finds the numerator and denominator coefficients of an IIR filter whose
impulse response approximates the sequence x.

The prony function implements the method described in [4] Parks and Burrus
(pgs. 226-228). This method uses a variation of the covariance method of AR
modeling to find the denominator coefficients a, and then finds the numerator
coefficients b for which the resulting filter’s impulse response matches exactly
the first n + 1 samples of x. The filter is not necessarily stable, but it can
potentially recover the coefficients exactly if the data sequence is truly an
autoregressive moving-average (ARMA) process of the correct order.

Note The functions prony and stmcb (described next) are more accurately
described as ARX models in system identification terminology. ARMA
modeling assumes noise only at the inputs, while ARX assumes an external
input. prony and stmcb know the input signal: it is an impulse for prony and
is arbitrary for stmcb.
8

Parametric Modeling
A model for the test sequence x (from the earlier lpc example) using a
third-order IIR filter is

[b,a] = prony(x,3,3)

b =
 0.9567 -0.3351 0.1866 -0.3782

a =
 1.0000 -0.0716 0.2560 -0.2752

The impz command shows how well this filter’s impulse response matches the
original sequence:

format long
[x impz(b,a,10)]

ans =

 0.95674351884718 0.95674351884718
 -0.26655843782381 -0.26655843782381
 -0.07746676935252 -0.07746676935252
 -0.05223235796415 -0.05223235796415
 -0.18754713506815 -0.05726777015121
 0.15348154656430 -0.01204969926150
 0.13986742016521 -0.00057632797226
 0.00609257234067 -0.01271681570687
 0.03349954614087 -0.00407967053863
 0.01086719328209 0.00280486049427

Notice that the first four samples match exactly. For an example of exact
recovery, recover the coefficients of a Butterworth filter from its impulse
response:

[b,a] = butter(4,.2);
h = impz(b,a,26);
[bb,aa] = prony(h,4,4);

Try this example; you’ll see that bb and aa match the original filter coefficients
to within a tolerance of 10-13.
4-19

4 Special Topics

4-2
Steiglitz-McBride Method (ARMA Modeling)
The stmcb function determines the coefficients for the system b(z)/a(z) given an
approximate impulse response x, as well as the desired number of zeros and
poles. This function identifies an unknown system based on both input and
output sequences that describe the system’s behavior, or just the impulse
response of the system. In its default mode, stmcb works like prony.

[b,a] = stmcb(x,3,3)

b =
 0.9567 -0.5181 0.5702 -0.5471

a =
 1.0000 -0.2384 0.5234 -0.3065

stmcb also finds systems that match given input and output sequences:

y = filter(1,[1 1],x); % Create an output signal.
[b,a] = stmcb(y,x,0,1)

b =
 1.0000

a =
 1 1

In this example, stmcb correctly identifies the system used to create y from x.

The Steiglitz-McBride method is a fast iterative algorithm that solves for the
numerator and denominator coefficients simultaneously in an attempt to
minimize the signal error between the filter output and the given output
signal. This algorithm usually converges rapidly, but might not converge if the
model order is too large. As for prony, stmcb’s resulting filter is not necessarily
stable due to its exact modeling approach.

stmcb provides control over several important algorithmic parameters; modify
these parameters if you are having trouble modeling the data. To change the
number of iterations from the default of five and provide an initial estimate for
the denominator coefficients:

n = 10; % Number of iterations
a = lpc(x,3); % Initial estimates for denominator
[b,a] = stmcb(x,3,3,n,a);
0

Parametric Modeling
The function uses an all-pole model created with prony as an initial estimate
when you do not provide one of your own.

To compare the functions lpc, prony, and stmcb, compute the signal error in
each case:

a1 = lpc(x,3);
[b2,a2] = prony(x,3,3);
[b3,a3] = stmcb(x,3,3);
[x-impz(1,a1,10) x-impz(b2,a2,10) x-impz(b3,a3,10)]

ans =

 -0.0433 0 -0.0000
 -0.0240 0 0.0234
 -0.0040 0 -0.0778
 -0.0448 -0.0000 0.0498
 -0.2130 -0.1303 -0.0742
 0.1545 0.1655 0.1270
 0.1426 0.1404 0.1055
 0.0068 0.0188 0.0465
 0.0329 0.0376 0.0530
 0.0108 0.0081 -0.0162

sum(ans.^2)

ans =

 0.0953 0.0659 0.0471

In comparing modeling capabilities for a given order IIR model, the last result
shows that for this example, stmcb performs best, followed by prony, then lpc.
This relative performance is typical of the modeling functions.
4-21

4 Special Topics

4-2
Frequency-Domain Based Modeling
The invfreqs and invfreqz functions implement the inverse operations of
freqs and freqz; they find an analog or digital transfer function of a specified
order that matches a given complex frequency response. Though the following
examples demonstrate invfreqz, the discussion also applies to invfreqs.

To recover the original filter coefficients from the frequency response of a
simple digital filter:

[b,a] = butter(4,0.4) % Design Butterworth lowpass

b =
 0.0466 0.1863 0.2795 0.1863 0.0466

a =
 1.0000 -0.7821 0.6800 -0.1827 0.0301

[h,w] = freqz(b,a,64); % Compute frequency response
[b4,a4] = invfreqz(h,w,4,4) % Model: n = 4, m = 4

b4 =

 0.0466 0.1863 0.2795 0.1863 0.0466

a4 =

 1.0000 -0.7821 0.6800 -0.1827 0.0301

The vector of frequencies w has the units in rad/sample, and the frequencies
need not be equally spaced. invfreqz finds a filter of any order to fit the
frequency data; a third-order example is

[b4,a4] = invfreqz(h,w,3,3) % Find third-order IIR

b4 =

 0.0464 0.1785 0.2446 0.1276

a4 =

 1.0000 -0.9502 0.7382 -0.2006

Both invfreqs and invfreqz design filters with real coefficients; for a data
point at positive frequency f, the functions fit the frequency response at both f
and -f.
2

Parametric Modeling
By default invfreqz uses an equation error method to identify the best model
from the data. This finds b and a in

by creating a system of linear equations and solving them with the MATLAB
\ operator. Here A(w(k)) and B(w(k)) are the Fourier transforms of the
polynomials a and b respectively at the frequency w(k), and n is the number of
frequency points (the length of h and w). wt(k) weights the error relative to the
error at different frequencies. The syntax

invfreqz(h,w,n,m,wt)

includes a weighting vector. In this mode, the filter resulting from invfreqz is
not guaranteed to be stable.

invfreqz provides a superior (“output-error”) algorithm that solves the direct
problem of minimizing the weighted sum of the squared error between the
actual frequency response points and the desired response

To use this algorithm, specify a parameter for the iteration count after the
weight vector parameter:

wt = ones(size(w)); % Create unity weighting vector
[b30,a30] = invfreqz(h,w,3,3,wt,30) % 30 iterations

b30 =

 0.0464 0.1829 0.2572 0.1549

a30 =

 1.0000 -0.8664 0.6630 -0.1614

The resulting filter is always stable.

min
b a,

wt k() h k()A w k()() B w k()()– 2

k 1=

n

∑

min
b a,

wt k() h k() B w k()()
A w k()()
--------------------–

2

k 1=

n

∑

4-23

4 Special Topics

4-2
Graphically compare the results of the first and second algorithms to the
original Butterworth filter with FVTool (and select the Magnitude and Phase
Responses):

fvtool(b,a,b4,a4,b30,a30)

To verify the superiority of the fit numerically, type

sum(abs(h-freqz(b4,a4,w)).^2) % Total error, algorithm 1

ans =

 0.0200
4

Parametric Modeling
sum(abs(h-freqz(b30,a30,w)).^2) % Total error, algorithm 2

ans =

 0.0096
4-25

4 Special Topics

4-2
Resampling
The toolbox provides a number of functions that resample a signal at a higher
or lower rate.

The resample function changes the sampling rate for a sequence to any rate
that is a ratio of two integers. The basic syntax for resample is

y = resample(x,p,q)

where the function resamples the sequence x at p/q times the original
sampling rate. The length of the result y is p/q times the length of x.

One resampling application is the conversion of digitized audio signals from
one sampling rate to another, such as from 48 kHz (the digital audio tape
standard) to 44.1 kHz (the compact disc standard).

The example file contains a length 4001 vector of speech sampled at 7418 Hz:

clear
load mtlb
whos

Name Size Bytes Class
 Fs 1x1 8 double array
 mtlb 4001x1 32008 double array

Grand total is 4002 elements using 32016 bytes

Fs

Operation Function

Apply FIR filter with resampling upfirdn

Cubic spline interpolation spline

Decimation decimate

Interpolation interp

Other 1-D interpolation interp1

Resample at new rate resample
6

Resampling
Fs =
 7418

To play this speech signal on a workstation that can only play sound at
8192 Hz, use the rat function to find integers p and q that yield the correct
resampling factor:

[p,q] = rat(8192/Fs,0.0001)

p =
 127
q =
 115

Since p/q*Fs = 8192.05 Hz, the tolerance of 0.0001 is acceptable; to resample
the signal at very close to 8192 Hz:

y = resample(mtlb,p,q);

resample applies a lowpass filter to the input sequence to prevent aliasing
during resampling. It designs this filter using the firls function with a Kaiser
window. The syntax

resample(x,p,q,l,beta)

controls the filter’s length and the beta parameter of the Kaiser window.
Alternatively, use the function intfilt to design an interpolation filter b and
use it with

resample(x,p,q,b)

The decimate and interp functions do the same thing as resample with p = 1
and q = 1, respectively. These functions provide different anti-alias filtering
options, and they incur a slight signal delay due to filtering. The interp
function is significantly less efficient than the resample function with q = 1.

The toolbox also contains a function, upfirdn, that applies an FIR filter to an
input sequence and outputs the filtered sequence at a sample rate different
than its original. See “Multirate Filter Bank Implementation” on page 1-20.

The standard MATLAB environment contains a function, spline, that works
with irregularly spaced data. The MATLAB function interp1 performs
interpolation, or table lookup, using various methods including linear and
cubic interpolation.
4-27

4 Special Topics

4-2
Cepstrum Analysis
Cepstrum analysis is a nonlinear signal processing technique with a variety of
applications in areas such as speech and image processing. The Signal
Processing Toolbox provides three functions for cepstrum analysis.

The complex cepstrum for a sequence x is calculated by finding the complex
natural logarithm of the Fourier transform of x, then the inverse Fourier
transform of the resulting sequence.

The toolbox function cceps performs this operation, estimating the complex
cepstrum for an input sequence. It returns a real sequence the same size as the
input sequence:

xhat = cceps(x)

For sequences that have roots on the unit circle, cepstrum analysis has
numerical problems. See Oppenheim and Schafer [2] for information.

The complex cepstrum transformation is central to the theory and application
of homomorphic systems, that is, systems that obey certain general rules of
superposition. See Oppenheim and Schafer [3] for a discussion of the complex
cepstrum and homomorphic transformations, with details on speech processing
applications.

Try using cceps in an echo detection application. First, create a 45 Hz sine
wave sampled at 100 Hz:

t = 0:0.01:1.27;
s1 = sin(2*pi*45*t);

Operation Function

Complex cepstrum cceps

Inverse complex cepstrum icceps

Real cepstrum rceps

x̂ 1
2π
------ X ejω()[]log ejωn ωd

π–

π

∫=
8

Cepstrum Analysis
Add an echo of the signal, with half the amplitude, 0.2 seconds after the
beginning of the signal.

s2 = s1 + 0.5*[zeros(1,20) s1(1:108)];

The complex cepstrum of this new signal is

c = cceps(s2);
plot(t,c)

Note that the complex cepstrum shows a peak at 0.2 seconds, indicating the
echo.

The real cepstrum of a signal x, sometimes called simply the cepstrum, is
calculated by determining the natural logarithm of magnitude of the Fourier
transform of x, then obtaining the inverse Fourier transform of the resulting
sequence.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-1.5

-1

-0.5

0

0.5

1

cx
1

2π
------ X ejω()log ejωn ωd

π–

π

∫=
4-29

4 Special Topics

4-3
The toolbox function rceps performs this operation, returning the real
cepstrum for a sequence x. The returned sequence is a real-valued vector the
same size as the input vector:

y = rceps(x)

By definition, you cannot reconstruct the original sequence from its real
cepstrum transformation, as the real cepstrum is based only on the magnitude
of the Fourier transform for the sequence (see Oppenheim and Schafer [3]). The
rceps function also returns a unique minimum-phase sequence that
has the same real cepstrum as x.. To obtain both the real cepstrum and
the minimum phase reconstruction for a sequence, use

[y,ym] = rceps(x)

where y is the real cepstrum and ym is the minimum phase reconstruction of x.
The following example shows that one output of rceps is a unique
minimum-phase sequence with the same real cepstrum as x.

y = [4 1 5]; % Non-minimum phase sequence
[xhat,yhat] = rceps(y);
xhat2= rceps(yhat);
[xhat' xhat2']

ans =
 1.6225 1.6225
 0.3400 0.3400
 0.3400 0.3400

Inverse Complex Cepstrum
To invert the complex cepstrum, use the icceps function. Inversion is
complicated by the fact that the cceps function performs a data dependent
phase modification so that the unwrapped phase of its input is continuous at
zero frequency. The phase modification is equivalent to an integer delay. This
delay term is returned by cceps if you ask for a second output. For example:

x = 1:10;
[xhat,delay] = cceps(x)

xhat =
 Columns 1 through 7
 2.2428 -0.0420 -0.0210 0.0045 0.0366 0.0788 0.1386
0

Cepstrum Analysis
 Columns 8 through 10
 0.2327 0.4114 0.9249

delay =
 1
4-31

4 Special Topics

4-3
To invert the complex cepstrum, use icceps with the original delay parameter:

icc = icceps(xhat,2)

ans =
 Columns 1 through 7
 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000
 Columns 8 through 10
 9.0000 10.0000 1.0000

As shown in the above example, with any modification of the complex
cepstrum, the original delay term may no longer be valid. You will not be able
to invert the complex cepstrum exactly.
2

FFT-Based Time-Frequency Analysis
FFT-Based Time-Frequency Analysis
The Signal Processing Toolbox provides a function, spectrogram, that returns
the time-dependent Fourier transform for a sequence, or displays this
information as a spectrogram. The Toolbox also inclues a spectrogram demo.
The time-dependent Fourier transform is the discrete-time Fourier transform
for a sequence, computed using a sliding window. This form of the Fourier
transform, also known as the short-time Fourier transform (STFT), has
numerous applications in speech, sonar, and radar processing. The
spectrogram of a sequence is the magnitude of the time-dependent Fourier
transform versus time.

To display the spectrogram of a linear FM signal:

fs = 10000;
t = 0:1/fs:2;
x = vco(sawtooth(2*pi*t,.75),[0.1 0.4]*fs,fs);
spectrogram(x,kaiser(256,5),220,512,fs,'yaxis')

Note that the spectrogram display is an image, not a plot.
4-33

4 Special Topics

4-3
Median Filtering
The function medfilt1 implements one-dimensional median filtering, a
nonlinear technique that applies a sliding window to a sequence. The median
filter replaces the center value in the window with the median value of all the
points within the window [5]. In computing this median, medfilt1 assumes
zeros beyond the input points.

When the number of elements n in the window is even, medfilt1 sorts the
numbers, then takes the average of the (n-1)/2 and (n-1)/2 + 1 elements.

Two simple examples with fourth- and third-order median filters are

medfilt1([4 3 5 2 8 9 1],4)

ans =

 1.500 3.500 3.500 4.000 6.500 5.000 4.500

medfilt1([4 3 5 2 8 9 1],3)

ans =

 3 4 3 5 8 8 1

See the medfilt2 function in the Image Processing Toolbox documentation for
information on two-dimensional median filtering.
4

Communications Applications
Communications Applications
The toolbox provides three functions for communications simulation.

Modulation varies the amplitude, phase, or frequency of a carrier signal with
reference to a message signal. The modulate function modulates a message
signal with a specified modulation method.

The basic syntax for the modulate function is

y = modulate(x,fc,fs,'method',opt)

where:

• x is the message signal.

• fc is the carrier frequency.

• fs is the sampling frequency.

• method is a flag for the desired modulation method.

• opt is any additional argument that the method requires. (Not all
modulation methods require an option argument.)

The table below summarizes the modulation methods provided; see the
documentation for modulate, demod, and vco for complete details on each.

Operation Function

Modulation modulate

Demodulation demod

Voltage controlled oscillation vco

Method Description

amdsb-sc or
am

Amplitude modulation, double side-band, suppressed
carrier

amdsb-tc Amplitude modulation, double side-band, transmitted
carrier
4-35

4 Special Topics

4-3
If the input x is an array rather than a vector, modulate modulates each
column of the array.

To obtain the time vector that modulate uses to compute the modulated signal,
specify a second output parameter:

[y,t] = modulate(x,fc,fs,'method',opt)

The demod function performs demodulation, that is, it obtains the original
message signal from the modulated signal:

The syntax for demod is

x = demod(y,fc,fs,'method',opt)

demod uses any of the methods shown for modulate, but the syntax for
quadrature amplitude demodulation requires two output parameters:

[X1,X2] = demod(y,fc,fs,'qam')

If the input y is an array, demod demodulates all columns.

Try modulating and demodulating a signal. A 50 Hz sine wave sampled at
1000 Hz is

t = (0:1/1000:2);
x = sin(2*pi*50*t);

amssb Amplitude modulation, single side-band

fm Frequency modulation

pm Phase modulation

ppm Pulse position modulation

pwm Pulse width modulation

qam Quadrature amplitude modulation

Method Description
6

Communications Applications
With a carrier frequency of 200 Hz, the modulated and demodulated versions
of this signal are

y = modulate(x,200,1000,'am');
z = demod(y,200,1000,'am');

To plot portions of the original, modulated, and demodulated signal:

figure; plot(t(1:150),x(1:150)); title('Original Signal');
figure; plot(t(1:150),y(1:150)); title('Modulated Signal');
figure; plot(t(1:150),z(1:150)); title('Demodulated Signal');
4-37

4 Special Topics

4-3
8

Communications Applications
Note The demodulated signal is attenuated because demodulation includes
two steps: multiplication and lowpass filtering. The multiplication produces a
component with frequency centered at 0 Hz and a component with frequency
at twice the carrier frequency. The filtering removes the higher frequency
component of the signal, producing the attenuated result.

The voltage controlled oscillator function vco creates a signal that oscillates at
a frequency determined by the input vector. The basic syntax for vco is

y = vco(x,fc,fs)

where fc is the carrier frequency and fs is the sampling frequency.

To scale the frequency modulation range, use

y = vco(x,[Fmin Fmax],fs)
4-39

4 Special Topics

4-4
In this case, vco scales the frequency modulation range so values of x on the
interval [-1 1] map to oscillations of frequency on [Fmin Fmax].

If the input x is an array, vco produces an array whose columns oscillate
according to the columns of x.

See “FFT-Based Time-Frequency Analysis” on page 4-33 for an example using
the vco function.
0

Deconvolution
Deconvolution
Deconvolution, or polynomial division, is the inverse operation of convolution.
Deconvolution is useful in recovering the input to a known filter, given the
filtered output. This method is very sensitive to noise in the coefficients,
however, so use caution in applying it.

The syntax for deconv is

[q,r] = deconv(b,a)

where b is the polynomial dividend, a is the divisor, q is the quotient, and r is
the remainder.

To try deconv, first convolve two simple vectors a and b (see Chapter 1, “Signal
Processing Basics” for a description of the convolution function):

a = [1 2 3];
b = [4 5 6];
c = conv(a,b)

c =
4 13 28 27 18

Now use deconv to deconvolve b from c:

[q,r] = deconv(c,a)

q =
4 5 6

r =
0 0 0 0 0
4-41

4 Special Topics

4-4
Specialized Transforms
In addition to the discrete Fourier transform (see fft), the Signal Processing
Toolbox and the MATLAB environment together provide the following
transform functions:

• The chirp z-transform (CZT), useful in evaluating the z-transform along
contours other than the unit circle. The chirp z-transform is also more
efficient than the DFT algorithm for the computation of prime-length
transforms, and it is useful in computing a subset of the DFT for a sequence.

• The discrete cosine transform (DCT), closely related to the DFT. The DCT’s
energy compaction properties are useful for applications like signal coding.

• The Hilbert transform, which facilitates the formation of the analytic signal.
The analytic signal is useful in the area of communications, particularly in
bandpass signal processing.

Chirp z-Transform
The chirp z-transform, or CZT, computes the z-transform along spiral contours
in the z-plane for an input sequence. Unlike the DFT, the CZT is not
constrained to operate along the unit circle, but can evaluate the z-transform
along contours described by

where A is the complex starting point, W is a complex scalar describing the
complex ratio between points on the contour, and M is the length of the
transform.

One possible spiral is

A = 0.8*exp(j*pi/6);
W = 0.995*exp(-j*pi*.05);
M = 91;
z = A*(W.^(-(0:M-1)));
zplane([],z.')

zl AW l– l 0 … M 1–, ,=,=
2

Specialized Transforms
czt(x,M,W,A) computes the z-transform of x on these points.

An interesting and useful spiral set is m evenly spaced samples around the unit
circle, parameterized by A = 1 and W = exp(-j*pi/M). The z-transform on this
contour is simply the DFT, obtained by

y = czt(x)

czt may be faster than the fft function for computing the DFT of sequences
with certain odd lengths, particularly long prime-length sequences.

-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

Real part

Im
ag

in
ar

y
pa

rt
4-43

4 Special Topics

4-4
Discrete Cosine Transform
The toolbox function dct computes the unitary discrete cosine transform, or
DCT, for an input vector or matrix. Mathematically, the unitary DCT of an
input sequence x is

where

The DCT is closely related to the discrete Fourier transform; the DFT is
actually one step in the computation of the DCT for a sequence. The DCT,
however, has better energy compaction properties, with just a few of the
transform coefficients representing the majority of the energy in the sequence.
The energy compaction properties of the DCT make it useful in applications
such as data communications.

The function idct computes the inverse DCT for an input sequence,
reconstructing a signal from a complete or partial set of DCT coefficients. The
inverse discrete cosine transform is

where

y k() w k() x n() π 2n 1–() k 1–()
2N

---cos

n 1=

N

∑ k 1 … N, ,=,=

w k()

1
N

--------- k 1=,

2
N
---- 2 k N≤ ≤,

⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

x n() w k()y k() π 2n 1–() k 1–()
2N

---cos

k 1=

N

∑ n 1 … N, ,=,=

w n()

1
N

--------- n 1=,

2
N
---- 2 n N≤ ≤,

⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

4

Specialized Transforms
Because of the energy compaction mentioned above, it is possible to reconstruct
a signal from only a fraction of its DCT coefficients. For example, generate a
25 Hz sinusoidal sequence, sampled at 1000 Hz:

t = (0:1/999:1);
x = sin(2*pi*25*t);

Compute the DCT of this sequence and reconstruct the signal using only those
components with value greater than 0.1 (64 of the original 1000 DCT
coefficients):

y = dct(x) % Compute DCT
y2 = find(abs(y) < 0.9); % Use 17 coefficients
y(y2) = zeros(size(y2)); % Zero out points < 0.9
z = idct(y); % Reconstruct signal using inverse DCT

Plot the original and reconstructed sequences:

subplot(2,1,1); plot(t,x);
title('Original Signal')
subplot(2,1,2); plot(t,z), axis([0 1 -1 1])
title('Reconstructed Signal')

One measure of the accuracy of the reconstruction is

norm(x-z)/norm(x)

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1
Original Signal

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1
Reconstructed Signal
4-45

4 Special Topics

4-4
that is, the norm of the difference between the original and reconstructed
signals, divided by the norm of the original signal. In this case, the relative
error of reconstruction is 0.1443. The reconstructed signal retains
approximately 85% of the energy in the original signal.

Hilbert Transform
The toolbox function hilbert computes the Hilbert transform for a real input
sequence x and returns a complex result of the same length

y = hilbert(x)

where the real part of y is the original real data and the imaginary part is the
actual Hilbert transform. y is sometimes called the analytic signal, in reference
to the continuous-time analytic signal. A key property of the discrete-time
analytic signal is that its z-transform is 0 on the lower half of the unit circle.
Many applications of the analytic signal are related to this property; for
example, the analytic signal is useful in avoiding aliasing effects for bandpass
sampling operations. The magnitude of the analytic signal is the complex
envelope of the original signal.

The Hilbert transform is related to the actual data by a 90° phase shift; sines
become cosines and vice versa. To plot a portion of data (solid line) and its
Hilbert transform (dotted line):

t = (0:1/1023:1);
x = sin(2*pi*60*t);
y = hilbert(x);
plot(t(1:50),real(y(1:50))), hold on
plot(t(1:50),imag(y(1:50)),':'), hold off
6

Specialized Transforms
The analytic signal is useful in calculating instantaneous attributes of a time
series, the attributes of the series at any point in time. The instantaneous
amplitude of the input sequence is the amplitude of the analytic signal. The
instantaneous phase angle of the input sequence is the (unwrapped) angle of
the analytic signal; the instantaneous frequency is the time rate of change of
the instantaneous phase angle. You can calculate the instantaneous frequency
using the MATLAB function, diff.

0 0.01 0.02 0.03 0.04 0.05
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

4-47

4 Special Topics

4-4
Selected Bibliography
[1] Kay, S.M. Modern Spectral Estimation. Englewood Cliffs, NJ: Prentice Hall,
1988.

[2] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing.
Englewood Cliffs, NJ: Prentice Hall, 1989.

[3] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing.
Englewood Cliffs, NJ: Prentice Hall, 1975, Section 10.5.3.

[4] Parks, T.W., and C.S. Burrus. Digital Filter Design. New York: John Wiley
& Sons, 1987.

[5] Pratt,W.K. Digital Image Processing. New York: John Wiley & Sons, 1991.
8

5

FDATool: A Filter Design
and Analysis GUI

The following chapter describes the Filter Design and Analysis Tool (FDATool) and provides a
detailed example showing how to use this Graphical User Interface.

Overview (p. 5-2) Introduction to the tool

Opening FDATool (p. 5-7) How to start the tool

Choosing a Response Type (p. 5-8) Setting the filter response type

Choosing a Filter Design Method (p. 5-9) Selecting a design method

Setting the Filter Design Specifications (p. 5-10) Setting the filter parameters

Computing the Filter Coefficients (p. 5-14) Calculating the filter

Analyzing the Filter (p. 5-15) Tools for analyzing the filter

Editing the Filter Using the Pole/Zero Editor
(p. 5-22)

Changing the filter by changing poles or zeros

Converting the Filter Structure (p. 5-26) Changing the filter structure

Importing a Filter Design (p. 5-29) Bringing a filter design into the tool

Exporting a Filter Design (p. 5-32) Sending the filter design outside the tool

Generating a C Header File (p. 5-40) Create C code of the filter design

Generating an M-File (p. 5-43) Creating MATLAB code of the filter design

Managing Filters in the Current Session (p. 5-44) Working with multiple filters

Saving and Opening Filter Design Sessions
(p. 5-46)

Working with tool sessions

5 FDATool: A Filter Design and Analysis GUI

5-2
Overview
The Filter Design and Analysis Tool (FDATool) is a powerful user interface for
designing and analyzing filters quickly. FDATool enables you to design digital
FIR or IIR filters by setting filter specifications, by importing filters from your
MATLAB workspace, or by adding, moving or deleting poles and zeros.
FDATool also provides tools for analyzing filters, such as magnitude and phase
response and pole-zero plots. FDATool seamlessly integrates additional
functionality from other MathWorks products as described in the following
table.

Product Added Features

Embedded Target for Texas
Instruments C6000™ DSP

Download code to C6000 DSP target
board

Filter Design HDL Coder Generate synthesizable VHDL or
Verilog for fixed-point filters

Filter Design Toolbox - Advanced FIR and IIR design
techniques (see “Advanced Filter
Design Methods” on page 5-3)
- Filter transformations
- Multirate filters
- Fixed-point filters (available only
with the Fixed-Point Toolbox)

Link for Code Composer Studio™
Development Tools

Export code usable by Code Composer
Studio

Signal Processing Blockset Generate equivalent Signal
Processing Blockset block for the
filter

Simulink Generate filters from atomic
Simulink blocks

Overview
Filter Design Methods
FDATool gives you access to the following filter design methods in the Signal
Processing Toolbox.

When using the window method in FDATool, all window functions in the Signal
toolbox are available, and you can specify a user-defined window by entering
its function name and input parameter.

Advanced Filter Design Methods
The following advanced filter design methods are available if you have the
Filter Design Toolbox.

Design Method Function

Butterworth butter

Chebyshev Type I cheby1

Chebyshev Type II cheby2

Elliptic ellip

Maximally Flat maxflat

Equiripple firpm

Least-squares firls

Constrained least-squares fircls

Complex equiripple cfirpm

Window fir1

Design Method Function

Constrained equiripple FIR firceqrip

Constrained-band equiripple FIR fircband

Generalized remez FIR firgr
5-3

5 FDATool: A Filter Design and Analysis GUI

5-4
Using the Filter Design and Analysis Tool
There are different ways that you can design filters using the Filter Design and
Analysis Tool. For example:

• You can first choose a response type, such as bandpass, and then choose from
the available FIR or IIR filter design methods.

• You can specify the filter by its type alone, along with certain frequency- or
time-domain specifications such as passband frequencies and stopband
frequencies. The filter you design is then computed using the default filter
design method and filter order.

Analyzing Filter Responses
Once you have designed your filter, you can display the filter coefficients and
detailed filter information, export the coefficients to the MATLAB workspace,
and create a C header file containing the coefficients, and analyze different
filter responses in FDATool or in a separate Filter Visualization Tool (fvtool).
See “Analyzing the Filter” on page 5-15 for more information. The following
filter responses are available:

Equripple halfband FIR firhalfband

Least P-norm optimal FIR firlpnorm

Equiripple Nyquist FIR firnyquist

Interpolated FIR ifir

 IIR comb notching or peaking iircomb

Allpass filter (given group delay) iirgrpdelay

Least P-norm optimal IIR iirlpnorm

Constrained least P-norm IIR iirlpnormc

Second-order IIR notch iirnotch

Second-order IIR peaking (resonator) iirpeak

Design Method Function

Overview
• Magnitude response (freqz)

• Phase response (phasez)

• Group delay (grpdelay)

• Phase delay (phasedelay)

• Impulse response (impz)

• Step response (stepz)

• Pole-zero plots (zplane)

• Zero-phase response (zerophase)

Filter Design and Analysis Tool Panels
The Filter Design and Analysis Tool has sidebar buttons that display
particular panels in the lower half of the tool. The panels are

• Design Filter. See “Choosing a Filter Design Method” on page 5-9 for more
information. You use this panel to

- Design filters from scratch.

- Modify existing filters designed in FDATool.

- Analyze filters.

• Import filter. See “Importing a Filter Design” on page 5-29 for more
information. You use this panel to

- Import previously saved filters or filter coefficients that you have stored in
the MATLAB workspace.

- Analyze imported filters.

• Pole/Zero Editor. See “Editing the Filter Using the Pole/Zero Editor” on
page 5-22. You use this panel to add, delete, and move poles and zeros in your
filter design.
5-5

5 FDATool: A Filter Design and Analysis GUI

5-6
If you also have the Filter Design Toolbox installed, additional panels are
available:

• Set quantization parameters — Use this panel to quantize
double-precision filters that you design in FDATool, quantize
double-precision filters that you import into FDATool, and analyze
quantized filters.

• Transform filter — Use this panel to change a filter from one response type
to another.

• Multirate filter design — Use this panel to create a multirate filter from
your existing FIR design, create CIC filters, and and linear and hold
interpolators.

If you have Simulink® installed, this panel is available:

• Realize Model — Use this panel to create a Simulink block containing the
filter structure. See “Exporting to Simulink” on page 5-36 for information.

Getting Help
At any time, you can right-click or click the What’s this? button, , to get
information on the different parts of the tool. You can also use the Help menu
to see complete Help information.

Opening FDATool
Opening FDATool
To open the Filter Design and Analysis Tool (FDATool), type

fdatool

The Filter Design and Analysis Tool opens with the Design Filter panel
displayed.

Note If you are viewing this online, click in the figure below to jump to a
description of the procedure for that area of the figure.
5-7

5 FDATool: A Filter Design and Analysis GUI

5-8
Choosing a Response Type
You can choose from several response types:

• Lowpass

• Raised cosine

• Highpass

• Bandpass

• Bandstop

• Differentiator

• Multiband

• Hilbert transformer

• Arbitrary magnitude

Additional response types are available if you have the Filter Design Toolbox
installed.

To design a bandpass filter, select the radio button next to Bandpass in the
Response Type region of the GUI.

Note Not all filter design methods are available for all response types. Once
you choose your response type, this may restrict the filter design methods
available to you. Filter design methods that are not available for a selected
response type are removed from the Design Method region of the GUI.

Choosing a Filter Design Method
Choosing a Filter Design Method
You can use the default filter design method for the response type that you’ve
selected, or you can select a filter design method from the available FIR and IIR
methods listed in the GUI.

To select the Remez algorithm to compute FIR filter coefficients, select the FIR
radio button and choose Equiripple from the list of methods.
5-9

5 FDATool: A Filter Design and Analysis GUI

5-1
Setting the Filter Design Specifications
The filter design specifications that you can set vary according to response type
and design method. For example, to design a bandpass filter, you can enter

• “Filter Order” on page 5-10

• “Options” on page 5-11

• “Bandpass Filter Frequency Specifications” on page 5-12

• “Bandpass Filter Magnitude Specifications” on page 5-13

The display region illustrates filter specifications when you select Filter
Specifications from the Analysis menu or when you click the Filter
Specifications toolbar button.

You can also view the filter specifications on the Magnitude plot of a designed
filter by selecting Specification Mask from the View menu.

Filter Order
You have two mutually exclusive options for determining the filter order when
you design an equiripple filter:

• Specify order: You enter the filter order in a text box.

• Minimum order: The filter design method determines the minimum order
filter.

Select the Minimum order radio button for this example.
0

Setting the Filter Design Specifications
Note that filter order specification options depend on the filter design method
you choose. Some filter methods may not have both options available.

Options
The available options depend on the selected filter design method. Only the
FIR Equiripple and FIR Window design methods have settable options. For
FIR Equiripple, the option is a Density Factor. See firpm for more
information. For FIR Window the options are Scale Passband, Window
selection, and for the following windows, a settable parameter

You can view the window in the Window Visualization Tool (wvtool) by clicking
the View button.

For this example, set the Density factor to 16.

Window Parameter

Chebyshev (chebwin) Sidelobe attenuation

Gaussian (gausswin) Alpha

Kaiser (kaiser) Beta

Tukey (tukeywin) Alpha

User Defined Function Name, Parameter
5-11

5 FDATool: A Filter Design and Analysis GUI

5-1
Bandpass Filter Frequency Specifications
For a bandpass filter, you can set

• Units of frequency:

- Hz

- kHz

- MHz

- Normalized (0 to 1)

• Sampling frequency

• Passband frequencies

• Stopband frequencies

You specify the passband with two frequencies. The first frequency determines
the lower edge of the passband, and the second frequency determines the upper
edge of the passband.

Similarly, you specify the stopband with two frequencies. The first frequency
determines the upper edge of the first stopband, and the second frequency
determines the lower edge of the second stopband.

For this example:

• Keep the units in Hz (default).

• Set the sampling frequency (Fs) to 2000 Hz.

• Set the end of the first stopband (Fstop1) to 200 Hz.

• Set the beginning of the passband (Fpass1) to 300 Hz.

• Set the end of the passband (Fpass2) to 700 Hz.

• Set the beginning of the second stopband (Fstop2) to 800 Hz.
2

Setting the Filter Design Specifications
Bandpass Filter Magnitude Specifications
For a bandpass filter, you can specify the following magnitude response
characteristics:

• Units for the magnitude response (dB or linear)

• Passband ripple

• Stopband attenuation

For this example:

• Keep Units in dB (default).

• Set the passband ripple (Apass) to 0.1 dB.

• Set the stopband attenuation for both stopbands (Astop1, Astop2) to 75 dB.
5-13

5 FDATool: A Filter Design and Analysis GUI

5-1
Computing the Filter Coefficients
Now that you’ve specified the filter design, click the Design Filter button to
compute the filter coefficients.

Notice that the Design Filter button is disabled once you’ve computed the
coefficients for your filter design. This button is enabled again once you make
any changes to the filter specifications.
4

Analyzing the Filter
Analyzing the Filter
Once you’ve designed the filter, you can view the following filter response
characteristics in the display region or in a separate window (see “Displaying
the Response in FVTool” on page 5-20):

• Magnitude response

• Phase response

• Magnitude and Phase responses

• Group delay response

• Phase delay response

• Impulse response

• Step response

• Pole-zero plot

• Zero-phase response—available from the y-axis context menu in a
Magnitude or Magnitude and Phase response plot.

You can display two responses in the same plot by selecting Overlay Analysis
from the Analysis menu and selecting an available response. A second y-axis
is added to the right side of the response plot. (Note that not all responses can
be overlaid on each other.)

You can also display the filter coefficients and detailed filter information in this
region.

For all the analysis methods, except zero-phase response, you can access them
from the Analysis menu, the Analysis Parameters dialog box from the context
menu, or by using the toolbar buttons. For zero-phase, right-click on the y-axis
of the plot and select Zero-phase from the context menu.

For example, to look at the filter’s magnitude response, select the Magnitude
Response button on the toolbar.
5-15

5 FDATool: A Filter Design and Analysis GUI

5-1
You can also overlay the filter specifications on the Magnitude plot by selecting
Specification Mask from the View menu.

Note You can use specification masks in FVTool only if FVTool was launched
from FDATool.
6

Analyzing the Filter
Using Data Markers
You can click on the response to add plot data markers that display information
about particular points on the response.

To move a data marker, grab its black square at the corner of the marker.
Dragging the marker with your mouse changes the Frequency and Magnitude
values.

To change the properties of a data marker, right-click on the marker to display
the properties menu:

• Alignment—Change the position of the marker. Available options are
top-right, top-left, bottom-right, and bottom-left.

• Font Size—Change the font size.

• Movable—Allow the marker to be moved on the response.

• Interpolation—Select Nearest to force the marker to snap to nearest point
along the plotted curve. Select Linear to interpolate between points along
the plotted curve.

• Track Mode—Restrict the marker to be movable in the x, y, or xy
direction.

• Delete—Delete the selected marker.

• Delete all—Delete all markers.
5-17

5 FDATool: A Filter Design and Analysis GUI

5-1
Drawing Spectral Masks
To add spectral masks or rejection area lines to your magnitude plot, click
User-defined Spectral Mask from the View menu.

The mask is defined by a frequency vector and a magnitude vector. These
vectors must be the same length.

• Enable Mask — Select to turn on the mask display.

• Normalized Frequency — Select to normalize the frequency between 0 and
1 across the displayed frequency range.

• Frequency Vector — Enter a vector of x-axis frequency values.

• Magnitude Units — Select the desired magnitude units. These units should
match the units used in the magnitude plot.

• Magnitude Vector — Enter a vector of y-axis magnitude values.
8

Analyzing the Filter
The magnitude reponse below shows a spectral mask.

Changing the Sampling Frequency
To change the sampling frequency of your filter, right-click any filter response
plot and select Sampling Frequency from the context menu.

To change the filter name, type the new name in Filter name. (In fvtool, if
you have multiple filters, select the desired filter and then enter the new
name.)

To change the sampling frequency, select the desired unit from Units and enter
the sampling frequency in Fs. (For each filter in fvtool, you can specify a
5-19

5 FDATool: A Filter Design and Analysis GUI

5-2
different sampling frequency or you can apply the sampling frequency to all
filters.)

To save the displayed parameters as the default values to use when FDATool
or FVTool is opened, click Save as Default.

To restore the MATLAB defined default values, click Restore Original
Defaults.

Displaying the Response in FVTool
To display the filter response characteristics in a separate window, select
Filter Visualization Tool from the View menu (available if any analysis,
except the filter specifications, is in the display region) or click the Full View
Analysis button:

This launches the Filter Visualization Tool (fvtool).

Note If Filter Specifications are shown in the display region, clicking the
Full View Analysis toolbar button launches a MATLAB figure window
instead of FVTool. The associated menu item is Print to figure, which is
enabled only if the filter specifications are displayed.

You can use this tool to annotate your design, view other filter characteristics,
and print your filter response. You can link FDATool and FVTool so that
changes made in FDATool are immediately reflected in FVTool. See fvtool for
more information.
0

Analyzing the Filter
5-21

5 FDATool: A Filter Design and Analysis GUI

5-2
Editing the Filter Using the Pole/Zero Editor

Note You cannot generate an M-file (File->Generate M-file) if your filter
was designed or edited with the Pole/Zero Editor.

You can edit a designed or imported filter’s coefficients by moving, deleting, or
adding poles and/or zeros using the Pole/Zero Editor panel. Click the Pole/Zero
Editor button in the sidebar or select Pole/Zero Editor from the Edit menu to
display this panel.

Poles are shown using x symbols and zeros are shown using o symbols.

Plot mode buttons. Plot mode buttons are located to the left of the pole/zero plot.
Select one of the buttons to change the mode of the pole/zero plot.

Pole/Zero
Editor
2

Editing the Filter Using the Pole/Zero Editor
The following plot parameters and controls are located to the left of the
pole/zero plot and below the plot mode buttons.

• Filter gain—factor to compensate for the filter’s pole(s) and zero(s) gains

• Coordinates—units (Polar or Rectangular) of the selected pole or zero

• Magnitude—if polar coordinates is selected, magnitude of the selected pole
or zero

• Angle—if polar coordinates is selected, angle of selected pole(s) or zero(s)

• Real—if rectangular coordinates is selected, real component of selected
pole(s) or zero(s)

• Imaginary—if rectangular coordinates is selected, imaginary component of
selected pole or zero

• Section—for multisection filters, number of the current section

• Conjugate—creates a corresponding conjugate pole or zero or automatically
selects the conjugate pole or zero if it already exists.

• Auto update—immediately updates the displayed magnitude response
when poles or zeros are added, moved, or deleted.

The Pole-zero Editor on the Edit menu has items for selecting multiple
poles/zeros, for inverting and mirroring poles/zeros, and for deleting, scaling
and rotating poles/zeros.

Move
pole

Delete pole
or zero

Add
zero

Add
pole
5-23

5 FDATool: A Filter Design and Analysis GUI

5-2
Moving one of the zeros on the vertical axis produces the following result:

These items are enabled only
when one or more poles/zeros
are selected.
4

Editing the Filter Using the Pole/Zero Editor
• The selected zero pair is shown in green.

• When you select one of the zeros from a conjugate pair, the Conjugate check
box and the conjugate are automatically selected.

• The Magnitude Response plot updates immediately because Auto update
is active.
5-25

5 FDATool: A Filter Design and Analysis GUI

5-2
Converting the Filter Structure

Converting to a New Structure
You can use Edit > Convert Structure to convert the current filter to a new
structure. All filters can be converted to the following representations:

• Direct-form I

• Direct-form II

• Direct-form I transposed

• Direct-form II transposed

• Lattice ARMA

Note If you have installed the Filter Design Toolbox you will see additional
structures in the Convert structure dialog box.

In addition, the following conversions are available for particular classes of
filters:

• Minimum phase FIR filters can be converted to Lattice minimum phase

• Maximum phase FIR filters can be converted to Lattice maximum phase

• Allpass filters can be converted to Lattice allpass

• IIR filters can be converted to Lattice ARMA

Note Converting from one filter structure to another may produce a result
with different characteristics than the original. This is due to the computer’s
finite-precision arithmetic and the variations in the conversion’s round-off
computations.

For example:

• Select Convert Structure from the Edit menu to open the Convert
structure dialog box.

• Select Direct-form I in the list of filter structures.
6

Converting the Filter Structure
Converting to Second-Order Sections
You can use Convert to Second-order Sections on the Edit menu to store the
converted filter structure as a collection of second-order sections rather than as
a monolithic higher-order structure.

Note The following options are also used for the Edit menu Order and Scale
SOS, which you use to modify an SOS filter structure.

The following Scale options are available when converting a direct-form II
structure only:

• None (default)

• L-2 (L2 norm)

• L-infinity (L∞ norm)

The Direction (Up or Down) determines the ordering of the second-order
sections. The optimal ordering changes depending on the Scale option selected.

For example:

• Select Convert to Second-order Sections from the Edit menu to open the
Convert to SOS dialog box.

• Select L-infinity from the Scale menu for L∞ norm scaling.

• Leave Up as the Direction option.
5-27

5 FDATool: A Filter Design and Analysis GUI

5-2
Note To convert from second-order sections back to a single section, use
Convert to Single Section on the Edit menu.
8

Importing a Filter Design
Importing a Filter Design
The Import Filter panel allows you to import a filter. You can access this region
by clicking the Import Filter button in the sidebar.

The imported filter can be in any of the representations listed in the Filter
Structure pull-down menu and described in “Filter Structures” on page 5-30.
You can import a filter as second-order sections by selecting the check box.

Specify the filter coefficients in Numerator and Denominator, either by
entering them explicitly or by referring to variables in the MATLAB
workspace.

Select the frequency units from the following options in the Units menu, and
for any frequency unit other than Normalized, specify the value or MATLAB
workspace variable of the sampling frequency in the Fs field.

To import the filter, click the Import Filter button. The display region is
automatically updated when the new filter has been imported.

You can edit the imported filter using the Pole/Zero Editor panel (see “Editing
the Filter Using the Pole/Zero Editor” on page 5-22).
5-29

5 FDATool: A Filter Design and Analysis GUI

5-3
Filter Structures
The available filter structures are:

• Direct-form, which includes direct-form I, direct-form II, direct-form I
transposed, direct-form II transposed, and direc-form FIR

• Lattice, which includes lattice allpass, lattice MA min phase, lattice MA max
phase, and lattice ARMA

• Discrete-time filter (dfilt object)

The structure that you choose determines the type of coefficients that you need
to specify in the text fields to the right.

Direct-form
For direct-form I, direct-form II, direct-form I transposed, and direct-form II
transposed, specify the filter by its transfer function representation

• The Numerator field specifies a variable name or value for the numerator
coefficient vector b, which contains m+1 coefficients in descending powers of z.

• The Denominator field specifies a variable name or value for the
denominator coefficient vector a, which contains n+1 coefficients in
descending powers of z. For FIR filters, the Denominator is 1.

Filters in transfer function form can be produced by all of the Signal Processing
Toolbox filter design functions (such as fir1, fir2, firpm, butter, yulewalk).
See “Transfer Function” on page 1-34 for more information.

Importing as second-order sections . For all direct-form structures, except
Direct-form FIR, you an import the filter in its second-order section
representation:

The Gain field specifies a variable name or a value for the gain g, and the SOS
Matrix field specifies a variable name or a value for the L-by-6 SOS matrix

H z() B z()
A z()
----------- b 1() b 2()z 1– b m 1+()z m–+ + +

a 1() a 2()z 1– a n 1+()z n–+ + +
---= =

H z() g Hk z()

k 1=

L

∏ g
b0k b1kz 1– b2kz 2–+ +

1 a1kz 1– a2kz 2–+ +
--

k 1=

L

∏= =
0

Importing a Filter Design
whose rows contain the numerator and denominator coefficients bik and aik of
the second-order sections of H(z).

Filters in second-order section form can be produced by functions such as
tf2sos, zp2sos, ss2sos, and sosfilt. See “Second-Order Sections (SOS)” on
page 1-39 for more information.

Lattice
For lattice allpass, lattice minimum and maximum phase, and lattice ARMA
filters, specify the filter by its lattice representation:

• For lattice allpass, the Lattice coeff field specifies the lattice (reflection)
coefficients, k(1) to k(N), where N is the filter order.

• For lattice MA (minimum or maximum phase), the Lattice coeff field
specifies the lattice (reflection) coefficients, k(1) to k(N), where N is the filter
order.

• For lattice ARMA, the Lattice coeff field specifies the lattice (reflection)
coefficients, k(1) to k(N), and the Ladder coeff field specifies the ladder
coefficients, v(1) to v(N+1), where N is the filter order.

Filters in lattice form can be produced by tf2latc. See “Lattice Structure” on
page 1-39 for more information.

Discrete-time Filter (dfilt object)
For Discrete-time filter, specify the name of the dfilt object. See dfilt for
more information.

Multirate Filter (mfilt object)
For Multirate filter, specify the name of the mfilt object. See mfilt in the
Filter Design Toolbox for more information.

SOS

b01 b11 b21 1 a11 a21

b02 b12 b22 1 a12 a22

b0L b1L b2L 1 a1L a2L

=

5-31

5 FDATool: A Filter Design and Analysis GUI

5-3
Exporting a Filter Design
You can save your filter design by

• “Exporting Coefficients or Objects to the Workspace” on page 5-32

• “Exporting Coefficients to an ASCII File” on page 5-34

• “Exporting Coefficients or Objects to a MAT-File” on page 5-34

• “Exporting to SPTool” on page 5-35

• “Exporting to Simulink” on page 5-36

You can also send your filter to a C header file or generate an M-file. The M-file
contains code that replicates the filter you designed. See the following sections:

• “Generating a C Header File” on page 5-40

• “Generating an M-File” on page 5-43

Exporting Coefficients or Objects to the Workspace
You can save the filter either as filter coefficients variables or as a dfilt or
mfilt filter object variable. (Note that you must have the Filter Design Toolbox
installed to save as an mfilt.) To save the filter to the MATLAB workspace:

1 Select Export from the File menu. The Export dialog box appears.

2 Select Workspace from the Export To menu.

3 Select Coefficients from the Export As menu to save the filter coefficients
or select Objects to save the filter in a filter object.

4 For coefficients, assign variable names using the Numerator (for FIR
filters) or Numerator and Denominator (for IIR filters), or SOS Matrix and
Scale Values (for IIR filters in second-order section form) text boxes in the
Variable Names region.

For objects, assign the variable name in the Discrete Filter (or Quantized
Filter) text box. If you have variables with the same names in your
workspace and you want to overwrite them, select the Overwrite Variables
check box.

5 Click the Export button.
2

Exporting a Filter Design
5-33

5 FDATool: A Filter Design and Analysis GUI

5-3
Exporting Coefficients to an ASCII File
To save filter coefficients to a text file,

1 Select Export from the File menu. The Export dialog box appears.

2 Select Coefficients File (ASCII) from the Export To menu.

3 Click the Export button. The Export Filter Coefficients to .FCF File
dialog box appears.

4 Choose or enter a filename and click the Save button.

The coefficients are saved in the text file that you specified, and the MATLAB
Editor opens to display the file. The text file also contains comments with the
MATLAB version number, the Signal Processing Toolbox version number, and
filter information.

Exporting Coefficients or Objects to a MAT-File
To save filter coefficients or a filter object as variables in a MAT-file:

1 Select Export from the File menu. The Export dialog box appears.

2 Select MAT-file from the Export To menu.

3 Select Coefficients from the Export As menu to save the filter coefficients
or select Objects to save the filter in a filter object.

4 For coefficients, assign variable names using the Numerator (for FIR
filters) or Numerator and Denominator (for IIR filters), or SOS Matrix and
Scale Values (for IIR filters in second-order section form) text boxes in the
Variable Names region.

For objects, assign the variable name in the Discrete Fitler (or Quantized
Filter) text box. If you have variables with the same names in your
workspace and you want to overwrite them, select the Overwrite Variables
check box.

5 Click the Export button. The Export to a MAT-File dialog box appears.

6 Choose or enter a filename and click the Save button.
4

Exporting a Filter Design
See also “Saving and Opening Filter Design Sessions” on page 5-46.

Exporting to SPTool
You may want to use your designed filter in SPTool to do signal processing and
analysis.

Note The magnitude response you see in SPTool will differ from the one in
FDATool because the sampling frequency is preset at Fs = 2 when a filter is
exported from FDATool to SPTool.

1 Select Export from the File menu. The Export dialog box appears.

2 Select SPTool from the Export To menu.

3 Select Coefficients from the Export As menu to save the filter coefficients
or select Objects to save the filter in a filter object.

4 Assign the variable name in the Discrete Filter (or Quantized Filter) text
box. If you have variables with the same names in your workspace and you
want to overwrite them, select the Overwrite Variables check box.

5 Click the Export button.

SPTool opens and the current FDATool filter appears in the Filter area list
as the specified variable name followed by (Imported).

Note If you are using the Filter Design Toolbox and export a quantized filter,
only the values of its quantized coefficients are exported. The reference
coefficients are not exported. SPTool does not restrict the coefficient values, so
if you edit them in SPTool by moving poles or zeros, the filter will no longer be
in quantized form.
5-35

5 FDATool: A Filter Design and Analysis GUI

5-3
Exporting to Simulink
If you have Simulink installed, you can export a Simulink block of your filter
design and insert it into a new or existing Simulink model.

You can export a filter designed using any filter design method available in
FDATool.

Note If you have the Filter Design Toolbox, you can export a CIC filter to
Simulink, if you also have these toolboxes and blocksets installed in addition
to Simulink: the Fixed-Point Toolbox and the Signal Processing Blockset.

1 After designing your filter, click the Realize Model sidebar button or select
Export to Simulink Model from the File menu. The Realize Model panel is
displayed.

2 Specify the name to use for your block in Block name.

3 Select the Destination — Current to insert the block into the current (most
recently selected) Simulink model or New to open a new model.

4 If you want to overwrite a block previously created from this panel, check
Overwrite generated ‘Filter’ block.
6

Exporting a Filter Design
Note If you have the Signal Processing Blockset installed, a Build model
using basic elements check box is included. If you deselect it, a Digital Filter
block is created instead of a subsystem block, which uses separate
subelements. See the Filter Realization Wizard and Choosing Between Filter
Design Blocks in the Signal Processing Blockset documentation for
information.

5 Select the desired optimization(s) for your block:

• Optimize for zero gains — removes zero-valued gain paths from the filter
structure.

• Optimize for unity gains — substitutes a wire (short circuit) for gains equal
to 1 in the filter structure.

• Optimize for negative gains — substitutes a wire (short circuit) for gains
equal to -1 and changes corresponding additions to substractions in the filter
structure.

• Optimize delay chains — substitutes delay chains composed of n unit
delays with a single delay of n.
5-37

5 FDATool: A Filter Design and Analysis GUI

5-3
The following illustration shows the effects of each optimization:

6 Click the Realize Model button to create the filter block. The filter is
implemented as a subsytem block using Sum, Gain, and Integer Delay
blocks.

Optimize delay chains

Optimize for negative gains

Optimize for zero gains

Optimize for unity gains
8

Exporting a Filter Design
If you double-click the Filter block in Simulink, the filter structure is displayed.
The following figure shows the first section of the default four-section, direct
form II filter.
5-39

5 FDATool: A Filter Design and Analysis GUI

5-4
Generating a C Header File
You may want to include filter information in an external C program. To create
a C header file with variables that contain filter parameter data, follow this
procedure:

1 Select Generate C Header from the Targets menu. The Generate C
Header dialog box appears.
0

Generating a C Header File
2 Enter the variable names to be used in the C header file. The particular filter
structure determines the variables that are created in the file

*length variables contain the total number of coefficients of that type.

Note Variable names cannot be C language reserved words, such as “for.”

3 Select Export Suggested to use the suggested data type or select Export As
and select the desired data type from the pull-down.

Note If you do not have the Filter Design Toolbox installed, selecting any
data type other than double-precision floating point results in a filter that
does not exactly match the one you designed in the FDATool. This is due to
rounding and truncating differences.

Filter Structure Variable Parameter

Direct-form I
Direct-form II
Direct-form I transposed
Direct-form II transposed

Numerator, Numerator length*,
Denominator, Denominator length*, and
Number of sections (inactive if filter has
only one section)

Lattice ARMA Lattice coeffs, Lattice coeffs length*,
Ladder coeffs, Ladder coeffs length*,
Number of sections (inactive if filter has
only one section)

Lattice MA Lattice coeffs, Lattice coeffs length*, and
Number of sections (inactive if filter has
only one section)

Direct-form FIR
Direct-form FIR transposed

Numerator, Numerator length*, and
Number of sections (inactive if filter has
only one section)
5-41

5 FDATool: A Filter Design and Analysis GUI

5-4
4 Click OK to save the file and close the dialog box or click Apply to save the
file, but leave the dialog box open for additional C header file definitions.
2

Generating an M-File
Generating an M-File
You can generate an M-file that contains all the code used to create the filter
you designed in FDATool. Select Generate M-file from the File menu and
specify the filename in the Generate M-file dialog box.

Note You cannot generate an M-file (File > Generate M-file) if your filter
was designed or edited with the Pole/Zero Editor.

The following is a sample generated M-file of the default FDATool filter.

function Hd = untitled
%UNTITLED Returns a discrete-time filter object
%
% M-file generated by MATLAB(R) 6.5 and the Signal Processing
% Toolbox 6.0.
%
% Generated on: 24-Oct-2002 09:46:59
%
% Remez FIR Lowpass filter designed using the firpm function.
% All frequency values are in Hz.
Fs = 48000; % Sampling Frequency

Fpass = 9600; % Passband Frequency
Fstop = 12000; % Stopband Frequency
Dpass = 0.057501127785; % Passband Ripple
Dstop = 0.0001; % Stopband Attenuation
dens = 16; % Density Factor

% Calculate the order from the parameters using firpmord.
[N, Fo, Ao, W] = firpmord([Fpass, Fstop]/(Fs/2), [1 0], ...
[Dpass, Dstop]);

% Calculate the coefficients using the firpm function.
b = firpm(N, Fo, Ao, W, {dens});
Hd = dfilt.dffir(b);

% [EOF]
5-43

5 FDATool: A Filter Design and Analysis GUI

5-4
Managing Filters in the Current Session
You can store filters designed in the current FDATool session for cascading
together, exporting to FVTool or for recalling later in the same or future
FDATool sessions.

You store and access saved filters with the Store filter and Filter Manager
buttons, respectively, in the Current Filter Information pane.

Store Filter — displays the Store Filter dialog box in which you specify the
filter name to use when storing the filter in the Filter Manager. The default
name is the type of the filter.
4

Managing Filters in the Current Session
Filter Manager — opens the Filter Manager

The current filter is listed below the listbox. To change the current filter,
highlight the desired filter. If you select Edit current filter, FDATool displays
the currently selected filter specifications. If you make any changes to the
specifications, the stored filter is updated immediately.

To cascade two or more filters, highlight the desired filters and press Cascade.
A new cascaded filter is added to the Filter Manager.

To change the name of a stored filter, press Rename. The Rename filter dialog
box is displayed.

To remove a stored filter from the Filter Manager, press Delete.

To export one or more filters to FVTool, highlight the filter(s) and press
FVTool.
5-45

5 FDATool: A Filter Design and Analysis GUI

5-4
Saving and Opening Filter Design Sessions
You can save your filter design session as a MAT-file and return to the same
session another time.

Select the Save session button to save your session as a MAT-file. The first
time you save a session, a Save Filter Design File browser opens, prompting
you for a session name.

For example, save this design session as TestFilter.fda in your current
working directory by typing TestFilter in the File name field.

The .fda extension is added automatically to all filter design sessions you save.

Note You can also use the Save session and Save session as menu items in
the File menu to save a session. This dialog opens every time you select the
Save As menu item.

You can load existing sessions into the Filter Design and Analysis Tool by
selecting the Open session button, or Open Session from the File menu.
A Load Filter Design File browser opens that allows you to select from your
previously saved filter design sessions.
6

6

SPTool: A Signal
Processing GUI Suite

The following chapter describes the Signal Processing Tool (SPTool) and provides a detailed example
showing how to use this Graphical User Interface.

SPTool: An Interactive Signal Processing
Environment (p. 6-3)

Overview of the tool

Opening SPTool (p. 6-5) How to start the tool

Getting Context-Sensitive Help (p. 6-7) How to get help

Signal Browser (p. 6-8) Viewing signals

Filter Designer (p. 6-11) Designing filters

Filter Visualization Tool (p. 6-14) Viewing and analyzing filters

Spectrum Viewer (p. 6-18) Viewing spectra

Filtering and Analysis of Noise (p. 6-21) Full example using the tool

Exporting Signals, Filters, and Spectra (p. 6-33) Sending data out of the tool

Accessing Filter Parameters (p. 6-35) Using MATLAB to access saved filter parameters

Importing Filters and Spectra into SPTool
(p. 6-40)

Bringing data into the tool

Loading Variables from the Disk (p. 6-44) Bringing data from a disk into the tool

Selecting Signals, Filters, and Spectra in
SPTool (p. 6-45)

Selecting data

Editing Signals, Filters, or Spectra in SPTool
(p. 6-46)

Editing data

Designing a Filter with the Pole/Zero Editor
(p. 6-47)

Using the Pole/Zero Editor

6 SPTool: A Signal Processing GUI Suite

6-2
Redesigning a Filter Using the Magnitude Plot
(p. 6-50)

Changing the filter design using Magnitude plot

Setting Preferences (p. 6-51) Customizing the tool

Making Signal Measurements with Markers
(p. 6-53)

Measuring signals

SPTool: An Interactive Signal Processing Environment
SPTool: An Interactive Signal Processing Environment
SPTool is an interactive GUI for digital signal processing that can be used to

• Analyze signals

• Design filters

• Analyze (view) filters

• Filter signals

• Analyze signal spectra

You can accomplish these tasks using four GUIs that you access from within
SPTool:

• The Signal Browser is for analyzing signals. You can also play portions of
signals using your computer’s audio hardware.

• The Filter Designer is for designing or editing FIR and IIR digital filters.
Most of the Signal Processing Toolbox filter design methods available at the
command line are also available in the Filter Designer. Additionally, you can
design a filter by using the Pole/Zero Editor to graphically place poles and
zeros on the z-plane.

• The Filter Visualization Tool is for analyzing filter characteristics. See
“Filter Visualization Tool” on page 6-14.

• The Spectrum Viewer is for spectral analysis. You can use the Signal
Processing Toolbox spectral estimation methods to estimate the power
spectral density of a signal. See “Spectrum Viewer” on page 6-18.

SPTool Data Structures
You can use SPTool to analyze signals, filters, or spectra that you create at the
MATLAB command line.

You can bring signals, filters, or spectra from the MATLAB workspace into the
SPTool workspace using the Import item under the File menu. Signals, filters,
or spectra that you create in (or import into) the SPTool workspace exist as
MATLAB structures. See the MATLAB documentation for more information on
MATLAB structures.
6-3

6 SPTool: A Signal Processing GUI Suite

6-4
When you use the Export item under the File menu to save signals, filters, and
spectra that you create or modify in SPTool, these are also saved as MATLAB
structures.

Opening SPTool
Opening SPTool
To open SPTool, type

sptool

When you first open SPTool, it contains a collection of default signals, filters,
and spectra. You can specify your own preferences for what signals, filters, and
spectra you want to see when SPTool opens. See “Designing a Filter with the
Pole/Zero Editor” on page 6-47 for more details.

You can access these three GUIs from SPTool by selecting a signal, filter, or
spectrum and pressing the appropriate View button:

• Signal Browser

• Filter Visualization Tool

• Spectrum Viewer
6-5

6 SPTool: A Signal Processing GUI Suite

6-6
You can access the Filter Designer GUI by pressing the New button to create
a new filter or the Edit button to edit a selected filter. The Apply button applies
a selected filter to a selected signal.

The Create button opens the Spectrum Viewer and creates the power spectral
density of the selected signal. The Update button opens the Spectrum Viewer
for the selected spectrum.

Getting Context-Sensitive Help
Getting Context-Sensitive Help
To find information on a particular region of the Signal Browser, Filter
Designer, or Spectrum Viewer:

1 Press the What’s this? button, .

2 Click on the region of the GUI you want information on.

You can also use the What’s this? menu item in the Help menu to launch
context-sensitive help.
6-7

6 SPTool: A Signal Processing GUI Suite

6-8
Signal Browser
You can use the Signal Browser to display and analyze signals listed in the
Signals list box in SPTool.

Using the Signal Browser you can:

• Analyze and compare vector or array (matrix) signals.

• Zoom in on portions of signal data.

• Measure a variety of characteristics of signal data.

• Compare multiple signals.

• Play portions of signal data on audio hardware.

• Print signal plots.

Opening the Signal Browser
To open the Signal Browser from SPTool:

1 Select one or more signals in the Signals list in SPTool

2 Press the View button under the Signals list

Signal Browser
The Signal Browser has the following components:

• A display region for analyzing signals, including markers for measuring,
comparing, or playing signals

• A “panner” that displays the entire signal length, highlighting the portion
currently active in the display region

• A marker measurements area

• A toolbar with buttons for convenient access to frequently used functions

Icon Description

Print and print preview

Play an audio signal

Display array and complex signals
6-9

6 SPTool: A Signal Processing GUI Suite

6-1
Zoom the signal in and out

Select one of several loaded signals

Set the display color and line style of a signal

Toggle the markers on and off

Set marker types
(See “Making Signal Measurements with
Markers” on page 6-53)

Turn on the What’s This help

Icon Description
0

Filter Designer
Filter Designer
The Filter Designer provides an interactive graphical environment for the
design of digital IIR and FIR filters based on specifications that you enter on a
magnitude or pole-zero plot.

Note You can also use the Filter Design and Analysis Tool (FDATool)
described in Chapter 5, “FDATool: A Filter Design and Analysis GUI” for filter
design and analysis.

Filter Types
You can design filters of the following types using the Filter Designer:

• Bandpass

• Lowpass

• Bandstop

• Highpass

FIR Filter Methods
You can use the following filter methods to design FIR filters:

• Equiripple

• Least squares

• Window

IIR Filter Methods
You can use the following filter methods to design IIR filters:

• Butterworth

• Chebyshev Type I

• Chebyshev Type II

• Elliptic
6-11

6 SPTool: A Signal Processing GUI Suite

6-1
Pole/Zero Editor
You can use the Pole/Zero Editor to design arbitrary FIR and IIR filters by
placing and moving poles and zeros on the complex z-plane.

Spectral Overlay Feature
You can also superimpose spectra on a filter’s magnitude response to see if the
filtering requirements are met.

Opening the Filter Designer
Open the Filter Designer from SPTool by either:

• Pressing the New button in the Filters list in SPTool

• Selecting a filter you want to edit from the Filters list in SPTool, and then
pressing the Edit button

The Filter Designer has the following components:
2

Filter Designer
• A pull-down Filter menu for selecting a filter from the list in SPTool

• A Sampling Frequency text box

• A pull-down Algorithm menu for selecting a filter design method or a
pole-zero plot display

• A Specifications area for viewing or modifying a filter’s design parameters
or pole-zero locations

• A plot display region for graphically adjusting filter magnitude responses or
the pole-zero locations

• A Measurements area for viewing the response characteristics and stability
of the current filter

• A toolbar with the following buttons

Icon Description

Print and print preview

Zoom in and out

Passband view

Overlay spectrum

Turn on the What’s This help
6-13

6 SPTool: A Signal Processing GUI Suite

6-1
Filter Visualization Tool
You can use the Filter Visualization Tool (fvtool) to analyze the following
response characteristics of selected filters:

• Magnitude response

• Phase response

• Impulse response

• Step response

• Group delay

• Phase delay

• Pole and zero locations

• Detailed filter information

FVTool also provides features for

• Overlaying filter responses

• Zooming

• Measuring filter responses

• Modifying display parameters such as frequency ranges or magnitude units

If you start FVTool by clicking the SPTool Filter View button, that FVTool is
linked to SPTool. Any changes made in SPTool to the filter are immediately
reflected in FVTool. The FVTool title bar includes “SPTool” to indicate the link.

If you start an FVTool by clicking the New button or by selecting File > New
from within FVTool, that FVTool is a stand-alone version and is not linked to
SPTool.

Note Every time you click the Filter View button a new, linked FVTool
starts. This allows you to view multiple analyses simultaneously.

Opening the Filter Visualization Tool
You open FVTool from SPTool as follows.
4

Filter Visualization Tool
1 Select one or more filters in the Filters list in SPTool.

2 Click the View button under the Filters list.

When you first open FVTool, it displays the selected filter’s magnitude plot.

Filter Visualization Tool Components
FVTool has the following components:
6-15

6 SPTool: A Signal Processing GUI Suite

6-1
• Figure toolbar with the following icons.

• Analysis toolbar with the following icons

• A display area for analyzing one or more frequency response plots for the
selected filter(s)

Icon Description

Start a new unlinked FVTool

Print file and print preview

Toggle plot editing, add text, add arrow, and add line

Zoom in, zoom in x only, zoom in y only, and return to
full view

Toggle legend

Toggle grid

Icon Description

Display Magnitude plot

Display Phase plot

Display Magnitude and Phase plot

Display Group Delay plot

Display Phase Delay plot

Display Impulse Response

Display Step Response

Display Pole-Zero plot

Display filter coefficients

Display filter information
6

Filter Visualization Tool
Using Data Markers
In FVTool, you can use data markers to display information on particular
points in the response plot(s). See “Data Markers” in the FDATool online help
more information.

Analysis Parameters
In the plot area of any filter response plot, right-click and select Analysis
Parameters to display details about the displayed plot. See “Analysis
Parameters” in the FDATool online help for more information.

You can change any parameter in a linked FVTool, except the sampling
frequency. You can only change the sampling frequency using Sampling
Frequency in the SPTool Edit menu or the SPTool Filters Edit button.
6-17

6 SPTool: A Signal Processing GUI Suite

6-1
Spectrum Viewer
You can use the Spectrum Viewer for estimating and analyzing a signal’s
power spectral density (PSD). You can use the PSD estimates to understand a
signal’s frequency content.

The Spectrum Viewer provides the following functionality.

• Analyze and compare spectral density plots.

• Use different spectral estimation methods to create spectra:

- Burg (pburg)

- Covariance (pcov)

- FFT (fft)

- Modified covariance (pmcov)

- MTM (multitaper method) (pmtm)

- MUSIC (pmusic)

- Welch (pwelch)

- Yule-Walker AR (pyulear)

• Modify power spectral density parameters such as FFT length, window type,
and sample frequency.

• Print spectral plots.

Opening the Spectrum Viewer
To open the Spectrum Viewer and create a PSD estimate from SPTool:

1 Select a signal from the Signal list box in SPTool.

2 Press the Create button in the Spectra list.

3 Press the Apply button in the Spectrum Viewer.

To open the Spectrum Viewer with a PSD estimate already listed in SPTool:

1 Select a PSD estimate from the Spectra list box in SPTool.

2 Press the View button in the Spectra list.
8

Spectrum Viewer
For example:

1 Select mtlb in the default Signals list in SPTool.

2 Press the Create button in SPTool to open the Spectrum Viewer.

3 Press the Apply button in the Spectrum Viewer to plot the spectrum.

The Spectrum Viewer has the following components:

• A signal identification region that provides information about the signal
whose power spectral density estimate is displayed

• A Parameters region for modifying the PSD parameters

• A display region for analyzing spectra and an Options menu for modifying
display characteristics

• Spectrum management controls

- Inherit from menu to inherit PSD specifications from another PSD object
listed in the menu

- Revert button to revert to the named PSD’s original specifications
6-19

6 SPTool: A Signal Processing GUI Suite

6-2
- Apply button for creating or updating PSD estimates

• A toolbar with buttons for convenient access to frequently used functions

Icon Description

Print and print preview

Zoom the signal in and out

Select one of several loaded signals

Set the display color and line style of a signal

Toggle the markers on and off

Set marker types

Turn on the What’s This help
0

Filtering and Analysis of Noise
Filtering and Analysis of Noise
The following sections provide an example of using the GUI-based interactive
tools to:

• Design and implement an FIR bandpass digital filter

• Apply the filter to a noisy signal

• Analyze signals and their spectra

The steps include:

1 Creating a noisy signal in the MATLAB workspace and importing it into
SPTool

2 Designing a bandpass filter using the Filter Designer

3 Applying the filter to the original noise signal to create a bandlimited noise
signal

4 Comparing the time domain information of the original and filtered signals
using the Signal Browser

5 Comparing the spectra of both signals using the Spectrum Viewer

Step 1: Importing a Signal into SPTool
To import a signal into SPTool from the workspace or disk, the signal must be
either:

• A special MATLAB signal structure, such as that saved from a previous
SPTool session

• A signal created as a variable (vector or matrix) in the MATLAB workspace

For this example, create a new signal at the command line and then import it
as a structure into SPTool:

1 Create a random signal in the MATLAB workspace by typing

randn('state',0);
x = randn(5000,1);

2 If SPTool is not already open, open SPTool by typing
6-21

6 SPTool: A Signal Processing GUI Suite

6-2
sptool

The SPTool window is displayed.

3 Select Import from the File menu in SPTool. The Import to SPTool dialog
opens.

The variable x is displayed in the Workspace Contents list. (If it is not,
select the From Workspace radio button to display the contents of the
workspace.)

4 Select the signal and import it into the Data field:

a Make sure that Signal is selected in the Import As pull-down menu.

b Select the signal variable x in the Workspace Contents list.

c Click on the arrow to the left of the Data field or type x in the Data field.

d Type 5000 in the Sampling Frequency field.

e Name the signal by typing noise in the Name field.

f Press OK.

At this point, the signal noise[vector] is selected in SPTool’s Signals list.
2

Filtering and Analysis of Noise
Note You can import filters and spectra into SPTool in much the same way as
you import signals. See “Importing Filters and Spectra into SPTool” on
page 6-40 for specific details.

You can also import signals from MAT-files on your disk, rather than from the
workspace. See “Loading Variables from the Disk” on page 6-44 for more
information.

Type help sptool for information about importing from the command line.

Step 2: Designing a Filter
You can import an existing filter into SPTool, or you can design and edit a new
filter using the Filter Designer.

In this example:

1 Open a default filter in the Filter Designer.

2 Specify an equiripple bandpass FIR filter.

Opening the Filter Designer
To open the Filter Designer, press the New button in SPTool. This opens the
Filter Designer with a default filter named filt1.

Specifying the Bandpass Filter
Design an equiripple bandpass FIR filter with the following characteristics:

• Sampling frequency of 5000 Hz

• Stopband frequency ranges of [0 500] Hz and [1500 2500] Hz

• Passband frequency range of [750 1250] Hz

• Ripple in the passband of 0.01 dB

• Stopband attenuation of 75 dB

To modify your filter in the Filter Designer to meet these specifications:
6-23

6 SPTool: A Signal Processing GUI Suite

6-2
1 Change the filter sampling frequency to 5000 by entering this value in the
Sampling Frequency text box.

2 Select Equiripple FIR from the Algorithm list.

3 Select bandpass from the Type list.

4 Set the passband edge frequencies by entering 750 for Fp1 and 1250 for Fp2.

5 Set the stopband edge frequencies by entering 500 for Fs1 and 1500 for Fs2.

6 Type 0.01 into the Rp field and 75 into the Rs field.

Rp sets the maximum passband ripple and Rs sets the stopband attenuation
for the filter.

7 Press the Apply button to design the new filter.When the new filter is
designed, the magnitude response of the filter is displayed with a solid line
in the display region.
4

Filtering and Analysis of Noise
The resulting filter is an order-78 bandpass equiripple filter.

Note You can use the solid line in the plot to modify your filter design. See
“Redesigning a Filter Using the Magnitude Plot” on page 6-50 for more
information.

Step 3: Applying a Filter to a Signal
When you apply a filter to a signal, you create a new signal in SPTool
representing the filtered signal.

To apply the filter filt1 you just created to the signal noise:

1 Select SPTool from the Window menu in the Filter Designer.
6-25

6 SPTool: A Signal Processing GUI Suite

6-2
2 Select the signal noise[vector] from the Signals list and select the filter
(named filt1[design]) from the Filters list.

Press Apply to apply the filter filt1 to the signal noise. The Apply Filter
dialog box is displayed
.

3 Keep the default filter structure selected in the Algorithm list.

4 Name the new signal by typing blnoise in the Output Signal field in this
dialog box.
6

Filtering and Analysis of Noise
5 Press OK to close the Apply Filter dialog box.

The filter is applied to the selected signal and the filtered signal
blnoise[vector] is listed in the Signals list in SPTool.

Step 4: Analyzing a Signal
You can analyze and print signals using the Signal Browser. You can also play
the signals if your computer has audio output capabilities.

For example, compare the signal noise to the filtered signal blnoise:

1 Shift+click on the noise and blnoise signals in the Signals list of SPTool to
select both signals.

2 Press the View button under the Signals list.

The Signal Browser is activated and both signals are displayed in the
display region. (The names of both signals are shown above the display
region.) Initially, the original noise signal covers up the bandlimited
blnoise signal.

3 Push the selection button on the toolbar, , to select the blnoise signal.

The display area is updated. Now you can see the blnoise signal
superimposed on top of the noise signal. The signals are displayed in
different colors in both the display region and the panner. You can change
the color of the selected signal using the Line Properties button on the
toolbar, .
6-27

6 SPTool: A Signal Processing GUI Suite

6-2
Playing a Signal
When you press the Play button in the Signal Browser toolbar, , the active
signal is played on the computer’s audio hardware:

1 To hear a portion of the active (selected) signal

a Use the vertical markers to select a portion of the signal you want to play.
Vertical markers are enabled by the and buttons.

b Press the Play button.

2 To hear the other signal

a Select the signal as in step 3 above. You can also select the signal directly
in the display region.

b Press the Play button again.

Printing a Signal
You can print from the Signal Browser using the Print button, .
8

Filtering and Analysis of Noise
You can use the line display buttons to maximize the visual contrast between
the signals by setting the line color for noise to gray and the line color for blnoise
to white. Do this before printing two signals together.

Note You can follow the same rules to print spectra, but you can’t print filter
responses directly from SPTool.

Use the Signal Browser region in the Preferences dialog box in SPTool to
suppress printing of both the panner and the marker settings.

To print both signals, press the Print button in the Signal Browser toolbar.

Step 5: Spectral Analysis in the Spectrum Viewer
You can analyze the frequency content of a signal using the Spectrum Viewer,
which estimates and displays a signal’s power spectral density.

For example, to analyze and compare the spectra of noise and blnoise:

1 Create a power spectral density (PSD) object, spect1, that is associated with
the signal noise, and a second PSD object, spect2, that is associated with the
signal blnoise.
6-29

6 SPTool: A Signal Processing GUI Suite

6-3
2 Open the Spectrum Viewer to analyze both of these spectra.

3 Print both spectra.

Creating a PSD Object From a Signal

1 Click on SPTool, or select SPTool from the Window menu of any active open
GUI. SPTool is now the active window.

2 Select the noise[vector] signal in the Signals list of SPTool.

3 Press Create in the Spectra list.

The Spectrum Viewer is activated, and a PSD object (spect1) corresponding
to the noise signal is created in the Spectra list. The PSD is not computed
or displayed yet.

4 Press Apply in the Spectrum Viewer to compute and display the PSD
estimate spect1 using the default parameters.

The PSD of the noise signal is displayed in the display region. The
identifying information for the PSD’s associated signal (noise) is displayed
above the Parameters region.

The PSD estimate spect1 is within 2 or 3 dB of 0, so the noise has a fairly
“flat” power spectral density.

5 Follow steps 1 through 4 for the bandlimited noise signal blnoise to create a
second PSD estimate spect2.

The PSD estimate spect2 is flat between 750 and 1250 Hz and has 75 dB
less power in the stopband regions of filt1.

Opening the Spectrum Viewer with Two Spectra

1 Reactivate SPTool again, as in step 1 above.

2 Shift+click on spect1 and spect2 in the Spectra list to select them both.

3 Press View in the Spectra list to reactivate the Spectrum Viewer and
display both spectra together.
0

Filtering and Analysis of Noise
Printing the Spectra
Before printing the two spectra together, use the color and line style selection
button, , to differentiate the two plots by line style, rather than by color.

To print both spectra:

1 Press the Print Preview button, , in the toolbar on the Spectrum
Viewer.

2 From the Spectrum Viewer Print Preview window, drag the legend out of
the display region so that it doesn’t obscure part of the plot.

3 Press the Print button in the Spectrum Viewer Print Preview window.
6-31

6 SPTool: A Signal Processing GUI Suite

6-3
2

Exporting Signals, Filters, and Spectra
Exporting Signals, Filters, and Spectra
You can export SPTool signals, filters, and spectra as structures to the
MATLAB workspace or to your disk.

In each case you:

1 Select the items in SPTool you want to export.

2 Select Export from the File menu.

Opening the Export Dialog Box
To save the filter filt1 you just created in this example, open the Export
dialog box with filt1 preselected:

1 Select filt1 in the SPTool Filters list.

2 Select Export from the File menu.

The Export dialog box opens with filt1 preselected.
6-33

6 SPTool: A Signal Processing GUI Suite

6-3
Exporting a Filter to the MATLAB Workspace
To export the filter filt1 to the MATLAB workspace:

1 Select filt1 from the Export List and deselect all other items using
Ctrl+click.

2 Press the Export to Workspace button.
4

Accessing Filter Parameters
Accessing Filter Parameters
You can access filter parameters in the following two ways.

• “Accessing Filter Parameters in a Saved Filter”

• “Accessing Parameters in a Saved Spectrum”

Accessing Filter Parameters in a Saved Filter
The MATLAB structures created by SPTool have several associated fields,
many of which are also MATLAB structures. See the MATLAB documentation
for general information about MATLAB structures.

For example, after exporting a filter filt1 to the MATLAB workspace, type

filt1

to display the fields of the MATLAB filter structure. The tf, Fs, and specs
fields of the structure contain the information that describes the filter.

The tf Field: Accessing Filter Coefficients
The tf field is a structure containing the transfer function representation of
the filter. Use this field to obtain the filter coefficients;

• filt1.tf.num contains the numerator coefficients.

• filt1.tf.den contains the denominator coefficients.

The vectors contained in these structures represent polynomials in descending
powers of z. The numerator and denominator polynomials are used to specify
the transfer function

where:

• b is a vector containing the coefficients from the tf.num field.

• a is a vector containing the coefficients from the tf.den field.

• m is the numerator order.

• n is the denominator order.

H z() B z()
A z()
----------- b 1() b 2()z 1– b nb 1+()z m–+ + +

a 1() a 2()z 1– a na 1+()z n–+ + +
---= =
6-35

6 SPTool: A Signal Processing GUI Suite

6-3
You can change the filter representation from the default transfer function to
another form by using the tf2ss or tf2zp functions.

The Fs Field: Accessing Filter Sample Frequency
The Fs field contains the sampling frequency of the filter in hertz.

The specs Field: Accessing other Filter Parameters
The specs field is a structure containing parameters that you specified for the
filter design. The first field, specs.currentModule, contains a string
representing the most recent design method selected from the Filter Designer’s
Algorithm list before you exported the filter. The possible contents of the
currentModule field and the corresponding design methods are shown below.

Following the specs.currentModule field, there may be up to seven additional
fields, with labels such as specs.fdremez, specs.fdfirls, etc. The design
specifications for the most recently exported filter are contained in the field
whose label matches the currentModule string. For example, if the specs
structure is

filt1.specs

ans
currentModule: 'fdremez'
fdremez: [1x1 struct]

Contents of the currentModule field Design Method

fdbutter Butterworth IIR

fdcheby1 Chebyshev Type I IIR

fdcheby2 Chebyshev Type II IIR

fdellip Elliptic IIR

fdfirls Least Squares FIR

fdkaiser Kaiser Window FIR

fdremez Equiripple FIR
6

Accessing Filter Parameters
the filter specifications are contained in the fdremez field, which is itself a data
structure.

The specifications include the parameter values from the Specifications
region of the Filter Designer, such as band edges and filter order. For example,
the filter above has the following specifications stored in
filt1.specs.fdremez:

filt1.specs.fdremez

ans =
 setOrderFlag: 0
 type: 3
 f: [0 0.2000 0.3000 0.5000 0.6000 1]
 m: [6x1 double]
 Rp: 0.0100
 Rs: 75
 wt: [3.2371 1 3.2371]
 order: 78

Because certain filter parameters are unique to a particular design, this
structure has a different set of fields for each filter design.

The table below describes the possible fields associated with the filter design
specification field (the specs field) that can appear in the exported structure.

Parameter Description

Beta Kaiser window β parameter.

f Contains a vector of band-edge frequencies, normalized so
that 1 Hz corresponds to half the sample frequency.

Fpass Passband cutoff frequencies. Scalar for lowpass and
highpass designs, two-element vector for bandpass and
bandstop designs.

Fstop Stopband cutoff frequencies. Scalar for lowpass and
highpass designs, two-element vector for bandpass and
bandstop designs.
6-37

6 SPTool: A Signal Processing GUI Suite

6-3
Accessing Parameters in a Saved Spectrum
The following structure fields describe the spectra saved by SPTool.

m The response magnitudes corresponding to the band-edge
frequencies in f.

order Filter order.

Rp Passband ripple (dB)

Rs Stopband attenuation (dB)

setOrderFlag Contains 1 if the filter order was specified manually (i.e.,
the Minimum Order box in the Specifications region
was not selected). Contains 0 if the filter order was
computed automatically.

type Contains 1 for lowpass, 2 for highpass, 3 for bandpass, or
4 for bandstop.

w3db -3 dB frequency for Butterworth IIR designs.

wind Vector of Kaiser window coefficients.

Wn Cutoff frequency for the Kaiser window FIR filter when
setOrderFlag = 1.

wt Vector of weights, one weight per frequency band.

Field Description

P The spectral power vector.

f The spectral frequency vector.

Parameter Description
8

Accessing Filter Parameters
You can access the information in these fields as you do with every MATLAB
structure.

For example, if you export an SPTool PSD estimate spect1 to the workspace,
type

spect1.P

to obtain the vector of associated power values.

confid A structure containing the confidence intervals data

• The confid.level field contains the chosen
confidence level.

• The confid.Pc field contains the spectral power
data for the confidence intervals.

• The confid.enable field contains a 1 if confidence
levels are enabled for the power spectral density.

signalLabel The name of the signal from which the power spectral
density was generated.

Fs The associated signal’s sample rate.

Field Description
6-39

6 SPTool: A Signal Processing GUI Suite

6-4
Importing Filters and Spectra into SPTool
In addition to importing signals into SPTool, you can import filters or spectra
into SPTool from either the workspace or from a file.

The procedures are very similar to those explained in:

• “Step 1: Importing a Signal into SPTool” on page 6-21 for loading variables
from the workspace

• “Loading Variables from the Disk” on page 6-44 for loading variables from
your disk

Importing Filters
When you import filters, first select the appropriate filter form from the Form
list.

For every filter you specify a variable name or a value for the filter’s sampling
frequency in the Sampling Frequency field. Each filter form requires different
variables.

Transfer Function
For Transfer Function, you specify the filter by its transfer function
representation:
0

Importing Filters and Spectra into SPTool
• The Numerator field specifies a variable name or value for the numerator
coefficient vector b, which contains m+1 coefficients in descending powers of
z.

• The Denominator field specifies a variable name or value for the
denominator coefficient vector a, which contains n+1 coefficients in
descending powers of z.

State Space
For State Space, you specify the filter by its state-space representation:

The A-Matrix, B-Matrix, C-Matrix, and D-Matrix fields specify a variable
name or a value for each matrix in this system.

Zeros, Poles, Gain
For Zeros, Poles, Gain, you specify the filter by its zero-pole-gain
representation:

• The Zeros field specifies a variable name or value for the zeros vector z,
which contains the locations of m zeros.

• The Poles field specifies a variable name or value for the zeros vector p,
which contains the locations of n poles.

• The Gain field specifies a variable name or value for the gain k.

Second Order Sections
For 2nd Order Sections you specify the filter by its second-order section
representation:

H z() B z()
A z()
----------- b 1() b 2()z 1– b m 1+()z m–+ + +

a 1() a 2()z 1– a n 1+()z n–+ + +
---= =

x· Ax Bu+=

y Cx Du+=

H z() Z z()
P z()
---------- k z z 1()–() z z 2()–() z z m()–()

z p 1()–() z p 2()–() z p n()–()
--= =
6-41

6 SPTool: A Signal Processing GUI Suite

6-4
The SOS Matrix field specifies a variable name or a value for the L-by-6 SOS
matrix

whose rows contain the numerator and denominator coefficients bik and aik of
the second-order sections of H(z).

Note If you import a filter that was not created in SPTool, you can only edit
that filter using the Pole/Zero Editor.

Importing Spectra
When you import a power spectral density (PSD), you specify:

• A variable name or a value for the PSD vector in the PSD field

• A variable name or a value for the frequency vector in the Freq. Vector field

The PSD values in the PSD vector correspond to the frequencies contained in
the Freq. Vector vector; the two vectors must have the same length.

H z() Hk z()

k 1=

L

∏
b0k b1kz 1– b2kz 2–+ +

1 a1kz 1– a2kz 2–+ +
--

k 1=

L

∏= =

sos

b01 b11 b21 1 a11 a21

b02 b12 b22 1 a12 a22

b0L b1L b2L 1 a1L a2L

=

2

Importing Filters and Spectra into SPTool
6-43

6 SPTool: A Signal Processing GUI Suite

6-4
Loading Variables from the Disk
To import variables representing signals, filters, or spectra from a MAT-file on
your disk;

1 Select the From Disk radio button and do either of the following:

- Type the name of the file you want to import into the MAT-file Name field
and press either the Tab or the Enter key on your keyboard.

- Select Browse, and then find and select the file you want to import using
the Select File to Open dialog. Press OK to close that dialog.

In either case, all variables in the MAT-file you selected are displayed in the
File Contents list.

2 Select the variables to be imported into SPTool.

You can now import one or more variables from the File Contents list into
SPTool, as long as these variables are scalars, vectors, or matrices.
4

Selecting Signals, Filters, and Spectra in SPTool
Selecting Signals, Filters, and Spectra in SPTool
All signals, filters, or spectra listed in SPTool exist as special MATLAB
structures. You can bring data representing signals, filters, or spectra into
SPTool from the MATLAB workspace. In general, you can select one or several
items in a given list box. An item is selected when it is highlighted.

The Signals list shows all vector and array signals in the current SPTool
session.

The Filters list shows all designed and imported filters in the current SPTool
session.

The Spectra list shows all spectra in the current SPTool session.

You can select a single data object in a list, a range of data objects in a list, or
multiple separate data objects in a list. You can also have data objects
simultaneously selected in different lists:

• To select a single item, click on it. All other items in that list box become
deselected.

• To add or remove a range of items, Shift+click on the items at the top and
bottom of the section of the list that you want to add. You can also drag your
mouse pointer to select these items.

• To add a single data object to a selection or remove a single data object from
a multiple selection, Ctrl+click on the object.
6-45

6 SPTool: A Signal Processing GUI Suite

6-4
Editing Signals, Filters, or Spectra in SPTool
You can edit selected items in SPTool by:

1 Selecting the names of the signals, filters, or spectra you want to edit.

2 Selecting the appropriate Edit menu item:

- Duplicate to copy an item in an SPTool list

- Clear to delete an item in an SPTool list

- Name to rename an item in an SPTool list

- Sampling Frequency to modify the sampling frequency associated with
either a signal (and its associated spectra) or filter in an SPTool list

The pull-down menu next to each menu item shows the names of all selected
items.

You can also edit the following signal characteristics by right-clicking in the
display region of the Signal Browser, the Filter Visualization Tool, or the
Spectrum Viewer:

• The signal name

• The sampling frequency

• The line style properties

Note If you modify the sampling frequency associated with a signal’s
spectrum using the right-click menu on the Spectrum Viewer display region,
the sampling frequency of the associated signal is automatically updated.
6

Designing a Filter with the Pole/Zero Editor
Designing a Filter with the Pole/Zero Editor
To design a filter transfer function using the Filter Designer Pole/Zero Editor:

1 Select the Pole/Zero Editor option from the Algorithm list to open the
Pole/Zero Editor in the Filter Designer display.

2 Enter the desired filter gain in the Gain edit box.

3 Select a pole or zero (or conjugate pair) by selecting one of the (pole) or
(zero) symbols on the plot.

4 Choose the coordinates to work in by specifying Polar or Rectangular from
the Coordinates list.

5 Specify the new location(s) of the selected pole, zero, or conjugate pair by
typing values into the Mag and Angle fields (for angular coordinates) or X
and Y (for rectangular coordinates) fields. Alternatively, position the poles
and zeros by dragging the and symbols.

6 Use the Conjugate pair check box to create a conjugate pair from a lone pole
or zero, or to break a conjugate pair into two individual poles or zeros.

Design a new filter or edit an existing filter in the same way.

Note Keep the Filter Visualization Tool (FVTool) open while designing a
filter with the Pole/Zero Editor. Any changes that you make to the filter
transfer function in the Pole/Zero Editor are then simultaneously reflected in
the response plots of FVTool.
6-47

6 SPTool: A Signal Processing GUI Suite

6-4
Positioning Poles and Zeros
You can use your mouse to move poles and zeros around the pole/zero plot and
modify your filter design.

You can move both members of a conjugate pair simultaneously by
manipulating just one of the poles or zeros.

To ungroup conjugates, select the desired pair and clear Conjugate pair in the
Specifications region on the Filter Designer.

When you place two or more poles (or two or more zeros) directly on top of each
other, a number is displayed next to the symbols (on the left for poles, and on
the right for zeros) indicating the number of poles or zeros at that location (e.g.,

 for three zeros). This number makes it easy to keep track of all the poles
and zeros in the plot area, even when several are superimposed on each other

Icon Description

Enable moving poles or zeros by dragging on the plot

Add pole

Add zero

Erase poles or zeros
8

Designing a Filter with the Pole/Zero Editor
and are not visually differentiable. Note, however, that this number does not
indicate the multiplicity of the poles or zeros to which it is attached.

To detect whether or not a set of poles or zeros are truly multiples, use the zoom
tools to magnify the region around the poles or zeros in question. Because
numerical limitations usually prevent any set of poles or zeros from sharing
exactly the same value, at a high enough zoom level even truly multiple poles
or zeros appear distinct from each other.

A common way to assess whether a particular group of poles or zeros contains
multiples is by comparing the mutual proximity of the group members against
a selected threshold value. As an example, the residuez function defines a pole
or zero as being a multiple of another pole or zero if the absolute distance
separating them is less than 0.1% of the larger pole or zero’s magnitude.
6-49

6 SPTool: A Signal Processing GUI Suite

6-5
Redesigning a Filter Using the Magnitude Plot
After designing a filter in the Filter Designer, you can redesign it by dragging
the specification lines on the magnitude plot. Use the specification lines to
change passband ripple, stopband attenuation, and edge frequencies.

In the following example, create a Chebyshev filter and modify it by dragging
the specification lines:

1 Select Chebyshev Type I IIR from the Algorithm menu.

2 Select highpass from the Type menu.

3 Type 2000 in the Sampling Frequency field.

4 Set the following parameters:

- Fp = 800

- Fs = 700

- Rp = 2.5

- Rs = 35

5 Select Minimum Order so the Filter Designer can calculate the lowest filter
order that produces the desired characteristics.

6 Press Apply to compute the filter and update the response plot.

7 Position the cursor over the horizontal filter specification line for the
stopband. This is the first (leftmost) horizontal specification line you see.

The cursor changes to the up/down drag indicator.

8 Drag the line until the Rs (stopband attenuation) field reads 100.

Note The Order value in the Measurements region changes because a
higher filter order is needed to meet the new specifications.
0

Setting Preferences
Setting Preferences
Use Preferences from the SPTool File menu to customize displays and certain
parameters for SPTool and its four component GUIs. The new settings are
saved on disk and are used when you restart SPTool from MATLAB.

In the Preferences regions, you can:

• Select colors and markers for all displays.

• Select colors and line styles for displayed signals.

• Configure labels, and enable/disable markers, panner, and zoom in the
Signal Browser.

• Configure display parameters, and enable/disable markers and zoom in the
Spectrum Viewer.

• Specify FFT length, and enable/disable mouse zoom and grid in the Filter
Designer.

• Enable/disable use of a default session file.

• Export filters for use with the Control System Toolbox.

• Enable/disable search for plug-ins at start-up.

Note You can set MATLAB preferences that affect the Filter Visualization
Tool only from within FVTool by selecting Preferences from the File menu.
You can set FVTool-specific preferences using the Analysis Parameters on
the Analysis menu.

When you first select Preferences, the Preferences dialog box opens with
Markers selected by default.
6-51

6 SPTool: A Signal Processing GUI Suite

6-5
You can:

• Change the settings for markers from this panel of the Preferences dialog.

• Choose any of the other categories listed to customize its settings.

Click once on any listed category in the left pane of the Preferences dialog to
select it.
2

Making Signal Measurements with Markers
Making Signal Measurements with Markers
You can use the markers on the Signal Browser or the Spectrum Viewer to
make measurements on either of the following:

• A signal in the Signal Browser

• A power spectral density plotted in the Spectrum Viewer

The following marker buttons are included

.

To make a measurement:

1 Select a line to measure (or play, if you are in the Signal Browser).

2 Select one of the marker buttons to apply a marker to the displayed signal.

3 Position a marker in the main display area by grabbing it with your mouse
and dragging:

Icon Description

Toggle markers on/off

Vertical markers

Horizontal markers

Vertical markers with tracking

Vertical markers with tracking and slope

Display peaks (local maxima)

Display valleys (local minima)
6-53

6 SPTool: A Signal Processing GUI Suite

6-5
a Select a marker setting. If you choose the Vertical, Track, or Slope
buttons, you can drag a marker to the right or left. If you choose the
Horizontal button, you can drag a marker up or down.

b Move the mouse over the marker (1 or 2) that you want to drag.

The hand cursor with the marker number inside it is displayed when
your mouse passes over a marker.

c Drag the marker to where you want it on the signal.

As you drag a marker, the bottom of the Signal Browser shows the current
position of both markers. Depending on which marker setting you select,
some or all of the following fields are displayed—x1, y1, x2, y2, dx, dy, m.
These fields are also displayed when you print from the Signal Browser,
unless you suppress them.

You can also position a marker by typing its x1 and x2 or y1 and y2 values in
the region at the bottom.
4

7

Function Reference

Functions — Categorical List (p. 7-2) Signal Toolbox functions arranged in categories

Functions — Alphabetical List (p. 7-17) Signal Toolbox functions arranged alphabetically

7 Function Reference

7-2
Functions — Categorical List
This section contains brief descriptions of all functions in the Signal Processing
Toolbox arranged by category.

“FIR Digital Filter Design”

“IIR Digital Filter Design”

“IIR FIlter Order Estimation”

“Filter Analysis”

“Filter Implementation”

“Analog Lowpass Filter Prototypes”

“Analog Filter Design”

“Analog Filter Transformation”

“Filter Discretization”

“Linear System Transformations”

“Windows”

“Transforms”

“Cepstral Analysis”

“Statistical Signal Processing and Spectral Analysis”

“Parametric Modeling”

“Linear Prediction”

“Multirate Signal Processing”

“Waveform Generation”

“Specialized Operations”

“Graphical User Interfaces”

Functions — Categorical List
FIR Digital Filter Design
Function Description

cfirpm Complex and nonlinear-phase equiripple FIR filter design

dfilt Discrete-time filters

fir1 Window-based finite impulse response filter design

fir2 Frequency sampling-based finite impulse response filter
design

fircls Constrained least square FIR multiband filter design

fircls1 Constrained least square, lowpass and highpass, linear
phase, FIR filter desig

firls Least square linear-phase FIR filter design

firpm Parks-McClellan optimal FIR filter design

firpmord Parks-McClellan optimal FIR filter order estimation

firrcos Raised cosine FIR filter design

gaussfir Gaussian FIR pulse-shaping filter design

intfilt Interpolation FIR filter design

kaiserord Kaiser window FIR filter design estimation parameters

sgolay Savitzky-Golay filter design
7-3

7 Function Reference

7-4
IIR Digital Filter Design

IIR FIlter Order Estimation

Function Description

butter Butterworth analog and digital filter design

cheby1 Chebyshev Type I filter design (passband ripple)

cheby2 Chebyshev Type II filter design (stopband ripple)

dfilt Discrete-time filters

ellip Elliptic (Cauer) filter design

filtstates Filter states

maxflat Generalized digital Butterworth filter design

yulewalk Recursive digital filter design

Function Description

buttord Butterworth filter order and cutoff frequency

cheb1ord Chebyshev Type I filter order

cheb2ord Chebyshev Type II filter order

ellipord Minimum order for elliptic filters

Functions — Categorical List
Filter Analysis

Filter Implementation

Function Description

abs Absolute value (magnitude) (This is a MATLAB function.)

angle Phase angle (This is a MATLAB function.)

filternorm 2-norm or infinity-norm of a digital filter

freqs Frequency response of analog filters

freqspace Frequency spacing for frequency response (This is a MATLAB
function.)

freqz Frequency response of digital filters

fvtool Filter Visualization Tool

grpdelay Average filter delay (group delay)

impz Impulse response of digital filters

phasedelay Phase delay response of digital filters

phasez Phase response of digital filters

stepz Step response of digital filters

unwrap Unwrap phase angles (This is a MATLAB function.)

zerophase Zero-phase reponse of digital filters

zplane Zero-pole plot

Function Description

conv Convolution and polynomial multiplication (This is a
MATLAB function.)

conv2 Two-dimensional convolution (This is a MATLAB function.)

convmtx Convolution matrix

deconv Deconvolution and polynomial division (This is a MATLAB
function.)
7-5

7 Function Reference

7-6
Analog Lowpass Filter Prototypes

fftfilt FFT-based FIR filtering using overlap-add method

filter Filter data with recursive (IIR) or nonrecursive (FIR) filter
(This is a MATLAB function.)

filter2 Two-dimensional digital filtering (This is a MATLAB
function.)

filtfilt Zero-phase digital filtering

filtic Iinitial conditions for transposed direct-form II filter
implementation

latcfilt Lattice and lattice-ladder filter implementation

medfilt1 One-dimensional median filtering

sgolayfilt Savitzky-Golay filtering

sosfilt Second-order (biquadratic) IIR digital filtering

upfirdn Upsample, apply FIR filter, and downsample

Function Description

besselap Bessel analog lowpass filter prototype

buttap Butterworth analog lowpass filter prototype

cheb1ap Chebyshev Type I analog lowpass filter prototype

cheb2ap Chebyshev Type II analog lowpass filter prototype

ellipap Elliptic analog lowpass filter prototype

Functions — Categorical List
Analog Filter Design

Analog Filter Transformation

Filter Discretization

Linear System Transformations

Function Description

besself Bessel analog filter design

butter Butterworth analog and digital filter design

cheby1 Chebyshev Type I filter design (passband ripple)

cheby2 Chebyshev Type II filter design (stopband ripple)

ellip Elliptic (Cauer) filter design

Function Description

lp2bp Transform lowpass analog filters to bandpass

lp2bs Transform lowpass analog filters to bandstop

lp2hp Transform lowpass analog filters to highpass

lp2lp Change cutoff frequency for lowpass analog filter

Function Description

bilinear Bilinear transformation method for analog-to-digital filter
conversion

impinvar Impulse invariance method for analog-to-digital filter
conversion

Function Description

latc2tf Convert lattice filter parameters to transfer function form

polystab Stabilize polynomial

polyscale Scale the roots of a polynomial
7-7

7 Function Reference

7-8
residuez z-transform partial-fraction expansion

sos2ss Convert digital filter second-order section parameters to
state-space form

sos2tf Convert digital filter second-order section data to transfer
function form

sos2zp Convert digital filter second-order sections parameters to
zero-pole-gain form

ss2sos Convert digital filter state-space parameters to second-order
sections form

ss2tf Convert state-space filter parameters to transfer function
form

ss2zp Convert state-space filter parameters to zero-pole-gain form

tf2latc Convert transfer function filter parameters to lattice filter
form

tf2sos Convert digital filter transfer function data to second-order
sections form

tf2ss Convert transfer function filter parameters to state-space
form

tf2zp Convert continuous-time transfer function filter parameters
to zero-pole-gain form

tf2zpk Convert discrete-time transfer function filter parameters to
zero-pole-gain form

zp2sos Convert digital filter zero-pole-gain parameters to
second-order sections form

zp2ss Convert zero-pole-gain filter parameters to state-space form

zp2tf Convert zero-pole-gain filter parameters to transfer function
form

Functions — Categorical List
Windows
Function Description

barthannwin Modified Bartlett-Hann window

bartlett Bartlett window

blackman Blackman window

blackmanharris Minimum 4-term Blackman-Harris window

bohmanwin Bohman window

chebwin Chebyshev window

flattopwin Flat top window

gausswin Gaussian window

hamming Hamming window

hann Hann (Hanning) window

kaiser Kaiser window

nuttallwin Nuttall-defined minimum 4-term Blackman-Harris
window

parzenwin Parzen (de la Valle-Poisson) window

rectwin Rectangular window

sigwin Signal processing windows

triang Triangular window

tukeywin Tukey (tapered cosine) window

window Window function gateway

wvtool Window Visualization Tool
7-9

7 Function Reference

7-1
Transforms

Cepstral Analysis

Function Description

bitrevorder Permute input into bit-reversed order

czt Chirp z-transform

dct Discrete cosine transform (DCT)

dftmtx Discrete Fourier transform matrix

digitrevorder Permute input into digit-reversed order

fft One-dimensional fast Fourier transform (This is a MATLAB
function.)

fft2 Two-dimensional fast Fourier transform (This is a MATLAB
function.)

fftshift Rearrange FFT function outputs (This is a MATLAB
function.)

goertzel Discrete Fourier transform using second order Goertzel
algorithm

hilbert Discrete-time analytic signal using Hilbert transform

idct Inverse discrete cosine transform

ifft One-dimensional inverse fast Fourier transform (This is a
MATLAB function.)

ifft2 Two-dimensional inverse fast Fourier transform (This is a
MATLAB function.)

Function Description

cceps Complex cepstral analysis

icceps Inverse complex cepstrum

rceps Real cepstrum and minimum phase reconstruction
0

Functions — Categorical List
Statistical Signal Processing and Spectral Analysis
Function Description

corrcoef Correlation coefficient matrix (This is a MATLAB function.)

corrmtx Data matrix for autocorrelation matrix estimation

cov Covariance matrix (This is a MATLAB function.)

cpsd Cross power spectral density

dspdata DSP data parameter information

dspopts Spectral estimation parameter information

mscohere Magnitude squared coherence function

pburg Power spectral density using Burg method

pcov Power spectral density using covariance method

peig Pseudospectrum using eigenvector method

periodogram Power spectral density (PSD) using a periodogram

pmcov Power spectral density using modified covariance method

pmtm Power spectral density using multitaper method (MTM)

pmusic Power spectral density using MUSIC algorithm

pwelch Power spectral density (PSD) using Welch’s method

pyulear Power spectral density using Yule-Walker AR method

rooteig Frequency and power content estimate using eigenvector
method

rootmusic Frequency and power content estimate using root MUSIC
algorithm

spectrum Spectral estimation functions

tfestimate Transfer function estimate

xcorr Cross-correlation function
7-11

7 Function Reference

7-1
Parametric Modeling

Linear Prediction

xcorr2 Two-dimensional cross-correlation

xcov Cross-covariance function (equal to mean-removed
cross-correlation)

Function Description

arburg Estimate AR model parameters using Burg method

arcov Estimate AR model parameters using covariance method

armcov Estimate AR model parameters using modified covariance
method

aryule Estimate AR model parameters using Yule-Walker method

ident See the System Identification Toolbox documentation

invfreqs Identify continuous-time filter parameters from frequency
response data

invfreqz Identify discrete-time filter parameters from frequency
response data

prony Prony’s method for time domain IIR filter design

stmcb Compute linear model using Steiglitz-McBride iteration

Function Description

ac2poly Convert autocorrelation sequence to prediction polynomial

ac2rc Convert autocorrelation sequence to reflection coefficients

is2rc Convert inverse sine parameters to reflection coefficients

lar2rc Convert log area ratio parameters to reflection coefficients

levinson Levinson-Durbin recursion

lpc Linear prediction filter coefficients
2

Functions — Categorical List
lsf2poly Convert line spectral frequencies to prediction filter
coefficients

poly2ac Convert prediction filter polynomial to autocorrelation
sequence

poly2lsf Convert prediction filter coefficients to line spectral
frequencies

poly2rc Convert prediction filter polynomial to reflection coefficients

rc2ac Convert reflection coefficients to autocorrelation sequence

rc2is Convert reflection coefficients to inverse sine parameters

rc2lar Convert reflection coefficients to log area ratio parameters

rc2poly Convert reflection coefficients to prediction filter polynomial

rlevinson Reverse Levinson-Durbin recursion

schurrc Compute reflection coefficients from autocorrelation sequence
7-13

7 Function Reference

7-1
Multirate Signal Processing

Waveform Generation

Specialized Operations

Function Description

decimate Decimation — decrease sampling rate

downsample Decrease sampling rate by integer factor

interp Interpolation — increase sampling rate by integer factor

resample Change sampling rate by rational factor

upfirdn Upsample, apply FIR filter, and downsample

upsample Increase sampling rate by integer factor

Function Description

chirp Swept-frequency cosine

diric Dirichlet or periodic sinc function

gauspuls Gaussian-modulated sinusoidal pulse

gmonopuls Gaussian monopulse

pulstran Pulse train

rectpuls Sampled aperiodic rectangle

sawtooth Sawtooth or triangle wave

sinc Sinc function

square Square wave

tripuls Sampled aperiodic triangle

vco Voltage controlled oscillator

Function Description

buffer Buffer signal vector into matrix of data frames
4

Functions — Categorical List
cell2sos Convert cell array for second-order sections to second-order
sections matrix

cplxpair Group complex numbers into complex conjugate pairs (This is
a MATLAB function.)

demod Demodulation for communications simulation

dpss Discrete prolate spheroidal sequences (Slepian sequences)

dpssclear Remove discrete prolate spheroidal sequences from database

dpssdir Discrete prolate spheroidal sequences database directory

dpssload Load discrete prolate spheroidal sequences from database

dpsssave Save discrete prolate spheroidal sequences in database

eqtflength Equalize lengths of transfer function's numerator and
denominator

modulate Modulation for communications simulation

seqperiod Compute the period of a sequence

sos2cell Convert second-order sections matrix to cell arrays

spectrogram Time-dependent frequency analysis

strips Strip plot

udecode Decode 2n-level quantized integer inputs to floating-point
outputs

uencode Quantize and encode floating-point inputs to integer outputs
7-15

7 Function Reference

7-1
Graphical User Interfaces
Function Description

fdatool Filter Design and Analysis Tool

fvtool Filter Visualization Tool

sptool Interactive digital signal processing tool

wintool Window Design and Analysis Tool

wvtool Window Visualization Tool
6

Functions — Alphabetical List
Functions — Alphabetical List 7

This section contains function reference pages listed alphabetically.
7-17

abs
7absPurpose Absolute value (magnitude)

abs is a MATLAB function.

Signal-Specific
Example

Calculate the magnitude of the FFT of a sequence.

t = (0:99)/100; % Time vector
x = sin(2*pi*15*t) + sin(2*pi*40*t); % Signal
y = fft(x); % Compute DFT of x
m = abs(y); % Magnitude

Plot the magnitude:

f = (0:length(y)-1)'/length(y)*100; % Frequency vector
plot(f,m)
7-18

ac2poly
7ac2polyPurpose Convert autocorrelation sequence to prediction polynomial

Syntax a = ac2poly(r)
[a,efinal] = ac2poly(r)

Description a = ac2poly(r) finds the linear prediction, FIR filter polynomial a
corresponding to the autocorrelation sequence r. a is the same length as r, and
a(1) = 1. The prediction filter polynomial represents the coefficients of the
prediction filter whose output produces a signal whose autocorrelation
sequence is approximately the same as the given autocorrelation sequence r.

[a,efinal] = ac2poly(r) returns the final prediction error efinal,
determined by running the filter for length(r) steps.

Remarks You can apply this function to real or complex data.

Examples Consider the autocorrelation sequence:

r = [5.0000 -1.5450 -3.9547 3.9331 1.4681 -4.7500];

The corresponding prediction filter polynomial is

[a,efinal] = ac2poly(r)

a =
 1.0000 0.6147 0.9898 0.0004 0.0034 -0.0077

efinal =

 0.1791

References [1] Kay, S.M. Modern Spectral Estimation. Englewood Cliffs, NJ:
Prentice-Hall, 1988.

See Also ac2rc, poly2ac, rc2poly
7-19

ac2rc
7ac2rcPurpose Convert autocorrelation sequence to reflection coefficients

Syntax [k,r0] = ac2rc(r)

Description [k,r0] = ac2rc(r) finds the reflection coefficients k corresponding to the
autocorrelation sequence r. r0 contains the initial zero-lag autocorrelation.
These reflection coefficients can be used to specify the lattice prediction filter
that produces a sequence with approximately the same autocorrelation
sequence as the given sequence r.

Remarks You can apply this function to real or complex data.

References [1] Kay, S.M. Modern Spectral Estimation. Englewood Cliffs, NJ:
Prentice-Hall, 1988.

See Also ac2poly, poly2rc, rc2ac
7-20

angle
7anglePurpose Phase angle

angle is a MATLAB function.

Signal-specific
Example

Calculate the phase of the FFT of a sequence.

t = (0:99)/100; % Time vector
x = sin(2*pi*15*t) + sin(2*pi*40*t); % Signal
y = fft(x); % Compute DFT of x
p = unwrap(angle(y)); % Phase

Plot the phase:

f = (0:length(y)-1)'/length(y)*100; % Frequency vector
plot(f,p)
7-21

arburg
7arburgPurpose Estimate AR model parameters using Burg method

Syntax a = arburg(x,p)
[a,e] = arburg(x,p)
[a,e,k] = arburg(x,p)

Description a = arburg(x,p) uses the Burg method to fit a pth order autoregressive (AR)
model to the input signal, x, by minimizing (least squares) the forward and
backward prediction errors while constraining the AR parameters to satisfy
the Levinson-Durbin recursion. x is assumed to be the output of an AR system
driven by white noise. Vector a contains the normalized estimate of the AR
system parameters, A(z), in descending powers of z.

Since the method characterizes the input data using an all-pole model, the
correct choice of the model order p is important.

[a,e] = arburg(x,p) returns the variance estimate, e, of the white noise
input to the AR model.

[a,e,k] = arburg(x,p) returns a vector, k, of reflection coefficients.

See Also arcov, armcov, aryule, lpc, pburg, prony

H z() e
A z()
------------ e

1 a2z 1– … a p 1+()z
p–

+ + +
--= =
7-22

arcov
7arcovPurpose Estimate AR model parameters using covariance method

Syntax a = arcov(x,p)
[a,e] = arcov(x,p)

Description a = arcov(x,p) uses the covariance method to fit a pth order autoregressive
(AR) model to the input signal, x, which is assumed to be the output of an AR
system driven by white noise. This method minimizes the forward prediction
error in the least-squares sense. Vector a contains the normalized estimate of
the AR system parameters, A(z), in descending powers of z.

Because the method characterizes the input data using an all-pole model, the
correct choice of the model order p is important.

[a,e] = arcov(x,p) returns the variance estimate, e, of the white noise input
to the AR model.

See Also arburg, armcov, aryule, lpc, pcov, prony

H z() e
A z()
------------ e

1 a2z 1– … a p 1+()z
p–

+ + +
--= =
7-23

armcov
7armcovPurpose Estimate AR model parameters using modified covariance method

Syntax a = armcov(x,p)
[a,e] = armcov(x,p)

Description a = armcov(x,p) uses the modified covariance method to fit a pth order
autoregressive (AR) model to the input signal, x, which is assumed to be the
output of an AR system driven by white noise. This method minimizes the
forward and backward prediction errors in the least-squares sense. Vector a
contains the normalized estimate of the AR system parameters, A(z), in
descending powers of z.

Because the method characterizes the input data using an all-pole model, the
correct choice of the model order p is important.

[a,e] = armcov(x,p) returns the variance estimate, e, of the white noise
input to the AR model.

See Also arburg, arcov, aryule, lpc, pmcov, prony

H z() e
A z()
------------ e

1 a2z 1– … a p 1+()z
p–

+ + +
--= =
7-24

aryule
7aryulePurpose Estimate AR model parameters using Yule-Walker method

Syntax a = aryule(x,p)
[a,e] = aryule(x,p)
[a,e,k] = aryule(x,p)

Description a = aryule(x,p) uses the Yule-Walker method, also called the
autocorrelation method, to fit a pth order autoregressive (AR) model to the
windowed input signal, x, by minimizing the forward prediction error in the
least-squares sense. This formulation leads to the Yule-Walker equations,
which are solved by the Levinson-Durbin recursion. x is assumed to be the
output of an AR system driven by white noise. Vector a contains the normalized
estimate of the AR system parameters, A(z), in descending powers of z.

Because the method characterizes the input data using an all-pole model, the
correct choice of the model order p is important.

[a,e] = aryule(x,p) returns the variance estimate, e, of the white noise
input to the AR model.

[a,e,k] = aryule(x,p) returns a vector, k, of reflection coefficients.

See Also arburg, arcov, armcov, lpc, prony, pyulear

H z() e
A z()
------------ e

1 a2z 1– … a p 1+()z
p–

+ + +
--= =
7-25

barthannwin
7barthannwinPurpose Modified Bartlett-Hann window

Syntax w = barthannwin(n)

Description w = barthannwin(n) returns an n-point modified Bartlett-Hann window in
the column vector w. Like Bartlett, Hann, and Hamming windows, this window
has a mainlobe at the origin and asymptotically decaying sidelobes on both
sides. It is a linear combination of weighted Bartlett and Hann windows with
near sidelobes lower than both Bartlett and Hann and with far sidelobes lower
than both Bartlett and Hamming windows. The mainlobe width of the modified
Bartlett-Hann window is not increased relative to either Bartlett or Hann
window mainlobes.

Note The Hann window is also called the Hanning window.

Examples Create a 64-point Bartlett-Hann window and display the result using WVTool:

N=64;
wvtool(barthannwin(N))
7-26

barthannwin
Algorithm The equation for computing the coefficients of a Modified Bartlett-Hanning
window is

where .

References [1] Ha, Y.H., and J.A. Pearce. “A New Window and Comparison to Standard
Windows.” IEEE Transactions on Acoustics, Speech, and Signal Processing.
Vol. 37, No. 2, (February 1999). pp. 298-301.

[2] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing.
Upper Saddle River, NJ: Prentice-Hall, 1999, p. 468.

See Also bartlett, blackmanharris, bohmanwin, nuttallwin, parzenwin, rectwin,
triang, window, wintool, wvtool

w k 1+[] 0.62 0.48 k
n 1–
------------- 0.5–⎝ ⎠

⎛ ⎞– 0.38 2π k
n 1–
------------- 0.5–⎝ ⎠

⎛ ⎞
⎝ ⎠
⎛ ⎞cos+=

0 k n 1–()≤ ≤
7-27

bartlett
7bartlettPurpose Bartlett window

Syntax w = bartlett(n)

Description w = bartlett(n) returns an n-point Bartlett window in the column vector w,
where n must be a positive integer. The coefficients of a Bartlett window are
computed as follows:

• For n odd

• For n even

The Bartlett window is very similar to a triangular window as returned by the
triang function. The Bartlett window always ends with zeros at samples 1 and
n, however, while the triangular window is nonzero at those points. For n odd,
the center n-2 points of bartlett(n) are equivalent to triang(n-2).

Note If you specify a one-point window (set n=1), the value 1 is returned.

Examples Create a 64-point Bartlett window and display the result using WVTool:

N=64;
wvtool(bartlett(N))

w k 1+[]

2k
n 1–
------------- 0 k n 1–

2
-------------≤ ≤,

2 2 k()
n 1–
-------------–

n 1–
2

------------- k n 1–≤ ≤,⎩
⎪
⎨
⎪
⎧

=

w k 1+[]

2 k()
n 1–
------------- 0 k n

2
--- 1–≤ ≤,

2 n k– 1–()
n 1–

------------------------------ n
2
--- k n 1–≤ ≤,⎩

⎪
⎨
⎪
⎧

=

7-28

bartlett
References [1] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing.
Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 468-471.

See Also barthannwin, blackmanharris, bohmanwin, nuttallwin, parzenwin, rectwin,
triang, window, wintool, wvtool
7-29

besselap
7besselapPurpose Bessel analog lowpass filter prototype

Syntax [z,p,k] = besselap(n)

Description [z,p,k] = besselap(n) returns the poles and gain of an order n Bessel
analog lowpass filter prototype. n must be less than or equal to 25. The function
returns the poles in the length n column vector p and the gain in scalar k. z is
an empty matrix because there are no zeros. The transfer function is

besselap normalizes the poles and gain so that at low frequency and high
frequency the Bessel prototype is asymptotically equivalent to the Butterworth
prototype of the same order [1]. The magnitude of the filter is less than
at the unity cutoff frequency Ωc = 1.

Analog Bessel filters are characterized by a group delay that is maximally flat
at zero frequency and almost constant throughout the passband. The group
delay at zero frequency is

Algorithm besselap finds the filter roots from a lookup table constructed using the
Symbolic Math Toolbox.

References [1] Rabiner, L.R., and B. Gold. Theory and Application of Digital Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975. Pgs. 228-230.

See Also besself, buttap, cheb1ap, cheb2ap, ellipap

Also see the Symbolic Math Toolbox documentation.

H s() k
s p 1()–() s p 2()–() s p n()–()

--=

1 2⁄

2n()!
2nn!
--------------⎝ ⎠

⎛ ⎞ 1 n⁄
7-30

besself
7besselfPurpose Bessel analog filter design

Syntax [b,a] = besself(n,Wo)
[z,p,k] = besself(...)
[A,B,C,D] = besself(...)

Description besself designs lowpass, analog Bessel filters, which are characterized by
almost constant group delay across the entire passband, thus preserving the
wave shape of filtered signals in the passband. besself does not support the
design of digital Bessel filters.

[b,a] = besself(n,Wo) designs an order n lowpass analog Bessel filter,
where Wo is the frequency up to which the filter’s group delay is approximately
constant. Larger values of the filter order (n) produce a group delay that better
approximates a constant up to frequency Wo.

besself returns the filter coefficients in the length n+1 row vectors b and a,
with coefficients in descending powers of s, derived from this transfer function:

[z,p,k] = besself(...) returns the zeros and poles in length n or 2*n
column vectors z and p and the gain in the scalar k.

[A,B,C,D] = besself(...) returns the filter design in state-space form,
where A, B, C, and D are

and u is the input, x is the state vector, and y is the output.

Examples Design a fifth-order analog lowpass Bessel filter with an approximate constant
group delay up to 10,000 rad/s and plot the frequency response of the filter
using freqs:

[b,a] = besself(5,10000);
freqs(b,a) % Plot frequency response

H s() B s()
A s()
----------- b 1()sn b 2()sn 1– b n 1+()+ + +

sn a 2()sn 1– a n 1+()+ + +
---= =

x· Ax Bu+=

y Cx Du+=
7-31

besself
Limitations Lowpass Bessel filters have a monotonically decreasing magnitude response,
as do lowpass Butterworth filters. Compared to the Butterworth, Chebyshev,
and elliptic filters, the Bessel filter has the slowest rolloff and requires the
highest order to meet an attenuation specification.

For high order filters, the state-space form is the most numerically accurate,
followed by the zero-pole-gain form. The transfer function coefficient form is
the least accurate; numerical problems can arise for filter orders as low as 15.

Algorithm besself performs a four-step algorithm:

1 It finds lowpass analog prototype poles, zeros, and gain using the besselap
function.

2 It converts the poles, zeros, and gain into state-space form.

3 It transforms the lowpass prototype into a lowpass filter that meets the
design specifications.

4 It converts the state-space filter back to transfer function or zero-pole-gain
form, as required.

See Also besselap, butter, cheby1, cheby2, ellip

10
2

10
3

10
4

10
5

-200

0

200

Frequency (radians)

P
ha

se
 (

de
gr

ee
s)

10
2

10
3

10
4

10
5

10
-5

10
0

Frequency (radians)

M
ag

ni
tu

de

Frequency Response
7-32

bilinear
7bilinearPurpose Bilinear transformation method for analog-to-digital filter conversion

Syntax [zd,pd,kd] = bilinear(z,p,k,fs)
[zd,pd,kd] = bilinear(z,p,k,fs,fp)
[numd,dend] = bilinear(num,den,fs)
[numd,dend] = bilinear(num,den,fs,fp)
[Ad,Bd,Cd,Dd] = bilinear(A,B,C,D,fs)
[Ad,Bd,Cd,Dd] = bilinear(A,B,C,D,fs,fp)

Description The bilinear transformation is a mathematical mapping of variables. In digital
filtering, it is a standard method of mapping the s or analog plane into the z or
digital plane. It transforms analog filters, designed using classical filter design
techniques, into their discrete equivalents.

The bilinear transformation maps the s-plane into the z-plane by

This transformation maps the jΩ axis (from Ω = -∞ to +∞) repeatedly around
the unit circle (, from ω = −π to π) by

bilinear can accept an optional parameter Fp that specifies prewarping. fp, in
hertz, indicates a “match” frequency, that is, a frequency for which the
frequency responses before and after mapping match exactly. In prewarped
mode, the bilinear transformation maps the s-plane into the z-plane with

With the prewarping option, bilinear maps the jΩ axis (from Ω = -∞ to +∞)
repeatedly around the unit circle (, from ω = −π to π) by

H z() H s()
s 2fs

z 1–
z 1+
------------=

=

ejω

ω 2tan 1– Ω
2fs
--------⎝ ⎠

⎛ ⎞=

H z() H s()
s

2πfp

π
fp

fs
----⎝ ⎠

⎛ ⎞tan
------------------------ z 1–()

z 1+()
-----------------=

=

ejω
7-33

bilinear
In prewarped mode, bilinear matches the frequency 2πfp (in radians per
second) in the s-plane to the normalized frequency 2πfp/fs (in radians per
second) in the z-plane.

The bilinear function works with three different linear system
representations: zero-pole-gain, transfer function, and state-space form.

Zero-Pole-Gain

[zd,pd,kd] = bilinear(z,p,k,fs) and

[zd,pd,kd] = bilinear(z,p,k,fs,fp) convert the s-domain transfer
function specified by z, p, and k to a discrete equivalent. Inputs z and p are
column vectors containing the zeros and poles, k is a scalar gain, and fs is the
sampling frequency in hertz. bilinear returns the discrete equivalent in
column vectors zd and pd and scalar kd. The optional match frequency, fp is in
hertz and is used for prewarping.

Transfer Function

[numd,dend] = bilinear(num,den,fs) and

[numd,dend] = bilinear(num,den,fs,fp) convert an s-domain transfer
function given by num and den to a discrete equivalent. Row vectors num and den
specify the coefficients of the numerator and denominator, respectively, in
descending powers of s.

fs is the sampling frequency in hertz. bilinear returns the discrete equivalent
in row vectors numd and dend in descending powers of z (ascending powers
of z-1). fp is the optional match frequency, in hertz, for prewarping.

ω 2tan 1–
Ω π

fp
fs
----⎝ ⎠

⎛ ⎞tan

2πfp

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

num s()
den s()
-------------------- num 1()sn num n()s num n 1+()+ + +

den 1()sm den m()s den m 1+()+ + +
---=
7-34

bilinear
State-Space

[Ad,Bd,Cd,Dd] = bilinear(A,B,C,D,fs) and

[Ad,Bd,Cd,Dd] = bilinear(A,B,C,D,fs,fp) convert the continuous-time
state-space system in matrices A, B, C, D

to the discrete-time system:

fs is the sampling frequency in hertz. bilinear returns the discrete equivalent
in matrices Ad, Bd, Cd, Dd. The optional match frequency, fp is in hertz and is
used for prewarping.

Algorithm bilinear uses one of two algorithms depending on the format of the input
linear system you supply. One algorithm works on the zero-pole-gain format
and the other on the state-space format. For transfer function representations,
bilinear converts to state-space form, performs the transformation, and
converts the resulting state-space system back to transfer function form.

Zero-Pole-Gain Algorithm
For a system in zero-pole-gain form, bilinear performs four steps:

1 If fp is present, it prewarps:
 fp = 2*pi*fp;
 fs = fp/tan(fp/fs/2)

otherwise, fs = 2*fs.

2 It strips any zeros at ±∞ using
 z = z(finite(z));

x· Ax Bu+=

y Cx Du+=

x n 1+[] Adx n[] Bdu n[]+=

y n[] Cdx n[] Ddu n[]+=
7-35

bilinear
3 It transforms the zeros, poles, and gain using
 pd = (1+p/fs)./(1-p/fs); %Do bilinear transformation
 zd = (1+z/fs)./(1-z/fs);
 kd = real(k*prod(fs-z)./prod(fs-p));

4 It adds extra zeros at -1 so the resulting system has equivalent numerator
and denominator order.

State-Space Algorithm
For a system in state-space form, bilinear performs two steps:

1 If fp is present, k = 2*pi*fp/tan(pi*fp/fs); else k = 2*fs.

2 It computes Ad, Bd, Cd, and Dd in terms of A, B, C, and D using

bilinear implements these relations using conventional MATLAB
statements. The scalar r is arbitrary; bilinear uses to ensure good
quantization noise properties in the resulting system.

Diagnostics bilinear requires that the numerator order be no greater than the
denominator order. If this is not the case, bilinear displays

Numerator cannot be higher order than denominator.

For bilinear to distinguish between the zero-pole-gain and transfer function
linear system formats, the first two input parameters must be vectors with the
same orientation in these cases. If this is not the case, bilinear displays

First two arguments must have the same orientation.

Ad I 1
k
---⎝ ⎠

⎛ ⎞ A+⎝ ⎠
⎛ ⎞ I 1

k
---⎝ ⎠

⎛ ⎞ A–⎝ ⎠
⎛ ⎞ 1–

=

Bd
2k
r

------- I 1
k
---⎝ ⎠

⎛ ⎞ A–⎝ ⎠
⎛ ⎞ 1–

B=

Cd rC I 1
k
---⎝ ⎠

⎛ ⎞ A–⎝ ⎠
⎛ ⎞ 1–

=

Dd
1
k
---⎝ ⎠

⎛ ⎞ C I 1
k
---⎝ ⎠

⎛ ⎞ A–⎝ ⎠
⎛ ⎞ 1–

B D+=

r 2 k⁄=
7-36

bilinear
References [1] Parks, T.W., and C.S. Burrus. Digital Filter Design. New York: John Wiley
& Sons, 1987. Pgs. 209-213.

[2] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing.
Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 450-454.

See Also impinvar, lp2bp, lp2bs, lp2hp, lp2lp
7-37

bitrevorder
7bitrevorderPurpose Permute data into bit-reversed order

Syntax y = bitrevorder(x)
[y,i] = bitrevorder(x)

Description bitrevorder is useful for pre-arranging filter coefficients so that bit-reversed
ordering does not have to be performed as part of an fft or inverse FFT (ifft)
computation. This can improve run-time efficiency for external applications or
for Simulink Blockset models. Both MATLAB fft and ifft process linear
input and output.

Note Using bitrevorder is equivalent to using digitrevorder with radix
base 2.

y = bitrevorder(x) returns the input data in bit-reversed order in vector or
matrix y. The length of x must be an integer power of 2. If x is a matrix, the
bit-reversal occurs on the first dimension of x with size greater than 1. y is the
same size as x.

[y,i] = bitrevorder(x) returns the bit-reversed vector or matrix y and the
bit-reversed indices i, such that y = x(i). Recall that MATLAB uses 1-based
indexing, so the first index of y will be 1, not 0.

The following table shows the numbers 0 through 7, the corresponding bits and
the bit-reversed numbers.

Linear
Index

Bits Bit-
Reversed

Bit-Reversed Index

0 000 000 0

1 001 100 4

2 010 010 2

3 011 110 6

4 100 001 1
7-38

bitrevorder
Examples Obtain the bit-reversed ordered output of a vector:

x=[0:7]'; % Create a column vector
[x,bitrevorder(x)]
ans =
 0 0
 1 4
 2 2
 3 6
 4 1
 5 5
 6 3
 7 7

See Also fft, digitrevorder, ifft

5 101 101 5

6 110 011 3

7 111 111 7

Linear
Index

Bits Bit-
Reversed

Bit-Reversed Index
7-39

blackman
7blackmanPurpose Blackman window

Syntax w = blackman(n)
w = blackman(n,'sflag')

Description w = blackman(n) returns the n-point symmetric Blackman window in the
column vector w, where n is a positive integer.

w = blackman(n,'sflag') returns an n-point Blackman window using the
window sampling specified by 'sflag', which can be either 'periodic' or
'symmetric' (the default). When 'periodic' is specified, blackman computes a
length n+1 window and returns the first n points.

Note If you specify a one-point window (set n=1), the value 1 is returned.

Examples Create a 64-point Blackman window and display the result using WVTool:

N=64;
wvtool(blackman(N))
7-40

blackman
Algorithm The equation for computing the coefficients of a Blackman window is

Blackman windows have slightly wider central lobes and less sideband leakage
than equivalent length Hamming and Hann windows.

See Also flattopwin, hamming, hann, window, wintool, wvtool

References [1] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing.
Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 468-471.

w k 1+[] 0.42 0.5 2π k
n 1–
-------------⎝ ⎠

⎛ ⎞cos– 0.08 4π k
n 1–
-------------⎝ ⎠

⎛ ⎞cos+ k 0= … n 1–, , ,=
7-41

blackmanharris
7blackmanharrisPurpose Minimum 4-term Blackman-Harris window

Syntax w = blackmanharris(n)

Description w = blackmanharris(n) returns an n-point, minimum , 4-term
Blackman-harris window in the column vector w. The window is minimum in
the sense that its maximum sidelobes are minimized.

Examples Create a 32-point Blackman-Harris window and display the result using
WVTool:

N=32;
wvtool(blackmanharris(N))

Algorithm The equation for computing the coefficients of a minimum 4-term
Blackman-harris window is

where .

w k 1+[] a0 a1 2π k
n 1–
-------------⎝ ⎠

⎛ ⎞ a2 4π k
n 1–
-------------⎝ ⎠

⎛ ⎞cos a3 6π k
n 1–
-------------⎝ ⎠

⎛ ⎞cos–+cos–=

0 k n 1–()≤ ≤
7-42

blackmanharris
The coefficients for this window are

References [1] Harris, F. J. “On the Use of Windows for Harmonic Analysis with the
Discrete Fourier Transform.” Proceedings of the IEEE. Vol. 66 (January 1978).
pp. 51-84.

See Also barthannwin, bartlett, bohmanwin, nuttallwin, parzenwin, rectwin, triang,
window, wintool, wvtool

a0 = 0.35875

a1 = 0.48829

a2 = 0.14128

a3 = 0.01168
7-43

bohmanwin
7bohmanwinPurpose Bohman window

Syntax w = bohmanwin(n)

Description w = bohmanwin(n) returns an n-point Bohman window in column vector w. A
Bohman window is the convolution of two half-duration cosine lobes. In the
time domain, it is the product of a triangular window and a single cycle of a
cosine with a term added to set the first derivative to zero at the boundary.
Bohman windows fall off as 1/w4.

Examples Compute a 64-point Bohman window and display the result using WVTool:

N=64;
wvtool(bohmanwin(N))

Algorithm The equation for computing the coefficients of a Bohman window is

w k 1+[] 1.0
k N

2
----–⎝ ⎠

⎛ ⎞

N
2

-------------------– π
k N

2
----–⎝ ⎠

⎛ ⎞

N
2

------------------- 1
π
--- π

k N
2
----–⎝ ⎠

⎛ ⎞

N
2

-------------------sin+cos=
7-44

bohmanwin
where .

References [1] Harris, F. J. “On the Use of Windows for Harmonic Analysis with the
Discrete Fourier Transform.” Proceedings of the IEEE. Vol. 66 (January 1978).
p. 67.

See Also barthannwin, bartlett, blackmanharris, nuttallwin, parzenwin, rectwin,
triang, window, wintool, wvtool

0 k N≤ ≤
7-45

buffer
7bufferPurpose Buffer signal vector into matrix of data frames

Syntax y = buffer(x,n)
y = buffer(x,n,p)
y = buffer(x,n,p,opt)
[y,z] = buffer(...)
[y,z,opt] = buffer(...)

Description y = buffer(x,n) partitions a length-L signal vector x into nonoverlapping
data segments (frames) of length n. Each data frame occupies one column of
matrix output y, which has n rows and ceil(L/n) columns. If L is not evenly
divisible by n, the last column is zero-padded to length n.

y = buffer(x,n,p) overlaps or underlaps successive frames in the output
matrix by p samples:

• For 0 < p < n (overlap), buffer repeats the final p samples of each frame at
the beginning of the following frame. For example, if x = 1:30 and n = 7, an
overlap of p = 3 looks like this.

The first frame starts with p zeros (the default initial condition), and the
number of columns in y is ceil(L/(n-p)).

• For p < 0 (underlap), buffer skips p samples between consecutive frames.
For example, if x = 1:30 and n = 7, a buffer with underlap of p = -3 looks like
this.

y =
 0 2 6 10 14 18 22 26
 0 3 7 11 15 19 23 27
 0 4 8 12 16 20 24 28
 1 5 9 13 17 21 25 29
 2 6 10 14 18 22 26 30
 3 7 11 15 19 23 27 0
 4 8 12 16 20 24 28 0
7-46

buffer
The number of columns in y is ceil(L/(n-p)).

y = buffer(x,n,p,opt) specifies a vector of samples to precede x(1) in an
overlapping buffer, or the number of initial samples to skip in an underlapping
buffer:

• For 0 < p < n (overlap), opt specifies a length-p vector to insert before x(1) in
the buffer. This vector can be considered an initial condition, which is needed
when the current buffering operation is one in a sequence of consecutive
buffering operations. To maintain the desired frame overlap from one buffer
to the next, opt should contain the final p samples of the previous buffer in
the sequence. See “Continuous Buffering” below.

By default, opt is zeros(p,1) for an overlapping buffer. Set opt to
'nodelay' to skip the initial condition and begin filling the buffer
immediately with x(1). In this case, L must be length(p) or longer. For
example, if x = 1:30 and n = 7, a buffer with overlap of p = 3 looks like this.

• For p < 0 (underlap), opt is an integer value in the range [0,-p] specifying
the number of initial input samples, x(1:opt), to skip before adding samples

y =
 1 11 21
 2 12 22
 3 13 23
 4 14 24
 5 15 25
 6 16 26
 7 17 27

8 18 28
9 19 29
10 20 30

skipped

y =
 1 5 9 13 17 21 25
 2 6 10 14 18 22 26
 3 7 11 15 19 23 27
 4 8 12 16 20 24 28
 5 9 13 17 21 25 29
 6 10 14 18 22 26 30
 7 11 15 19 23 27 0
7-47

buffer
to the buffer. The first value in the buffer is therefore x(opt+1). By default,
opt is zero for an underlapping buffer.

This option is especially useful when the current buffering operation is one
in a sequence of consecutive buffering operations. To maintain the desired
frame underlap from one buffer to the next, opt should equal the difference
between the total number of points to skip between frames (p) and the
number of points that were available to be skipped in the previous input to
buffer. If the previous input had fewer than p points that could be skipped
after filling the final frame of that buffer, the remaining opt points need to
be removed from the first frame of the current buffer. See “Continuous
Buffering” below for an example of how this works in practice.

[y,z] = buffer(...) partitions the length-L signal vector x into frames of
length n, and outputs only the full frames in y. If y is an overlapping buffer, it
has n rows and m columns, where

m = floor(L/(n-p)) % When length(opt) = p

or

m = floor((L-n)/(n-p))+1 % When opt = 'nodelay'

If y is an underlapping buffer, it has n rows and m columns, where

m = floor((L-opt)/(n-p)) + (rem((L-opt),(n-p)) >= n)

If the number of samples in the input vector (after the appropriate overlapping
or underlapping operations) exceeds the number of places available in the
n-by-m buffer, the remaining samples in x are output in vector z, which for an
overlapping buffer has length

length(z) = L - m*(n-p) % When length(opt) = p

or

length(z) = L - ((m-1)*(n-p)+n)% When opt = 'nodelay'

and for an underlapping buffer has length

length(z) = (L-opt) - m*(n-p)
7-48

buffer
Output z shares the same orientation (row or column) as x. If there are no
remaining samples in the input after the buffer with the specified overlap or
underlap is filled, z is an empty vector.

[y,z,opt] = buffer(...) returns the last p samples of a overlapping buffer
in output opt. In an underlapping buffer, opt is the difference between the total
number of points to skip between frames (-p) and the number of points in x that
were available to be skipped after filling the last frame:

• For 0 < p < n (overlap), opt (as an output) contains the final p samples in the
last frame of the buffer. This vector can be used as the initial condition for a
subsequent buffering operation in a sequence of consecutive buffering
operations. This allows the desired frame overlap to be maintained from one
buffer to the next. See “Continuous Buffering” below.

• For p < 0 (underlap), opt (as an output) is the difference between the total
number of points to skip between frames (-p) and the number of points in x
that were available to be skipped after filling the last frame.
opt = m*(n-p) + opt - L % z is the empty vector.

where opt on the right-hand side is the input argument to buffer, and opt
on the left-hand side is the output argument. Here m is the number of
columns in the buffer, which is
m = floor((L-opt)/(n-p)) + (rem((L-opt),(n-p))>=n)

Note that for an underlapping buffer output opt is always zero when
output z contains data.

The opt output for an underlapping buffer is especially useful when the
current buffering operation is one in a sequence of consecutive buffering
operations. The opt output from each buffering operation specifies the
number of samples that need to be skipped at the start of the next buffering
operation to maintain the desired frame underlap from one buffer to the
next. If fewer than p points were available to be skipped after filling the final
frame of the current buffer, the remaining opt points need to be removed
from the first frame of the next buffer.

In a sequence of buffering operations, the opt output from each operation
should be used as the opt input to the subsequent buffering operation. This
ensures that the desired frame overlap or underlap is maintained from buffer
7-49

buffer
to buffer, as well as from frame to frame within the same buffer. See
“Continuous Buffering” below for an example of how this works in practice.

Continuous Buffering
In a continuous buffering operation, the vector input to the buffer function
represents one frame in a sequence of frames that make up a discrete signal.
These signal frames can originate in a frame-based data acquisition process, or
within a frame-based algorithm like the FFT.

As an example, you might acquire data from an A/D card in frames of 64
samples. In the simplest case, you could rebuffer the data into frames of 16
samples; buffer with n = 16 creates a buffer of four frames from each
64-element input frame. The result is that the signal of frame size 64 has been
converted to a signal of frame size 16; no samples were added or removed.

In the general case where the original signal frame size, L, is not equally
divisible by the new frame size, n, the overflow from the last frame needs to be
captured and recycled into the following buffer. You can do this by iteratively
calling buffer on input x with the two-output-argument syntax:

[y,z] = buffer([z;x],n) % x is a column vector.

[y,z] = buffer([z,x],n) % x is a row vector.

This simply captures any buffer overflow in z, and prepends the data to the
subsequent input in the next call to buffer. Again, the input signal, x, of frame
size L, has been converted to a signal of frame size n without any insertion or
deletion of samples.

Note that continuous buffering cannot be done with the single-output syntax
y = buffer(...), because the last frame of y in this case is zero padded, which
adds new samples to the signal.

Continuous buffering in the presence of overlap and underlap is handled with
the opt parameter, which is used as both an input and output to buffer. The
following two examples demonstrate how the opt parameter should be used.
7-50

buffer
Examples Example 1: Continuous Overlapping Buffers
First create a buffer containing 100 frames, each with 11 samples:

data = buffer(1:1100,11); % 11 samples per frame

Imagine that the frames (columns) in the matrix called data are the sequential
outputs of a data acquisition board sampling a physical signal: data(:,1) is
the first D/A output, containing the first 11 signal samples; data(:,2) is the
second output, containing the next 11 signal samples, and so on.

You want to rebuffer this signal from the acquired frame size of 11 to a frame
size of 4 with an overlap of 1. To do this, you will repeatedly call buffer to
operate on each successive input frame, using the opt parameter to maintain
consistency in the overlap from one buffer to the next.

Set the buffer parameters:

n = 4; % New frame size
p = 1; % Overlap
opt = -5; % Value of y(1)
z = []; % Initialize the carry-over vector.

Now repeatedly call buffer, each time passing in a new signal frame from
data. Note that overflow samples (returned in z) are carried over and
prepended to the input in the subsequent call to buffer:

for i=1:size(data,2), % Loop over each source frame (column).
 x = data(:,i); % A single frame of the D/A output

[y,z,opt] = buffer([z;x],n,p,opt);

disp(y); % Display the buffer of data.
pause

end
7-51

buffer
Here’s what happens during the first four iterations.

Note that the size of the output matrix, y, can vary by a single column from one
iteration to the next. This is typical for buffering operations with overlap or
underlap.

[1:11]i=1

5– 3 6
1 4 7
2 5 8
3 6 9

Iteration Input frame [z;x]' opt (input) opt (output) Output buffer (y) Overflow (z)

[10 11]5 9

i=2 [10 11 12:22] 9 21

9 12 15 18
10 13 16 19
11 14 17 20
12 15 18 21

[22]

i=3 [22 23:33] 21 33

21 24 27 30
22 25 28 31
23 26 29 32
24 27 30 33

[]

33 36 39
34 37 40
35 38 41
36 39 42

[43 44]42[34:44]i=4 33
7-52

buffer
Example 2: Continuous Underlapping Buffers
Again create a buffer containing 100 frames, each with 11 samples:

data = buffer(1:1100,11); % 11 samples per frame

Again, imagine that data(:,1) is the first D/A output, containing the first 11
signal samples; data(:,2) is the second output, containing the next 11 signal
samples, and so on.

You want to rebuffer this signal from the acquired frame size of 11 to a frame
size of 4 with an underlap of 2. To do this, you will repeatedly call buffer to
operate on each successive input frame, using the opt parameter to maintain
consistency in the underlap from one buffer to the next.

Set the buffer parameters:

n = 4; % New frame size
p = -2; % Underlap
opt = 1; % Skip the first input element, x(1).
z = []; % Initialize the carry-over vector.

Now repeatedly call buffer, each time passing in a new signal frame from
data. Note that overflow samples (returned in z) are carried over and
prepended to the input in the subsequent call to buffer:

for i=1:size(data,2), % Loop over each source frame (column).
 x = data(:,i); % A single frame of the D/A output

[y,z,opt] = buffer([z;x],n,p,opt);

disp(y); % Display the buffer of data.
pause

end
7-53

buffer
Here’s what happens during the first three iterations.

Diagnostics Error messages are displayed when p ≥ n or length(opt) ≠ length(p) in an
overlapping buffer case:

Frame overlap P must be less than the buffer size N.
Initial conditions must be specified as a length-P vector.

See Also reshape

[1:11]i=1

2 8
3 9
4 10
5 11

Iteration Input frame [z;x]' opt (input) opt (output) Output buffer (y) Overflow (z)

[]1 2

i=2 [12:22] 2 0

14
15
16
17

[20 21 22]

i=3 [20 21 22 23:33] 0 0

20 26
21 27
22 28
23 29

[32 33]

6 –
7 –

1 –

18
19

12
13

– –

24 30
25 31

skip

skip

skip

skip

skip

skip
7-54

buttap
7buttapPurpose Butterworth analog lowpass filter prototype

Syntax [z,p,k] = buttap(n)

Description [z,p,k] = buttap(n) returns the poles and gain of an order n Butterworth analog
lowpass filter prototype. The function returns the poles in the length n column vector p and
the gain in scalar k. z is an empty matrix because there are no zeros. The transfer function is

Butterworth filters are characterized by a magnitude response that is
maximally flat in the passband and monotonic overall. In the lowpass case, the
first 2n–1 derivatives of the squared magnitude response are zero at ω = 0. The
squared magnitude response function is

corresponding to a transfer function with poles equally spaced around a circle
in the left half plane. The magnitude response at the cutoff angular frequency
ω0 is always regardless of the filter order. buttap sets ω0 to 1 for a
normalized result.

Algorithm z = [];
p = exp(sqrt(-1)*(pi*(1:2:2*n-1)/(2*n)+pi/2)).';
k = real(prod(-p));

References [1] Parks, T.W., and C.S. Burrus. Digital Filter Design. New York: John Wiley
& Sons, 1987. Chapter 7.

See Also besselap, butter, cheb1ap, cheb2ap, ellipap

H s() z s()
p s()
---------- k

s p 1()–() s p 2()–() s p n()–()
--= =

H ω() 2 1
1 ω ω0⁄()2n+
------------------------------------=

1 2⁄
7-55

butter
7butterPurpose Butterworth analog and digital filter design

Syntax [b,a] = butter(n,Wn)
[b,a] = butter(n,Wn,'ftype')
[b,a] = butter(n,Wn,'s')
[b,a] = butter(n,Wn,'ftype','s')
[z,p,k] = butter(...)
[A,B,C,D] = butter(...)

Description butter designs lowpass, bandpass, highpass, and bandstop digital and analog
Butterworth filters. Butterworth filters are characterized by a magnitude
response that is maximally flat in the passband and monotonic overall.

Butterworth filters sacrifice rolloff steepness for monotonicity in the pass- and
stopbands. Unless the smoothness of the Butterworth filter is needed, an
elliptic or Chebyshev filter can generally provide steeper rolloff characteristics
with a lower filter order.

Digital Domain

[b,a] = butter(n,Wn) designs an order n lowpass digital Butterworth filter
with normalized cutoff frequency Wn. It returns the filter coefficients in length
n+1 row vectors b and a, with coefficients in descending powers of z.

Cutoff frequency is that frequency where the magnitude response of the filter
is . For butter, the normalized cutoff frequency Wn must be a number
between 0 and 1, where 1 corresponds to the Nyquist frequency, π radians per
sample.

If Wn is a two-element vector, Wn = [w1 w2], butter returns an order 2*n digital
bandpass filter with passband w1 < ω < w2.

[b,a] = butter(n,Wn,'ftype') designs a highpass, lowpass, or bandstop
filter, where the string 'ftype' is one of the following.

• 'high' for a highpass digital filter with normalized cutoff frequency Wn

• 'low' for a lowpass digital filter with normalized cutoff frequency Wn

H z() B z()
A z()
----------- b 1() b 2()z 1– b n 1+()z n–+ + +

1 a 2()z 1– a n 1+()z n–+ + +
--= =

1 2⁄
7-56

butter
• 'stop' for an order 2*n bandstop digital filter if Wn is a two-element vector,
Wn = [w1 w2]. The stopband is w1 < ω < w2.

With different numbers of output arguments, butter directly obtains other
realizations of the filter. To obtain zero-pole-gain form, use three output
arguments as shown below:

[z,p,k] = butter(n,Wn) or

[z,p,k] = butter(n,Wn,'ftype') returns the zeros and poles in length n
column vectors z and p, and the gain in the scalar k.

To obtain state-space form, use four output arguments as shown below:

[A,B,C,D] = butter(n,Wn) or

[A,B,C,D] = butter(n,Wn,'ftype') where A, B, C, and D are

and u is the input, x is the state vector, and y is the output.

Analog Domain

[b,a] = butter(n,Wn,'s') designs an order n lowpass analog Butterworth
filter with angular cutoff frequency Wn rad/s. It returns the filter coefficients in
the length n+1 row vectors b and a, in descending powers of s, derived from this
transfer function:

butter’s angular cutoff frequency Wn must be greater than 0 rad/s.

If Wn is a two-element vector with w1 < w2, butter(n,Wn,'s') returns an order
2*n bandpass analog filter with passband w1 < ω < w2.

[b,a] = butter(n,Wn,'ftype','s') designs a highpass, lowpass, or
bandstop filter.

x n 1+[] Ax n[] Bu n[]+=

y n[] Cx n[] Du n[]+=

H s() B s()
A s()
----------- b 1()sn b 2()sn 1– b n 1+()+ + +

sn a 2()sn 1– a n 1+()+ + +
---= =
7-57

butter
With different numbers of output arguments, butter directly obtains other
realizations of the analog filter. To obtain zero-pole-gain form, use three output
arguments as shown below:

[z,p,k] = butter(n,Wn,'s') or

[z,p,k] = butter(n,Wn,'ftype','s') returns the zeros and poles in length
n or 2*n column vectors z and p and the gain in the scalar k.

To obtain state-space form, use four output arguments as shown below:

[A,B,C,D] = butter(n,Wn,'s') or

[A,B,C,D] = butter(n,Wn,'ftype','s') where A, B, C, and D are

and u is the input, x is the state vector, and y is the output.

Examples Example 1
For data sampled at 1000 Hz, design a 9th-order highpass Butterworth filter
with cutoff frequency of 300 Hz, which corresponds to a normalized value of
0.6:

[b,a] = butter(9,300/500,'high');

The filter’s frequency response is

freqz(b,a,128,1000)

x· Ax Bu+=

y Cx Du+=
7-58

butter
Example 2
Design a 10th-order bandpass Butterworth filter with a passband from 100 to
200 Hz and plot its impulse response, or unit sample response:

n = 5; Wn = [100 200]/500;
[b,a] = butter(n,Wn);
[y,t] = impz(b,a,101);
stem(t,y)

0 50 100 150 200 250 300 350 400 450 500
−800

−600

−400

−200

0

200

Frequency (Hz)

P
ha

se
 (

de
gr

ee
s)

0 50 100 150 200 250 300 350 400 450 500
−400

−300

−200

−100

0

100

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

0 10 20 30 40 50 60 70 80 90 100
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
7-59

butter
Limitations For high order filters, the state-space form is the most numerically accurate,
followed by the zero-pole-gain form. The transfer function coefficient form is
the least accurate; numerical problems can arise for filter orders as low as 15.

Algorithm butter uses a five-step algorithm:

1 It finds the lowpass analog prototype poles, zeros, and gain using the buttap
function.

2 It converts the poles, zeros, and gain into state-space form.

3 It transforms the lowpass filter into a bandpass, highpass, or bandstop filter
with desired cutoff frequencies, using a state-space transformation.

4 For digital filter design, butter uses bilinear to convert the analog filter
into a digital filter through a bilinear transformation with frequency
prewarping. Careful frequency adjustment guarantees that the analog
filters and the digital filters will have the same frequency response
magnitude at Wn or w1 and w2.

5 It converts the state-space filter back to transfer function or zero-pole-gain
form, as required.

See Also besself, buttap, buttord, cheby1, cheby2, ellip, maxflat
7-60

buttord
7buttordPurpose Butterworth filter order and cutoff frequency

Syntax [n,Wn] = buttord(Wp,Ws,Rp,Rs)
[n,Wn] = buttord(Wp,Ws,Rp,Rs,'s')

Description buttord calculates the minimum order of a digital or analog Butterworth filter
required to meet a set of filter design specifications.

Digital Domain

[n,Wn] = buttord(Wp,Ws,Rp,Rs) returns the lowest order, n, of the digital
Butterworth filter that loses no more than Rp dB in the passband and has at
least Rs dB of attenuation in the stopband. The scalar (or vector) of
corresponding cutoff frequencies, Wn, is also returned. Use the output
arguments n and Wn in butter.

Choose the input arguments to specify the stopband and passband according to
the following table.

Description of Stopband and Passband Filter Parameters

Parameter Description

Wp Passband corner frequency Wp, the cutoff frequency, is a
scalar or a two-element vector with values between 0 and 1,
with 1 corresponding to the normalized Nyquist frequency,
π radians per sample.

Ws Stopband corner frequency Ws, is a scalar or a two-element
vector with values between 0 and 1, with 1 corresponding to
the normalized Nyquist frequency.

Rp Passband ripple, in decibels. This value is the maximum
permissible passband loss in decibels.

Rs Stopband attenuation, in decibels. This value is the number
of decibels the stopband is down from the passband.
7-61

buttord
Use the following guide to specify filters of different types.

If your filter specifications call for a bandpass or bandstop filter with unequal
ripple in each of the passbands or stopbands, design separate lowpass and
highpass filters according to the specifications in this table, and cascade the
two filters together.

Analog Domain

[n,Wn] = buttord(Wp,Ws,Rp,Rs,'s') finds the minimum order n and cutoff
frequencies Wn for an analog Butterworth filter. You specify the frequencies Wp
and Ws similar those described in the Table , Description of Stopband and
Passband Filter Parameters table above, only in this case you specify the
frequency in radians per second, and the passband or the stopband can be
infinite.

Use buttord for lowpass, highpass, bandpass, and bandstop filters as described
in the Table , Filter Type Stopband and Passband Specifications table above.

Filter Type Stopband and Passband Specifications

Filter Type Stopband and Passband Conditions Stopband Passband

Lowpass Wp < Ws, both scalars (Ws,1) (0,Wp)

Highpass Wp > Ws, both scalars (0,Ws) (Wp,1)

Bandpass The interval specified by Ws contains
the one specified by Wp
(Ws(1) < Wp(1) < Wp(2) < Ws(2)).

(0,Ws(1))
and
(Ws(2),1)

(Wp(1),Wp(2))

Bandstop The interval specified by Wp contains
the one specified by Ws
(Wp(1) < Ws(1) < Ws(2) < Wp(2)).

(0,Wp(1))
and
(Wp(2),1)

(Ws(1),Ws(2))
7-62

buttord
Examples Example 1
For data sampled at 1000 Hz, design a lowpass filter with less than 3 dB of
ripple in the passband, defined from 0 to 40 Hz, and at least 60 dB of
attenuation in the stopband, defined from 150 Hz to the Nyquist frequency
(500 Hz). Plot the filter’s frequency response:

Wp = 40/500; Ws = 150/500;
[n,Wn] = buttord(Wp,Ws,3,60)

n =
 5
Wn =
 0.0810

[b,a] = butter(n,Wn);
freqz(b,a,512,1000); title('n=5 Butterworth Lowpass Filter')

0 50 100 150 200 250 300 350 400 450 500
−500

−400

−300

−200

−100

0

Frequency (Hz)

P
h
a
se

 (
d
e
g
re

e
s)

0 50 100 150 200 250 300 350 400 450 500
−400

−300

−200

−100

0

100

Frequency (Hz)

M
a
g
n
itu

d
e
 (

d
B

)

n=5 Butterworth Lowpass Filter
7-63

buttord
Example 2
Next design a bandpass filter with passband of 60 Hz to 200 Hz, with less than
3 dB of ripple in the passband, and 40 dB attenuation in the stopbands that are
50 Hz wide on both sides of the passband:

Wp = [60 200]/500; Ws = [50 250]/500;
Rp = 3; Rs = 40;
[n,Wn] = buttord(Wp,Ws,Rp,Rs)

n =
 16
Wn =
 0.1198 0.4005

[b,a] = butter(n,Wn);
freqz(b,a,128,1000)
title('n=16 Butterworth Bandpass Filter')

0 50 100 150 200 250 300 350 400 450 500
−2500

−2000

−1500

−1000

−500

0

500

Frequency (Hz)

P
h

a
se

 (
d

e
g

re
e

s)

0 50 100 150 200 250 300 350 400 450 500
−500

−400

−300

−200

−100

0

100

Frequency (Hz)

M
a

g
n

itu
d

e
 (

d
B

)

n=16 Butterworth Bandpass Filter
7-64

buttord
Algorithm buttord’s order prediction formula is described in [1]. It operates in the analog
domain for both analog and digital cases. For the digital case, it converts the
frequency parameters to the s-domain before estimating the order and natural
frequency, and then converts back to the z-domain.

buttord initially develops a lowpass filter prototype by transforming the
passband frequencies of the desired filter to 1 rad/s (for lowpass and highpass
filters) and to -1 and 1 rad/s (for bandpass and bandstop filters). It then
computes the minimum order required for a lowpass filter to meet the stopband
specification.

References [1] Rabiner, L.R., and B. Gold. Theory and Application of Digital Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975. Pg. 227.

See Also butter, cheb1ord, cheb2ord, ellipord, kaiserord
7-65

cceps
7ccepsPurpose Complex cepstral analysis

Syntax xhat = cceps(x)
[xhat,nd] = cceps(x)
[xhat,nd,xhat1] = cceps(x)
[...] = cceps(x,n)

Description Cepstral analysis is a nonlinear signal processing technique that is applied
most commonly in speech processing and homomorphic filtering [1].

Note cceps only works on real data.

xhat = cceps(x) returns the complex cepstrum of the real data sequence x.
The input is altered, by the application of a linear phase term, to have no phase
discontinuity at ±π radians. That is, it is circularly shifted (after zero padding)
by some samples, if necessary, to have zero phase at π radians.

[xhat,nd] = cceps(x) returns the number of samples nd of (circular) delay
added to x prior to finding the complex cepstrum.

[xhat,nd,xhat1] = cceps(x) returns a second complex cepstrum, computed
using an alternate rooting algorithm, in xhat1. The alternate method
([1] p.795) is useful for short sequences that can be rooted and do not have zeros
on the unit circle. For these signals, xhat1 can provide a verification of xhat.

[...] = cceps(x,n) zero pads x to length n and returns the length n complex
cepstrum of x.

Algorithm cceps is an M-file implementation of algorithm 7.1 in [2]. A lengthy Fortran
program reduces to these three lines of MATLAB code, which compose the core
of cceps:

h = fft(x);
logh = log(abs(h)) + sqrt(-1)*rcunwrap(angle(h));
y = real(ifft(logh));
7-66

cceps
Note rcunwrap in the above code segment is a special version of unwrap that
subtracts a straight line from the phase. rcunwrap is a local function within
cceps and is not available for use from the MATLAB command line.

References [1] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing.
Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 788-789.

[2] IEEE. Programs for Digital Signal Processing. IEEE Press. New York: John
Wiley & Sons, 1979.

See Also icceps, hilbert, rceps, unwrap
7-67

cell2sos
7cell2sosPurpose Convert cell array for second-order sections to second-order sections matrix

Syntax m = cell2sos(c)

Description m = cell2sos(c) changes a 1-by-L cell array c consisting of 1-by-2 cell arrays
into an L-by-6 second-order section matrix m. Matrix m takes the same form as
the matrix generated by tf2sos. You can use m = cell2sos(c) to invert the results
of c = sos2cell(m).

c must be a cell array of the form

c = { {b1 a1} {b2 a2} ... {bL aL} }

where both bi and ai are row vectors of at most length 3, and i = 1, 2, ..., L. The
resulting matrix m is given by

m = [b1 a1;b2 a2; ... ;bL aL]

See Also sos2cell, tf2sos
7-68

cfirpm
7cfirpmPurpose Complex and nonlinear-phase equiripple FIR filter design

Syntax b = cfirpm(n,f,@fresp)
b = cfirpm(n,f,@fresp,w)
b = cfirpm(n,f,a,w)
b = cfirpm(...,'sym')
b = cfirpm(...,'skip_stage2')
b = cfirpm(...,'debug')
b = cfirpm(...,{lgrid})
[b,delta,opt] = cfirpm(...)

Description cfirpm allows arbitrary frequency-domain constraints to be specified for the
design of a possibly complex FIR filter. The Chebyshev (or minimax) filter error
is optimized, producing equiripple FIR filter designs.

b = cfirpm(n,f,@fresp) returns a length n+1 FIR filter with the best
approximation to the desired frequency response as returned by function
fresp, which is called by its function handle (@fresp). f is a vector of frequency
band edge pairs, specified in the range -1 and 1, where 1 corresponds to the
normalized Nyquist frequency. The frequencies must be in increasing order,
and f must have even length. The frequency bands span f(k) to f(k+1) for k
odd; the intervals f(k+1) to f(k+2) for k odd are “transition bands” or “don’t
care” regions during optimization.

Predefined fresp frequency response functions are included for a number of
common filter designs, as described below. For all of the predefined frequency
response functions, the symmetry option 'sym' defaults to 'even' if no
negative frequencies are contained in f and d = 0; otherwise 'sym' defaults to
'none'. (See the 'sym' option below for details.) For all of the predefined
frequency response functions, d specifies a group-delay offset such that the
filter response has a group delay of n/2+d in units of the sample interval.
Negative values create less delay; positive values create more delay. By default
d = 0:
7-69

cfirpm
• @lowpass, @highpass, @allpass, @bandpass, @bandstop

These functions share a common syntax, exemplified below by the string
'lowpass'.

b = cfirpm(n,f,@lowpass,...) and

b = cfirpm(n,f,{@lowpass,d},...) design a linear-phase (n/2+d delay)
filter.

• @multiband designs a linear-phase frequency response filter with arbitrary
band amplitudes.

b = cfirpm(n,f,{@multiband,a},...) and

b = cfirpm(n,f,{@multiband,a,d},...) specify vector a containing the
desired amplitudes at the band edges in f. The desired amplitude at
frequencies between pairs of points f(k) and f(k+1) for k odd is the line
segment connecting the points (f(k),a(k)) and (f(k+1),a(k+1)).

• @differentiator designs a linear-phase differentiator. For these designs,
zero-frequency must be in a transition band, and band weighting is set to be
inversely proportional to frequency.

b = cfirpm(n,f,{@differentiator,fs},...) and

b = cfirpm(n,f,{@differentiator,fs,d},...) specify the sample rate
fs used to determine the slope of the differentiator response. If omitted, fs
defaults to 1.

• @hilbfilt designs a linear-phase Hilbert transform filter response. For
Hilbert designs, zero-frequency must be in a transition band.

b = cfirpm(n,f,@hilbfilt,...) and

b = cfirpm(N,F,{@hilbfilt,d},...) design a linear-phase
(n/2+d delay) Hilbert transform filter.

• @invsinc designs a linear-phase inverse-sinc filter response.

b = cfirpm(n,f,{@invsinc,a},...) and

b = cfirpm(n,f,{@invsinc,a,d},...) specify gain a for the
sinc-function, computed as sinc(a*g), where g contains the optimization
grid frequencies normalized to the range [-1,1]. By default, a=1. The
group-delay offset is d, such that the filter response will have a group
delay of N/2 + d in units of the sample interval, where N is the filter order.
Negative values create less delay and positive values create more delay.
By default, d=0.
7-70

cfirpm
b = cfirpm(n,f,@fresp,w) uses the real, non-negative weights in vector w to
weight the fit in each frequency band. The length of w is half the length of f, so
there is exactly one weight per band.

b = cfirpm(n,f,a,w) is a synonym for b = cfirpm(n,f,{@multiband,a},w).

b = cfirpm(...,'sym') imposes a symmetry constraint on the impulse
response of the design, where 'sym' may be one of the following:

• 'none' indicates no symmetry constraint. This is the default if any negative
band edge frequencies are passed, or if fresp does not supply a default.

• 'even' indicates a real and even impulse response. This is the default for
highpass, lowpass, allpass, bandpass, bandstop, invsinc, and multiband
designs.

• 'odd' indicates a real and odd impulse response. This is the default for
Hilbert and differentiator designs.

• 'real' indicates conjugate symmetry for the frequency response

If any 'sym' option other than 'none' is specified, the band edges should be
specified only over positive frequencies; the negative frequency region is filled
in from symmetry. If a 'sym' option is not specified, the fresp function is
queried for a default setting. Any user-supplied fresp function should return
a valid 'sym'string when it is passed the string 'defaults' as the filter order
N.

b = cfirpm(...,'skip_stage2') disables the second-stage optimization
algorithm, which executes only when cfirpm determines that an optimal
solution has not been reached by the standard firpm error-exchange. Disabling
this algorithm may increase the speed of computation, but may incur a
reduction in accuracy. By default, the second-stage optimization is enabled.

b = cfirpm(...,'debug') enables the display of intermediate results during
the filter design, where 'debug' may be one of 'trace', 'plots', 'both', or
'off'. By default it is set to 'off'.

b = cfirpm(...,{lgrid}) uses the integer lgrid to control the density of the
frequency grid, which has roughly 2^nextpow2(lgrid*n) frequency points.
The default value for lgrid is 25. Note that the {lgrid} argument must be a
1-by-1 cell array.
7-71

cfirpm
Any combination of the 'sym', 'skip_stage2', 'debug', and {lgrid} options may be
specified.

[b,delta] = cfirpm(...) returns the maximum ripple height delta.

[b,delta,opt] = cfirpm(...) returns a structure opt of optional results
computed by cfirpm and contains the following fields.

User-definable functions may be used, instead of the predefined frequency
response functions for @fresp. The function is called from within cfirpm using
the following syntax

[dh,dw] = fresp(n,f,gf,w,p1,p2,...)

where:

• n is the filter order.

• f is the vector of frequency band edges that appear monotonically between -1
and 1, where 1 corresponds to the Nyquist frequency.

• gf is a vector of grid points that have been linearly interpolated over each
specified frequency band by cfirpm. gf determines the frequency grid at
which the response function must be evaluated. This is the same data
returned by cfirpm in the fgrid field of the opt structure.

Field Description

opt.fgrid Frequency grid vector used for the filter design optimization

opt.des Desired frequency response for each point in opt.fgrid

opt.wt Weighting for each point in opt.fgrid

opt.H Actual frequency response for each point in opt.fgrid

opt.error Error at each point in opt.fgrid

opt.iextr Vector of indices into opt.fgrid for extremal frequencies

opt.fextr Vector of extremal frequencies
7-72

cfirpm
• w is a vector of real, positive weights, one per band, used during optimization.
w is optional in the call to cfirpm; if not specified, it is set to unity weighting
before being passed to fresp.

• dh and dw are the desired complex frequency response and band weight
vectors, respectively, evaluated at each frequency in grid gf.

• p1, p2, ..., are optional parameters that may be passed to fresp.

Additionally, a preliminary call is made to fresp to determine the default
symmetry property 'sym'. This call is made using the syntax:

sym = fresp('defaults',{n,f,[],w,p1,p2,...})

The arguments may be used in determining an appropriate symmetry default
as necessary. The function private/lowpass.m may be useful as a template for
generating new frequency response functions.

Examples Example 1
Design a 31-tap, linear-phase, lowpass filter:

b = cfirpm(30,[-1 -0.5 -0.4 0.7 0.8 1],@lowpass);
fvtool(b,1)

Click the Magnitude and Phase Response button.
7-73

cfirpm
7-74

cfirpm
Example 2
Design a nonlinear-phase allpass FIR filter:

n = 22; % Filter order
f = [-1 1]; % Frequency band edges
w = [1 1]; % Weights for optimization
gf = linspace(-1,1,256); % Grid of frequency points
d = exp(-1i*pi*gf*n/2 + 1i*pi*pi*sign(gf).*gf.*gf*(4/pi));

% Desired frequency response
Vector d now contains the complex frequency response that we desire for the
FIR filter computed by cfirpm.

Now compute the FIR filter that best approximates this response:

b = cfirpm(n,f,'allpass',w,'real'); % Approximation
freqz(b,1,256,'whole');

subplot(2,1,1); hold on %overlay desired response
plot(pi*(gf+1),20*log10(abs(fftshift(d))),'r--')

subplot(2,1,2); hold on
plot(pi*(gf+1),unwrap(angle(fftshift(d)))*180/pi,'r--')
legend('Approximation','Desired')
7-75

cfirpm
Algorithm An extended version of the Remez exchange method is implemented for the
complex case. This exchange method obtains the optimal filter when the
equiripple nature of the filter is restricted to have n+2 extremals. When it does
not converge, the algorithm switches to an ascent-descent algorithm that takes
over to finish the convergence to the optimal solution. See the references for
further details.

References [1] Karam, L.J., and J.H. McClellan. “Complex Chebyshev Approximation for
FIR Filter Design.” IEEE Trans. on Circuits and Systems II. March 1995.
Pgs. 207-216.

[2] Karam, L.J. Design of Complex Digital FIR Filters in the Chebyshev Sense.
Ph.D. Thesis, Georgia Institute of Technology, March 1995.
7-76

cfirpm
[3] Demjanjov, V.F., and V.N. Malozemov. Introduction to Minimax. New York:
John Wiley & Sons, 1974.

See Also fir1, fir2, firls, firpm, function_handle
7-77

cheb1ap
7cheb1apPurpose Chebyshev Type I analog lowpass filter prototype

Syntax [z,p,k] = cheb1ap(n,Rp)

Description [z,p,k] = cheb1ap(n,Rp) returns the poles and gain of an order n Chebyshev
Type I analog lowpass filter prototype with Rp dB of ripple in the passband. The
function returns the poles in the length n column vector p and the gain in
scalar k. z is an empty matrix, because there are no zeros. The transfer
function is

Chebyshev Type I filters are equiripple in the passband and monotonic in the
stopband. The poles are evenly spaced about an ellipse in the left half plane.
The Chebyshev Type I passband edge angular frequency is set to 1.0 for a
normalized result. This is the frequency at which the passband ends and the
filter has magnitude response of 10-Rp/20.

References [1] Parks, T.W., and C.S. Burrus. Digital Filter Design. New York: John Wiley
& Sons, 1987. Chapter 7.

See Also besselap, buttap, cheby1, cheb2ap, ellipap

H s() z s()
p s()
---------- k

s p 1()–() s p 2()–() s p n()–()
--= =

ω0
7-78

cheb1ord
7cheb1ordPurpose Chebyshev Type I filter order

Syntax [n,Wn] = cheb1ord(Wp,Ws,Rp,Rs)
[n,Wn] = cheb1ord(Wp,Ws,Rp,Rs,'s')

Description cheb1ord calculates the minimum order of a digital or analog Chebyshev
Type I filter required to meet a set of filter design specifications.

Digital Domain

[n,Wn] = cheb1ord(Wp,Ws,Rp,Rs) returns the lowest order n of the
Chebyshev Type I filter that loses no more than Rp dB in the passband and has
at least Rs dB of attenuation in the stopband. The scalar (or vector) of
corresponding cutoff frequencies Wn, is also returned. Use the output
arguments n and Wn with the cheby1 function.

Choose the input arguments to specify the stopband and passband according to
the following table.

Description of Stopband and Passband Filter Parameters

Parameter Description

Wp Passband corner frequency Wp, the cutoff frequency, is a
scalar or a two-element vector with values between 0 and 1,
with 1 corresponding to the normalized Nyquist frequency, π
radians per sample.

Ws Stopband corner frequency Ws, is a scalar or a two-element
vector with values between 0 and 1, with 1 corresponding to
the normalized Nyquist frequency.

Rp Passband ripple, in decibels. This value is the maximum
permissible passband loss in decibels.

Rs Stopband attenuation, in decibels. This value is the number
of decibels the stopband is down from the passband.
7-79

cheb1ord
Use the following guide to specify filters of different types

If your filter specifications call for a bandpass or bandstop filter with unequal
ripple in each of the passbands or stopbands, design separate lowpass and
highpass filters according to the specifications in this table, and cascade the
two filters together.

Analog Domain

[n,Wn] = cheb1ord(Wp,Ws,Rp,Rs,'s') finds the minimum order n and cutoff
frequencies Wn for an analog Chebyshev Type I filter. You specify the
frequencies Wp and Ws similar to those described in the Table , Description of
Stopband and Passband Filter Parameters table above, only in this case you
specify the frequency in radians per second, and the passband or the stopband
can be infinite.

Use cheb1ord for lowpass, highpass, bandpass, and bandstop filters as
described in the Table , Filter Type Stopband and Passband Specifications
table above.

Examples For data sampled at 1000 Hz, design a lowpass filter with less than 3 dB of
ripple in the passband defined from 0 to 40 Hz and at least 60 dB of ripple in
the stopband defined from 150 Hz to the Nyquist frequency (500 Hz):

Wp = 40/500; Ws = 150/500;

Filter Type Stopband and Passband Specifications

Filter Type Stopband and Passband Conditions Stopband Passband

Lowpass Wp < Ws, both scalars (Ws,1) (0,Wp)

Highpass Wp > Ws, both scalars (0,Ws) (Wp,1)

Bandpass The interval specified by Ws contains
the one specified by Wp
(Ws(1) < Wp(1) < Wp(2) < Ws(2)).

(0,Ws(1))
and
(Ws(2),1)

(Wp(1),Wp(2))

Bandstop The interval specified by Wp contains
the one specified by Ws
(Wp(1) < Ws(1) < Ws(2) < Wp(2)).

(0,Wp(1))
and
(Wp(2),1)

(Ws(1),Ws(2))
7-80

cheb1ord
Rp = 3; Rs = 60;
[n,Wn] = cheb1ord(Wp,Ws,Rp,Rs)

n =
 4
Wn =
 0.0800

[b,a] = cheby1(n,Rp,Wn);
freqz(b,a,512,1000);
title('n=4 Chebyshev Type I Lowpass Filter')

Next design a bandpass filter with a passband of 60 Hz to 200 Hz, with less
than 3 dB of ripple in the passband, and 40 dB attenuation in the stopbands
that are 50 Hz wide on both sides of the passband:

Wp = [60 200]/500; Ws = [50 250]/500;
Rp = 3; Rs = 40;
[n,Wn] = cheb1ord(Wp,Ws,Rp,Rs)

n =
 7
Wn =
 0.1200 0.4000

0 50 100 150 200 250 300 350 400 450 500
−400

−300

−200

−100

0

Frequency (Hz)

P
h
a
se

 (
d
e
g
re

e
s)

0 50 100 150 200 250 300 350 400 450 500
−300

−250

−200

−150

−100

−50

0

Frequency (Hz)

M
a
g
n
itu

d
e
 (

d
B

)

n=4 Chebyshev Type I Lowpass Filter
7-81

cheb1ord
[b,a] = cheby1(n,Rp,Wn);
freqz(b,a,512,1000);
title('n=7 Chebyshev Type I Bandpass Filter')

Algorithm cheb1ord uses the Chebyshev lowpass filter order prediction formula described
in [1]. The function performs its calculations in the analog domain for both
analog and digital cases. For the digital case, it converts the frequency
parameters to the s-domain before the order and natural frequency estimation
process, and then converts them back to the z-domain.

cheb1ord initially develops a lowpass filter prototype by transforming the
passband frequencies of the desired filter to 1 rad/s (for low- or highpass filters)
or to -1 and 1 rad/s (for bandpass or bandstop filters). It then computes the
minimum order required for a lowpass filter to meet the stopband specification.

References [1] Rabiner, L.R., and B. Gold. Theory and Application of Digital Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975. Pg. 241.

See Also buttord, cheby1, cheb2ord, ellipord, kaiserord

0 50 100 150 200 250 300 350 400 450 500
−1500

−1000

−500

0

500

Frequency (Hz)

P
h
a
se

 (
d
e
g
re

e
s)

0 50 100 150 200 250 300 350 400 450 500
−500

−400

−300

−200

−100

0

Frequency (Hz)

M
a
g
n
itu

d
e
 (

d
B

)

n=7 Chebyshev Type I Bandpass Filter
7-82

cheb2ap
7cheb2apPurpose Chebyshev Type II analog lowpass filter prototype

Syntax [z,p,k] = cheb2ap(n,Rs)

Description [z,p,k] = cheb2ap(n,Rs) finds the zeros, poles, and gain of an order n
Chebyshev Type II analog lowpass filter prototype with stopband ripple Rs dB
down from the passband peak value. cheb2ap returns the zeros and poles in
length n column vectors z and p and the gain in scalar k. If n is odd, z is length
n-1. The transfer function is

Chebyshev Type II filters are monotonic in the passband and equiripple in the
stopband. The pole locations are the inverse of the pole locations of cheb1ap,
whose poles are evenly spaced about an ellipse in the left half plane. The
Chebyshev Type II stopband edge angular frequency ω0 is set to 1 for a
normalized result. This is the frequency at which the stopband begins and the
filter has magnitude response of 10-Rs/20.

Algorithm Chebyshev Type II filters are sometimes called inverse Chebyshev filters
because of their relationship to Chebyshev Type I filters. The cheb2ap function
is a modification of the Chebyshev Type I prototype algorithm:

1 cheb2ap replaces the frequency variable ω with 1/ω, turning the lowpass
filter into a highpass filter while preserving the performance at ω = 1.

2 cheb2ap subtracts the filter transfer function from unity.

References [1] Parks, T.W., and C.S. Burrus. Digital Filter Design. New York: John Wiley
& Sons, 1987. Chapter 7.

See Also besselap, buttap, cheb1ap, cheby2, ellipap

H s() z s()
p s()
---------- k s z 1()–() s z 2()–() s z n()–()

s p 1()–() s p 2()–() s p n()–()
--= =
7-83

cheb2ord
7cheb2ordPurpose Chebyshev Type II filter order

Syntax [n,Wn] = cheb2ord(Wp,Ws,Rp,Rs)
[n,Wn] = cheb2ord(Wp,Ws,Rp,Rs,'s')

Description cheb2ord calculates the minimum order of a digital or analog Chebyshev
Type II filter required to meet a set of filter design specifications.

Digital Domain

[n,Wn] = cheb2ord(Wp,Ws,Rp,Rs) returns the lowest order n of the
Chebyshev Type II filter that loses no more than Rp dB in the passband and has
at least Rs dB of attenuation in the stopband. The scalar (or vector) of
corresponding cutoff frequencies Wn, is also returned. Use the output
arguments n and Wn in cheby2.

Choose the input arguments to specify the stopband and passband according to
the following table.

Description of Stopband and Passband Filter Parameters

Parameter Description

Wp Passband corner frequency Wp, the cutoff frequency, is a
scalar or a two-element vector with values between 0 and 1,
with 1 corresponding to the normalized Nyquist frequency, π
radians per sample.

Ws Stopband corner frequency Ws, is a scalar or a two-element
vector with values between 0 and 1, with 1 corresponding to
the normalized Nyquist frequency.

Rp Passband ripple, in decibels. This value is the maximum
permissible passband loss in decibels.

Rs Stopband attenuation, in decibels. This value is the number
of decibels the stopband is down from the passband.
7-84

cheb2ord
Use the following guide to specify filters of different types.

If your filter specifications call for a bandpass or bandstop filter with unequal
ripple in each of the passbands or stopbands, design separate lowpass and
highpass filters according to the specifications in this table, and cascade the
two filters together.

Analog Domain

[n,Wn] = cheb2ord(Wp,Ws,Rp,Rs,'s') finds the minimum order n and cutoff
frequencies Wn for an analog Chebyshev Type II filter. You specify the
frequencies Wp and Ws similar to those described in the Table , Description of
Stopband and Passband Filter Parameters table above, only in this case you
specify the frequency in radians per second, and the passband or the stopband
can be infinite.

Use cheb2ord for lowpass, highpass, bandpass, and bandstop filters as
described in the Table , Filter Type Stopband and Passband Specifications
table above.

Filter Type Stopband and Passband Specifications

Filter Type Stopband and Passband Conditions Stopband Passband

Lowpass Wp < Ws, both scalars (Ws,1) (0,Wp)

Highpass Wp > Ws, both scalars (0,Ws) (Wp,1)

Bandpass The interval specified by Ws contains
the one specified by Wp
(Ws(1) < Wp(1) < Wp(2) < Ws(2)).

(0,Ws(1))
and
(Ws(2),1)

(Wp(1),Wp(2))

Bandstop The interval specified by Wp contains
the one specified by Ws
(Wp(1) < Ws(1) < Ws(2) < Wp(2)).

(0,Wp(1))
and
(Wp(2),1)

(Ws(1),Ws(2))
7-85

cheb2ord
Examples Example 1
For data sampled at 1000 Hz, design a lowpass filter with less than 3 dB of
ripple in the passband defined from 0 to 40 Hz, and at least 60 dB of
attenuation in the stopband defined from 150 Hz to the Nyquist frequency
(500 Hz):

Wp = 40/500; Ws = 150/500;
Rp = 3; Rs = 60;
[n,Wn] = cheb2ord(Wp,Ws,Rp,Rs)

n =
 4

Wn =
 0.2597

[b,a] = cheby2(n,Rs,Wn);
freqz(b,a,512,1000);
title('n=4 Chebyshev Type II Lowpass Filter')

0 50 100 150 200 250 300 350 400 450 500
−400

−300

−200

−100

0

100

Frequency (Hz)

P
h
a
se

 (
d
e
g
re

e
s)

0 50 100 150 200 250 300 350 400 450 500
−120

−100

−80

−60

−40

−20

0

Frequency (Hz)

M
a
g
n
itu

d
e
 (

d
B

)

n=4 Chebyshev Type II Lowpass Filter
7-86

cheb2ord
Example 2
Next design a bandpass filter with a passband of 60 Hz to 200 Hz, with less
than 3 dB of ripple in the passband, and 40 dB attenuation in the stopbands
that are 50 Hz wide on both sides of the passband:

Wp = [60 200]/500; Ws = [50 250]/500;
Rp = 3; Rs = 40;
[n,Wn] = cheb2ord(Wp,Ws,Rp,Rs)

n =
 7

Wn =
 0.1019 0.4516

[b,a] = cheby2(n,Rs,Wn);
freqz(b,a,512,1000)
title('n=7 Chebyshev Type II Bandpass Filter')

0 50 100 150 200 250 300 350 400 450 500
−400

−200

0

200

400

Frequency (Hz)

P
h
a
se

 (
d
e
g
re

e
s)

0 50 100 150 200 250 300 350 400 450 500
−300

−250

−200

−150

−100

−50

0

50

Frequency (Hz)

M
a
g
n
itu

d
e
 (

d
B

)

n=7 Chebyshev Type II Bandpass Filter
7-87

cheb2ord
Algorithm cheb2ord uses the Chebyshev lowpass filter order prediction formula described
in [1]. The function performs its calculations in the analog domain for both
analog and digital cases. For the digital case, it converts the frequency
parameters to the s-domain before the order and natural frequency estimation
process, and then converts them back to the z-domain.

cheb2ord initially develops a lowpass filter prototype by transforming the
stopband frequencies of the desired filter to 1 rad/s (for low- and highpass
filters) and to -1 and 1 rad/s (for bandpass and bandstop filters). It then
computes the minimum order required for a lowpass filter to meet the
passband specification.

References [1] Rabiner, L.R., and B. Gold. Theory and Application of Digital Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975. Pg. 241.

See Also buttord, cheb1ord, cheby2, ellipord, kaiserord
7-88

chebwin
7chebwinPurpose Chebyshev window

Syntax w = chebwin(n,r)

Description w = chebwin(n,r) returns the column vector w containing the length n
Chebyshev window whose Fourier transform sidelobe magnitude is r dB below
the mainlobe magnitude. The default value for r is 100.0 dB.

Note If you specify a one-point window (set n=1), the value 1 is returned.

Examples Create a 64-point Chebyshev window with 100 dB of sidelobe attenuation and
display the result using WVTool:

N=64;
wvtool(chebwin(N))

Algorithm An artifact of the equiripple design method used in chebwin is the presence of
impulses at the endpoints of the time-domain response. This is due to the
constant-level sidelobes in the frequency domain. The magnitude of the
7-89

chebwin
impulses are on the order of the size of the spectral sidelobes. If the sidelobes
are large, the effect at the endpoints may be significant. For more information
on this effect, see reference [2].

References [1] IEEE. Programs for Digital Signal Processing. IEEE Press. New York: John
Wiley & Sons, 1979. Program 5.2.

[2] Harris, Fredric J. Multirate Signal Processing for Communication Systems,
New Jersey: Prentice Hall PTR, 2004, pp. 60-64.

See Also gausswin, kaiser, tukeywin, window, wintool, wvtool
7-90

cheby1
7cheby1Purpose Chebyshev Type I filter design (passband ripple)

Syntax [b,a] = cheby1(n,Rp,Wn)
[b,a] = cheby1(n,Rp,Wn,'ftype')
[b,a] = cheby1(n,Rp,Wn,'s')
[b,a] = cheby1(n,Rp,Wn,'ftype','s')
[z,p,k] = cheby1(...)
[A,B,C,D] = cheby1(...)

Description cheby1 designs lowpass, bandpass, highpass, and bandstop digital and analog
Chebyshev Type I filters. Chebyshev Type I filters are equiripple in the
passband and monotonic in the stopband. Type I filters roll off faster than
type II filters, but at the expense of greater deviation from unity in the
passband.

Digital Domain

[b,a] = cheby1(n,Rp,Wn) designs an order n Chebyshev lowpass digital
Chebyshev filter with normalized passband edge frequency Wn and Rp dB of
peak-to-peak ripple in the passband. It returns the filter coefficients in the
length n+1 row vectors b and a, with coefficients in descending powers of z.

Normalized passband edge frequency is the frequency at which the magnitude
response of the filter is equal to -Rp dB. For cheby1, the normalized passband
edge frequency Wn is a number between 0 and 1, where 1 corresponds to the
Nyquist frequency, π radians per sample. Smaller values of passband ripple Rp
lead to wider transition widths (shallower rolloff characteristics).

If Wn is a two-element vector, Wn = [w1 w2], cheby1 returns an order 2*n
bandpass filter with passband w1 < < w2.

[b,a] = cheby1(n,Rp,Wn,'ftype') designs a highpass , lowpass, or
bandstop filter, where the string 'ftype' is one of the following

• 'high' for a highpass digital filter with normalized passband edge frequency
Wn

H z() B z()
A z()
----------- b 1() b 2()z 1– b n 1+()z n–+ + +

1 a 2()z 1– a n 1+()z n–+ + +
--= =

ω

7-91

cheby1
• 'low' for a lowpass digital filter with normalized passband edge frequency
Wn

• 'stop' for an order 2*n bandstop digital filter if Wn is a two-element vector,
Wn = [w1 w2]. The stopband is w1 < ω < w2.

With different numbers of output arguments, cheby1 directly obtains other
realizations of the filter. To obtain zero-pole-gain form, use three output
arguments as shown below:

[z,p,k] = cheby1(n,Rp,Wn) or

[z,p,k] = cheby1(n,Rp,Wn,'ftype') returns the zeros and poles in length n
column vectors z and p and the gain in the scalar k.

To obtain state-space form, use four output arguments as shown below:

[A,B,C,D] = cheby1(n,Rp,Wn) or

[A,B,C,D] = cheby1(n,Rp,Wn,'ftype') where A, B, C, and D are

and u is the input, x is the state vector, and y is the output.

Analog Domain

[b,a] = cheby1(n,Rp,Wn,'s') designs an order n lowpass analog Chebyshev
Type I filter with angular passband edge frequency Wn rad/s. It returns the
filter coefficients in length n+1 row vectors b and a, in descending powers of s,
derived from the transfer function

Angular passband edge frequency is the frequency at which the magnitude
response of the filter is -Rp dB. For cheby1, the angular passband edge
frequency Wn must be greater than 0 rad/s.

x n 1+[] Ax n[] Bu n[]+=

y n[] Cx n[] Du n[]+=

H s() B s()
A s()
----------- b 1()sn b 2()sn 1– b n 1+()+ + +

sn a 2()sn 1– a n 1+()+ + +
---= =
7-92

cheby1
If Wn is a two-element vector Wn = [w1 w2] with w1 < w2, then
cheby1(n,Rp,Wn,'s') returns an order 2*n bandpass analog filter with
passband w1 < ω < w2.

[b,a] = cheby1(n,Rp,Wn,'ftype','s') designs a highpass, lowpass, or
bandstop filter.

You can supply different numbers of output arguments for cheby1 to directly
obtain other realizations of the analog filter. To obtain zero-pole-gain form, use
three output arguments as shown below.

[z,p,k] = cheby1(n,Rp,Wn,'s') or

[z,p,k] = cheby1(n,Rp,Wn,'ftype','s') returns the zeros and poles in
length n or 2*n column vectors z and p and the gain in the scalar k.

To obtain state-space form, use four output arguments as shown below:

[A,B,C,D] = cheby1(n,Rp,Wn,'s') or

[A,B,C,D] = cheby1(n,Rp,Wn,'ftype','s') where A, B, C, and D are defined
as

and u is the input, x is the state vector, and y is the output.

Examples Example 1: Lowpass Filter
For data sampled at 1000 Hz, design a 9th-order lowpass Chebyshev Type I
filter with 0.5 dB of ripple in the passband and a passband edge frequency of
300 Hz, which corresponds to a normalized value of 0.6:

[b,a] = cheby1(9,0.5,300/500);

The frequency response of the filter is

freqz(b,a,512,1000)

x· Ax Bu+=

y Cx Du+=
7-93

cheby1
Example 2: Bandpass Filter
Design a 10th-order bandpass Chebyshev Type I filter with a passband from
100 to 200 Hz and plot its impulse response:

n = 10; Rp = 0.5;
Wn = [100 200]/500;
[b,a] = cheby1(n,Rp,Wn);
[y,t] = impz(b,a,101); stem(t,y)

0 50 100 150 200 250 300 350 400 450 500
-1000

-800

-600

-400

-200

0

Frequency (Hertz)

P
ha

se
 (

de
gr

ee
s)

0 50 100 150 200 250 300 350 400 450 500
-300

-200

-100

0

100

Frequency (Hertz)

M
ag

ni
tu

de
 R

es
po

ns
e

(d
B

)

n = 9 Chebyshev Type I Lowpass Filter
7-94

cheby1
Limitations For high order filters, the state-space form is the most numerically accurate,
followed by the zero-pole-gain form. The transfer function form is the least
accurate; numerical problems can arise for filter orders as low as 15.

Algorithm cheby1 uses a five-step algorithm:

1 It finds the lowpass analog prototype poles, zeros, and gain using the
cheb1ap function.

2 It converts the poles, zeros, and gain into state-space form.

3 It transforms the lowpass filter into a bandpass, highpass, or bandstop filter
with desired cutoff frequencies, using a state-space transformation.

4 For digital filter design, cheby1 uses bilinear to convert the analog filter
into a digital filter through a bilinear transformation with frequency
prewarping. Careful frequency adjustment guarantees that the analog
filters and the digital filters will have the same frequency response
magnitude at Wn or w1 and w2.

5 It converts the state-space filter back to transfer function or zero-pole-gain
form, as required.

See Also besself, butter, cheb1ap, cheb1ord, cheby2, ellip

0 10 20 30 40 50 60 70 80 90 100
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
Impulse Response of n = 10 Chebyshev Type I Filter
7-95

cheby2
7cheby2Purpose Chebyshev Type II filter design (stopband ripple)

Syntax [b,a] = cheby2(n,Rs,Wn)
[b,a] = cheby2(n,Rs,Wn,'ftype')
[b,a] = cheby2(n,Rs,Wn,'s')
[b,a] = cheby2(n,Rs,Wn,'ftype','s')
[z,p,k] = cheby2(...)
[A,B,C,D] = cheby2(...)

Description cheby2 designs lowpass, highpass, bandpass, and bandstop digital and analog
Chebyshev Type II filters. Chebyshev Type II filters are monotonic in the
passband and equiripple in the stopband. Type II filters do not roll off as fast
as type I filters, but are free of passband ripple.

Digital Domain

[b,a] = cheby2(n,Rs,Wn) designs an order n lowpass digital Chebyshev Type
II filter with normalized stopband edge frequency Wn and stopband ripple Rs dB
down from the peak passband value. It returns the filter coefficients in the
length n+1 row vectors b and a, with coefficients in descending powers of z.

Normalized stopband edge frequency is the beginning of the stopband, where
the magnitude response of the filter is equal to -Rs dB. For cheby2, the
normalized stopband edge frequency Wn is a number between 0 and 1, where 1
corresponds to the Nyquist frequency. Larger values of stopband attenuation
Rs lead to wider transition widths (shallower rolloff characteristics).

If Wn is a two-element vector, Wn = [w1 w2], cheby2 returns an order 2*n
bandpass filter with passband w1 < ω < w2.

[b,a] = cheby2(n,Rs,Wn,'ftype') designs a highpass, lowpass, or bandstop
filter, where the string 'ftype' is one of the following.

• 'high' for a highpass digital filter with normalized stopband edge frequency
Wn

H z() B z()
A z()
----------- b 1() b 2()z 1– b n 1+()z n–+ + +

1 a 2()z 1– a n 1+()z n–+ + +
--= =
7-96

cheby2
• 'low' for a lowpass digital filter with normalized stopband edge frequency
Wn

• 'stop' for an order 2*n bandstop digital filter if Wn is a two-element vector,
Wn = [w1 w2]. The stopband is w1 < ω < w2.

With different numbers of output arguments, cheby2 directly obtains other
realizations of the filter. To obtain zero-pole-gain form, use three output
arguments as shown below:

[z,p,k] = cheby2(n,Rs,Wn) or

[z,p,k] = cheby2(n,Rs,Wn,'ftype') returns the zeros and poles in length n
column vectors z and p and the gain in the scalar k.

To obtain state-space form, use four output arguments as shown below.

[A,B,C,D] = cheby2(n,Rs,Wn) or

[A,B,C,D] = cheby2(n,Rs,Wn,'ftype') where A, B, C, and D are

and u is the input, x is the state vector, and y is the output.

Analog Domain

[b,a] = cheby2(n,Rs,Wn,'s') designs an order n lowpass analog Chebyshev
Type II filter with angular stopband edge frequency Wn. It returns the filter
coefficients in the length n+1 row vectors b and a, with coefficients in
descending powers of s, derived from the transfer function.

Angular stopband edge frequency is the frequency at which the magnitude
response of the filter is equal to -Rs dB. For cheby2, the angular stopband edge
frequency Wn must be greater than 0 rad/s.

x n 1+[] Ax n[] Bu n[]+=

y n[] Cx n[] Du n[]+=

H s() B s()
A s()
----------- b 1()sn b 2()sn 1– b n 1+()+ + +

sn a 2()sn 1– a n 1+()+ + +
---= =
7-97

cheby2
If Wn is a two-element vector Wn = [w1 w2] with w1 < w2, then
cheby2(n,Rs,Wn,'s') returns an order 2*n bandpass analog filter with
passband w1 < ω < w2.

[b,a] = cheby2(n,Rs,Wn,'ftype','s') designs a highpass , lowpass, or
bandstop filter.

With different numbers of output arguments, cheby2 directly obtains other
realizations of the analog filter. To obtain zero-pole-gain form, use three output
arguments as shown below:

[z,p,k] = cheby2(n,Rs,Wn,'s') or

[z,p,k] = cheby2(n,Rs,Wn,'ftype','s') returns the zeros and poles in
length n or 2*n column vectors z and p and the gain in the scalar k.

To obtain state-space form, use four output arguments as shown below:

[A,B,C,D] = cheby2(n,Rs,Wn,'s') or

[A,B,C,D] = cheby2(n,Rs,Wn,'ftype','s') where A, B, C, and D are

and u is the input, x is the state vector, and y is the output.

Examples Example 1: Lowpass Filter
For data sampled at 1000 Hz, design a ninth-order lowpass Chebyshev Type II
filter with stopband attenuation 20 dB down from the passband and a
stopband edge frequency of 300 Hz, which corresponds to a normalized value of
0.6:

[b,a] = cheby2(9,20,300/500);

The frequency response of the filter is

freqz(b,a,512,1000)

x· Ax Bu+=

y Cx Du+=
7-98

cheby2
Example 2: Bandpass Filter
Design a fifth-order bandpass Chebyshev Type II filter with passband from 100
to 200 Hz and plot the impulse response of the filter:

n = 5; r = 20;
Wn = [100 200]/500;
[b,a] = cheby2(n,r,Wn);
[y,t] = impz(b,a,101); stem(t,y)

0 50 100 150 200 250 300 350 400 450 500
-400

-300

-200

-100

0

100

Frequency (Hertz)

P
ha

se
 (

de
gr

ee
s)

0 50 100 150 200 250 300 350 400 450 500
-80

-60

-40

-20

0

20

Frequency (Hertz)

M
ag

ni
tu

de
 R

es
po

ns
e

(d
B

)

n = 9 Chebyshev Type II Filter

0 10 20 30 40 50 60 70 80 90 100
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
Impulse Response of n = 5 Chebyshev Type II Filter
7-99

cheby2
Limitations For high order filters, the state-space form is the most numerically accurate,
followed by the zero-pole-gain form. The transfer function coefficient form is
the least accurate; numerical problems can arise for filter orders as low as 15.

Algorithm cheby2 uses a five-step algorithm:

1 It finds the lowpass analog prototype poles, zeros, and gain using the
cheb2ap function.

2 It converts poles, zeros, and gain into state-space form.

3 It transforms the lowpass filter into a bandpass, highpass, or bandstop filter
with desired cutoff frequencies, using a state-space transformation.

4 For digital filter design, cheby2 uses bilinear to convert the analog filter
into a digital filter through a bilinear transformation with frequency
prewarping. Careful frequency adjustment guarantees that the analog
filters and the digital filters will have the same frequency response
magnitude at Wn or w1 and w2.

5 It converts the state-space filter back to transfer function or zero-pole-gain
form, as required.

See Also besself, butter, cheb2ap, cheb1ord, cheby1, ellip
7-100

chirp
7chirpPurpose Swept-frequency cosine

Syntax y = chirp(t,f0,t1,f1)
y = chirp(t,f0,t1,f1,'method')
y = chirp(t,f0,t1,f1,'method',phi)
y = chirp(t,f0,t1,f1,'quadratic',phi,'shape')

Description y = chirp(t,f0,t1,f1) generates samples of a linear swept-frequency cosine
signal at the time instances defined in array t, where f0 is the instantaneous
frequency at time 0, and f1 is the instantaneous frequency at time t1. f0 and
f1 are both in hertz. If unspecified, f0 is e-6 for logarithmic chirp and 0 for all
other methods, t1 is 1, and f1 is 100.

y = chirp(t,f0,t1,f1,'method') specifies alternative sweep method
options, where method can be:

• linear, which specifies an instantaneous frequency sweep fi(t) given by

where

and the default value for f0 is 0. β ensures that the desired frequency
breakpoint f1 at time t1 is maintained.

• quadratic, which specifies an instantaneous frequency sweep fi(t) given by

where

and the default value for f0 is 0. If f0 > f1 (downsweep), the default shape is
convex. If f0 < f1 (upsweep), the default shape is concave.

• logarithmic specifies an instantaneous frequency sweep fi(t) given by

fi t() f0 βt+=

β f1 f0–() t1⁄=

fi t() f0 βt2+=

β f1 f0–() t1
2⁄=
7-101

chirp
where

and the default value for f0 is 1e-6. Both an upsweep (f1 > f0) and a
downsweep (f0 > f1) of frequency is possible.

Each of the above methods can be entered as 'li', 'q', and 'lo', respectively.

y = chirp(t,f0,t1,f1,'method',phi) allows an initial phase phi to be
specified in degrees. If unspecified, phi is 0. Default values are substituted for
empty or omitted trailing input arguments.

y = chirp(t,f0,t1,f1,'quadratic',phi,'shape') specifies the shape of the
quadratic swept-frequency signal’s spectrogram. shape is either concave or
convex, which describes the shape of the parabola in the positive frequency
axis. If shape is omitted, the default is convex for downsweep (f0 > f1) and is
concave for upsweep (f0 < f1).

fi t() f0 βt×=

β
f1
f0
----⎝ ⎠

⎛ ⎞

1
t1

=

Convex downsweep
shape

Concave upsweep
shape

t

f f

t

7-102

chirp
Examples Example 1
Compute the spectrogram of a chirp with linear instantaneous frequency
deviation:

t = 0:0.001:2; % 2 secs @ 1kHz sample rate
y = chirp(t,0,1,150); % Start @ DC, cross 150Hz at t=1 sec
spectrogram(y,256,250,256,1E3,'yaxis')
7-103

chirp
Example 2
Compute the spectrogram of a chirp with quadratic instantaneous frequency
deviation:

t = -2:0.001:2; % ±2 secs @ 1kHz sample rate
y = chirp(t,100,1,200,'quadratic'); % Start @ 100Hz, cross 200Hz

% at t=1 sec
spectrogram(y,128,120,128,1E3,'yaxis')
7-104

chirp
Example 3
Compute the spectrogram of a convex quadratic chirp:

t = -1:0.001:1; % +/-1 second @ 1kHz sample rate
fo = 100; f1 = 400; % Start at 100Hz, go up to 400Hz
y = chirp(t,fo,1,f1,'q',[],'convex');
spectrogram(y,256,200,256,1000,'yaxis')
7-105

chirp
Example 4
Compute the spectrogram of a concave quadratic chirp:

t = 0:0.001:1; % 1 second @ 1kHz sample rate
fo = 100; f1 = 25; % Start at 100Hz, go down to 25Hz
y = chirp(t,fo,1,f1,'q',[],'concave');
spectrogram(y,hanning(256),128,256,1000,'yaxis')

Example 5
Compute the spectrogram of a logarithmic chirp:

t = 0:0.001:10; % 10 seconds @ 1kHz sample rate
fo = 10; f1 = 400; % Start at 10Hz, go up to 400Hz
y = chirp(t,fo,10,f1,'logarithmic');
spectrogram(y,256,200,256,1000,'yaxis')
7-106

chirp
See Also cos, diric, gauspuls, pulstran, rectpuls, sawtooth, sin, sinc, square,
tripuls
7-107

conv
7convPurpose Convolution and polynomial multiplication

conv is a MATLAB function.
7-108

conv2
7conv2Purpose Two-dimensional convolution

conv2 is a MATLAB function.
7-109

convmtx
7convmtxPurpose Convolution matrix

Syntax A = convmtx(c,n)
A = convmtx(r,n)

Description A convolution matrix is a matrix, formed from a vector, whose inner product
with another vector is the convolution of the two vectors.

A = convmtx(c,n) where c is a length m column vector returns a matrix A of
size (m+n-1)-by-n. The product of A and another column vector x of length n is
the convolution of c with x.

A = convmtx(r,n) where r is a length m row vector returns a matrix A of size
n-by-(m+n-1). The product of A and another row vector x of length n is the
convolution of r with x.

Examples Generate a simple convolution matrix:

h = [1 2 3 2 1];
convmtx(h,7)
ans =

 1 2 3 2 1 0 0 0 0 0 0
 0 1 2 3 2 1 0 0 0 0 0
 0 0 1 2 3 2 1 0 0 0 0
 0 0 0 1 2 3 2 1 0 0 0
 0 0 0 0 1 2 3 2 1 0 0
 0 0 0 0 0 1 2 3 2 1 0
 0 0 0 0 0 0 1 2 3 2 1

Note that convmtx handles edge conditions by zero padding.

In practice, it is more efficient to compute convolution using

y = conv(c,x)

than by using a convolution matrix.

n = length(x);
y = convmtx(c,n)*x

Algorithm convmtx uses the function toeplitz to generate the convolution matrix.
7-110

convmtx
See Also conv, convn, conv2, dftmtx
7-111

corrcoef
7corrcoefPurpose Correlation coefficient matrix

corrcoef is a MATLAB function.
7-112

corrmtx
7corrmtxPurpose Data matrix for autocorrelation matrix estimation

Syntax X = corrmtx(x,m)
X = corrmtx(x,m,'method')
[X,R] = corrmtx(...)

Description X = corrmtx(x,m) returns an (n+m)-by-(m+1) rectangular Toeplitz matrix X,
such that X'X is a (biased) estimate of the autocorrelation matrix for the
length n data vector x.

X = corrmtx(x,m,'method') computes the matrix X according to the method
specified by the string 'method':

• 'autocorrelation': (default) X is the (n+m)-by-(m+1) rectangular Toeplitz
matrix that generates an autocorrelation estimate for the length n data
vector x, derived using prewindowed and postwindowed data, based on an
mth order prediction error model.

• 'prewindowed': X is the n-by-(m+1) rectangular Toeplitz matrix that
generates an autocorrelation estimate for the length n data vector x, derived
using prewindowed data, based on an mth order prediction error model.

• 'postwindowed': X is the n-by-(m+1) rectangular Toeplitz matrix that
generates an autocorrelation estimate for the length n data vector x, derived
using postwindowed data, based on an mth order prediction error model.

• 'covariance': X is the (n-m)-by-(m+1) rectangular Toeplitz matrix that
generates an autocorrelation estimate for the length n data vector x, derived
using nonwindowed data, based on an mth order prediction error model.

• 'modified': X is the 2(n-m)-by-(m+1) modified rectangular Toeplitz matrix
that generates an autocorrelation estimate for the length n data vector x,
derived using forward and backward prediction error estimates, based on an
mth order prediction error model.

[X,R] = corrmtx(...) also returns the (m+1)-by-(m+1) autocorrelation matrix
estimate R, calculated as X'*X.

Examples randn('state',1); n=0:99;
s=exp(i*pi/2*n)+2*exp(i*pi/4*n)+exp(i*pi/3*n)+randn(1,100);
X=corrmtx(s,12,'mod');
7-113

corrmtx
Algorithm The Toeplitz data matrix computed by corrmtx depends on the method you
select. The matrix determined by the autocorrelation (default) method is given
by the following matrix.

In this matrix, m is the same as the input argument m to corrmtx, and n is
length(x). Variations of this matrix are used to return the output X of corrmtx
for each method:

• 'autocorrelation': (default) X = X, above.

• 'prewindowed': X is the n-by-(m+1) submatrix of X that is given by the
portion of X above the lower gray line.

• 'postwindowed': X is the n-by-(m+1) submatrix of X that is given by the
portion of X below the upper gray line.

• 'covariance': X is the (n-m)-by-(m+1) submatrix of X that is given by the
portion of X between the two gray lines.

• 'modified': X is the 2(n-m)-by-(m+1) matrix Xmod shown below.

X

x 1() 0

x m 1+() x1)

x n m–() x m 1+()

x n() x n m–()

0 x n()

=

7-114

corrmtx
References [1] Marple, S.L. Digital Spectral Analysis, Englewood Cliffs, NJ, Prentice-Hall,
1987, pp. 216-223.

See Also peig, pmusic, rooteig, rootmusic, xcorr

Xmod

x m 1+() x1)

x n m–() x m 1+()

x n() x n m–()

x∗ 1() x∗ m 1+()

x∗ m 1+() x∗ n m–()

x∗ n m–() x∗ n()

=

7-115

cov
7covPurpose Covariance matrix

cov is a MATLAB function.
7-116

cplxpair
7cplxpairPurpose Group complex numbers into complex conjugate pairs

cplxpair is a MATLAB function.
7-117

cpsd
7cpsdPurpose Cross power spectral density

Syntax Pxy = cpsd(x,y)
Pxy = cpsd(x,y,window)
Pxy = cpsd(x,y,window,noverlap)
[Pxy,W] = cpsd(x,y,window,noverlap,nfft)
[Pxy,F] = cpsd(x,y,window,noverlap,nfft,fs)
[...] = cpsd(...,'twosided')
cpsd(x,y,...)

Description Pxy = cpsd(x,y) estimates the cross power spectral density Pxy of the
discrete-time signals x and y using the Welch’s averaged, modified
periodogram method of spectral estimation. The cross power spectral density is
the distribution of power per unit frequency.

For real x and y, cpsd returns a one-sided CPSD and for complex x or y, it
returns a two-sided CPSD.
7-118

cpsd
cpsd uses the following default values:

Note You can use the empty matrix [] to specify the default value for any
input argument except x or y. For example, Pxy = cpsd(x,y,[],[],128 uses a
Hamming window, default noverlap to obtain 50% overlap, and the specified
128 nfft.

Parameter Description Default Value

nfft FFT length which determines
the frequencies at which the
power spectrum is estimated

For real x and y, the length of
Pxy is (nfft/2+1) if nfft is
even or (nfft+1)/2 if nfft is
odd. For complex x or y, the
length of Pxy is nfft.

If nfft is greater than the
signal length, the data is
zero-padded. If nfft is less
than the signal length, the
segment is wrapped using
datawrap so that the length is
equal to nfft.

Maximum of 256 or the
next power of 2 greater
than the length of each
section of x or y

fs Sampling frequency 1

window Windowing function and
number of samples to use for
each section

Periodic Hamming
window of length to
obtain eight equal
sections of x and y

noverlap Number of samples by which
the sections overlap

Value to obtain 50%
overlap
7-119

cpsd
Pxy = cpsd(x,y,window) specifies a windowing function, divides x and y into
overlapping sections of the specified window length, and windows each section
using the specified window function. If you supply a scalar for window, Pxy uses
a Hamming window of that length. The x and y vectors are divided into eight
equal sections of that length. If the signal cannot be sectioned evenly with 50%
overlap, it is truncated.

Pxy = cpsd(x,y,window,noverlap) overlaps the sections of x by noverlap
samples. noverlap must be an integer smaller than the length of window.

[Pxy,W] = cpsd(x,y,window,noverlap,nfft) uses the specified FFT length
nfft in estimating the CPSD. It also returns W, which is the vector of
normalized frequencies (in rad/sample) at which the CPSD is estimated. For
real signals, the range of W is [0, pi] when nfft is even and [0, pi) when nfft is
odd. For complex signals, the range of W is [0, 2*pi).

[Pxy,F] = cpsd(x,y,window,noverlap,nfft,fs) returns Pxy as a function of
frequency and a vector F of frequencies at which the CPSD is estimated. fs is
the sampling frequency in Hz. For real signals, the range of F is [0, fs/2] when
nfft is even and [0, fs/2) when nfft is odd. For complex signals, the range of
F is [0, fs).

[...] = cpsd(...,'twosided') returns the two-sided CPSD of real signals x
and y. The length of the resulting Pxy is nfft and its range is [0, 2*pi) if you do
not specify fs. If you specify fs, the range is [0,fs). Entering’onesided’for a real
signal produces the default. You can place the ’onesided’ or ’twosided’ string in
any position after the noverlap parameter.

cpsd(...) plots the CPSD versus frequency in the current figure window.

Examples Generate two colored noise signals and plot their CPSD with a confidence
interval of 95%. Specify a length 1024 FFT, a 500 point triangular window with
no overlap, and a sampling frequency of 10 Hz:

randn('state',0);
h = fir1(30,0.2,rectwin(31));
h1 = ones(1,10)/sqrt(10);
r = randn(16384,1);
x = filter(h1,1,r);
y = filter(h,1,x);
7-120

cpsd
cpsd(x,y,triang(500),250,1024)

Algorithm cpsd uses Welch’s averaged periodogram method. See the references listed
below.

References [1] Rabiner, L.R., and B. Gold. Theory and Application of Digital Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975. Pgs. 414-419.

[2] Welch, P.D. “The Use of Fast Fourier Transform for the Estimation of Power
Spectra: A Method Based on Time Averaging Over Short, Modified
Periodograms.” IEEE Trans. Audio Electroacoust. Vol. AU-15 (June 1967).
Pgs. 70-73.
7-121

cpsd
[3] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing.
Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 737.

See Also dspdata.psd, mscohere, pburg, pcov, peig, periodogram, pmcov, pmtm, pmusic,
pwelch, pyulear, spectrum.welch, tfestimate
7-122

czt
7cztPurpose Chirp z-transform

Syntax y = czt(x,m,w,a)
y = czt(x)

Description y = czt(x,m,w,a) returns the chirp z-transform of signal x. The chirp
z-transform is the z-transform of x along a spiral contour defined by w and a.
m is a scalar that specifies the length of the transform, w is the ratio between
points along the z-plane spiral contour of interest, and scalar a is the complex
starting point on that contour. The contour, a spiral or “chirp” in the z-plane, is
given by

z = a*(w.^-(0:m-1))

y = czt(x) uses the following default values:

• m = length(x)

• w = exp(-j*2*pi/m)

• a = 1

With these defaults, czt returns the z-transform of x at m equally spaced points
around the unit circle. This is equivalent to the discrete Fourier transform of x,
or fft(x). The empty matrix [] specifies the default value for a parameter.

If x is a matrix, czt(x,m,w,a) transforms the columns of x.

Examples Create a random vector x of length 1013 and compute its DFT using czt:

randn('state',0);
x = randn(1013,1);
y = czt(x);

Use czt to zoom in on a narrow-band section (100 to 150 Hz) of a filter’s
frequency response. First design the filter:

h = fir1(30,125/500,rectwin(31)); % filter
7-123

czt
Establish frequency and CZT parameters:

fs = 1000; f1 = 100; f2 = 150; % in hertz
m = 1024;
w = exp(-j*2*pi*(f2-f1)/(m*fs));
a = exp(j*2*pi*f1/fs);

Compute both the DFT and CZT of the filter:

y = fft(h,1000);
z = czt(h,m,w,a);

Create frequency vectors and compare the results:

fy = (0:length(y)-1)'*1000/length(y);
fz = ((0:length(z)-1)'*(f2-f1)/length(z)) + f1;
plot(fy(1:500),abs(y(1:500))); axis([1 500 0 1.2])
title('FFT')
figure
plot(fz,abs(z)); axis([f1 f2 0 1.2])
title('CZT')

Algorithm czt uses the next power-of-2 length FFT to perform a fast convolution when
computing the z-transform on a specified chirp contour [1].

Diagnostics If m, w, or a is not a scalar, czt gives the following error message:

Inputs M, W, and A must be scalars.

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

FFT

100 110 120 130 140
0

0.2

0.4

0.6

0.8

1

CZT
7-124

czt
References [1] Rabiner, L.R., and B. Gold. Theory and Application of Digital Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975. Pgs. 393-399.

See Also fft, freqz
7-125

dct
7dctPurpose Discrete cosine transform (DCT)

Syntax y = dct(x)
y = dct(x,n)

Description y = dct(x) returns the unitary discrete cosine transform of x

where

N is the length of x, and x and y are the same size. If x is a matrix, dct
transforms its columns. The series is indexed from n = 1 and k = 1 instead of
the usual n = 0 and k = 0 because MATLAB vectors run from 1 to N instead of
from 0 to N- 1.

y = dct(x,n) pads or truncates x to length n before transforming.

The DCT is closely related to the discrete Fourier transform. You can often
reconstruct a sequence very accurately from only a few DCT coefficients, a
useful property for applications requiring data reduction.

y k() w k() x n() π 2n 1–() k 1–()
2N

---cos

n 1=

N

∑ k 1 … N, ,=,=

w k()

1
N

--------- k 1=,

2
N
---- 2 k N≤ ≤,

⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

7-126

dct
Examples Find how many DCT coefficients represent 99% of the energy in a sequence:

x = (1:100) + 50*cos((1:100)*2*pi/40);
X = dct(x);
[XX,ind] = sort(abs(X)); ind = fliplr(ind);
i = 1;
while (norm([X(ind(1:i)) zeros(1,100-i)])/norm(X)<.99)

i = i + 1;
end

i =
 3

References [1] Jain, A.K. Fundamentals of Digital Image Processing. Englewood Cliffs, NJ:
Prentice-Hall, 1989.

[2] Pennebaker, W.B., and J.L. Mitchell. JPEG Still Image Data Compression
Standard. New York, NY: Van Nostrand Reinhold, 1993. Chapter 4.

See Also fft, idct, dct2, idct2
7-127

decimate
7decimatePurpose Decimation — decrease sampling rate

Syntax y = decimate(x,r)
y = decimate(x,r,n)
y = decimate(x,r,'fir')
y = decimate(x,r,n,'fir')

Description Decimation reduces the original sampling rate for a sequence to a lower rate,
the opposite of interpolation. The decimation process filters the input data with
a lowpass filter and then resamples the resulting smoothed signal at a lower
rate.

y = decimate(x,r) reduces the sample rate of x by a factor r. The decimated
vector y is r times shorter in length than the input vector x. By default,
decimate employs an eighth-order lowpass Chebyshev Type I filter with a
cutoff frequency of 0.8*(Fs/2)/r. It filters the input sequence in both the forward
and reverse directions to remove all phase distortion, effectively doubling the
filter order.

y = decimate(x,r,n) uses an order n Chebyshev filter. Orders above 13 are
not recommended because of numerical instability. MATLAB displays a
warning in this case.

Note For better results when r is greater than 13, you should break r into its
factors and call decimate several times.

y = decimate(x,r,'fir') uses an order 30 FIR filter, instead of the
Chebyshev IIR filter. Here decimate filters the input sequence in only one
direction. This technique conserves memory and is useful for working with long
sequences.

y = decimate(x,r,n,'fir') uses an order n FIR filter.

Examples Decimate a signal by a factor of four:

t = 0:.00025:1; % Time vector
x = sin(2*pi*30*t) + sin(2*pi*60*t);
7-128

decimate
y = decimate(x,4);

View the original and decimated signals:

stem(x(1:120)), axis([0 120 -2 2]) % Original signal
title('Original Signal')
figure
stem(y(1:30)) % Decimated signal
title('Decimated Signal')

Algorithm decimate uses decimation algorithms 8.2 and 8.3 from [1]:

1 It designs a lowpass filter. By default, decimate uses a Chebyshev Type I
filter with normalized cutoff frequency 0.8/r and 0.05 dB of passband
ripple. For the fir option, decimate designs a lowpass FIR filter with cutoff
frequency 1/r using fir1.

2 For the FIR filter, decimate applies the filter to the input vector in one
direction. In the IIR case, decimate applies the filter in forward and reverse
directions with filtfilt.

3 decimate resamples the filtered data by selecting every rth point.

Diagnostics If r is not an integer, decimate gives the following error message:

Resampling rate R must be an integer.

If n specifies an IIR filter with order greater than 13, decimate gives the
following warning:

Warning: IIR filters above order 13 may be unreliable.

0 50 100
-2

-1

0

1

2
Original Signal

0 10 20 30
-2

-1

0

1

2
Decimated Signal
7-129

decimate
References [1] IEEE. Programs for Digital Signal Processing. IEEE Press. New York: John
Wiley & Sons, 1979. Chapter 8.

See Also cheby1, downsample, filtfilt, fir1, mfilt, interp, resample
7-130

deconv
7deconvPurpose Deconvolution and polynomial division

deconv is a MATLAB function.
7-131

demod
7demodPurpose Demodulation for communications simulation

Syntax x = demod(y,fc,fs,'method')
x = demod(y,fc,fs,'method',opt)
x = demod(y,fc,fs,'pwm','centered')
[x1,x2] = demod(y,fc,fs,'qam')

Description demod performs demodulation, that is, it obtains the original signal from a
modulated version of the signal. demod undoes the operation performed by
modulate.

x = demod(y,fc,fs,'method') and

x = demod(y,fc,fs,'method',opt) demodulate the real carrier signal y with
a carrier frequency fc and sampling frequency fs, using one of the options
listed below for method. (Note that some methods accept an option, opt.)

Method Description

amdsb-sc
or
am

Amplitude demodulation, double sideband, suppressed
carrier. Multiplies y by a sinusoid of frequency fc and applies a
fifth-order Butterworth lowpass filter using filtfilt.

x = y.*cos(2*pi*fc*t);
[b,a] = butter(5,fc*2/fs);
x = filtfilt(b,a,x);

amdsb-tc Amplitude demodulation, double sideband, transmitted
carrier. Multiplies y by a sinusoid of frequency fc, and applies a
fifth-order Butterworth lowpass filter using filtfilt.

x = y.*cos(2*pi*fc*t);
[b,a] = butter(5,fc*2/fs);
x = filtfilt(b,a,x);

If you specify opt, demod subtracts scalar opt from x. The default
value for opt is 0.
7-132

demod
The default method is 'am'. In all cases except 'ppm' and 'pwm', x is the
same size as y.

If y is a matrix, demod demodulates its columns.

amssb Amplitude demodulation, single sideband. Multiplies y by a
sinusoid of frequency fc and applies a fifth-order Butterworth
lowpass filter using filtfilt.

x = y.*cos(2*pi*fc*t);
[b,a] = butter(5,fc*2/fs);
x = filtfilt(b,a,x);

fm Frequency demodulation. Demodulates the FM waveform by
modulating the Hilbert transform of y by a complex exponential
of frequency -fc Hz and obtains the instantaneous frequency of
the result.

pm Phase demodulation. Demodulates the PM waveform by
modulating the Hilbert transform of y by a complex exponential
of frequency –fc Hz and obtains the instantaneous phase of the
result.

ppm Pulse-position demodulation. Finds the pulse positions of a
pulse-position modulated signal y. For correct demodulation, the
pulses cannot overlap. x is length length(t)*fc/fs.

pwm Pulse-width demodulation. Finds the pulse widths of a
pulse-width modulated signal y. demod returns in x a vector whose
elements specify the width of each pulse in fractions of a period.
The pulses in y should start at the beginning of each carrier
period, that is, they should be left justified.

qam Quadrature amplitude demodulation.
[x1,x2] = demod(y,fc,fs,'qam') multiplies y by a cosine and a sine of
frequency fc and applies a fifth-order Butterworth lowpass filter
using filtfilt.

x1 = y.*cos(2*pi*fc*t);
x2 = y.*sin(2*pi*fc*t);
[b,a] = butter(5,fc*2/fs);
x1 = filtfilt(b,a,x1);
x2 = filtfilt(b,a,x2);
7-133

demod
x = demod(y,fc,fs,'pwm','centered') finds the pulse widths assuming
they are centered at the beginning of each period. x is length
length(y)*fc/fs.

See Also modulate, vco, fskdemod, genqamdemod, mskdemod, pamdemod, pmdemod,
qamdemod
7-134

dfilt
7dfiltPurpose Discrete-time filters

Syntax Hd = dfilt.structure(input1,...)
Hd = [dfilt.structure(input1,...),dfilt.structure(input1,...),...]

Description Hd = dfilt.structure(input1,...) returns a discrete-time filter, Hd, of type
structure. Each structure takes one or more inputs. If you specify a
dfilt.structure with no inputs, a default filter is created.

Note You must use a structure with dfilt.

Hd = [dfilt.structure(input1,...),dfilt.structure(input1,...),...]
returns a vector containing dfilt filters.

Structures
Structures for dfilt specify the type of filter structure. Available types of
structures for dfilt are shown below.

dfilt.structure Description

dfilt.delay Delay

dfilt.df1 Direct-form I

dfilt.df1sos Direct-form I, second-order sections

dfilt.df1t Direct-form I transposed

dfilt.df1tsos Direct-form I transposed, second-order sections

dfilt.df2 Direct-form II

dfilt.df2sos Direct-form II, second-order sections

dfilt.df2t Direct-form II transposed

dfilt.df2tsos Direct-form II transposed, second-order sections
7-135

dfilt
For more information on each structure, refer to its reference page.

dfilt.dffir Direct-form FIR

dfilt.dffirt Direct-form FIR transposed

dfilt.dfsymfir Direct-form symmetric FIR

dfilt.dfasymfir Direct-form antisymmetric FIR

dfilt.fftfir Overlap-add FIR

dfilt.latticeallpass Lattice allpass

dfilt.latticear Lattice autoregressive (AR)

dfilt.latticearma Lattice autoregressive moving- average (ARMA)

dfilt.latticemamax Lattice moving-average (MA) for maximum phase

dfilt.latticemamin Lattice moving-average (MA) for minimum phase

dfilt.calattice Coupled, allpass lattice (available only with the Filter Design Toolbox)

dfilt.calatticepc Coupled, allpass lattice with power complementary output (available
only with the Filter Design Toolbox)

dfilt.statespace State-space

dfilt.scalar Scalar gain object

dfilt.cascade Filters arranged in series

dfilt.parallel Filters arranged in parallel

dfilt.structure Description
7-136

dfilt
Methods
Methods provide ways of performing functions directly on your dfilt object
without having to specify the filter parameters again. You can apply these
methods directly on the variable you assigned to your dfilt object.

For example, if you create a dfilt object, Hd, you can check whether it has
linear phase with islinphase(Hd), view its frequency response plot with
fvtool(Hd), or obtain its frequency response values with h=freqz(Hd). You
can use all of the methods below in this way.

Note If your variable is a 1-D array of dfilt filters, the method is applied to
each object in the array. Only freqz, grpdelay, impz, is*, order, and stepz
methods can be applied to arrays. The zplane method can be applied to an
array only if it is used without outputs.
7-137

dfilt
Some of the methods listed below have the same name as functions in the
Signal Processing Toolbox and they behave similarly. This is called overloading
of functions.

Method Description

addstage Adds a stage to a cascade or parallel object,
where a stage is a separate, modular filter. See
dfilt.cascade and dfilt.parallel.

block (Available only with the Signal Processing
Blockset)

block(Hd) creates a Signal Processing Blockset
block of the dfilt object. The block method can
specify these properties/values:

'Destination' indicates where to place the block.
'Current' places the block in the current
Simulink model. 'New' creates a new model.
Default value is 'Current'.

'Blockname' assigns the entered string to the
block name. Default name is 'Filter'.

'OverwriteBlock'indicates whether to overwrite
the block generated by the block method ('on')
and defined by Blockame. Default is 'off'.

'MapStates' specifies initial conditions in the block
('on'). Default is 'off'. See “Using Filter States”
on page 7-145.

cascade Returns the series combination of two dfilt
objects. See dfilt.cascade.

coeffs Returns the filter coefficients in a structure
containing fields that use the same property
names as those in the original dfilt.

convert Converts a dfilt object from one filter structure,
to another filter structure
7-138

dfilt
fcfwrite Writes a filter coefficient ASCII file. The file can
contain a single filter or a vector of objects. If the
Filter Design Toolbox is installed, the file can
contain multirate filters (mfilt) or adaptive filters
(adaptfilt). Default filename is untitled.fcf.

fcfwrite(Hd,filename) writes to a disk file
named filename in the current working directory.
The .fcf extension is added automatically.

fcfwrite(...,fmt) writes the coefficients in the
format fmt, where valid fmt strings are:
'hex' for hexadecimal
'dec' for decimal
'bin' for binary representation.

fftcoeffs Returns the frequency-domain coefficients used
when filtering with a dfilt.fftfir

filter Performs filtering using the dfilt object

firtype Returns the type (1-4) of a linear phase FIR filter

freqz Plots the frequency response in fvtool. Note that
unlike the freqz function, this dfilt freqz
method has a default length of 8192.

grpdelay Plots the group delay in fvtool

impz Plots the impulse response in fvtool

impzlength Returns the length of the impulse response

info Displays dfilt information, such as filter
structure, length, stability, linear phase, and,
when appropriate, lattice and ladder length.

isallpass Returns a logical 1 (i.e., true) if the dfilt object in
an allpass filter or a logical 0 (i.e., false) if it is not

Method Description
7-139

dfilt
iscascade Returns a logical 1 if the dfilt object is cascaded
or a logical 0 if it is not

isfir Returns a logical 1 if the dfilt object has finite
impulse response (FIR) or a logical 0 if it does not

islinphase Returns a logical 1 if the dfilt object is linear
phase or a logical 0 if it is not

ismaxphase Returns a logical 1 if the dfilt object is
maximum-phase or a logical 0 if it is not

isminphase Returns a logical 1 if the dfilt object is
minimum-phase or a logical 0 if it is not

isparallel Returns a logical 1 if the dfilt object has parallel
stages or a logical 0 if it does not

isreal Returns a logical 1 if the dfilt object has
real-valued coefficients or a logical 0 if it does not

isscalar Returns a logical 1 if the dfilt object is a scalar or
a logical 0 if it is not scalar

issos Returns a logical 1 if the dfilt object has
second-order sections or a logical 0 if it does not

isstable Returns a logical 1 if the dfilt object is stable or a
logical 0 if it are not

nsections Returns the number of sections in a second-order
sections filter. If a multistage filter contains
stages with multiple sections, using nsections
returns the total number of sections in all the
stages (a stage with a single section returns 1).

nstages Returns the number of stages of the filter, where a
stage is a separate, modular filter

nstates Returns the number of states for an object

Method Description
7-140

dfilt
order Returns the filter order. If Hd is a single-stage
filter, the order is given by the number of delays
needed for a minimum realization of the filter. If
Hd has multiple stages, the order is given by the
number of delays needed for a minimum
realization of the overall filter.

parallel Returns the parallel combination of two dfilt
filters. See dfilt.parallel.

phasez Plots the phase response in fvtool

Method Description
7-141

dfilt
realizemdl (Available only with Simulink)

realizemdl(Hd) creates a Simulink model
containing a subsystem block realization of your
dfilt.

realizemdl(Hd,p1,v1,p2,v2,...) creates the
block using the properties p1, p2,... and values v1,
v2,... specified.

 The following properties are available:

'Blockname' specifies the name of the block. The
default value is 'Filter'.

'Destination' specifies whether to add the block
to a current Simulink model or create a new model.
Valid values are 'Current' and 'New'.

'OverwriteBlock' specifies whether to overwrite
an existing block that was created by realizemdl
or create a new block. Valid values are 'on' and
'off'. Note that only blocks created by
realizemdl are overwritten.

The following properties optimize the block
structure. Specifying 'on' turns the optimization
on and 'off' creates the block without
optimization. The default for each block is 'off'.

'OptimizeZeros' removes zero-gain blocks.

'OptimizeOnes' replaces unity-gain blocks with a
direct connection.

'OptimizeNegOnes' replaces negative unity-gain
blocks with a sign change at the nearest
summation block.

'OptimizeDelayChains' replaces cascaded chains
of delay block with a single integer delay block set
to the appropriate delay.

Method Description
7-142

dfilt
removestage Removes a stage from a cascade or parallel dfilt.
See dfilt.cascade and dfilt.parallel.

setstage Overwrites a stage of a cascade or parallel dfilt.
See dfilt.cascade and dfilt.parallel.

sos Converts the dfilt to a second-order sections
dfilt. If Hd has a single section, the returned
filter has the same class.

sos(Hd,flag) specifies the ordering of the
second-order sections. If flag='UP', the first row
contains the poles closest to the origin, and the
last row contains the poles closest to the unit
circle. If flag='down', the sections are ordered in
the opposite direction. The zeros are always
paired with the poles closest to them.

sos(Hd,flag,scale) specifies the scaling of the
gain and the numerator coefficients of all
second-order sections. scale can be 'none', 'inf'
(infinity-norm) or 'two' (2-norm). Using
infinity-norm scaling with up ordering minimizes
the probability of overflow in the realization.
Using 2-norm scaling with down ordering
minimizes the peak roundoff noise.

ss Converts the dfilt to state-space. To see the
separate A,B,C,D matrices for the state-space
model, use [A,B,C,D]=ss(Hd).

Method Description
7-143

dfilt
Viewing Properties
As with any object, you can use get to view a dfilt properties. To see a specific
property, use

 get(Hd,'property')

To see all properties for an object, use

get(Hd)

Note If you have the Filter Design Toolbox, an arithmetic property is
displayed. You can change the internal arithmetic of the filter from double-
precision to single-precision using:
Hd.arithmetic = 'single'

If you have both the Filter Design Toolbox and the Fixed-Point Toolbox, you
can change the arithmetic property to fixed-point using:
Hd.arithmetic = 'fixed'

stepz Plots the step response in fvtool

stepz(Hd,n) computes the first n samples of the
step response.

stepz(Hd,n,Fs) separates the time samples by
T = 1/Fs, where Fs is assumed to be in Hz.

tf Converts the dfilt to a transfer function

zerophase Plots the zero-phase response in fvtool

zpk Converts the dfilt to zeros-pole-gain form

zplane Plots a pole-zero plot in fvtool

Method Description
7-144

dfilt
Changing Properties
To set specific properties, use

set(Hd,'property1',value,'property2',value,...)

Note that you must use single quotation marks around the property name.

Copying an Object
To create a copy of an object, use the copy method.

H2 = copy(Hd)

Note Using the syntax H2 = Hd copies only the object handle and does not
create a new object.

Converting Between Filter Structures
To change the filter structure of a dfilt object Hd, use

Hd2=convert(Hd,'structure_string');

where structure_string is any valid structure name in single quotation
marks. If Hd is a cascade or parallel structure, each of its stages is converted
to the new structure.

Using Filter States
Two properties control the filter states:

• states—stores the current states of the filter. Before the filter is applied, the
states correspond to the initial conditions and after the filter is applied, the
states correspond to the final conditions. For df1, df1t, df1sos and df1tsos
structures, states returns a filtstates object.

• PersistentMemory—controls whether filter states are saved.. The default
value is 'false', which causes the initial conditions to be reset to zero before
filtering and turns off the display of states information. Setting
PersistentMemory to 'true' allows the filter to use your initial conditioons
or to reuse the final conditions of a previous filtering operation as the initial
7-145

dfilt
conditions of the next filtering operation. It also displays information about
the filter states.

Note If you set the states and want to use them for filtering, you must set
PersistentMemory to 'true' before you use the filter.

Examples Create a direct-form I filter and use a method to see if it is stable.

[b,a] = butter(8,0.25);
Hd = dfilt.df1(b,a)

Hd =
 FilterStructure: 'Direct-Form I'
 Numerator: [1x9 double]
 Denominator: [1x9 double]
 PersistentMemory: false

isstable(Hd)
ans =
 1

If a dfilt’s numerator values do not fit on a single line, a description of the
vector is displayed. To see the specific numerator values for this example, use

get(Hd,'numerator')

ans =
Columns 1 through 6
 0.0001 0.0009 0.0030 0.0060 0.0076 0.0060
 Columns 7 through 9
 0.0030 0.0009 0.0001

Create an array containing two dfilt objects, apply a method and verify that
the method acts on both objects, and use a method to test whether the objects
are FIR objects.

b = fir1(5,.5);
Hd = dfilt.dffir(b); % create an FIR object
[b,a] = butter(5,.5);
7-146

dfilt
Hd(2) = dfilt.df2t(b,a); % create a DF2T object and place
% it in the second column of Hd

[h,w] = freqz(Hd);
size(h) % verify that resulting h is
ans = % 2 columns
 8192 2
size(w) % verify that resulting w is
ans = % 1 column
 8192 1

test_fir = isfir(Hd)
test_fir =
 1 0 % Hd(1) is FIR and Hd(2) is not

Refer to the reference pages for each structure for more examples.

See Also dfilt.cascade , dfilt.df1, dfilt.df1t, dfilt.df2, dfilt.df2t,
dfilt.dfasymfir, dfilt.dffir, dfilt.dffirt, dfilt.dfsymfir,
dfilt.latticeallpass, dfilt.latticear, dfilt.latticearma,
dfilt.latticemamax, dfilt.latticemamin, dfilt.parallel,
dfilt.statespace, filter, freqz, grpdelay, impz, sos, step, tf, zpk, zplane
7-147

dfilt.cascade
7dfilt.cascadePurpose Cascade of discrete-time filters

Syntax Hd = dfilt.cascade(Hd1,Hd2,...)

Description Hd = dfilt.cascade(Hd1,Hd2,...) returns a discrete-time filter, Hd, of type
cascade, which is a serial interconnection of two or more dfilt filters, Hd1, Hd2,
and so on. Each filter in a cascade is a separate stage.

You can also use the nondot notation format for calling a cascade:

cascade(Hd1,Hd2,...)

Examples Cascade a lowpass filter and a highpass filter to produce a bandpass filter:

[b1,a1]=butter(8,0.6); % Lowpass
[b2,a2]=butter(8,0.4,'high'); % Highpass
H1=dfilt.df2t(b1,a1);
H2=dfilt.df2t(b2,a2);
Hcas=dfilt.cascade(H1,H2) % Bandpass with passband 0.4-0.6

Hcas =
 FilterStructure: Cascade
 Stage(1): Direct-Form II Transposed
 Stage(2): Direct-Form II Transposed
 PersistentMemory: false

To view details of a stage, use

Hcas.stage(1)
 ans =
 FilterStructure: 'Direct-Form II Transposed'
 Arithmetic: 'double'
 Numerator: [1x9 double]
 Denominator: [1x9 double]

X(z) Y(z)Hd1(z) Hd2(z)

Hd

 . . .
7-148

dfilt.cascade
 PersistentMemory: false

To view the states of a stage, use

Hcas.stage(1).states

You can display states for individual stages only.

See Also dfilt, dfilt.parallel, dfilt.scalar
7-149

dfilt.delay
7dfilt.delayPurpose Delay filter

Syntax Hd = dfilt.delay
Hd = dfilt.delay(latency)

Description Hd = dfilt.delay returns a discrete-time filter, Hd, of type delay, which adds
a single delay to any signal filtered with Hd. The filtered signal has its values
shifted by one sample.

Hd = dfilt.delay(latency) returns a discrete-time filter, Hd, of type delay,
which adds the number of delay units specified in latency to any signal filtered
with Hd. The filtered signal has its values shifted by the latency number of
samples. The values that appear before the shifted signal are the filter states.

Examples Create a delay filter with a latency of 4 and filter a simple signal to view the
impact of applying a delay.

h = dfilt.delay(4)
h =
 FilterStructure: 'Delay'
 Latency: 4
 PersistentMemory: false

sig = 1:7 % Create some simple signal data
sig =
 1 2 3 4 5 6 7

states = h.states % Filter states before filtering
states =
 0
 0
 0
 0

filter(h,sig) % Filter using the delay filter
ans =
 0 0 0 0 1 2 3

states=h.states % Filter states after filtering
states =
7-150

dfilt.delay
 4
 5
 6
 7

See Also dfilt
7-151

dfilt.df1
7dfilt.df1Purpose Discrete-time, direct-form I filter

Syntax Hd = dfilt.df1(b,a)
Hd = dfilt.df1

Description Hd = dfilt.df1(b,a) returns a discrete-time, direct-form I filter, Hd, with
numerator coefficients b and denominator coefficients a. The filter states for
this object are stored in a filtstates object.

Hd = dfilt.df1 returns a default, discrete-time, direct-form I filter, Hd, with
b=1 and a=1. This filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0.
7-152

dfilt.df1
To display the filter states, use this code to access the filtstates object.

Hs = Hd.states % Where Hd is the dfilt.df1 object and
double (Hs) % Hs is the filtstates object

The vector is

Examples Create a direct-form I discrete-time filter with coefficents from a fourth-order
lowpass Butterworth design

[b,a] = butter(4,.5);
Hd = dfilt.df1(b,a)

 FilterStructure: 'Direct-Form I'
 Numerator: [0.0940 0.3759 0.5639 0.3759 0.0940]
 Denominator: [1 -3.6082e-016 0.4860 3.6545e-017 0.0177
 PersistentMemory: false

See Also dfilt, dfilt.df1t, dfilt.df2, dfilt.df2t

zb
zb

zb n
za
za

za n

()
()

...
()
()
()

...
()

1
2

1
2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥

7-153

dfilt.df1sos
7dfilt.df1sosPurpose Discrete-time, second-order section, direct-form I filter

Syntax Hd = dfilt.df1sos(s)
Hd = dfilt.df1sos(b1,a1,b2,a2,...)
Hd = dfilt.df1sos(...,g)

Description Hd = dfilt.df1sos(s) returns a discrete-time, second-order section,
direct-form I filter, Hd, with coefficients given in the s matrix. The filter states
for this object are stored in a filtstates object.

Hd = dfilt.df1sos(b1,a1,b2,a2,...) returns a discrete-time, second-order
section, direct-form I filter, Hd, with coefficients for the first section given in the
b1 and a1 vectors, for the second section given in the b2 and a2 vectors, etc.

Hd = dfilt.df1sos(...,g) includes a gain vector g. The elements of g are the
gains for each section. The maximum length of g is the number of sections plus
one. If g is not specified, all gains default to one.

Hd = dfilt.df1sos returns a default, discrete-time, second-order section,
direct-form I filter, Hd. This filter passes the input through to the output
unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0.
7-154

dfilt.df1sos
To display the filter states, use this code to access the filtstates object.

Hs = Hd.states % Where Hd is the dfilt.df1 object and
double (Hs) % Hs is the filtstates object
7-155

dfilt.df1sos
The vector is

For filters with more than one section, each section is a separate column in the
matrix.

Examples Specify a second-order sections, direct-form I discrete-time filter with
coefficients from a sixth order, low pass, elliptical filter using the following
code. The resulting filter has three sections.

[z,p,k] = ellip(6,1,60,.4); % Obtain filter coefficients
[s,g] = zp2sos(z,p,k); % Convert to SOS
Hd = dfilt.df1sos(s,g)

Hd =
 FilterStructure: 'Direct-Form I, Second-Order Sections'
 sosMatrix: [3x6 double]
 ScaleValues: [0.0153280112138154;1;1;1]
 PersistentMemory: false

See Also dfilt, dfilt.df1tsos, dfilt.df2sos, dfilt.df2tsos

zb zb
zb zb
za za
za za

1 1 2 1
1 2 2 2
1 1 2 1
1 2 2 2

() ()
() ()
() ()
() ()

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟⎟
⎟

7-156

dfilt.df1t
7dfilt.df1tPurpose Discrete-time, direct-form I transposed filter

Syntax Hd = dfilt.df1t(b,a)
Hd = dfilt.df1t

Description Hd = dfilt.df1t(b,a) returns a discrete-time, direct-form I transposed filter,
Hd, with numerator coefficients b and denominator coefficients a. The filter
states for this object are stored in a filtstates object.

Hd = dfilt.df1t returns a default, discrete-time, direct-form I transposed
filter, Hd, with b=1 and a=1. This filter passes the input through to the output
unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0.

To display the filter states, use this code to access the filtstates object.

Hs = Hd.states % Where Hd is the dfilt.df1 object and
7-157

dfilt.df1t
double (Hs) % Hs is the filtstates object

The vector is

Examples Create a direct-form I transposed discrete-time filter with coefficents from a
fourth-order lowpass Butterworth design

[b,a] = butter(4,.5);
Hd = dfilt.df1t(b,a)

Hd =
 FilterStructure: 'Direct-Form I Transposed'
 Numerator: [0.0940 0.3759 0.5639 0.3759 0.0940]
 Denominator: [1 -3.6082e-016 0.4860 3.6545e-017 0.0177]
 PersistentMemory: false

See Also dfilt, dfilt.df1, dfilt.df2, dfilt.df2t

zb
zb
za
za

1 1
1 2
1 1
1 2

()
()
()
()

⎛

⎝

⎜
⎜
⎜
⎜

7-158

dfilt.df1tsos
7dfilt.df1tsosPurpose Discrete-time, second-order section, direct-form I transposed filter

Syntax Hd = dfilt.df1tsos(s)
Hd = dfilt.df1tsos(b1,a1,b2,a2,...)
Hd = dfilt.df1tsos(...,g)

Description Hd = dfilt.df1tsos(s) returns a discrete-time, second-order section,
direct-form I, transposed filter, Hd, with coefficients given in the s matrix. The
filter states for this object are stored in a filtstates object.

Hd = dfilt.df1tsos(b1,a1,b2,a2,...) returns a discrete-time,
second-order section, direct-form I, tranposed filter, Hd, with coefficients for the
first section given in the b1 and a1 vectors, for the second section given in the
b2 and a2 vectors, etc.

Hd = dfilt.df1tsos(...,g) includes a gain vector g. The elements of g are
the gains for each section. The maximum length of g is the number of sections
plus one. If g is not specified, all gains default to one.

Hd = dfilt.df1tsos returns a default, discrete-time, second-order section,
direct-form I, transposed filter, Hd. This filter passes the input through to the
output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0.
7-159

dfilt.df1tsos
To display the filter states, use this code to access the filtstates object.

Hs = Hd.states % Where Hd is the dfilt.df1 object and
double (Hs) % Hs is the filtstates object

The matrix is

Examples Specify a second-order sections, direct-form I, transposed discrete-time filter
with coefficients from a sixth order, low pass, elliptical filter using the
following code:

[z,p,k] = ellip(6,1,60,.4); % Obtain filter coefficients
[s,g] = zp2sos(z,p,k); % Convert to SOS

zb zb
zb zb
za za
za za

1 1 2 1
1 2 2 2
1 1 2 1
1 2 2 2

() ()
() ()
() ()
() ()

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟⎟
⎟

7-160

dfilt.df1tsos
Hd = dfilt.df1tsos(s,g)

Hd =
 FilterStructure: [1x47 char]
 sosMatrix: [3x6 double]
 ScaleValues: [0.0153280112138154;1;1;1]
 PersistentMemory: false

Hd.FilterStructure % Display FilterStructure string
ans =

Direct-Form I Transposed, Second-Order Sections

See Also dfilt, dfilt.df1sos, dfilt.df2sos, dfilt.df2tsos
7-161

dfilt.df2
7dfilt.df2Purpose Discrete-time, direct-form II filter

Syntax Hd = dfilt.df2(b,a)
Hd = dfilt.df2

Description Hd = dfilt.df2(b,a) returns a discrete-time, direct-form II filter, Hd, with
numerator coefficients b and denominator coefficients a.

Hd = dfilt.df2 returns a default, discrete-time, direct-form II filter, Hd, with
b=1 and a=1. This filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0.
7-162

dfilt.df2
The resulting filter states column vector is

z
z

z n

()
()

...
()

1
2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

7-163

dfilt.df2
Examples Create a direct-form II discrete-time filter with coefficents from a fourth-order
lowpass Butterworth design

[b,a] = butter(4,.5);
Hd = dfilt.df2(b,a)

Hd =
 FilterStructure: 'Direct-Form II'
 Numerator: [0.0940 0.3759 0.5639 0.3759 0.0940]
 Denominator: [1 -3.6082e-016 0.4860 3.6545e-017 0.0177]
 PersistentMemory: false

See Also dfilt, dfilt.df1, dfilt.df1t, dfilt.df2t
7-164

dfilt.df2sos
7dfilt.df2sosPurpose Discrete-time, second-order section, direct-form II filter

Syntax Hd = dfilt.df2sos(s)
Hd = dfilt.df2sos(b1,a1,b2,a2,...)
Hd = dfilt.df2sos(...,g)

Description Hd = dfilt.df2sos(s) returns a discrete-time, second-order section,
direct-form II filter, Hd, with coefficients given in the s matrix.

Hd = dfilt.df2sos(b1,a1,b2,a2,...) returns a discrete-time, second-order
section, direct-form II object, Hd, with coefficients for the first section given in
the b1 and a1 vectors, for the second section given in the b2 and a2 vectors, etc.

Hd = dfilt.df2sos(...,g) includes a gain vector g. The elements of g are the
gains for each section. The maximum length of g is the number of sections plus
one. If g is not specified, all gains default to one.

Hd = dfilt.df2sos returns a default, discrete-time, second-order section,
direct-form II filter, Hd. This filter passes the input through to the output
unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0.
7-165

dfilt.df2sos
The resulting filter states column vector is

For filters with more than one section, each section is a separate column in the
vector.

z z
z z
1 1 2 1
1 2 2 2
() ()
() ()

⎛

⎝
⎜

⎞

⎠
⎟

7-166

dfilt.df2sos
Examples Specify a second-order sections, direct-form II discrete-time filter with
coefficients from a sixth order, low pass, elliptical filter using the following
code:

[z,p,k] = ellip(6,1,60,.4); % Obtain filter coefficients
[s,g] = zp2sos(z,p,k); % Convert to SOS
Hd = dfilt.df2sos(s,g)

Hd =
 FilterStructure: [1x37 char]
 sosMatrix: [3x6 double]
 ScaleValues: [0.0153280112138154;1;1;1]
 PersistentMemory: false

Hd.FilterStructure % Display FilterStructure string
ans =
Direct-Form II Transposed, Second-Order Sections

See Also dfilt, dfilt.df1sos, dfilt.df1tsos, dfilt.df2tsos
7-167

dfilt.df2t
7dfilt.df2tPurpose Discrete-time, direct-form II transposed filter

Syntax Hd = dfilt.df2t(b,a)
Hd = dfilt.df2t

Description Hd = dfilt.df2t(b,a) returns a discrete-time, direct-form II transposed
filter, Hd, with numerator coefficients b and denominator coefficients a.

Hd = dfilt.df2t returns a default, discrete-time, direct-form II transposed
filter, Hd, with b=1 and a=1. This filter passes the input through to the output
unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0.
7-168

dfilt.df2t
The resulting filter states column vector is

Examples Create a direct-form II transposed discrete-time filter with coefficents from a
fourth-order lowpass Butterworth design

[b,a] = butter(4,.5);
Hd = dfilt.df2t(b,a)

Hd =
 FilterStructure: 'Direct-Form II Transposed'
 Numerator: [0.0940 0.3759 0.5639 0.3759 0.0940]
 Denominator: [1 -3.6082e-016 0.4860 3.6545e-017 0.0177]
 PersistentMemory: false

See Also dfilt, dfilt.df1, dfilt.df1t, dfilt.df2

z
z
1 1
1 2
()
()

⎛

⎝
⎜

7-169

dfilt.df2tsos
7dfilt.df2tsosPurpose Discrete-time, second-order section, direct-form II transposed filter

Syntax Hd = dfilt.df2tsos(s)
Hd = dfilt.df2tsos(b1,a1,b2,a2,...)
Hd = dfilt.df2tsos(...,g)

Description Hd = dfilt.df2sos(s) returns a discrete-time, second-order section,
direct-form II, transposed filter, Hd, with coefficients given in the s matrix.

Hd = dfilt.df2tsos(b1,a1,b2,a2,...) returns a discrete-time,
second-order section, direct-form II, tranposed filter, Hd, with coefficients for
the first section given in the b1 and a1 vectors, for the second section given in
the b2 and a2 vectors, etc.

Hd = dfilt.df2tsos(...,g) includes a gain vector g. The elements of g are
the gains for each section. The maximum length of g is the number of sections
plus one. If g is not specified, all gains default to one.

Hd = dfilt.df2tsos returns a default, discrete-time, second-order section,
direct-form II, transposed filter, Hd. This filter passes the input through to the
output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0.
7-170

dfilt.df2tsos
The resulting filter states column vector is

Examples Specify a second-order sections, direct-form II, transposed discrete-time filter
with coefficients from a sixth order, low pass, elliptical filter using the
following code:

[z,p,k] = ellip(6,1,60,.4); % Obtain filter coefficients
[s,g] = zp2sos(z,p,k); % Convert to SOS
Hd = dfilt.df2tsos(s,g)

Hd =
 FilterStructure: [1x48 char]
 sosMatrix: [3x6 double]
 ScaleValues: [0.0153280112138154;1;1;1]

z z
z z
1 1 2 1
1 2 2 2
() ()
() ()

⎛

⎝
⎜

⎞

⎠
⎟

7-171

dfilt.df2tsos
 PersistentMemory: false

See Also dfilt, dfilt.df1sos, dfilt.df1tsos, dfilt.df2sos
7-172

dfilt.dfasymfir
7dfilt.dfasymfirPurpose Discrete-time, direct-form antisymmetric FIR filter

Syntax Hd = dfilt.dfasymfir(b)
Hd = dfilt.dfasymfir

Description Hd = dfilt.dfasymfir(b) returns a discrete-time, direct-form,
antisymmetric FIR filter, Hd, with numerator coefficients b.

Hd = dfilt.dfasymfir returns a default, discrete-time, direct-form,
antisymmetric FIR filter, Hd, with b=1. This filter passes the input through to
the output unchanged.

Note Only the first half of vector b is used because the second half is
assumed to be antisymmetric. In the figure below for an odd number of
coefficients, b(3) = 0, b(4) = -b(2) and b(5) = -b(1), and in the next figure for an
even number of coefficients, b(4) = -b(3), b(5) = -b(2), and b(6) = -b(1).
7-173

dfilt.dfasymfir
7-174

dfilt.dfasymfir
The resulting filter states column vector for the odd number of coefficients
example above is
7-175

dfilt.dfasymfir
Examples Odd Order
Create a Type 4 25th order highpass direct-form antisymmetric FIR filter
structure for a dfilt object, Hd, with the following code:

Hd = firpm(25,[0 .4 .5 1],[0 0 1 1],'h');

Even Order
Create a 44th order lowpass direct-form antisymmetric FIR differentiator filter
structure for a dfilt object, Hd, with the following code:

h=firpm(44,[0 .3 .4 1],[0 .2 0 0],'differentiator');

See Also dfilt, dfilt.dffir, dfilt.dffirt, dfilt.dfsymfir

z
z
z
z
z
z

()
()
()
()
()
()

1
2
3
4
5
6

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

7-176

dfilt.dffir
7dfilt.dffirPurpose Discrete-time, direct-form, FIR filter

Syntax Hd = dfilt.dffir(b)
Hd = dfilt.dffir

Description Hd = dfilt.dffir(b) returns a discrete-time, direct-form finite impulse
response (FIR) filter, Hd, with numerator coefficients, b.

Hd = dfilt.dffir returns a default, discrete-time, direct-form FIR filter, Hd,
with b=1. This filter passes the input through to the output unchanged.

The resulting filter states column vector is

z
z
1 1
1 2
()
()

⎛

⎝
⎜

7-177

dfilt.dffir
Examples Create a direct-form FIR discrete-time filter with coefficients from a 30th order
lowpass equiripple design:

b = firpm(30,[0 .1 .2 .5]*2,[1 1 0 0]);
Hd = dfilt.dffir(b)

Hd =
 FilterStructure: 'Direct-Form FIR'
 Numerator: [1x31 double]
 PersistentMemory: false

See Also dfilt, dfilt.dfasymfir, dfilt.dffirt, dfilt.dfsymfir
7-178

dfilt.dffirt
7dfilt.dffirtPurpose Discrete-time, direct-form FIR transposed filter

Syntax Hd = dfilt.dffirt(b)
Hd = dfilt.dffirt

Description Hd = dfilt.dffirt(b) returns a discrete-time, direct-form FIR transposed
filter, Hd, with numerator coefficients b.

Hd = dfilt.dffirt returns a default, discrete-time, direct-form FIR
transposed filter, Hd, with b=1. This filter passes the input through to the
output unchanged.

The resulting filter states column vector is

z
z
1 1
1 2
()
()

⎛

⎝
⎜

7-179

dfilt.dffirt
Examples Create a direct-form FIR transposed discrete-time filter with coefficients from
a 30th order lowpass equiripple design:

b = firpm(30,[0 .1 .2 .5]*2,[1 1 0 0]);
Hd = dfilt.dffirt(b)

Hd =
 FilterStructure: 'Direct-Form FIR Transposed'
 Numerator: [1x31 double]
 PersistentMemory: false

See Also dfilt, dfilt.dffir, dfilt.dfasymfir, dfilt.dfsymfir
7-180

dfilt.dfsymfir
7dfilt.dfsymfirPurpose Discrete-time, direct-form symmetric FIR filter

Syntax Hd = dfilt.dfsymfir(b)
Hd = dfilt.dfsymfir

Description Hd = dfilt.dfsymfir(b) returns a discrete-time, direct-form symmetric FIR
filter, Hd, with numerator coefficients b.

Hd = dfilt.dfsymfir returns a default, discrete-time, direct-form symmetric
FIR filter, Hd, with b=1. This filter passes the input through to the output
unchanged.

Note Only the first half of vector b is used because the second half is
assumed to be symmetric. In the figure below for an odd number of
coefficients, b(3) = 0, b(4) = b(2) and b(5) = b(1), and in the next figure for an
even number of coefficients, b(4) = b(3), b(5) = b(2), and b(6) = b(1).
7-181

dfilt.dfsymfir
7-182

dfilt.dfsymfir
The resulting filter states column vector for the odd number of coefficients
example above is

z
z
z
z

()
()
()
()

1
2
3
4

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

7-183

dfilt.dfsymfir
Examples Odd Order
Specify a fifth-order direct-form symmetric FIR filter structure for a dfilt
object, Hd, with the following code:

b = [-0.008 0.06 0.44 0.44 0.06 -0.008];
Hd = dfilt.dfsymfir(b)

Hd =
 FilterStructure: 'Direct-Form Symmetric FIR'
 Numerator: [-0.0080 0.0600 0.4400 0.4400 0.0600 -0.0080]
 PersistentMemory: false

Even Order
Specify a fourth-order direct-form symmetric FIR filter structure for a dfilt
object, Hd, with the following code:

b = [-0.01 0.1 0.8 0.1 -0.01];
Hd = dfilt.dfsymfir(b)

Hd =
 FilterStructure: 'Direct-Form Symmetric FIR'
 Numerator: [-0.0100 0.1000 0.8000 0.1000 -0.0100]
 PersistentMemory: false

See Also dfilt, dfilt.dfasymfir, dfilt.dffir, dfilt.dffirt
7-184

dfilt.fftfir
7dfilt.fftfirPurpose Discrete-time, overlap-add, FIR filter

Syntax Hd = dfilt.fftfir(b,len)
Hd = dfilt.fftfir(b)
Hd = dfilt.fftfir

Description This object uses the overlap-add method of block FIR filtering, which is very
efficient for streaming data.

Hd = dfilt.fftfir(b,len) returns a discrete-time, FFT, FIR filter, Hd, with
numerator coefficients, b and block length, len. The block length is the number
of input points to use for each overlap-add computation.

Hd = dfilt.fftfir(b) returns a discrete-time, FFT, FIR filter, Hd, with
numerator coefficients, b and block length, len=100.

Hd = dfilt.fftfir returns a default, discrete-time, FFT, FIR filter, Hd, with
the numerator b=1 and block length, len=100. This filter passes the input
through to the output unchanged.

Note When you use a dfilt.fftfir object to filter, the input signal length
must be an integer multiple of the object’s block length, len.

The resulting number of FFT points = (filter length + the block length - 1). The
filter is most efficient if the number of FFT points is a power of 2.
7-185

dfilt.fftfir
The fftfir uses an overlap-add block processing algorithm, which is
represented as follows,

where len is the block length and M is the length of the numerator-1,
(length(b)-1), which is also the number of states. The output of each
convolution is a block that is longer than the input block by a tail of
(length(b)-1) samples. These tails overlap the next block and are added to it.
The states reported by dfilt.fftfir are the tails of the final convolution.

Examples Create an FFT FIR discrete-time filter with coefficients from a 30th order
lowpass equiripple design:

b = firpm(30,[0 .1 .2 .5]*2,[1 1 0 0]);
Hd = dfilt.fftfir(b)

Hd =
 FilterStructure: 'Overlap-Add FIR'
 Numerator: [1x31 double]
 BlockLength: 100
 NonProcessedSamples: []
 PersistentMemory: false

������� �������
� 	 �������

���

�����

�� ��� �
��� �����

����

����

	

����

��

����

����
��

��

��

�

�� ��

�

�

7-186

dfilt.fftfir
To view the frequency domain coefficients used in the filtering, use the
following command.

fftcoeffs(Hd)

See Also dfilt, dfilt.dffir, dfilt.dfasymfir, dfilt.dffirt, dfilt.dfsymfir
7-187

dfilt.latticeallpass
7dfilt.latticeallpassPurpose Discrete-time, lattice allpass filter

Syntax Hd = dfilt.latticeallpass(k)
Hd = dfilt.latticeallpass

Description Hd = dfilt.latticeallpass(k) returns a discrete-time, lattice allpass filter,
Hd, with lattice coefficients, k.

Hd = dfilt.latticeallpass returns a default, discrete-time, lattice allpass
filter, Hd, with k=[]. This filter passes the input through to the output
unchanged.

The resulting filter states column vector is

Examples Form a third-order lattice allpass filter structure for a dfilt object, Hd, using
the following lattice coefficients:

k = [.66 .7 .44];
Hd = dfilt.latticeallpass(k)

Hd =

z z
z z
1 1 2 1
1 2 2 2
() ()
() ()

⎛

⎝
⎜

⎞

⎠
⎟

7-188

dfilt.latticeallpass
 FilterStructure: 'Lattice Allpass'
 Lattice: [0.6600 0.7000 0.4400]
 PersistentMemory: false

See Also dfilt, dfilt.latticear, dfilt.latticearma, dfilt.latticemamax,
dfilt.latticemamin
7-189

dfilt.latticear
7dfilt.latticearPurpose Discrete-time, lattice, autoregressive filter

Syntax Hd = dfilt.latticear(k)
Hd = dfilt.latticear

Description Hd = dfilt.latticear(k) returns a discrete-time, lattice autoregressive
filter, Hd, with lattice coefficients, k.

Hd = dfilt.latticear returns a default, discrete-time, lattice autoregressive
filter, Hd, with k=[]. This filter passes the input through to the output
unchanged.

The resulting filter states column vector is

z
z
z

()
()
()

1
2
3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

7-190

dfilt.latticear
Examples Form a third-order lattice autoregressive filter structure for a dfilt object, Hd,
using the following lattice coefficients:

k = [.66 .7 .44];
Hd = dfilt.latticear(k)

Hd =
 FilterStructure: 'Lattice Autoregressive (AR)'
 Lattice: [0.6600 0.7000 0.4400]
 PersistentMemory: false

See Also dfilt, dfilt.latticeallpass, dfilt.latticearma, dfilt.latticemamax,
dfilt.latticemamin
7-191

dfilt.latticearma
7dfilt.latticearmaPurpose Discrete-time, lattice, autoregressive, moving-average filter

Syntax Hd = dfilt.latticearma(k,v)
Hd = dfilt.latticearma

Description Hd = dfilt.latticearma(k,v) returns a discrete-time, lattice
autoregressive, moving-average filter, Hd, with lattice coefficients, k and ladder
coefficients v.

Hd = dfilt.latticearma returns a default, discrete-time, lattice
autoregressive, moving-average filter, Hd, with k=[] and v=1. This filter passes
the input through to the output unchanged.

The resulting filter states column vector is

z
z
z

()
()
()

1
2
3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

7-192

dfilt.latticearma
Examples Form a third-order lattice autoregressive, moving-average filter structure for a
dfilt object, Hd, using the following lattice coefficients:

k = [.66 .7 .44];
Hd = dfilt.latticearma(k)

 Hd =
 FilterStructure: 'Lattice Autoregressive Moving-Average (ARMA)'
 Lattice: [0.6600 0.7000 0.4400]
 Ladder: 1
 PersistentMemory: false

See Also dfilt, dfilt.latticeallpass, dfilt.latticear, dfilt.latticemamax,
dfilt.latticemamin
7-193

dfilt.latticemamax
7dfilt.latticemamaxPurpose Discrete-time, lattice, moving-average filter

Syntax Hd = dfilt.latticemamax(k)
Hd = dfilt.latticemamax

Description Hd = dfilt.latticemamax(k) returns a discrete-time, lattice,
moving-average filter, Hd, with lattice coefficients k.

Note If the k coefficients define a maximum phase filter, the resulting filter
in this structure is maximum phase. If your coefficients do not define a
maximum phase filter, placing them in this structure does not produce a
maximum phase filter.

Hd = dfilt.latticemamax returns a default discrete-time, lattice,
moving-average filter, Hd, with k=[]. This filter passes the input through to the
output unchanged.
7-194

dfilt.latticemamax
The resulting filter states column vector is

Examples Form a fourth-order lattice, moving-average, maximum phase filter structure
for a dfilt object, Hd, using the following lattice coefficients:

k = [.66 .7 .44 .33];
Hd = dfilt.latticemamax(k)

Hd =
 FilterStructure: 'Lattice Moving-Average (MA) For Maximum Phase'
 Arithmetic: 'double'
 Lattice: [0.6600 0.7000 0.4400 0.3300]
 PersistentMemory: false

See Also dfilt, dfilt.latticeallpass, dfilt.latticear, dfilt.latticearma,
dfilt.latticemamin

z
z
z

()
()
()

1
2
3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

7-195

dfilt.latticemamin
7dfilt.latticemaminPurpose Discrete-time, lattice, moving-average filter

Syntax Hd = dfilt.latticemamin(k)
Hd = dfilt.latticemamin

Description Hd = dfilt.latticemamin(k) returns a discrete-time, lattice,
moving-average, minimum phase, filter, Hd, with lattice coefficients k.

Note If the k coefficients define a minimum phase filter, the resulting filter
in this structure is minimum phase. If your coefficients do not define a
minimum phase filter, placing them in this structure does not produce a
minimum phase filter.

Hd = dfilt.latticemamin returns a default discrete-time, lattice,
moving-average, minimum phase, filter, Hd, with k=[]. This filter passes the
input through to the output unchanged.
7-196

dfilt.latticemamin
The resulting filter states column vector is

Examples Form a third-order lattice, moving-average, minimup phase, filter structure for
a dfilt object, Hd, using the following lattice coefficients.

k = [.66 .7 .44];
Hd = dfilt.latticemamin(k)

Hd =
 FilterStructure: 'Lattice Moving-Average (MA) For Minimum Phase'
 Lattice: [0.6600 0.7000 0.4400]
PersistentMemory: false

See Also dfilt, dfilt.latticeallpass, dfilt.latticear, dfilt.latticearma,
dfilt.latticemamax

z
z
z

()
()
()

1
2
3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

7-197

dfilt.parallel
7dfilt.parallelPurpose Discrete-time, parallel structure filter

Syntax Hd = dfilt.parallel(Hd1,Hd2,...)

Description Hd = dfilt.parallel(Hd1,Hd2,...) returns a discrete-time filter, Hd, which
is a structure of two or more dfilt filters, Hd1, Hd2, etc. arranged in parallel.
Each filter in a parallel structure is a separate stage. You can display states for
individual stages only. To view the states of a stage use

Hd.stage(1).states

You can also use the nondot notation format for calling a parallel structure.

parallel(Hd1,Hd2,...)

Examples Using a parallel structure, create a coupled-allpass decomposition of a 7th
order lowpass digital, elliptic filter with a normalized cutoff frequency of 0.5, 1
decibel of peak-to-peak ripple and a minimum stopband attenuation of 40
decibels.

k1 = [-0.0154 0.9846 -0.3048 0.5601];
Hd1 = dfilt.latticeallpass(k1);
k2 = [-0.1294 0.8341 -0.4165];
Hd2 = dfilt.latticeallpass(k2);
Hpar = parallel(Hd1 ,Hd2);
gain = dfilt.scalar(0.5); % Normalize the passband gain

X(z)

Y(z)

Hd1((z))

Hd2((z)) +

Hd

 .
 .
 .
7-198

dfilt.parallel
Hcas = cascade(gain,Hpar);
fvtool(Hcas)

See Also dfilt, dfilt.cascade
7-199

dfilt.scalar
7dfilt.scalarPurpose Discrete-time, scalar filter

Syntax Hd = dfilt.scalar(g)
Hd = dfilt.scalar

Description Hd = dfilt.scalar(g) returns a discrete-time, scalar filter, Hd, with gain g,
where g is a scalar.

Hd = dfilt.scalar returns a default, discrete-time scalar gain filter, Hd, with
gain 1.

Example Create a direct-form I filter and a scalar object with a gain of 3 and cascade
them together.

b = [0.3 0.6 0.3];
a = [1 0 0.2];
Hd_filt = dfilt.df1(b,a)
Hd_gain = dfilt.scalar(3)
Hd=cascade(Hd_gain,Hd_filt)
fvtool(Hd_filt,Hd_gain,Hd)

Hd_filt =
 FilterStructure: 'Direct-Form I'
 Numerator: [0.3000 0.6000 0.3000]
 Denominator: [1 0 0.2000]
 PersistentMemory: false

Hd_gain =
 FilterStructure: 'Scalar'
 Gain: 3
 PersistentMemory: false

Hd =
 FilterStructure: Cascade
 Stage(1): Scalar
 Stage(2): Direct-Form I
 PersistentMemory: false
7-200

dfilt.scalar
To view the stages of the cascaded filter, use

Hd.stage(1)

ans =
 FilterStructure: 'Scalar'
 Gain: 3
 PersistentMemory: false

and

Hd.stage(2)

7-201

dfilt.scalar
ans =
 FilterStructure: 'Direct-Form I'
 Numerator: [0.3 0.6 0.3]
 Denominator: [1 0 0.2]
 PersistentMemory: false

See Also dfilt, dfilt.cascade
7-202

dfilt.statespace
7dfilt.statespacePurpose Discrete-time, state-space filter

Syntax Hd = dfilt.statespace(A,B,C,D)
Hd = dfilt.statespace

Description Hd = dfilt.statespace(A,B,C,D) returns a discrete-time state-space filter,
Hd, with rectangular arrays A, B, C and D.

A, B, C, and D are from the matrix or state-space form of a filter’s difference
equations

where x(n) is the vector states at time n, u(n) is the input at time n, y is the
output at time n, A is the state-transition matrix, B is the input-to-state
transmission matrix, C is the state-to-output transmission matrix, and D is the
input-to-ouput transmission matrix. For single-channel systems, A is an m-by-m
matrix where m is the order of the filter, B is a column vector, C is a row vector,
and D is a scalar.

Hd = dfilt.statespace returns a default, discrete-time state-space filter, Hd,
with A=[], B=[], C=[], and D=1. This filter passes the input through to the
output unchanged.

x n 1+() Ax n() Bu n()+=

y n() Cx n() Du n()+=
7-203

dfilt.statespace
The resulting filter states column vector has the same number of rows as the
number of rows of A or B.

Examples Create a second-order, state-space filter structure from a second-order, lowpass
Butterworth design.

[A,B,C,D] = butter(2,0.5);
Hd = dfilt.statespace(A,B,C,D)

Hd =
 FilterStructure: 'State-space'
 A: [2x2 double]
 B: [0.8284;0.8284]
 C: [0.2071 0.5]
 D: 0.2929
 PersistentMemory: false

See Also dfilt
7-204

dftmtx
7dftmtxPurpose Discrete Fourier transform matrix

Syntax A = dftmtx(n)

Description A discrete Fourier transform matrix is a complex matrix of values around the
unit circle, whose matrix product with a vector computes the discrete Fourier
transform of the vector.

A = dftmtx(n) returns the n-by-n complex matrix A that, when multiplied into
a length n column vector x.

y = A*x

computes the discrete Fourier transform of x.

The inverse discrete Fourier transform matrix is

Ai = conj(dftmtx(n))/n

Examples In practice, the discrete Fourier transform is computed more efficiently and
uses less memory with an FFT algorithm

x = 1:256;
y1 = fft(x);

than by using the Fourier transform matrix.

n = length(x);
y2 = x*dftmtx(n);
norm(y1-y2)

ans =
1.8297e-009

Algorithm dftmtx takes the FFT of the identity matrix to generate the transform matrix.

See Also convmtx, fft
7-205

digitrevorder
7digitrevorderPurpose Permute input into digit-reversed order

Syntax y = digitrevorder(x,r)
[y,i] = digitrevorder(x,r)

Description digitrevorder is useful for preordering a vector of filter coefficients for use in
frequency-domain filtering algorithms, in which the fft and ifft transforms
are computed without digit-reversed ordering for improved run-time efficiency.

y = digitrevorder(x,r) returns the input data in digit-reversed order in
vector or matrix y. The digit-reversal is computed using the number system
base (radix base) r, which can be any integer from 2 to 36. The length of x must
be an integer power of r. If x is a matrix, the digit reversal occurs on the first
dimension of x with size greater than 1. y is the same size as x.

[y,i] = digitrevorder(x,r) returns the digit-reversed vector or matrix y
and the digit-reversed indices i, such that y = x(i). Recall that MATLAB uses
1-based indexing, so the first index of y will be 1, not 0.

The following table shows the numbers 0 through 15, the corresponding digits
and the digit-reversed numbers using radix base-4. The corresponding radix
base-2 bits and bit-reversed indices are also shown.

Linear
Index

Base-4
Digits

Digit-
Reversed

Digit-
Reversed
Index

Base-2
Bits

Base-2
Reversed
(bitrevorder)

Bit-
Reversed
Index

0 00 00 0 0000 0000 0

1 01 10 4 0001 1000 8

2 02 20 8 0010 0100 4

3 03 30 12 0011 1100 12

4 10 01 1 0100 0010 2

5 11 11 5 0101 1010 10

6 110 011 9 0110 0110 6
7-206

digitrevorder
Examples Obtain the digit-reversed, radix base-3 ordered output of a vector containing 9
values:

x=[0:8]'; % Create a column vector
[x,digitrevorder(x,3)]
ans =

 0 0
 1 3
 2 6
 3 1
 4 4
 5 7
 6 2
 7 5
 8 8

See Also bitrevorder, fft, ifft

7 13 31 13 0111 1110 14

8 20 02 2 1000 0001 1

9 21 12 6 1001 1001 9

10 22 22 10 1010 0101 5

11 23 32 14 1011 1101 13

12 30 03 3 1100 0011 3

13 31 13 7 1101 1011 11

14 32 23 11 1110 0111 7

15 33 33 15 1111 1111 15

Linear
Index

Base-4
Digits

Digit-
Reversed

Digit-
Reversed
Index

Base-2
Bits

Base-2
Reversed
(bitrevorder)

Bit-
Reversed
Index
7-207

diric
7diricPurpose Dirichlet or periodic sinc function

Syntax y = diric(x,n)

Description y = diric(x,n) returns a vector or array y the same size as x. The elements
of y are the Dirichlet function of the elements of x. n must be a positive integer.

The Dirichlet function, or periodic sinc function, is

for any nonzero integer n. This function has period 2π for n odd and period 4π
for n even. Its peak value is 1, and its minimum value is -1 for n even. The
magnitude of this function is (1/n) times the magnitude of the discrete-time
Fourier transform of the n-point rectangular window.

Diagnostics If n is not a positive integer, diric gives the following error message:

Requires n to be a positive integer.

See Also cos, gauspuls, pulstran, rectpuls, sawtooth, sin, sinc, square, tripuls

diric x n,()
1–

x
2π
------- n 1–()

x 0 2π± 4π± …, , ,=

nx 2⁄()sin
n x 2⁄()sin
---------------------------- else⎩

⎪
⎨
⎪
⎧

=

7-208

downsample
7downsamplePurpose Decrease sampling rate by integer factor

Syntax y = downsample(x,n)
y = downsample(x,n,phase)

Description y = downsample(x,n) decreases the sampling rate of x by keeping every nth
sample starting with the first sample. x can be a vector or a matrix. If x is a
matrix, each column is considered a separate sequence.

y = downsample(x,n,phase) specifies the number of samples by which to
offset the downsampled sequence. phase must be an integer from 0 to n-1.

Examples Decrease the sampling rate of a sequence by 3:

x = [1 2 3 4 5 6 7 8 9 10];
y = downsample(x,3)

y =
1 4 7 10

Decrease the sampling rate of the sequence by 3 and add a phase offset of 2:

y = downsample(x,3,2)

y =
3 6 9

Decrease the sampling rate of a matrix by 3:

x = [1 2 3; 4 5 6; 7 8 9; 10 11 12];
y = downsample(x,3);
x,y

x =
1 2 3
4 5 6
7 8 9

10 11 12

y =
1 2 3

10 11 12
7-209

downsample
See Also decimate, interp, interp1, resample, spline, upfirdn, upsample
7-210

dpss
7dpssPurpose Discrete prolate spheroidal sequences (Slepian sequences)

Syntax [e,v] = dpss(n,nw)
[e,v] = dpss(n,nw,k)
[e,v] = dpss(n,nw,[k1 k2])
[e,v] = dpss(n,nw,'int')
[e,v] = dpss(n,nw,'int',Ni)
[e,v] = dpss(...,'trace')

Description [e,v] = dpss(n,nw) generates the first 2*nw discrete prolate spheroidal
sequences (DPSS) of length n in the columns of e, and their corresponding
concentrations in vector v. They are also generated in the DPSS MAT-file
database dpss.mat. nw must be less than n/2.

[e,v] = dpss(n,nw,k) returns the k most band-limited discrete prolate
spheroidal sequences. k must be an integer such that 1 ≤ k ≤ n.

[e,v] = dpss(n,nw,[k1 k2]) returns the k1st through the k2nd discrete
prolate spheroidal sequences, where 1 ≤ k1 ≤ k2 ≤ n.

For all of the above forms:

• The Slepian sequences are calculated directly.

• The sequences are generated in the frequency band |ω| ≤ (2πW), where
W = nw/n is the half-bandwidth and ω is in rad/sample.

• e(:,1) is the length n signal most concentrated in the frequency band
|ω| ≤ (2πW) radians, e(:,2) is the signal orthogonal to e(:,1) that is most
concentrated in this band, e(:,3) is the signal orthogonal to both e(:,1)
and e(:,2) that is most concentrated in this band, etc.

• For multitaper spectral analysis, typical choices for nw are 2, 5/2, 3, 7/2, or 4.

[e,v] = dpss(n,nw,'int') uses the interpolation method specified by the
string 'int' to compute e and v from the sequences in dpss.mat with length
closest to n. The string 'int' can be either:

• 'spline': Use spline interpolation.

• 'linear': Use linear interpolation. This is much faster but less accurate than
spline interpolation.
7-211

dpss
[e,v] = dpss(n,nw,'int',Ni) interpolates from existing length Ni
sequences. The interpolation method 'linear' requires Ni > n.

[e,v] = dpss(...,'trace') uses the trailing string 'trace' to display
which interpolation method DPSS uses. If you don’t specify the interpolation
method, the display indicates that you are using the direct method.

Examples Example 1: Using dpss, dpssave, and dpssdir
Create a catalogue of 16 DPSS functions with nw = 4, and use spline
interpolation on 10 of these functions while displaying the interpolation
method you use. You can do this using dpss, dpsssave, and dpssdir:

% Create the catalogue of functions.
[e,v] = dpss(16,4);

% Save e and v in a MAT-file.
dpsssave(4,e,v);

% Find nw = 4. First create a structure called index.
index = dpssdir;
index.wlists
ans =
 NW: 4
 key: 1

% Use spline interpolation on 10 of the DPSS functions.
[e1,v1] = dpss(10,4,'spline',size(e,1),'trace');

Example 2: Using dpss and dpssload
Create a set of DPSS functions using dpss, and use the spline method on a
subset of these functions. Use dpssload to load the MAT-file created by dpss:

% Create the catalogue of functions.
[e,v] = dpss(16,4);

% Load dpss.mat, where e and v are saved.
[e1,v1] = dpssload(16,4);

% Use spline interpolation on 10 of the DPSS functions.
[e1,v1] = dpss(10,4,'spline');
7-212

dpss
References [1] Percival, D.B., and A.T. Walden. Spectral Analysis for Physical
Applications: Multitaper and Conventional Univariate Techniques. Cambridge:
Cambridge University Press, 1993.

See Also dpssclear, dpssdir, dpssload, dpsssave, pmtm
7-213

dpssclear
7dpssclearPurpose Remove discrete prolate spheroidal sequences from database

Syntax dpssclear(n,nw)

Description dpssclear(n,nw) removes sequences with length n and time-bandwidth
product nw from the DPSS MAT-file database dpss.mat.

See Also dpss, dpssdir, dpssload, dpsssave
7-214

dpssdir
7dpssdirPurpose Discrete prolate spheroidal sequences database directory

Syntax dpssdir
dpssdir(n)
dpssdir(nw,'nw')
dpssdir(n,nw)
index = dpssdir

Description dpssdir manages the database directory that contains the generated DPSS
samples in the DPSS MAT-file database dpss.mat.

dpssdir lists the directory of saved sequences in dpss.mat.

dpssdir(n) lists the sequences saved with length n.

dpssdir(nw,'nw') lists the sequences saved with time-bandwidth product nw.

dpssdir(n,nw) lists the sequences saved with length n and time-bandwidth
product nw.

index = dpssdir is a structure array describing the DPSS database. Pass n
and nw options as for the no output case to get a filtered index.

Examples See “Example 1: Using dpss, dpssave, and dpssdir” on page 7-212.

See Also dpss, dpssclear, dpssload, dpsssave
7-215

dpssload
7dpssloadPurpose Load discrete prolate spheroidal sequences from database

Syntax [e,v] = dpssload(n,nw)

Description [e,v] = dpssload(n,nw) loads all sequences with length n and
time-bandwidth product nw in the columns of e and their corresponding
concentrations in vector v from the DPSS MAT-file database dpss.mat.

Examples See “Example 2: Using dpss and dpssload” on page 7-212.

See Also dpss, dpssclear, dpssdir, dpsssave
7-216

dpsssave
7dpsssavePurpose Save discrete prolate spheroidal sequences in database

Syntax dpsssave(nw,e,v)
status = dpsssave(nw,e,v)

Description dpsssave(nw,e,v) saves the sequences in the columns of e and their
corresponding concentrations in vector v in the DPSS MAT-file database
dpss.mat. It is not necessary to specify sequence length, because the length of
the sequence is determined by the number of rows of e.

nw is the time-bandwidth product that was specified when the sequence was
created using dpss.

status = dpsssave(nw,e,v) returns 0 if the save was successful and 1 if
there was an error.

Examples See “Example 1: Using dpss, dpssave, and dpssdir” on page 7-212.

See Also dpss, dpssclear, dpssdir, dpssload
7-217

dspdata
7dspdataPurpose DSP data parameter information

Syntax Hs = dspdata.databoj(input1,...)

Description Hs = dspdata.dataobj(input1,...) returns a dspdata object Hs of type
dataobj. This object contains all the parameter information needed for the
specified type of dataobj. Each dataobj takes one or more inputs, which are
described on the individual reference pages. If you do not specify any input
values, the returned object has default property values appropriate for the
particular dataobj type.

Note You must use a dataobj with dspdata.

Data Objects
A data object (dataobj) for dspdata specifies the type of data stored in the
object. Available dataobj types for dspdata are shown below.

For more information on each dataobj type, refer to its reference page.

Methods
Methods provide ways of performing functions directly on your dspdata object.
You can apply these methods directly on the variable you assigned to your
dspdata object.

dspdata.dataobj Description

dspdata.msspectrum Mean-square spectrum data (power)

dspdata.psd Power spectral density data
(power/frequency)

dspdata.pseudospectrum Pseudospectrum data (power)
7-218

dspdata
.

Method Description

avgpower Note that this method applies only to dspdata.psd
objects.

avgpower(Hs) computes the average power in a
given frequency band. The technique uses a
rectangle approximation of the integral of the Hs
signal’s power spectral density (PSD). If the signal
is a matrix, the computation is done on each
column. The average power is the total signal
power and the SpectrumType property determines
whether the total average power is contained in
the one-sided or two-sided spectrum. For aa
one-sided spectrum, the range is [0,pi] for even
number of frequency points and [0,pi) for odd. For
a two-sided spectrum the range is [0,2pi).

avgpower(Hs,freqrange) specifies the frequency
range over which to calculate the average power.
freqrange is a two-element vector of the
frequencies between which to calculate. If a
frequency value does not match exactly the
frequency in Hs, the next closest value is used.
Note that the first frequency value in freqrange is
included in the calculation and the second value is
excluded.

centerdc centerdc(Hs) or centerdc(Hs,true) shifts the
data and frequency values so that the DC
component is at the center of the spectrum. If the
SpectrumType property is 'onesided', it is
changed to 'twosided' and then the DC
component is centered.

centerdc(Hs,'false') shifts the data and
frequency values so that the DC component is at
the left edge of the spectrum.
7-219

dspdata
halfrange halfrange(Hs) converts the Hs spectrum to a
spectrum calculated over half the Nyquist interval.
All associated properties affected by the new
frequency range are adjusted automatically. This
method is used for dspdata.pseudospectrum
objects.

Note that the spectrum is assumed to be from a
real signal (that is, halfrange uses half the data
points regardless of whether the data is
symmetric).

normalizefreq normalizefreq(Hs) or normalizefreq(Hs,true)
normalizes the frequency specifications in the Hs
object to Fs so the frequencies are between 0 and 1.
It also sets the NormalizedFrequency property to
true.

normalizefreq(Hs,false) converts the
frequencies to linear frequencies.

normalizefreq(Hs,false,Fs) sets a new
sampling frequency Fs. This can be used only with
false.

onesided onesided(Hs) converts the Hs spectrum to a
spectrum calculated over half the Nyquist interval
and containing the total signal power. All
associated properties affected by the new
frequency range are adjusted automatically. This
method is used for dspdata.psd and
dspdata.msspectrum objects.

Note that the spectrum is assumed to be from a
real signal (that is, onesided uses half the data
points regardless of whether the data is
symmetric).

Method Description
7-220

dspdata
Plotting a dspdata Object
The plot method displays the dspdata object spectrum in a separate figure
window.

plot(Hs) % Plots an existing Hs object

plot Displays the data graphically in the current figure
window.

For a dspdata.psd object, it displays the power
spectral density in dB/Hz.

For a dspdata.msspectrum object, it displays the
power spectrum in dB.

For a dspdata.pseudospectrum object, it displays
the pseudospectrum in dB.

twosided twosided(Hs) converts the Hs spectrum to a
spectrum calculated over the whole Nyquist
interval. All associated properties affected by the
new frequency range are adjusted automatically.
This method is used for dspdata.psd and
dspdata.msspectrum objects.

Note that if your data is nonuniformly sampled,
converting from onesided to twosided may
produce incorrect results.

wholerange wholerange(Hs) converts the Hs spectrum to a
spectrum calculated over the whole Nyquist
interval. All associated properties affected by the
new frequency range are adjusted automatically.
This method is used for dspdata.pseudospectrum
objects.

Note that if your data is nonuniformly sampled,
converting from half to wholerange may produce
incorrect results.

Method Description
7-221

dspdata
Modifying a dspdata Object
After you create a dspdata object, you can use any of the methods in the table
above to modify the object properties.

For example, to change the object from two-sided to one-sided, use

onesided(Hs)

The Hs object is modifed.

Examples See the msspectrum, psd, or pseudospectrum reference pages for specific
examples.

 See Also dspdata.msspectrum, dspdata.psd, dspdata.pseudospectrum
7-222

dspdata.msspectrum
7dspdata.msspectrumPurpose Mean-square (power) spectrum

Syntax Hmss = dspdata.msspectrum(Data)
Hmss = dspdata.msspectrum(Data,Frequencies)
Hmss = dspdata.msspectrum(...,'Fs',Fs)
Hmss = dspdata.msspectrum(...,'SpectrumType',SpectrumType)
Hmss = dspdata.msspectrum(...,'CenterDC',flag)

Description The mean-squared spectrum (MSS) is intended for discrete spectra. Unlike the
power spectral density (PSD), the peaks in the MSS reflect the power in the
signal at a given frequency. The MSS of a signal is the Fourier transform of
that signal’s autocorrelation.

Hmss = dspdata.msspectrum(Data) uses the mean-square (power) spectrum
data contained in Data, which can be in the form of a vector or a matrix, where
each column is a separate set of data. Default values for other properties of the
object are as follows:
7-223

dspdata.msspectrum
.

Property Default Value Description

Name 'Mean-square Spectrum' Read-only string

Frequencies []
type double

Vector of frequencies at which the
spectrum is evaluated. The range of
this vector depends on the
SpectrumType value. For a one-sided
spectrum, the default range is [0, pi) or
[0, Fs/2) for odd length, and [0, pi] or [0,
Fs/2] for even length, if Fs is specified.
For a two-sided spectrum, it is [0, 2pi)
or [0, Fs).

The length of the Frequencies vector
must match the length of the columns
of Data.

If you do not specify Frequencies, a
default vector is created. If one-sided is
selected, then the whole number of
FFT points (nFFT) for this vector is
assumed to be even.

If onesided is selected and you specify
Frequencies, the last frequency point
is compared to the next-to-last point
and to pi (or Fs/2, if Fs is specified). If
the last point is closer to pi (or Fs/2)
than it is to the previous point, nFFT is
assumed to be even. If it is closer to the
previous point, nFFT is assumed to be
odd.
7-224

dspdata.msspectrum
Hmss = dspdata.msspectrum(Data,Frequencies) uses the power spectrum
data contained in Data and Frequencies vectors.

Hmss = dspdata.msspectrum(...,'Fs',Fs) uses the sampling frequency Fs.
Specifying Fs uses a default set of linear frequencies (in Hz) based on Fs and
sets NormalizedFrequency to false.

Hmss = dspdata.msspectrum(...,'SpectrumType',SpectrumType) uses the
SpectrumType string to specify the interval over which the power spectrum was
calculated. For data that ranges from [0 pi) or [0 pi], set the SpectrumType to

Fs `Normalized' Sampling frequency, which is
'Normalized' if NormalizedFrequency
is true. If NormalizedFrequency is
false Fs defaults to 1 Hz.

SpectrumType 'Onesided' Nyquist interval over which the power
spectrum is calculated. Valid values
are 'Onesided' and 'Twosided'. See
the onesided and twosided methods in
dspdata for information on changing
this property.

The interval for Onesided is [0 pi) or
[0 pi] depending on the number of FFT
points, and for Twosided the interval is
[0 2pi).

NormalizedFrequency true Whether the frequency is normalized
(true) or not (false). This property is
set automatically at construction time
based on Fs. If Fs is specified,
NormalizedFrequency is set to false.
See the normalizefreq method in
dspdata for information on changing
this property.

Property Default Value Description
7-225

dspdata.msspectrum
onesided; for data that ranges from [0 2pi), set the the SpectrumType to
twosided.

Hmss = dspdata.msspectrum(...,'CenterDC',flag) uses the value of flag
to indicate whether the zero-frequency (DC) component is centered. If flag is
true, it indicates that the DC component is in the center of the two-sided
spectrum. Set the flag to false if the DC component is on the left edge of the
spectrum.

Methods
Methods provide ways of performing functions directly on your dspdata object
without having to specify the parameters again. You can apply a method
directly on the variable you assigned to your dspdata.msspectrum object. You
can use the following methods with a dspdata.msspectrum object.

• centerdc
• normalizefreq
• onesided
• plot
• twosided

For example, to normalize the frequency and set the NormalizedFrequency
parameter to true, use

Hmss = normalizefreq(Hs)

For detailed information on using the methods and plotting the spectrum, see
the dspdata reference page.

Examples This example shows how to view the spectral content of two sinusoids with
random noise.

Fs = 32e3;
t = 0:1/Fs:2.96;
x = cos(2*pi*t*1.24e3)+cos(2*pi*t*10e3)+randn(size(t));
X = fft(x);
P = (abs(X)/length(x)).^2; % Compute the mean-square.

% Create data object.
Hmss = dspdata.msspectrum(P,'Fs',Fs,'centerdc',true);
plot(Hmss); % Plot the mean-square spectrum.
7-226

dspdata.msspectrum
See Also dspdata.psd, dspdata.pseudospectrum, spectrum
7-227

dspdata.psd
7dspdata.psdPurpose Power spectral density

Syntax Hpsd = dspdata.psd(Data)
Hpsd = dspdata.psd(Data,Frequencies)
Hpsd = dspdata.psd(...,'Fs',Fs)
Hpsd = dspdata.psd(...,'SpectrumType',SpectrumType)
Hpsd = dspdata.psd(...,'CenterDC',flag)

Description The power spectral density (PSD) is intended for continuous spectra. The
integral of the PSD over a given frequency band computes the average power
in the signal over that frequency band. In contrast to the mean-squared
spectrum, the peaks in this spectra do not reflect the power at a given
frequency. See the avgpower method of dspdata for more information.

A one-sided PSD contains the total power of the signal in the frequency interval
from DC to half of the Nyquist rate. A two-sided PSD contains the total power
in the frequency interval from DC to the Nyquist rate.

Hpsd = dspdata.psd(Data) uses the power spectral density data contained in
Data, which can be in the form of a vector or a matrix, where each column is a
separate set of data. Default values for other properties of the object are shown
below:
7-228

dspdata.psd
.

Property Default Value Description

Name 'Power Spectral Density' Read-only string

Frequencies []
type double

Vector of frequencies at which the
power spectral density is evaluated.
The range of this vector depends on the
SpectrumType value. For one-sided, the
default range is [0, pi) or [0, Fs/2) for
odd length, and [0, pi] or [0, Fs/2] for
even length, if Fs is specified. For
two-sided, it is [0, 2pi) or [0, Fs).
If you do not specify Frequencies, a
default vector is created. If one-sided is
selected, then the whole number of
FFT points (nFFT) for this vector is
assumed to be even.

If onesided is selected and you specify
Frequencies, the last frequency point
is compared to the next-to-last point
and to pi (or Fs/2, if Fs is specified). If
the last point is closer to pi (or Fs/2)
than it is to the previous point, nFFT is
assumed to be even. If it is closer to the
previous point, nFFT is assumed to be
odd.

The length of the Frequencies vector
must match the length of the columns
of Data.

Fs `Normalized' Sampling frequency, which is
'Normalized' if NormalizedFrequency
is true. If NormalizedFrequency is
false Fs defaults to 1.
7-229

dspdata.psd
Hpsd = dspdata.psd(Data,Frequencies) uses the power spectral density
estimation data contained in Data and Frequencies vectors.

Hpsd = dspdata.psd(...,'Fs',Fs) uses the sampling frequency Fs.
Specifying Fs uses a default set of linear frequencies (in Hz) based on Fs and
sets NormalizedFrequency to false.

Hpsd = dspdata.psd(...,'SpectrumType',SpectrumType) uses the
SpectrumType string to specify the interval over which the power spectral
density was calculated. For data that ranges from [0 pi) or [0 pi], set the
SpectrumType to onesided; for data that ranges from [0 2pi), set the the
SpectrumType to twosided.

SpectrumType 'Onesided' Nyquist interval over which the power
spectral density is calculated. Valid
values are 'Onesided' and
'Twosided'. A one-sided PSD contains
the total signal power in half the
Nyquist interval. See the onesided
and twosided methods in dspdata for
information on changing this property.

The range for half the Nyquist interval
is [0 pi) or [0 pi] depending on the
number of FFT points. For the whole
Nyquist interval, the range is [0 2pi).

NormalizedFrequency true Whether the frequency is normalized
(true) or not (false). This property is
set automatically at construction time
based on Fs. If Fs is specified,
NormalizedFrequency is set to false.
See the normalizefreq method in
dspdata for information on changing
this property.

Property Default Value Description
7-230

dspdata.psd
Hpsd = dspdata.psd(...,'CenterDC',flag) uses the value of flag to
indicate whether the zero-frequency (DC) component is centered. If flag is
true, it indicates that the DC component is in the center of the two-sided
spectrum. Set the flag to false if the DC component is on the left edge of the
spectrum.

Methods
Methods provide ways of performing functions directly on your dspdata object.
You can apply a method directly on the variable you assigned to your
dspdata.psd object. You can use the following methods with a dspdata.psd
object.

• avgpower
• centerdc
• normalizefreq
• onesided
• plot
• twosided

For example, to normalize the frequency and set the NormalizedFrequency
parameter to true, use

Hpsd = normalizefreq(Hpsd)

For detailed information on using the methods and plotting the spectrum, see
the dspdata reference page.

Examples Resolving Signal Components
Use the periodogram to estimate the power spectral density of a noisy
sinusoidal signal with two frequency components and then store the results in
a PSD data object and plot it.

Fs = 32e3;
t = 0:1/Fs:2.96;
x = cos(2*pi*t*1.24e3)+ cos(2*pi*t*10e3)+ randn(size(t));
Pxx = periodogram(x);
Hpsd = dspdata.psd(Pxx,'Fs',Fs); % Create a PSD data object.
plot(Hpsd); % Plot the PSD data object.
7-231

dspdata.psd
See Also dspdata.msspectrum, dspdata.pseudospectrum, spectrum
7-232

dspdata.pseudospectrum
7dspdata.pseudospectrumPurpose Pseudospectrum dspdata object

Syntax Hps = dspdata.pseudospectrum(Data)
Hps = dspdata.pseudospectrum(Data,Frequencies)
Hps = dspdata.pseudospectrum(...,'Fs',Fs)
Hps = dspdata.pseudospectrum(...,'SpectrumRange',SpectrumRange)
Hps = dspdata.pseudospectrum(...,'CenterDC',flag)

Description A pseudospectrum is an indicator of the presence of sinusoidal components in
a signal.

Hps = dspdata.pseudospectrum(Data) uses the pseudospsectrum data
contained in Data, which can be in the form of a vector or a matrix, where each
column is a separate set of data. Default values for other properties of the
object are:
7-233

dspdata.pseudospectrum
.

Property Default Value Description

Name 'Pseudospectrum' Read-only string

Frequencies []
type double

Vector of frequencies at which the
power spectral density is evaluated.
The range of this vector depends on the
SpectrumRange value. For half, the
default range is [0, pi) or [0, Fs/2) for
odd length, and [0, pi] or [0, Fs/2] for
even length, if Fs is specified. For
whole, it is [0, 2pi) or [0, Fs).

If you do not specify Frequencies, a
default vector is created. If half the
Nyquist range is selected, then the
whole number of FFT points (nFFT) for
this vector is assumed to be even.

If half the Nyquist range is selected
and you specify Frequencies, the last
frequency point is compared to the
next-to-last point and to pi (or Fs/2, if
Fs is specified). If the last point is
closer to pi (or Fs/2) than it is to the
previous point, nFFT is assumed to be
even. If it is closer to the previous
point, nFFT is assumed to be odd.

The length of the Frequencies vector
must match the length of the columns
of Data.

Fs `Normalized' Sampling frequency, which is
'Normalized' if NormalizedFrequency
is true. If NormalizedFrequency is
false Fs defaults to 1.
7-234

dspdata.pseudospectrum
Hps = dspdata.pseudospectrum(Data,Frequencies) uses the
pseudospectrum estimation data contained in the Data and Frequencies
vectors.

Hps = dspdata.pseudospectrum(...,'Fs',Fs) uses the sampling frequency
Fs. Specifying Fs uses a default set of linear frequencies (in Hz) based on Fs and
sets NormalizedFrequency to false.

Hps = dspdata.pseudospectrum...,'SpectrumRange',SpectrumRange) uses
the SpectrumRange string to specify the interval over which the
pseudospectrum was calculated. For data that ranges from [0 pi) or [0 pi], set
the SpectrumRange to half; for data that ranges from [0 2pi), set the the
SpectrumRange to whole.

Hps = dspdata.pseudospectrum(...,'CenterDC',flag) uses the value of
flag to indicate whether the zero-frequency (DC) component is centered. If

SpectrumRange 'Half' Nyquist interval over which the
pseudospectrum is calculated. Valid
values are 'Half' and 'Whole'. See
the half and whole methods in
dspdata for information on changing
this property.

The interval for Half is [0 pi) or [0 pi]
depending on the number of FFT
points, and for Whole the interval is
[0 2pi).

NormalizedFrequency true Whether the frequency is normalized
(true) or not (false). This property is
set automatically at construction time
based on Fs. If Fs is specified,
NormalizedFrequency is set to false.
See the normalizefreq method in
dspdata for information on changing
this property.

Property Default Value Description
7-235

dspdata.pseudospectrum
flag is true, it indicates that the DC component is in the center of the whole
Nyquist range spectrum. Set the flag to false if the DC component is on the
left edge of the spectrum.

Methods
Methods provide ways of performing functions directly on your dspdata object.
You can apply a method directly on the variable you assigned to your
dspdata.pseudospectrum object. You can use the following methods with a
dspdata.pseudospectrum object.

• centerdc
• halfrange
• normalizefreq
• plot
• wholerange

For example, to normalize the frequency and set the NormalizedFrequency
parameter to true, use

Hps = normalizefreq(Hps)

For detailed information on using the methods and plotting the
pseudospectrum, see the dspdata reference page.

Examples Storing and Plotting Pseudospectrum Data
Use eigenanalysis to estimate the pseudospectrum of a noisy sinusoidal signal
with two frequency components. Then store the results in a pseudospectrum
data object and plot it.

Fs = 32e3;
t = 0:1/Fs:2.96;
x = cos(2*pi*t*1.24e3) + cos(2*pi*t*10e3) + randn(size(t));
P = pmusic(x,4);
hps = dspdata.pseudospectrum(P,'Fs',Fs); % Create data object.
plot(hps); % Plot the pseudospectrum.
7-236

dspdata.pseudospectrum
See Also dspdata.msspectrum, dspdata.psd, spectrum
7-237

dspfwiz
7dspfwizPurpose Open FDATool Realize Model panel to create a Simulink filter block

Syntax dspfwiz

Description Note You must have Simulink installed to use this function.

dspfwiz opens FDATool with the Realize Model panel displayed. See
“Exporting to Simulink” on page 5-36 for information on using this panel.

Use other panels in FDATool to design your filter and then use the Realize
Model panel to create your filter as a subsystem block, which is a combination
of Sum, Gain, and Integer Delay blocks, in a Simulink model.

If you also have the Signal Processing Blockset installed, you can create a
Digital Filter block instead of a subsystem block, by deselecting the Build
model using basic elements check box. For more information on the
differences between these types of blocks, see Choosing Between Filter Design
Blocks in the Signal Blockset documentation.

See Also fdatool, realizemdl
7-238

dspopts
7dspoptsPurpose Spectral estimation parameter information

Syntax Hopts = dspopts.optsobj

Description Hopts = dspopts.optsobj returns a DSP options object Hopts of type
optsobj. This DSP options object contains optional parameter information for
the specified type of optsobj.

You create options objects via methods on other objects. For example,

Hopts = psdopts(Hs,X)

returns a spectrum object Hopts options object. You can change the values of
the Hopts object and then use this modified options object as an input to the
psd method of a spectrum object:

Hpsd = psd(Hs,X,Hopts)

Note You must use an optsobj with dspopts.

Options Objects
An options object (optsobj) for dspopts contain optional parameter values for
the particular optsobj. Available optsobjs for dspopts are as follows:

• spectrum — Spectrum options for any spectrum estimation method object.
The spectrum object method to create this options object is psdopts and
msspectrumopts. See spectrum for more information.

Properties and valid values of a dspopts.spectrum object are as follows:

- 'NFFT'— integer number of FFT points

- 'NormalizedFrequency'— whether frequency is normalized (true) or not
(false)

- 'Fs'— sampling frequency, used only when 'NormalizedFrequency' is
false. If 'NormalizedFrequency' is true, the value of Fs is 'Normalized'.

- 'SpectrumType'— 'Onesided' for half the Nyquist interval or 'Twosided'
for the whole Nyquist interval.
7-239

dspopts
• pseudospectrum — Pseudospectrum options for spectrum.music and
spectrum.eigenvector objects. The spectrum object method to create this
options object is pseudospectrumopts. See spectrum for more information.

Properties and valid values of a dspopts.pseudospectrum object are as
follows:

- 'NFFT' — integer number of FFT points

- 'NormalizedFreqeuncy'—whether frequency is normalized (true) or not
(false)

- 'Fs' — sampling frequency, used only when 'NormalizedFrequency' is
false. If 'NormalizedFrequency' is true, the value of Fs is 'Normalized'.

- 'SpectrumRange' — 'Half' for half the Nyquist interval or 'Whole' for
the whole Nyquist interval.

Modifying a DSPOPTS Object
To set specific properties, use

set(Hopts,'property1',value, 'property2',value,...)

or use the dot method

Hopts.property = value

where 'property1', 'property2', and property are the specific property
names.

To view the options for a property use set without specifying a value

set(Hopts,'property')

Note that you must use single quotation marks around the property name if
you are not using the dot method.

Another way to change an object’s properties is by using the inspect command,
which opens the Property Inspector window where you can edit any property,
except dynamic properties.

inspect(Hopts)

Examples Define a fourth order auto-regressive model and view its power spectral density
using the Burg algorithm. Use dspopts to specify the FFT length and sampling
frequency.
7-240

dspopts
randn('state',1);
x=randn(100,1);
x=filter(1,[1 1/2 1/3 1/4 1/5],x);%Fourth order AR filter
Hs=spectrum.burg; %Fourth order AR model
Hopts = dspopts.spectrum;
set(Hs,'FFTLength','UserDefined');
set(Hopts,'NFFT',512);
set(Hopts,'Fs',1000);
psd(Hs,x,Hopts)

 See Also spectrum, spectrum.burg, spectrum.cov, spectrum.eigenvector,
spectrum.mcov, spectrum.mtm, spectrum.music, spectrum.periodogram,
spectrum.welch, spectrum.yulear
7-241

ellip
7ellipPurpose Elliptic (Cauer) filter design

Syntax [b,a] = ellip(n,Rp,Rs,Wn)
[b,a] = ellip(n,Rp,Rs,Wn,'ftype')
[b,a] = ellip(n,Rp,Rs,Wn,'s')
[b,a] = ellip(n,Rp,Rs,Wn,'ftype','s')
[z,p,k] = ellip(...)
[A,B,C,D] = ellip(...)

Description ellip designs lowpass, bandpass, highpass, and bandstop digital and analog
elliptic filters. Elliptic filters offer steeper rolloff characteristics than
Butterworth or Chebyshev filters, but are equiripple in both the pass- and
stopbands. In general, elliptic filters meet given performance specifications
with the lowest order of any filter type.

Digital Domain

[b,a] = ellip(n,Rp,Rs,Wn) designs an order n lowpass digital elliptic filter
with normalized passband edge frequency Wn, Rp dB of ripple in the passband,
and a stopband Rs dB down from the peak value in the passband. It returns the
filter coefficients in the length n+1 row vectors b and a, with coefficients in
descending powers of z.

The normalized passband edge frequency is the edge of the passband, at which
the magnitude response of the filter is -Rp dB. For ellip, the normalized cutoff
frequency Wn is a number between 0 and 1, where 1 corresponds to half the
sampling frequency (Nyquist frequency). Smaller values of passband ripple Rp
and larger values of stopband attenuation Rs both lead to wider transition
widths (shallower rolloff characteristics).

If Wn is a two-element vector, Wn = [w1 w2], ellip returns an order 2*n
bandpass filter with passband w1 < ω < w2.

[b,a] = ellip(n,Rp,Rs,Wn,'ftype') designs a highpass, lowpass, or
bandstop filter, where the string 'ftype' is one of the following.

H z() B z()
A z()
----------- b 1() b 2()z 1– b n 1+()z n–+ + +

1 a 2()z 1– a n 1+()z n–+ + +
--= =
7-242

ellip
• 'high' for a highpass digital filter with normalized passband edge frequency
Wn

• 'low' for a lowpass digital filter with normalized passband edge frequency
Wn

• 'stop' for an order 2*n bandstop digital filter if Wn is a two-element vector,
Wn = [w1 w2]. The stopband is w1 < ω < w2.

With different numbers of output arguments, ellip directly obtains other
realizations of the filter. To obtain zero-pole-gain form, use three output
arguments as shown below.

[z,p,k] = ellip(n,Rp,Rs,Wn) or

[z,p,k] = ellip(n,Rp,Rs,Wn,'ftype') returns the zeros and poles in length
n column vectors z and p and the gain in the scalar k.

To obtain state-space form, use four output arguments as shown below:

[A,B,C,D] = ellip(n,Rp,Rs,Wn) or

[A,B,C,D] = ellip(n,Rp,Rs,Wn,'ftype') where A, B, C, and D are

and u is the input, x is the state vector, and y is the output.

Analog Domain

[b,a] = ellip(n,Rp,Rs,Wn,'s') designs an order n lowpass analog elliptic
filter with angular passband edge frequency Wn and returns the filter
coefficients in the length n+1 row vectors b and a, in descending powers of s,
derived from this transfer function:

The angular passband edge frequency is the edge of the passband, at which the
magnitude response of the filter is -Rp dB. For ellip, the angular passband
edge frequency Wn must be greater than 0 rad/s.

x n 1+[] Ax n[] Bu n[]+=

y n[] Cx n[] Du n[]+=

H s() B s()
A s()
----------- b 1()sn b 2()sn 1– b n 1+()+ + +

sn a 2()sn 1– a n 1+()+ + +
---= =
7-243

ellip
If Wn is a two-element vector with w1 < w2, then ellip(n,Rp,Rs,Wn,'s') returns an
order 2*n bandpass analog filter with passband w1 < ω < w2.

[b,a] = ellip(n,Rp,Rs,Wn,'ftype','s') designs a highpass, lowpass, or
bandstop filter.

With different numbers of output arguments, ellip directly obtains other
realizations of the analog filter. To obtain zero-pole-gain form, use three output
arguments as shown below:

[z,p,k] = ellip(n,Rp,Rs,Wn,'s') or

[z,p,k] = ellip(n,Rp,Rs,Wn,'ftype','s') returns the zeros and poles in
length n or 2*n column vectors z and p and the gain in the scalar k.

To obtain state-space form, use four output arguments as shown below:

[A,B,C,D] = ellip(n,Rp,Rs,Wn,'s') or

[A,B,C,D] = ellip(n,Rp,Rs,Wn,'ftype','s') where A, B, C, and D are

and u is the input, x is the state vector, and y is the output.

Examples Example 1
For data sampled at 1000 Hz, design a sixth-order lowpass elliptic filter with a
passband edge frequency of 300 Hz, which corresponds to a normalized value
of 0.6, 3 dB of ripple in the passband, and 50 dB of attenuation in the stopband:

[b,a] = ellip(6,3,50,300/500);

The filter’s frequency response is

freqz(b,a,512,1000)
title('n=6 Lowpass Elliptic Filter')

x· Ax Bu+=

y Cx Du+=
7-244

ellip
Example 2
Design a 20th-order bandpass elliptic filter with a passband from 100 to 200 Hz
and plot its impulse response:

n = 10; Rp = 0.5; Rs = 20;
Wn = [100 200]/500;
[b,a] = ellip(n,Rp,Rs,Wn);
[y,t] = impz(b,a,101); stem(t,y)
title('Impulse Response of n=10 Elliptic Filter')

0 50 100 150 200 250 300 350 400 450 500
−500

−400

−300

−200

−100

0

100

Frequency (Hz)

P
h
a
se

 (
d
e
g
re

e
s)

0 50 100 150 200 250 300 350 400 450 500
−100

−80

−60

−40

−20

0

Frequency (Hz)

M
a
g
n
itu

d
e
 (

d
B

)

n=6 Lowpass Elliptic Filter
7-245

ellip
Limitations For high order filters, the state-space form is the most numerically accurate,
followed by the zero-pole-gain form. The transfer function form is the least
accurate; numerical problems can arise for filter orders as low as 15.

Algorithm The design of elliptic filters is the most difficult and computationally intensive
of the Butterworth, Chebyshev Type I and II, and elliptic designs. ellip uses
a five-step algorithm:

1 It finds the lowpass analog prototype poles, zeros, and gain using the
ellipap function.

2 It converts the poles, zeros, and gain into state-space form.

3 It transforms the lowpass filter to a bandpass, highpass, or bandstop filter
with the desired cutoff frequencies using a state-space transformation.

4 For digital filter design, ellip uses bilinear to convert the analog filter
into a digital filter through a bilinear transformation with frequency
prewarping. Careful frequency adjustment guarantees that the analog
filters and the digital filters will have the same frequency response
magnitude at Wn or w1 and w2.

5 It converts the state-space filter back to transfer function or zero-pole-gain
form, as required.

0 10 20 30 40 50 60 70 80 90 100
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
Impulse Response of n = 10 Elliptic Filter
7-246

ellip
See Also besself, butter, cheby1, cheby2, ellipap, ellipord
7-247

ellipap
7ellipapPurpose Elliptic analog lowpass filter prototype

Syntax [z,p,k] = ellipap(n,Rp,Rs)

Description [z,p,k] = ellipap(n,Rp,Rs) returns the zeros, poles, and gain of an order n
elliptic analog lowpass filter prototype, with Rp dB of ripple in the passband,
and a stopband Rs dB down from the peak value in the passband. The zeros and
poles are returned in length n column vectors z and p and the gain in scalar k.
If n is odd, z is length n - 1. The transfer function is

Elliptic filters offer steeper rolloff characteristics than Butterworth and
Chebyshev filters, but they are equiripple in both the passband and the
stopband. Of the four classical filter types, elliptic filters usually meet a given
set of filter performance specifications with the lowest filter order.

ellip sets the passband edge angular frequency of the elliptic filter to 1 for
a normalized result. The passband edge angular frequency is the frequency at
which the passband ends and the filter has a magnitude response of 10-Rp/20.

Algorithm ellipap uses the algorithm outlined in [1]. It employs the M-file ellipk to
calculate the complete elliptic integral of the first kind and the M-file ellipj
to calculate Jacobi elliptic functions.

References [1] Parks, T.W., and C.S. Burrus. Digital Filter Design. New York: John Wiley
& Sons, 1987. Chapter 7.

See Also besselap, buttap, cheb1ap, cheb2ap, ellip

H s() z s()
p s()
---------- k s z 1()–() s z 2()–() s z n()–()

s p 1()–() s p 2()–() s p n()–()
--= =

ω0
7-248

ellipord
7ellipordPurpose Minimum order for elliptic filters

Syntax [n,Wn] = ellipord(Wp,Ws,Rp,Rs)
[n,Wn] = ellipord(Wp,Ws,Rp,Rs,'s')

Description ellipord calculates the minimum order of a digital or analog elliptic filter
required to meet a set of filter design specifications.

Digital Domain

[n,Wn] = ellipord(Wp,Ws,Rp,Rs) returns the lowest order n of the elliptic
filter that loses no more than Rp dB in the passband and has at least Rs dB of
attenuation in the stopband. The scalar (or vector) of corresponding cutoff
frequencies Wn, is also returned. Use the output arguments n and Wn in ellip.

Choose the input arguments to specify the stopband and passband according to
the following table.

Description of Stopband and Passband Filter Parameters

Parameter Description

Wp Passband corner frequency Wp, the cutoff frequency, is a
scalar or a two-element vector with values between 0 and 1,
with 1 corresponding to the normalized Nyquist frequency,
π radians per sample.

Ws Stopband corner frequency Ws, is a scalar or a two-element
vector with values between 0 and 1, with 1 corresponding to
the normalized Nyquist frequency.

Rp Passband ripple, in decibels. Twice this value specifies the
maximum permissible passband width in decibels.

Rs Stopband attenuation, in decibels. This value is the number
of decibels the stopband is attenuated with respect to the
passband response.
7-249

ellipord
Use the following guide to specify filters of different types.

If your filter specifications call for a bandpass or bandstop filter with unequal
ripple in each of the passbands or stopbands, design separate lowpass and
highpass filters according to the specifications in this table, and cascade the
two filters together.

Analog Domain

[n,Wn] = ellipord(Wp,Ws,Rp,Rs,'s') finds the minimum order n and cutoff
frequencies Wn for an analog filter. You specify the frequencies Wp and Ws
similar to those described in the Table , Description of Stopband and Passband
Filter Parameters table above, only in this case you specify the frequency in
radians per second, and the passband or the stopband can be infinite.

Use ellipord for lowpass, highpass, bandpass, and bandstop filters as
described in the Table , Filter Type Stopband and Passband Specifications
table above.

Filter Type Stopband and Passband Specifications

Filter Type Stopband and Passband Conditions Stopband Passband

Lowpass Wp < Ws, both scalars (Ws,1) (0,Wp)

Highpass Wp > Ws, both scalars (0,Ws) (Wp,1)

Bandpass The interval specified by Ws contains
the one specified by Wp
(Ws(1) < Wp(1) < Wp(2) < Ws(2)).

(0,Ws(1))
and
(Ws(2),1)

(Wp(1),Wp(2))

Bandstop The interval specified by Wp contains
the one specified by Ws
(Wp(1) < Ws(1) < Ws(2) < Wp(2)).

(0,Wp(1))
and
(Wp(2),1)

(Ws(1),Ws(2))
7-250

ellipord
Examples Example 1
For 1000 Hz data, design a lowpass filter with less than 3 dB of ripple in the
passband defined from 0 to 40 Hz and at least 60 dB of ripple in the stopband
defined from 150 Hz to the Nyquist frequency (500 Hz):

Wp = 40/500; Ws = 150/500;
Rp = 3; Rs = 60;
[n,Wn] = ellipord(Wp,Ws,Rp,Rs)

n =
 4

Wn =
 0.0800

[b,a] = ellip(n,Rp,Rs,Wn);
freqz(b,a,512,1000);
title('n=4 Elliptic Lowpass Filter')

0 50 100 150 200 250 300 350 400 450 500
−400

−300

−200

−100

0

100

Frequency (Hz)

P
h
a
se

 (
d
e
g
re

e
s)

0 50 100 150 200 250 300 350 400 450 500
−120

−100

−80

−60

−40

−20

0

Frequency (Hz)

M
a
g
n
itu

d
e
 (

d
B

)

n=4 Elliptic Lowpass Filter
7-251

ellipord
Example 2
Now design a bandpass filter with a passband from 60 Hz to 200 Hz, with less
than 3 dB of ripple in the passband, and 40 dB attenuation in the stopbands
that are 50 Hz wide on both sides of the passband:

Wp = [60 200]/500; Ws = [50 250]/500;
Rp = 3; Rs = 40;
[n,Wn] = ellipord(Wp,Ws,Rp,Rs)

n =
 5
Wn =
 0.1200 0.4000

[b,a] = ellip(n,Rp,Rs,Wn);
freqz(b,a,512,1000);
title('n=5 Elliptic Bandpass Filter')

0 50 100 150 200 250 300 350 400 450 500
−500

0

500

Frequency (Hz)

P
h
a
se

 (
d
e
g
re

e
s)

0 50 100 150 200 250 300 350 400 450 500
−300

−250

−200

−150

−100

−50

0

Frequency (Hz)

M
a
g
n
itu

d
e
 (

d
B

)

n=5 Elliptic Bandpass Filter
7-252

ellipord
Algorithm ellipord uses the elliptic lowpass filter order prediction formula described
in [1]. The function performs its calculations in the analog domain for both the
analog and digital cases. For the digital case, it converts the frequency
parameters to the s-domain before estimating the order and natural
frequencies, and then converts them back to the z-domain.

ellipord initially develops a lowpass filter prototype by transforming the
passband frequencies of the desired filter to 1 rad/s (for low- and highpass
filters) and to -1 and 1 rad/s (for bandpass and bandstop filters). It then
computes the minimum order required for a lowpass filter to meet the stopband
specification.

References [1] Rabiner, L.R., and B. Gold. Theory and Application of Digital Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975. Pg. 241.

See Also buttord, cheb1ord, cheb2ord, ellip
7-253

eqtflength
7eqtflengthPurpose Equalize lengths of transfer function's numerator and denominator

Syntax [b,a] = eqtflength(num,den)
[b,a,n,m] = eqtflength(num,den)

Description [b,a] = eqtflength(num,den) modifies the vector num and/or the vector den,
so that the resulting output vectors b and a have the same length. The input
vectors num and den may have different lengths. The vector num represents the
numerator polynomial of a given discrete-time transfer function, and the vector
den represents its denominator. The resulting numerator b and denominator a
represent the same discrete-time transfer function, but these vectors have the
same length.

[b,a,n,m] = eqtflength(num,den) modifies the vectors as above and also
returns the numerator order n and the denominator m, not including any
trailing zeros.

Use eqtflength to obtain a numerator and denominator of equal length before
applying transfer function conversion functions such as tf2ss and tf2zp to
discrete-time models.

Examples num = [1 0.5];
den = [1 0.75 0.6 0];
[b,a,n,m] = eqtflength(num,den)

b =
 1.0000 0.5000 0

a =
 1.0000 0.7500 0.6000

n =
 1
m =
 2

Algorithm eqtflength(num,den) appends zeros to either num or den as necessary. If both num
and den have trailing zeros in common, these are removed.

See Also tf2ss, tf2zp
7-254

fdatool
7fdatoolPurpose Filter Design and Analysis Tool

Syntax fdatool

Description fdatool opens the Filter Design and Analysis Tool (FDATool). Use this tool to

• Design filters

• Analyze filters

• Modify existing filter designs

See Chapter 5, “FDATool: A Filter Design and Analysis GUI,” for more
information.

Remarks The Filter Design and Analysis Tool provides more design methods than the
SPTool Filter Designer. It also integrates advanced filter design methods from
the Filter Design Toolbox.
7-255

fdatool
Note The Filter Design and Analysis Tool requires a screen resolution
greater than 640 x 480.

See Also fvtool, sptool, wvtool
7-256

fft
7fftPurpose One-dimensional fast Fourier transform

fft is a MATLAB function.
7-257

fft2
7fft2Purpose Two-dimensional fast Fourier transform

fft2 is a MATLAB function.
7-258

fftfilt
7fftfiltPurpose FFT-based FIR filtering using overlap-add method

Syntax y = fftfilt(b,x)
y = fftfilt(b,x,n)

Description fftfilt filters data using the efficient FFT-based method of overlap-add, a
frequency domain filtering technique that works only for FIR filters.

y = fftfilt(b,x) filters the data in vector x with the filter described by
coefficient vector b. It returns the data vector y. The operation performed by
fftfilt is described in the time domain by the difference equation:

An equivalent representation is the z-transform or frequency domain
description:

By default, fftfilt chooses an FFT length and data block length that
guarantee efficient execution time.

If x is a matrix, fftfilt filters its columns. If b is a matrix, fftfilt applies
the filter in each column of b to the signal vector x. If b and x are both matrices
with the same number of columns, the i-th column of b is used to filter the i-th
column of x.

y = fftfilt(b,x,n) uses n to determine the length of the FFT. See the
Algorithm section below for information.

fftfilt works for both real and complex inputs.

Comparison to FILTER function
When the input signal is relatively laree, it is advantageous to use fftfilt
instead of filter. filter performs N multiplications for each sample in x,
where N is the filter length. fftfilt performs 2 FFT operations — the FFT of
the signal block of length L plus the inverse FT of the product of the FFTs —
at the cost of

 1/2*L*log2(L)

y n() b 1()x n() b 2()x n 1–() b nb 1+()x n nb–()+ + +=

Y z() b 1() b 2()z 1– b nb 1+()z nb–+ + +()X z()=
7-259

fftfilt
where L is the block length. It then performs L pointwise multiplications for a
total cost of

 L+L*log2(L) = L*(1+log2(L))

multiplcations. The cost ratio is therefore

 L*(1+log2(L))/(N*L) => (1+log2(L))/N

which is approximately log2(L)/N.

Therefore, fftfilt becomes advantageous when log2(L) is less than N.

Examples Show that the results from fftfilt and filter are identical:

b = [1 2 3 4];
x = [1 zeros(1,99)]';
norm(fftfilt(b,x) - filter(b,1,x))

ans =
9.5914e-15

Algorithm fftfilt uses fft to implement the overlap-add method [1], a technique that
combines successive frequency domain filtered blocks of an input sequence.
fftfilt breaks an input sequence x into length L data blocks, where L must be
greater than the filter length N.

and convolves each block with the filter b by

y = ifft(fft(x(i:i+L-1),nfft).*fft(b,nfft));

where nfft is the FFT length. fftfilt overlaps successive output sections by
n-1 points, where n is the length of the filter, and sums them.

x
L 2L 3L ceil(nx/L)*L

. . .

nb–1L

nb–12L

nb–13L
. . .
7-260

fftfilt
fftfilt chooses the key parameters L and nfft in different ways, depending
on whether you supply an FFT length n and on the lengths of the filter and
signal. If you do not specify a value for n (which determines FFT length),
fftfilt chooses these key parameters automatically:

• If length(x)is greater than length(b), fftfilt chooses values that
minimize the number of blocks times the number of flops per FFT.

• If length(b) is greater than or equal to length(x), fftfilt uses a single
FFT of length

2^nextpow2(length(b) + length(x) - 1)

This essentially computes
y = ifft(fft(B,nfft).*fft(X,nfft))

If you supply a value for n, fftfilt chooses an FFT length, nfft, of
2^nextpow2(n)and a data block length of nfft - length(b) + 1. If n is less than
length(b), fftfilt sets n to length(b).

References [1] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing,
Prentice-Hall, 1989.

See Also conv, dfilt.fftfir, filter, filtfilt
7-261

fftshift
7fftshiftPurpose Rearrange FFT function outputs

fftshift is a MATLAB function.
7-262

filter
7filterPurpose Filter data with a recursive (IIR) or nonrecursive (FIR) filter

filter is a MATLAB function.

Signal-specific
Information

Filter Method of DFILT

Filter is also an overloaded method of the discrete-time filter object (dfilt). You can pass an
object handle, data, and optionally, the dimension into the filter method.
The MATLAB filter function describes a zi input for initial conditions. Note
that the recommended way of passing initial conditions into a dfilt is by using
the states property. For more information, see the dfilt reference page.

Filter Normalization
Using filter on b and a coefficients normalizes the filter by forcing the a0
coefficient to be equal to 1.

Using the filter method on a dfilt object does not normalize the a0
coefficient.
7-263

filter2
7filter2Purpose Two-dimensional digital filtering

filter2 is a MATLAB function.
7-264

filternorm
7filternormPurpose 2-norm or infinity-norm of a digital filter

Syntax filternorm(b,a)
filternorm(b,a,pnorm)
filternorm(b,a,2,tol)

Description A typical use for filter norms is in digital filter scaling to reduce quantization
effects. Scaling often improves the signal-to-noise ratio of the filter without
resulting in data overflow. You, also, can use the 2-norm to compute the energy
of the impulse response of a filter.

filternorm(b,a) computes the 2-norm of the digital filter defined by the
numerator coefficients in b and denominator coefficients in a.

filternorm(b,a,pnorm) computes the 2- or infinity-norm (inf-norm) of the
digital filter, where pnorm is either 2 or inf.

filternorm(b,a,2,tol) computes the 2-norm of an IIR filter with the
specified tolerance, tol. The tolerance can be specified only for IIR 2-norm
computations. pnorm in this case must be 2. If tol is not specified, it defaults to
1e-8.

Examples Compute the 2-norm with a tolerance of 1e-10 of an IIR filter:

[b,a]=butter(5,.5);
L2=filternorm(b,a,2,1e-10)

L2 =

 0.7071

Compute the inf-norm of an FIR filter:

b=firpm(30,[.1 .9],[1 1],'Hilbert');
Linf=filternorm(b,1,inf)

Linf =

 1.0028
7-265

filternorm
Algorithm Given a filter H(z) with frequency reponse H(ejω), the Lp-norm is given by

For the case , the norm simplifies to

For the case p = 2, Parseval’s theorem states that

where h(n) is the impulse response of the filter. The energy of the impulse
response, then, is .

Reference Jackson, L.B., Digital Filters and Signal Processing, Third Edition, Kluwer
Academic Publishers, 1996, Chapter 11.

See Also zp2sos, norm

H p
1

2π
------ H ejω()

p
ωd

π–

π

∫

1
p

≡

p ∞= L∞

H ∞
max

π ω π≤ ≤–
H ejω()=

H 2
1

2π
------ H ejω()

2
ωd

π–

π

∫

1
2

h n() 2

n ∞–=

∞

∑

1
2

= =

H 2
2

7-266

filtfilt
7filtfiltPurpose Zero-phase digital filtering

Syntax y = filtfilt(b,a,x)

Description y = filtfilt(b,a,x) performs zero-phase digital filtering by processing the
input data in both the forward and reverse directions (see problem 5.39 in [1]).
After filtering in the forward direction, it reverses the filtered sequence and
runs it back through the filter. The resulting sequence has precisely zero-phase
distortion and double the filter order. filtfilt minimizes start-up and ending
transients by matching initial conditions, and works for both real and complex
inputs.

Note that filtfilt should not be used with differentiator and Hilbert FIR
filters, since the operation of these filters depends heavily on their phase
response.

Algorithm filtfilt is an M-file that uses the filter function. In addition to the
forward-reverse filtering, it attempts to minimize startup transients by
adjusting initial conditions to match the DC component of the signal and by
prepending several filter lengths of a flipped, reflected copy of the input signal.

References [1] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing,
Prentice-Hall, 1989, pp. 311-312.

[2] Mitra, S.K., Digital Signal Processing, 2nd ed., McGraw-Hill, 2001, Sections
4.4.2 and 8.2.5.

[3] Gustafsson, F., “Determining the initial states in forward-backward
filtering,” IEEE Transactions on Signal Processing, April 1996, Volume 44,
Issue 4, pp. 988--992,

See Also fftfilt, filter, filter2
7-267

filtic
7filticPurpose Iinitial conditions for transposed direct-form II filter implementation

Syntax z = filtic(b,a,y,x)
z = filtic(b,a,y)

Description z = filtic(b,a,y,x) finds the initial conditions, z, for the delays in the
transposed direct-form II filter implementation given past outputs y and
inputs x. The vectors b and a represent the numerator and denominator
coefficients, respectively, of the filter’s transfer function.

The vectors x and y contain the most recent input or output first, and oldest
input or output last.

where n is length(b)-1 (the numerator order) and m is length(a)-1 (the
denominator order). If length(x) is less than n, filtic pads it with zeros to
length n; if length(y) is less than m, filtic pads it with zeros to length m.
Elements of x beyond x(n-1) and elements of y beyond y(m-1) are unnecessary
so filtic ignores them.

Output z is a column vector of length equal to the larger of n and m. z describes
the state of the delays given past inputs x and past outputs y.

z = filtic(b,a,y) assumes that the input x is 0 in the past.

The transposed direct-form II structure is shown in the following illustration.

n-1 is the filter order.

filtic works for both real and complex inputs.

x x 1–() x 2–() x 3–() … x n–() …, , , , ,{ }=

y y 1–() y 2–() y 3–() … y m–() …, , , , ,{ }=

Σ Σ Σz -1 z -1

x(m)

y(m)

b(3) b(2) b(1)

– a(3) – a(2)

z1(m)z2(m)
Σ z -1

b(n)

–a(n)

zn -1(m)

...

...

...
7-268

filtic
Algorithm filtic performs a reverse difference equation to obtain the delay states z.

Diagnostics If any of the input arguments y, x, b, or a is not a vector (that is, if any
argument is a scalar or array), filtic gives the following error message:

Requires vector inputs.

References Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing,
Prentice-Hall, 1989, pp. 296, 301-302.

See Also filter, filtfilt
7-269

filtstates
7filtstatesPurpose Filter states

Syntax Hs = filtstates.structure(input1,...)

Description Hs = filtstates.structure(input1,...) returns a filter states object Hs,
which contains the filter states.

You can extract a filtstates object from the states property of an object with

Hd = dfilt.df1
Hs = Hd.states

or, for an mfilt object in the Filter Design Toolbox, with

Hm = mfilt.cicdecim
Hs = Hm.states

Structures
Structures for filtstates specify the type of filter structure. Available types
of structures for filtstates are shown below.

Methods
Refer to the particular filtstates.structure reference page for information
on methods.

See Also filtstates.dfiir, dfilt, dfilt.df1, dfilt.df1t, dfilt.df1sos,
dfilt.df1tsos

filtstates.structure Description

filtstates.dfiir filtstates for IIR Direct-form I filters
(dfilt.df1, dfilt.df1t, dfilt.df1sos, and
dfilt.df1tsos)

filtstates.cic filtstates for cascaded integrator comb filters.
(Available only with the Filter Design Toolbox
and the Fixed Point Toolbox.)
7-270

filtstates.dfiir
7filtstates.dfiirPurpose IIR Direct-form filter states

Syntax Hs = filtstates.dfiir(numstates,denstates)

Description Hs = filtstates.dfiir(numstates,denstates) returns an IIR direct-form
filter states object Hs with two properties—Numerator and Denominator, which
contain the filter states. These two properties are column vectors with each
column representing a separate channel of filter states. The number of states
is always one less than the the number of filter numerator or denominator
coefficients.

You can extract a filtstates object from the states property of an IIR
direct-form I object with

Hd = dfilt.df1
Hs = Hd.states

Methods
You can use the following methods on a filtstates.dfiir object.

 Examples This example demonstrates the interaction of filtstates with a dfilt.df1
object.

[b,a] = butter(4,0.5); % Design a butterworth filter
Hd = dfilt.df1(b,a); % Create a dfilt object
Hs = Hd.states % Extract a filter states object from

% the dfilt states property
Hs.Numerator = [1,1,1,1]' % Modify the numerator states

Method Description

double Converts a filtstates object to a double-precision vector
containing the values of the numerator and denominator
states. The numerator states are listed first in this vector,
followed by the denominator states.

single Converts a filtstates object to a single-precision vector
containing the values of the numerator and denominator
states. (This method is used with the Fitler Design
Toolbox.)
7-271

filtstates.dfiir
Hd.states = Hs % Set the modified states back to the
% original object

Dbl = double(Hs) % Create a double vector from states

See Also filtstates, dfilt, dfilt.df1, dfilt.df1t, dfilt.df1sos, dfilt.df1tsos
7-272

fir1
7fir1Purpose Wwindow-based finite impulse response filter design

Syntax b = fir1(n,Wn)
b = fir1(n,Wn,'ftype')
b = fir1(n,Wn,window)
b = fir1(n,Wn,'ftype',window)
b = fir1(...,'normalization')

Description fir1 implements the classical method of windowed linear-phase FIR digital
filter design [1]. It designs filters in standard lowpass, highpass, bandpass, and
bandstop configurations. By default the filter is normalized so that the
magnitude response of the filter at the center frequency of the passband is
0 dB.

Note Use fir2 for windowed filters with arbitrary frequency response.

b = fir1(n,Wn) returns row vector b containing the n+1 coefficients of an
order n lowpass FIR filter. This is a Hamming-window based, linear-phase
filter with normalized cutoff frequency Wn. The output filter coefficients, b, are
ordered in descending powers of z.

Wn is a number between 0 and 1, where 1 corresponds to the Nyquist frequency.

If Wn is a two-element vector, Wn = [w1 w2], fir1 returns a bandpass filter with
passband w1 < ω < w2.

If Wn is a multi-element vector, Wn = [w1 w2 w3 w4 w5 ... wn], fir1 returns
an order n multiband filter with bands 0 < ω < w1, w1 < ω < w2, ..., wn < ω < 1.

By default, the filter is scaled so that the center of the first passband has a
magnitude of exactly 1 after windowing.

b = fir1(n,Wn,'ftype') specifies a filter type, where 'ftype' is:

• 'high' for a highpass filter with cutoff frequency Wn.

B z() b 1() b 2()z 1– b n 1+()z n–+ + +=
7-273

fir1
• 'stop' for a bandstop filter, if Wn = [w1 w2]. The stopband frequency range
is specified by this interval.

• 'DC-1' to make the first band of a multiband filter a passband.

• 'DC-0' to make the first band of a multiband filter a stopband.

fir1 always uses an even filter order for the highpass and bandstop
configurations. This is because for odd orders, the frequency response at the
Nyquist frequency is 0, which is inappropriate for highpass and bandstop
filters. If you specify an odd-valued n, fir1 increments it by 1.

b = fir1(n,Wn,window) uses the window specified in column vector window
for the design. The vector window must be n+1 elements long. If no window is
specified, fir1 uses a Hamming window (see hamming) of length n+1.

b = fir1(n,Wn,'ftype',window) accepts both 'ftype' and window
parameters.

b = fir1(...,'normalization') specifies whether or not the filter
magnitude is normalized. The string 'normalization' can be the following:

• 'scale' (default): Normalize the filter so that the magnitude response of the
filter at the center frequency of the passband is 0 dB.

• 'noscale': Do not normalize the filter.

The group delay of the FIR filter designed by fir1 is n/2.

Algorithm fir1 uses the window method of FIR filter design [1]. If w(n) denotes a window,
where 1 ≤ n ≤ N, and the impulse response of the ideal filter is h(n), where
h(n) is the inverse Fourier transform of the ideal frequency response, then the
windowed digital filter coefficients are given by

b n() w n()h n() 1 n N≤ ≤,=
7-274

fir1
Examples Example 1
Design a 48th-order FIR bandpass filter with passband 0.35 ≤ ω ≤ 0.65:

b = fir1(48,[0.35 0.65]);
freqz(b,1,512)

Example 2
The chirp.mat file contains a signal, y, that has most of its power above fs/4,
or half the Nyquist frequency. Design a 34th-order FIR highpass filter to
attenuate the components of the signal below fs/4. Use a cutoff frequency
of 0.48 and a Chebyshev window with 30 dB of ripple:

load chirp % Load y and fs.
b = fir1(34,0.48,'high',chebwin(35,30));
freqz(b,1,512)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2500

−2000

−1500

−1000

−500

0

Normalized Frequency (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

7-275

fir1
References Programs for Digital Signal Processing, IEEE Press, New York, 1979.
Algorithm 5.2.

See Also cfirpm, filter, fir2, fircls, fircls1, firls, freqz, kaiserord, firpm,
window

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2000

−1500

−1000

−500

0

500

Normalized Frequency (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

7-276

fir2
7fir2Purpose Ffrequency sampling-based finite impulse response filter design

Syntax b = fir2(n,f,m)
b = fir2(n,f,m,window)
b = fir2(n,f,m,npt)
b = fir2(n,f,m,npt,window)
b = fir2(n,f,m,npt,lap)
b = fir2(n,f,m,npt,lap,window)

Description fir2 designs frequency sampling-based digital FIR filters with arbitrarily
shaped frequency response.

Note Use fir1 for windows-based standard lowpass, bandpass, highpass,
and bandstop configurations.

b = fir2(n,f,m) returns row vector b containing the n+1 coefficients of an
order n FIR filter. The frequency-magnitude characteristics of this filter match
those given by vectors f and m:

• f is a vector of frequency points in the range from 0 to 1, where 1 corresponds
to the Nyquist frequency. The first point of f must be 0 and the last point 1.
The frequency points must be in increasing order.

• m is a vector containing the desired magnitude response at the points
specified in f.

• f and m must be the same length.

• Duplicate frequency points are allowed, corresponding to steps in the
frequency response.

Use plot(f,m) to view the filter shape.

The output filter coefficients, b, are ordered in descending powers of z.

fir2 always uses an even filter order for configurations with a passband at the
Nyquist frequency. This is because for odd orders, the frequency response at

b z() b 1() b 2()z 1– b n 1+()z n–+ + +=
7-277

fir2
the Nyquist frequency is necessarily 0. If you specify an odd-valued n, fir2
increments it by 1.

b = fir2(n,f,m,window) uses the window specified in the column vector
window. The vector window must be n+1 elements long. If no window is specified,
fir2 uses a Hamming window (see hamming) of length n+1.

b = fir2(n,f,m,npt) or

b = fir2(n,f,m,npt,window) specifies the number of points, npt, for the grid
onto which fir2 interpolates the frequency response, without or with a window
specification.

b = fir2(n,f,m,npt,lap) and

b = fir2(n,f,m,npt,lap,window) specify the size of the region, lap, that
fir2 inserts around duplicate frequency points, with or without a window
specification.

See the “Algorithm” section for more on npt and lap.

Examples Design a 30th-order lowpass filter and overplot the desired frequency response
with the actual frequency response:

f = [0 0.6 0.6 1]; m = [1 1 0 0];
b = fir2(30,f,m);
[h,w] = freqz(b,1,128);
plot(f,m,w/pi,abs(h))
legend('Ideal','fir2 Designed')
title('Comparison of Frequency Response Magnitudes')
7-278

fir2
Algorithm The desired frequency response is interpolated onto a dense, evenly spaced grid
of length npt. npt is 512 by default. If two successive values of f are the same,
a region of lap points is set up around this frequency to provide a smooth but
steep transition in the requested frequency response. By default, lap is 25. The
filter coefficients are obtained by applying an inverse fast Fourier transform to
the grid and multiplying by a window; by default, this is a Hamming window.

References Mitra, S.K., Digital Signal Processing A Computer Based Approach, First
Edition, McGraw-Hill, New York, 1998, pp. 462-468.

Jackson, L.B., Digital Filters and Signal Processing, Third Edition, Kluwer
Academic Publishers, Boston, 1996, pp. 301-307.

See Also butter, cheby1, cheby2, ellip, fir1, maxflat, firpm, yulewalk

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Comparison of Frequency Response Magnitudes

Ideal
fir2 Designed
7-279

fircls
7firclsPurpose Constrained least square, FIR multiband filter design

Syntax b = fircls(n,f,amp,up,lo)
fircls(n,f,amp,up,lo,'design_flag')

Description b = fircls(n,f,amp,up,lo) generates a length n+1 linear phase FIR filter b.
The frequency-magnitude characteristics of this filter match those given by
vectors f and amp:

• f is a vector of transition frequencies in the range from 0 to 1, where 1
corresponds to the Nyquist frequency. The first point of f must be 0 and the
last point 1. The frequency points must be in increasing order.

• amp is a vector describing the piecewise constant desired amplitude of the
frequency response. The length of amp is equal to the number of bands in the
response and should be equal to length(f)-1.

• up and lo are vectors with the same length as amp. They define the upper and
lower bounds for the frequency response in each band.

fircls always uses an even filter order for configurations with a passband at
the Nyquist frequency (that is, highpass and bandstop filters). This is because
for odd orders, the frequency response at the Nyquist frequency is
necessarily 0. If you specify an odd-valued n, fircls increments it by 1.

fircls(n,f,amp,up,lo,'design_flag') enables you to monitor the filter
design, where 'design_flag' can be

• 'trace', for a textual display of the design error at each iteration step.

• 'plots', for a collection of plots showing the filter’s full-band magnitude
response and a zoomed view of the magnitude response in each sub-band. All
plots are updated at each iteration step. The O’s on the plot are the estimated
extremals of the new iteration and the X’s are the estimated extremals of the
previous iteration, where the extremals are the peaks (maximum and
minimum) of the filter ripples. Only ripples that have a corresponding O and
X are made equal.

• 'both', for both the textual display and plots.
7-280

fircls
Examples Design an order 150 bandpass filter:

n=150;
f=[0 0.4 1];
a=[1 0];
up=[1.02 0.01];
lo =[0.98 -0.01];
b = fircls(n,f,a,up,lo,'both'); % Display plots of the bands
 Bound Violation = 0.0788344298966
 Bound Violation = 0.0096137744998
 Bound Violation = 0.0005681345753
 Bound Violation = 0.0000051519942
 Bound Violation = 0.0000000348656
 Bound Violation = 0.0000000006231
% The above Bound Violations indicate iterations as
% the design converges.
fvtool(b) % Display magnitude plot
7-281

fircls
Note Normally, the lower value in the stopband will be specified as negative.
By setting lo equal to 0 in the stopbands, a nonnegative frequency response
amplitude can be obtained. Such filters can be spectrally factored to obtain
minimum phase filters.

Algorithm fircls uses an iterative least-squares algorithm to obtain an equiripple
response. The algorithm is a multiple exchange algorithm that uses Lagrange
multipliers and Kuhn-Tucker conditions on each iteration.

References [1] Selesnick, I.W., M. Lang, and C.S. Burrus, “Constrained Least Square
Design of FIR Filters without Specified Transition Bands,” Proceedings of the
IEEE Int. Conf. Acoust., Speech, Signal Processing, Vol. 2 (May 1995),
pp. 1260-1263.
7-282

fircls
[2] Selesnick, I.W., M. Lang, and C.S. Burrus. “Constrained Least Square
Design of FIR Filters without Specified Transition Bands.” IEEE Transactions
on Signal Processing, Vol. 44, No. 8 (August 1996).

See Also fircls1, firls, firpm
7-283

fircls1
7fircls1Purpose Constrained least square, lowpass and highpass, linear phase, FIR filter design

Syntax b = fircls1(n,wo,dp,ds)
b = fircls1(n,wo,dp,ds,'high')
b = fircls1(n,wo,dp,ds,wt)
b = fircls1(n,wo,dp,ds,wt,'high')
b = fircls1(n,wo,dp,ds,wp,ws,k)
b = fircls1(n,wo,dp,ds,wp,ws,k,'high')
b = fircls1(n,wo,dp,ds,...,'design_flag')

Description b = fircls1(n,wo,dp,ds) generates a lowpass FIR filter b, where n+1 is the
filter length, wo is the normalized cutoff frequency in the range between 0 and 1
(where 1 corresponds to the Nyquist frequency), dp is the maximum passband
deviation from 1 (passband ripple), and ds is the maximum stopband deviation
from 0 (stopband ripple).

b = fircls1(n,wo,dp,ds,'high') generates a highpass FIR filter b. fircls1
always uses an even filter order for the highpass configuration. This is because
for odd orders, the frequency response at the Nyquist frequency is
necessarily 0. If you specify an odd-valued n, fircls1 increments it by 1.

b = fircls1(n,wo,dp,ds,wt) and

b = fircls1(n,wo,dp,ds,wt,'high') specifies a frequency wt above which
(for wt > wo) or below which (for wt < wo) the filter is guaranteed to meet the
given band criterion. This will help you design a filter that meets a passband
or stopband edge requirement. There are four cases:

• Lowpass:

- 0 < wt < wo < 1: the amplitude of the filter is within dp of 1 over the
frequency range 0 < ω < wt.

- 0 < wo < wt < 1: the amplitude of the filter is within ds of 0 over the
frequency range wt < ω < 1.

• Highpass:

- 0 < wt < wo < 1: the amplitude of the filter is within ds of 0 over the
frequency range 0 < ω < wt.
7-284

fircls1
- 0 < wo < wt < 1: the amplitude of the filter is within dp of 1 over the
frequency range wt < ω < 1.

b = fircls1(n,wo,dp,ds,wp,ws,k) generates a lowpass FIR filter b with a
weighted function, where n+1 is the filter length, wo is the normalized cutoff
frequency, dp is the maximum passband deviation from 1 (passband ripple), and
ds is the maximum stopband deviation from 0 (stopband ripple). wp is the
passband edge of the L2 weight function and ws is the stopband edge of the L2
weight function, where wp < wo < ws. k is the ratio (passband L2 error)/(stopband
L2 error)

b = fircls1(n,wo,dp,ds,wp,ws,k,'high') generates a highpass FIR filter b
with a weighted function, where ws < wo < wp.

b = fircls1(n,wo,dp,ds,...,'design_flag') enables you to monitor the
filter design, where 'design_flag' can be

• 'trace', for a textual display of the design table used in the design

• 'plots', for plots of the filter’s magnitude, group delay, and zeros and poles.
All plots are updated at each iteration step. The O’s on the plot are the
estimated extremals of the new iteration and the X’s are the estimated
extremals of the previous iteration, where the extremals are the peaks
(maximum and minimum) of the filter ripples. Only ripples that have a
corresponding O and X are made equal.

• 'both', for both the textual display and plots

Note In the design of very narrow band filters with small dp and ds, there
may not exist a filter of the given length that meets the specifications.

k
A ω() D ω()– 2 ωd

0

wp

∫

A ω() D ω()– 2 ωd
ws

π

∫
--=
7-285

fircls1
Examples Design an order 55 lowpass filter with a cutoff frequency at 0.3:

n = 55; wo = 0.3;
dp = 0.02; ds = 0.008;
b = fircls1(n,wo,dp,ds,'both'); % Display plots of the bands
 Bound Violation = 0.0870385343920
 Bound Violation = 0.0149343456540
 Bound Violation = 0.0056513587932
 Bound Violation = 0.0001056264205
 Bound Violation = 0.0000967624352
 Bound Violation = 0.0000000226538
 Bound Violation = 0.0000000000038
% The above Bound Violations indicate iterations as
% the design converges.
fvtool(b) % Display magnitude plot
7-286

fircls1
Algorithm fircls1 uses an iterative least-squares algorithm to obtain an equiripple
response. The algorithm is a multiple exchange algorithm that uses Lagrange
multipliers and Kuhn-Tucker conditions on each iteration.

References [1] Selesnick, I.W., M. Lang, and C.S. Burrus, “Constrained Least Square
Design of FIR Filters without Specified Transition Bands,” Proceedings of the
IEEE Int. Conf. Acoust., Speech, Signal Processing, Vol. 2 (May 1995),
pp. 1260-1263.

[2] Selesnick, I.W., M. Lang, and C.S. Burrus, “Constrained Least Square
Design of FIR Filters without Specified Transition Bands,” IEEE Transactions
on Signal Processing, Vol. 44, No. 8 (August 1996).

See Also fircls, firls, firpm
7-287

firls
7firlsPurpose Least square linear-phase FIR filter design

Syntax b = firls(n,f,a)
b = firls(n,f,a,w)
b = firls(n,f,a,'ftype')
b = firls(n,f,a,w,'ftype')

Description firls designs a linear-phase FIR filter that minimizes the weighted,
integrated squared error between an ideal piecewise linear function and the
magnitude response of the filter over a set of desired frequency bands.

b = firls(n,f,a) returns row vector b containing the n+1 coefficients of the
order n FIR filter whose frequency-amplitude characteristics approximately
match those given by vectors f and a. The output filter coefficients, or “taps,”
in b obey the symmetry relation.

These are type I (n odd) and type II (n even) linear-phase filters. Vectors f and a
specify the frequency-amplitude characteristics of the filter:

• f is a vector of pairs of frequency points, specified in the range between 0
and 1, where 1 corresponds to the Nyquist frequency. The frequencies must
be in increasing order. Duplicate frequency points are allowed and, in fact,
can be used to design a filter exactly the same as those returned by the fir1
and fir2 functions with a rectangular (rectwin) window.

• a is a vector containing the desired amplitude at the points specified in f.

The desired amplitude function at frequencies between pairs of points
(f(k), f(k+1)) for k odd is the line segment connecting the points (f(k), a(k))
and (f(k+1), a(k+1)).

The desired amplitude function at frequencies between pairs of points
(f(k), f(k+1)) for k even is unspecified. These are transition or “don’t care”
regions.

• f and a are the same length. This length must be an even number.

firls always uses an even filter order for configurations with a passband at
the Nyquist frequency. This is because for odd orders, the frequency response

b k() b n 2 k–+() k 1= … n 1+, , ,=
7-288

firls
at the Nyquist frequency is necessarily 0. If you specify an odd-valued n, firls
increments it by 1.

The figure below illustrates the relationship between the f and a vectors in
defining a desired amplitude response.

b = firls(n,f,a,w) uses the weights in vector w to weight the fit in each
frequency band. The length of w is half the length of f and a, so there is exactly
one weight per band.

b = firls(n,f,a,'ftype') and

b = firls(n,f,a,w,'ftype') specify a filter type, where 'ftype' is:

• 'hilbert' for linear-phase filters with odd symmetry (type III and type IV).
The output coefficients in b obey the relation b(k) = -b(n+2-k),
k = 1, ... , n + 1. This class of filters includes the Hilbert transformer, which
has a desired amplitude of 1 across the entire band.

• 'differentiator' for type III and type IV filters, using a special weighting
technique. For nonzero amplitude bands, the integrated squared error has a
weight of (1/f)2 so that the error at low frequencies is much smaller than at
high frequencies. For FIR differentiators, which have an amplitude
characteristic proportional to frequency, the filters minimize the relative

1.0

0.0

Desired amplitude
response (a)

Normalized
frequency (f)

0.5

"Don't care"/transition regions

f = [0 .3 .4 .6 .7 .9]
a = [0 1 0 0 .5 .5]

0.1 0.2 0.3 0.4 0.5 0.6 0.70.0 0.8 0.9 1.0 (Nyquist)
7-289

firls
integrated squared error (the integral of the square of the ratio of the error
to the desired amplitude).

Examples Example 1
Design an order 255 lowpass filter with transition band:

b = firls(255,[0 0.25 0.3 1],[1 1 0 0]);

Example 2
Design a 31 coefficient differentiator:

b = firls(30,[0 0.9],[0 0.9*pi],'differentiator');

An ideal differentiator has the response D(w) = jw. The amplitudes include a
pi multiplier because the frequencies are normalized by pi.

Example 3
Design a 24th-order anti-symmetric filter with piecewise linear passbands and
plot the desired and actual frequency response:

F = [0 0.3 0.4 0.6 0.7 0.9];
A = [0 1 0 0 0.5 0.5];
b = firls(24,F,A,'hilbert');
for i=1:2:6,
 plot([F(i) F(i+1)],[A(i) A(i+1)],'--'), hold on
end
[H,f] = freqz(b,1,512,2);
plot(f,abs(H)), grid on, hold off
legend('Ideal','firls Design')
7-290

firls
Algorithm Reference [1] describes the theoretical approach behind firls. The function
solves a system of linear equations involving an inner product matrix of size
roughly n/2 using the MATLAB \ operator.

This function designs type I, II, III, and IV linear-phase filters. Type I and II
are the defaults for n even and odd respectively, while the 'hilbert' and
'differentiator' flags produce type III (n even) and IV (n odd) filters. The
various filter types have different symmetries and constraints on their
frequency responses (see [2] for details).

Diagnostics One of the following diagnostic messages is displayed when an incorrect
argument is used:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Ideal
firls Design

Linear Phase
Filter Type

Filter
Order

Symmetry of Coefficients Response H(f),
f = 0

Response H(f),
f = 1 (Nyquist)

Type I Even even: No restriction No restriction

Type II Odd No restriction H(1) = 0

Type III Even odd: H(0) = 0 H(1) = 0

Type IV Odd H(0) = 0 No restriction

b k() b n 2 k–+() k 1= … n 1+, , ,=

b k() b– n 2 k–+() k 1= … n 1+, , ,=
7-291

firls
F must be even length.
F and A must be equal lengths.
Requires symmetry to be 'hilbert' or 'differentiator'.
Requires one weight per band.
Frequencies in F must be nondecreasing.
Frequencies in F must be in range [0,1].

A more serious warning message is

Warning: Matrix is close to singular or badly scaled.

This tends to happen when the product of the filter length and transition width
grows large. In this case, the filter coefficients b might not represent the
desired filter. You can check the filter by looking at its frequency response.

References [1] Parks, T.W., and C.S. Burrus, Digital Filter Design, John Wiley & Sons,
1987, pp. 54-83.

[2] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing,
Prentice-Hall, 1989, pp. 256-266.

See Also fir1, fir2, firrcos, firpm
7-292

firpm
7firpmPurpose Parks-McClellan optimal FIR filter design

Syntax b = firpm(n,f,a)
b = firpm(n,f,a,w)
b = firpm(n,f,a,'ftype')
b = firpm(n,f,a,w,'ftype')
b = firpm(...,{lgrid})
[b,err] = firpm(...)
[b,err,res] = firpm(...)
b = firpm(n,f,@fresp,w)
b = firpm(n,f,@fresp,w,'ftype')

Description firpm designs a linear-phase FIR filter using the Parks-McClellan
algorithm [1]. The Parks-McClellan algorithm uses the Remez exchange
algorithm and Chebyshev approximation theory to design filters with an
optimal fit between the desired and actual frequency responses. The filters are
optimal in the sense that the maximum error between the desired frequency
response and the actual frequency response is minimized. Filters designed this
way exhibit an equiripple behavior in their frequency responses and are
sometimes called equiripple filters. firpm exhibits discontinuities at the head
and tail of its impulse response due to this equiripple nature.

b = firpm(n,f,a) returns row vector b containing the n+1 coefficients of the
order n FIR filter whose frequency-amplitude characteristics match those
given by vectors f and a.

The output filter coefficients (taps) in b obey the symmetry relation:

b k() b n 2 k–+() k 1= … n 1+, , ,=
7-293

firpm
Vectors f and a specify the frequency-magnitude characteristics of the filter:

• f is a vector of pairs of normalized frequency points, specified in the range
between 0 and 1, where 1 corresponds to the Nyquist frequency. The
frequencies must be in increasing order.

• a is a vector containing the desired amplitudes at the points specified in f.

The desired amplitude at frequencies between pairs of points (f(k), f(k+1)) for
k odd is the line segment connecting the points (f(k), a(k)) and
(f(k+1), a(k+1)).

The desired amplitude at frequencies between pairs of points (f(k), f(k+1)) for
k even is unspecified. The areas between such points are transition or “don’t
care” regions.

• f and a must be the same length. The length must be an even number.

The relationship between the f and a vectors in defining a desired frequency
response is shown in the illustration below.

firpm always uses an even filter order for configurations with a passband at
the Nyquist frequency. This is because for odd orders, the frequency response
at the Nyquist frequency is necessarily 0. If you specify an odd-valued n, firpm
increments it by 1.

1.0

0.0

Desired amplitude
response (a)

Normalized
frequency (f)

0.5

"Don't care"/transition regions

f = [0 .3 .4 .6 .7 .9]
a = [0 1 0 0 .5 .5]

0.1 0.2 0.3 0.4 0.5 0.6 0.70.0 0.8 0.9 1.0 (Nyquist)
7-294

firpm
b = firpm(n,f,a,w) uses the weights in vector w to weight the fit in each
frequency band. The length of w is half the length of f and a, so there is exactly
one weight per band.

Note
b = firpm(n,f,a,w) is a synonym for b = firpm(n,f,{@firpmfrf,a},w).

where, @firpmfrf is the predefined frequency response function handle for
firpm. If desired, you can write your own response function. Use
help private/firpmfrf for information.

b = firpm(n,f,a,'ftype') and

b = firpm(n,f,a,w,'ftype') specify a filter type, where 'ftype' is

• 'hilbert', for linear-phase filters with odd symmetry (type III and type IV)

The output coefficients in b obey the relation b(k) = -b(n+2-k), k = 1, ...,
n + 1. This class of filters includes the Hilbert transformer, which has a
desired amplitude of 1 across the entire band.

For example,
h = firpm(30,[0.1 0.9],[1 1],'hilbert');

designs an approximate FIR Hilbert transformer of length 31.

• 'differentiator', for type III and type IV filters, using a special weighting
technique

For nonzero amplitude bands, it weights the error by a factor of 1/f so that
the error at low frequencies is much smaller than at high frequencies. For
FIR differentiators, which have an amplitude characteristic proportional to
frequency, these filters minimize the maximum relative error (the maximum
of the ratio of the error to the desired amplitude).

b = firpm(...,{lgrid}) uses the integer lgrid to control the density of the
frequency grid, which has roughly (lgrid*n)/(2*bw) frequency points, where
bw is the fraction of the total frequency band interval [0,1] covered by f.
Increasing lgrid often results in filters that more exactly match an equiripple
filter, but that take longer to compute. The default value of 16 is the minimum
7-295

firpm
value that should be specified for lgrid. Note that the {lgrid} argument must
be a 1-by-1 cell array.

[b,err] = firpm(...) returns the maximum ripple height in err.

[b,err,res] = firpm(...) returns a structure res with the following fields.

You can also use firpm to write a function that defines the desired frequency
response. The predefined frequency response function handle for firpm is
@firpmfrf, which designs a linear-phase FIR filter.

b = firpm(n,f,@fresp,w) returns row vector b containing the n+1
coefficients of the order n FIR filter whose frequency-amplitude characteristics
best approximate the response returned by function handle @fresp. The
function is called from within firpm with the following syntax.

[dh,dw] = fresp(n,f,gf,w)

The arguments are similar to those for firpm:

• n is the filter order.

• f is the vector of normalized frequency band edges that appear monotonically
between 0 and 1, where 1 is the Nyquist frequency.

• gf is a vector of grid points that have been linearly interpolated over each
specified frequency band by firpm. gf determines the frequency grid at
which the response function must be evaluated, and contains the same data
returned by cfirpm in the fgrid field of the opt structure.

res.fgrid Frequency grid vector used for the filter design optimization

res.des Desired frequency response for each point in res.fgrid

res.wt Weighting for each point in opt.fgrid

res.H Actual frequency response for each point in res.fgrid

res.error Error at each point in res.fgrid (res.des-res.H)

res.iextr Vector of indices into res.fgrid for extremal frequencies

res.fextr Vector of extremal frequencies
7-296

firpm
• w is a vector of real, positive weights, one per band, used during optimization.
w is optional in the call to firpm; if not specified, it is set to unity weighting
before being passed to fresp.

• dh and dw are the desired complex frequency response and band weight
vectors, respectively, evaluated at each frequency in grid gf.

b = firpm(n,f,@fresp,w,'ftype') designs antisymmetric (odd) filters,
where 'ftype' is either 'd' for a differentiator or 'h' for a Hilbert
transformer. If you do not specify an ftype, a call is made to fresp to determine
the default symmetry property sym. This call is made using the syntax.

sym = fresp('defaults',{n,f,[],w,p1,p2,...})

The arguments n, f, w, etc., may be used as necessary in determining an
appropriate value for sym, which firpm expects to be either 'even' or 'odd'. If
fresp does not support this calling syntax, firpm defaults to even symmetry.

Examples Graph the desired and actual frequency responses of a 17th-order
Parks-McClellan bandpass filter:

f = [0 0.3 0.4 0.6 0.7 1]; a = [0 0 1 1 0 0];
b = firpm(17,f,a);
[h,w] = freqz(b,1,512);
plot(f,a,w/pi,abs(h))
legend('Ideal','firpm Design')

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Ideal
remez Design
7-297

firpm
Algorithm firpm is a MEX-file version of the original Fortran code from [1], altered to
design arbitrarily long filters with arbitrarily many linear bands.

firpm designs type I, II, III, and IV linear-phase filters. Type I and type II are
the defaults for n even and n odd, respectively, while type III (n even) and
type IV (n odd) are obtained with the 'hilbert' and 'differentiator' flags.
The different types of filters have different symmetries and certain constraints
on their frequency responses (see [5] for more details).

Diagnostics If you get the following warning message,

- Failure to Converge -
Probable cause is machine rounding error.

it is possible that the filter design may still be correct. Verify the design by
checking its frequency response.

References [1] Programs for Digital Signal Processing, IEEE Press, New York, 1979,
Algorithm 5.1.

[2] Selected Papers in Digital Signal Processing, II, IEEE Press, New York,
1979.

[3] Parks, T.W., and C.S. Burrus, Digital Filter Design, John Wiley & Sons,
New York:, 1987, p. 83.

[4] Rabiner, L.R., J.H. McClellan, and T.W. Parks, “FIR Digital Filter Design
Techniques Using Weighted Chebyshev Approximations,” Proc. IEEE 63
(1975).

Linear Phase
Filter Type

Filter
Order

Symmetry of Coefficients Response H(f),
f = 0

Response H(f),
f = 1 (Nyquist)

Type I Even even: No restriction No restriction

Type II Odd No restriction H(1) = 0

Type III Even odd: H(0) = 0 H(1) = 0

Type IV Odd H(0) = 0 No restriction

b k() b n 2 k–+() k 1= … n 1+, , ,=

b k() b– n 2 k–+() k 1= … n 1+, , ,=
7-298

firpm
[5] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing,
Prentice-Hall, Englewood Cliffs, NJ, 1989, pp. 256-266.

See Also butter, cheby1, cheby2, cfirpm, ellip, fir1, fir2, fircls, fircls1, firls,
firrcos, firgr, firpmord, function_handle, yulewalk
7-299

firpmord
7firpmordPurpose Parks-McClellan optimal FIR filter order estimation

Syntax [n,fo,ao,w] = firpmord(f,a,dev)
[n,fo,ao,w] = firpmord(f,a,dev,fs)
c = firpmord(f,a,dev,fs,'cell')

Description [n,fo,ao,w] = firpmord(f,a,dev) finds the approximate order, normalized
frequency band edges, frequency band amplitudes, and weights that meet
input specifications f, a, and dev.

• f is a vector of frequency band edges (between 0 and fs/2, where fs is the
sampling frequency), and a is a vector specifying the desired amplitude on
the bands defined by f. The length of f is two less than twice the length of a.
The desired function is piecewise constant.

• dev is a vector the same size as a that specifies the maximum allowable
deviation or ripples between the frequency response and the desired
amplitude of the output filter for each band.

Use firpm with the resulting order n, frequency vector fo, amplitude response
vector ao, and weights w to design the filter b which approximately meets the
specifications given by firpmord input parameters f, a, and dev.

b = firpm(n,fo,ao,w)

[n,fo,ao,w] = firpmord(f,a,dev,fs) specifies a sampling frequency fs.
fs defaults to 2 Hz, implying a Nyquist frequency of 1 Hz. You can therefore
specify band edges scaled to a particular application’s sampling frequency.

In some cases firpmord underestimates the order n. If the filter does not meet
the specifications, try a higher order such as n+1 or n+2.

c = firpmord(f,a,dev,fs,'cell') generates a cell-array whose elements
are the parameters to firpm.

Examples Example 1
Design a minimum-order lowpass filter with a 500 Hz passband cutoff
frequency and 600 Hz stopband cutoff frequency, with a sampling frequency of
2000 Hz, at least 40 dB attenuation in the stopband, and less than 3 dB of
ripple in the passband:
7-300

firpmord
rp = 3; % Passband ripple
rs = 40; % Stopband ripple
fs = 2000; % Sampling frequency
f = [500 600]; % Cutoff frequencies
a = [1 0]; % Desired amplitudes

% Compute deviations
dev = [(10^(rp/20)-1)/(10^(rp/20)+1) 10^(-rs/20)];

[n,fo,ao,w] = firpmord(f,a,dev,fs);
b = firpm(n,fo,ao,w);
freqz(b,1,1024,fs);
title('Lowpass Filter Designed to Specifications');

Note that the filter falls slightly short of meeting the stopband attenuation and
passband ripple specifications. Using n+1 in the call to firpm instead of n
achieves the desired amplitude characteristics.

Example 2
Design a lowpass filter with a 1500 Hz passband cutoff frequency and 2000 Hz
stopband cutoff frequency, with a sampling frequency of 8000 Hz, a maximum
stopband amplitude of 0.1, and a maximum passband error (ripple) of 0.01:

0 100 200 300 400 500 600 700 800 900 1000
−1200

−1000

−800

−600

−400

−200

0

Frequency (Hz)

P
h
a
se

 (
d
e
g
re

e
s)

0 100 200 300 400 500 600 700 800 900 1000
−100

−80

−60

−40

−20

0

20

Frequency (Hz)

M
a
g
n
itu

d
e
 (

d
B

)

Lowpass Filter Designed to Specifications
7-301

firpmord
[n,fo,ao,w] = firpmord([1500 2000],[1 0],[0.01 0.1],8000);
b = firpm(n,fo,ao,w);

This is equivalent to

c = firpmord([1500 2000],[1 0],[0.01 0.1],8000,'cell');
b = firpm(c{:});

Note In some cases, firpmord underestimates or overestimates the order n. If
the filter does not meet the specifications, try a higher order such as n+1
or n+2.

Results are inaccurate if the cutoff frequencies are near 0 or the Nyquist
frequency.

Algorithm firpmord uses the algorithm suggested in [1]. This method is inaccurate for
band edges close to either 0 or the Nyquist frequency (fs/2).

References [1] Rabiner, L.R., and O. Herrmann, “The Predictability of Certain Optimum
Finite Impulse Response Digital Filters,” IEEE Trans. on Circuit Theory,
Vol. CT-20, No. 4 (July 1973), pp. 401-408.

[2] Rabiner, L.R., and B. Gold. Theory and Application of Digital Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975, pp. 156-157.

See Also buttord, cheb1ord, cheb2ord, ellipord, kaiserord, firpm
7-302

firrcos
7firrcosPurpose Raised cosine FIR filter design

Syntax b = firrcos(n,F0,df,fs)
b = firrcos(n,F0,df,fs,'bandwidth')
b = firrcos(n,F0,df)
b = firrcos(n,F0,r,fs,'rolloff')
b = firrcos(...,'type')
b = firrcos(...,'type',delay)
b = firrcos(...,'type',delay,window)
[b,a] = firrcos(...)

Description b = firrcos(n,F0,df,fs) or, equivalently,

b = firrcos(n,F0,df,fs,'bandwidth') returns an order n lowpass
linear-phase FIR filter with a raised cosine transition band. The filter has
cutoff frequency F0, transition bandwidth df, and sampling frequency fs, all in
hertz. df must be small enough so that F0 ± df/2 is between 0 and fs/2. The
coefficients in b are normalized so that the nominal passband gain is always
equal to 1. Specify fs as the empty vector [] to use the default value fs = 2.

b = firrcos(n,F0,df) uses a default sampling frequency of fs = 2.

b = firrcos(n,F0,r,fs,'rolloff') interprets the third argument, r, as the
rolloff factor instead of the transition bandwidth, df. r must be in the range
[0,1].

b = firrcos(...,'type') designs either a normal raised cosine filter or a
square root raised cosine filter according to how you specify of the string
'type'. Specify 'type' as:

• 'normal', for a regular raised cosine filter. This is the default, and is also in
effect when the 'type' argument is left empty, [].

• 'sqrt', for a square root raised cosine filter.

b = firrcos(...,'type',delay) specifies an integer delay in the range
[0,n+1]. The default is n/2 for even n and (n+1)/2 for odd n.

b = firrcos(...,'type',delay,window) applies a length n+1 window to the
designed filter to reduce the ripple in the frequency response. window must be
7-303

firrcos
a length n+1 column vector. If no window is specified, a rectangular (rectwin)
window is used. Care must be exercised when using a window with a delay
other than the default.

[b,a] = firrcos(...) always returns a = 1.

Examples Design an order 20 raised cosine FIR filter with cutoff frequency 0.25 of the
Nyquist frequency and a transition bandwidth of 0.25:

h = firrcos(20,0.25,0.25);
freqz(h,1)

See Also fir1, fir2, firls, firpm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−700

−600

−500

−400

−300

−200

−100

0

Normalized Frequency (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

7-304

flattopwin
7flattopwinPurpose Flat Top weighted window.

Syntax w = flattopwin(n)
w = flattopwin(n,'sflag')

Description Flat Top windows have very low passband ripple (< 0.01 dB) and are used
primarily for calibration purposes. Their bandwidth is approximately 2.5 times
wider than a Hann window.

w = flattopwin(n) returns the n-point symmetric Flat Top window in column
vector w.

w = flattopwin(n,sflag) returns the n-point symmetric Flat Top window
using sflag window sampling, where sflag is either 'symmetric' or
'periodic'.

Algorithm Flat top windows are summations of cosines. The coefficients of a flat top
window are computed from the following equation

where and elsewhere.

Examples Create a 64-point, symmetric Flat Top window and view the window using
WVTool:

w = flattopwin(64);
wvtool(w);

w t() 1 1.93 2πt
T

---------⎝ ⎠
⎛ ⎞ 1.29 4πt

T
---------⎝ ⎠

⎛ ⎞ 0.388 6πt
T

---------⎝ ⎠
⎛ ⎞ 0.0322 8πt

T
---------⎝ ⎠

⎛ ⎞cos+cos–cos+cos–=

0 t T≤ ≤ w t() 0=
7-305

flattopwin
Reference [1] Gade, Svend and Herlufsen, H., “Use of Weighting Functions in DFT/FFT
Analysis (Part I),” Brüel & Kjær, Windows to FFT Analysis (Part I) Technical
Review, No. 3, 1987, pp. 19-21.

See Also blackman, hamming, hann
7-306

freqs
7freqsPurpose Frequency response of analog filters

Syntax h = freqs(b,a,w)
[h,w] = freqs(b,a)
[h,w] = freqs(b,a,f)
freqs(b,a)

Description freqs returns the complex frequency response H(jω) (Laplace transform) of an
analog filter

given the numerator and denominator coefficients in vectors b and a.

h = freqs(b,a,w) returns the complex frequency response of the analog filter
specified by coefficient vectors b and a. freqs evaluates the frequency response
along the imaginary axis in the complex plane at the angular frequencies in
rad/sec specified in real vector w, which must contain more than one frequency.

[h,w] = freqs(b,a) automatically picks a set of 200 frequency points w on
which to compute the frequency response h.

[h,w] = freqs(b,a,f) picks f number of frequencies on which to compute the
frequency response h.

freqs with no output arguments plots the magnitude and phase response
versus frequency in the current figure window.

freqs works only for real input systems and positive frequencies.

Examples Find and graph the frequency response of the transfer function given by:

a = [1 0.4 1];
b = [0.2 0.3 1];
w = logspace(-1,1);
freqs(b,a,w)

H s() B s()
A s()
----------- b 1()sn b 2()sn 1– b n 1+()+ + +

a 1()sm a 2()sm 1– a m 1+()+ + +
---= =

H s() 0.2s2 0.3s 1+ +
s2 0.4s 1+ +

---=
7-307

freqs
You can also create the plot with:

h = freqs(b,a,w);
mag = abs(h);
phase = angle(h);
subplot(2,1,1), loglog(w,mag)
subplot(2,1,2), semilogx(w,phase)

To convert to hertz, degrees, and decibels, use:

f = w/(2*pi);
mag = 20*log10(mag);
phase = phase*180/pi;

Algorithm freqs evaluates the polynomials at each frequency point, then divides the
numerator response by the denominator response:

s = i*w;
h = polyval(b,s)./polyval(a,s);

See Also abs, angle, freqz, invfreqs, logspace, polyval

10
-1

10
0

10
1

10
-1

10
0

10
1

Frequency

M
ag

ni
tu

de

10
-1

10
0

10
1

-150

-100

-50

0

Frequency

P
ha

se
 (

de
gr

ee
s)
7-308

freqspace
7freqspacePurpose Frequency spacing for frequency response

freqspace is a MATLAB function.
7-309

freqz
7freqzPurpose Frequency response of digital filters

Syntax [h,w]= freqz(b,a,l)
h = freqz(b,a,w)
[h,w] = freqz(b,a,l,'whole')
[h,f] = freqz(b,a,l,fs)
h = freqz(b,a,f,fs)
[h,f] = freqz(b,a,l,'whole',fs)
freqz(b,a,...)
freqz(Hd)

Description [h,w] = freqz(b,a,l) returns the frequency response vector h and the
corresponding angular frequency vector w for the digital filter whose transfer
function is determined by the (real or complex) numerator and denominator
polynomials represented in the vectors b and a, respectively. The vectors h
and w are both of length l. The angular frequency vector w has values ranging
from 0 to π radians per sample. When you don’t specify the integer l, or you
specify it as the empty vector [], the frequency response is calculated using the
default value of 512 samples.

h = freqz(b,a,w) returns the frequency response vector h calculated at the
frequencies (in radians per sample) supplied by the vector w. The vector w can
have any length.

[h,w] = freqz(b,a,l,'whole') uses n sample points around the entire unit
circle to calculate the frequency response. The frequency vector w has length l
and has values ranging from 0 to 2π radians per sample.

[h,f] = freqz(b,a,l,fs) returns the frequency response vector h and the
corresponding frequency vector f for the digital filter whose transfer function
is determined by the (real or complex) numerator and denominator
polynomials represented in the vectors b and a, respectively. The vectors h
and f are both of length l. For this syntax, the frequency response is calculated
using the sampling frequency specified by the scalar fs (in hertz). The
frequency vector f is calculated in units of hertz (Hz). The frequency vector f has
values ranging from 0 to fs/2 Hz.
7-310

freqz
h = freqz(b,a,f,fs) returns the frequency response vector h calculated at
the frequencies (in Hz) supplied in the vector f. The vector f can be any length.

[h,f] = freqz(b,a,l,'whole',fs) uses n points around the entire unit circle
to calculate the frequency response. The frequency vector f has length l and
has values ranging from 0 to fs Hz.

freqz(b,a,...) plots the magnitude and unwrapped phase of the frequency
response of the filter. The plot is displayed in the current figure window.

freqz(Hd) plots the magnitude and unwrapped phase of the frequency
response of the filter. The plot is displayed in fvtool. The input Hd is a dfilt
filter object or an array of dfilt filter objects.

Remarks It is best to choose a power of 2 for the third input argument n, because freqz
uses an FFT algorithm to calculate the frequency response. See the reference
description of fft for more information.

Examples Plot the magnitude and phase response of an FIR filter:

b = fir1(80,0.5,kaiser(81,8));
freqz(b,1);

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5000

−4000

−3000

−2000

−1000

0

Normalized Frequency (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−150

−100

−50

0

50

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

7-311

freqz
The same example using a dfilt object and displaying the result in the Filter
Visualization Tool (fvtool) is

Hd = dfilt.dffir(b);
freqz(Hd);

Algorithm The frequency response [1] of a digital filter can be interpreted as the transfer
function evaluated at z = ejω. You can always write a rational transfer function
in the following form.

freqz determines the transfer function from the (real or complex) numerator
and denominator polynomials you specify, and returns the complex frequency

H z() B z()
A z()
----------- b 1() b 2()z 1– b n 1+()z n–+ + +

a 1() a 2()z 1– a m 1+()z m–+ + +
--= =
7-312

freqz
response H(ejω) of a digital filter. The frequency response is evaluated at
sample points determined by the syntax that you use.

freqz generally uses an FFT algorithm to compute the frequency response
whenever you don’t supply a vector of frequencies as an input argument. It
computes the frequency response as the ratio of the transformed numerator
and denominator coefficients, padded with zeros to the desired length.

When you do supply a vector of frequencies as an input argument, then freqz
evaluates the polynomials at each frequency point using Horner’s method of
nested polynomial evaluation [1], dividing the numerator response by the
denominator response.

References [1] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing,
Prentice-Hall, 1989, pp. 203-205.

See Also abs, angle, fft, filter, freqs, impz, invfreqs, logspace
7-313

fvtool
7fvtoolPurpose Filter Visualization Tool

Syntax fvtool(b,a)
fvtool(b1,a1,b2,a2,...bn,an)
fvtool(Hd1,Hd2,...)
h = fvtool(...)

Description fvtool(b,a) opens FVTool and computes the magnitude response of the
digital filter defined with numerator, b and denominator, a. Using FVTool you
can display the phase response, group delay, impulse response, step response,
pole-zero plot, and coefficients of the filter. You can export the displayed
response to a file with Export on the File menu.

fvtool(b1,a1,b2,a2,...bn,an) opens FVTool and computes the magnitude
responses of multiple filters defined with numerators, b1...bn and
denominators, a1...an.

fvtool(Hd1,Hd2,...) opens FVTool and computes the magnitude responses
of the filters in the dfilt objects Hd1, Hd2, etc. If you have the Filter Design
Toolbox installed, you can also use fvtool(H1,H2,...) to analyze quantized
filter objects (dfilt with arithmetic set to 'single'), multirate filter (mfilt)
objects, and adaptive filter (adaptfilt) objects.

h = fvtool(...) returns a figure handle h. You can use this handle to interact
with FVTool from the command line. See “Controlling FVTool from the
MATLAB Command Line” below.
7-314

fvtool
FVTool has two toolbars.

• An extended version of the MATLAB plot editing toolbar. The following table
shows the toolbar icons specific to FVTool.

Icon Description

Zoom to full view. This view displays the response
using standard MATLAB plotting, which shows all
data values. The default view (via Restore default
view on the View menu) displays an improved
view of only significant data.

Toggle legend

Toggle grid
7-315

fvtool
• Analysis toolbar with the following icons

Link to FDATool (appears only if FVTool was
started from FDATool)

 Toggle Add mode/Replace mode (appears only if
FVTool was launched from FDATool)

Magnitude response of the current filter. See freqz and
zerophase for more information.

To see the zero-phase response, right-click on the y-axis label of
the Magnitude plot and select Zero-phase from the context menu.

Phase response of the current filter. See phasez for more
information.

Superimposes the magnitude response and the phase response of
the current filter. See freqz for more information.

Shows the group delay of the current filter. Group delay is the
average delay of the filter as a function of frequency. See
grpdelay for more information.

Shows the phase delay of the current filter. Phase delay is the
time delay the filter imposes on each component of the input
signal. See phasedelay for more information

Impluse response of the current filter. The impulse response is
the response of the filter to a impulse input. See impz for more
information.

Step response of the current filter. The step response is the
response of the filter to a step input. See stepz for more
information.

Pole-zero plot, which shows the pole and zero locations of the
current filter on the z-plane. See zplane for more information.
7-316

fvtool
Linking to FDATool
In fdatool, selecting Filter Visualization Tool from the View menu or the
Full View Analysis toolbar button when an analysis is displayed starts
FVTool for the current filter. You can synchronize FDATool and FVTool with
the FDAToolLink toolbar button . Any changes made to the filter in
FDATool are immediately reflected in FVTool.

Two FDATool link modes are provided via the Set Link Mode toolbar button:

• Replace —removes the filter currently displayed in FVTool and inserts
the new filter.

• Add —retains the filter currently displayed in FVTool and adds the new
filter to the display.

Modifying the Axes
You can change the x- or y-axis units by right-clicking the mouse on the axis
label or by right-clicking on the plot and selecting Analysis Parameters.
Available options for the axes units are as follows.

Filter coefficients of the current filter, which depend on the filter
structure (e.g., direct-form, lattice, etc.) in a text box. For SOS
filters, each section is displayed as a separate filter.

Detailed filter information.

Plot X-Axis Units Y-Axis Units

Magnitude Normalized Frequency
Linear Frequency

Magnitude
Magnitude(dB)
Magnitude squared
Zero-Phase

Phase Normalized Frequency
Linear Frequency

Phase
Continuous Phase
Degrees
Radians
7-317

fvtool
Modifying the Plot
You can use any of the plot editing toolbar buttons to change the properties of
your plot.

Analysis Parameters are parameters that apply to the displayed analyses. To
display them, right-click in the plot area and select Analysis Parameters from
the menu. (Note that you can access the menu only if the Edit Plot button is
inactive.) The following analysis parameters are displayed. (If more than one
response is displayed, parameters applicable to each plot are displayed.) Not
all of these analysis fields are displayed for all types of plots:

• Normalized Frequency — if checked, frequency is normalized between 0
and 1, or if not checked, frequency is in Hz

Magnitude
and Phase

Normalized Frequency
Linear Frequency

(y-axis on left side)
Magnitude
Magnitude(dB)
Magnitude squared
Zero-Phase

(y-axis on right side)
Phase
Continuous Phase
Degrees
Radians

Group
Delay

Normalized Frequency
Linear Frequency

Samples
Time

Phase
Delay

Normalized Frequency
Linear Frequency

Degrees
Radians

Impulse
Response

Samples
Time

Amplitude

Step
Response

Samples
Time

Amplitude

Pole-Zero Real Part Imaginary Part

Plot X-Axis Units Y-Axis Units
7-318

fvtool
• Frequency Scale — y-axis scale (Linear or Log)

• Frequency Range — range of the frequency axis or Specify freq. vector

• Number of Points — number of samples used to compute the response

• Frequency Vector — vector to use for plotting, if Specify freq. vector is
selected in Frequency Range.

• Magnitude Display — y-axis units (Magnitude, Magnitude (dB), Magnitude
squared, or Zero-Phase)

• Phase Units — y-axis units (Degrees or Radians)

• Phase Display — type of phase plot (Phase or Continuous Phase)

• Group Delay Units — y-axis units (Samples or Time)

• Specify Length — length type of impulse or step response (Default or
Specified)

• Length—number of points to use for the impulse or step response

In addition to the above analysis parameters, you can change the plot type for
Impulse and Step Response plots by right-clicking and selecting Line with
Marker, Stem or Line from the context menu. You can change the x-axis units
by right-clicking on the x-axis label and selecting Samples or Time.

To save the displayed parameters as the default values to use when FDATool
or FVTool is opened, click Save as default.

To restore the MATLAB-defined default values, click Restore original
defaults.

Data Markers display information about a particular point in the plot. See
“Using Data Markers” on page 5-17 for more information.

When FVTool is started from FDATool, you can use Specification Masks to
display filter specifications on a Magnitude plot. You can also draw your own
specification masks. See “Analyzing the Filter” on page 5-15 for more
information.

Note To use Passband zoom on the View menu, your filter must have been
designed using fdesign or FDATool. Passband zoom is not provided for
7-319

fvtool
cascaded integrator-comb (CIC) filters because CICs do not have conventional
passbands.

Overlaying a Response
You can overlay a second response on the plot by selecting Overlay Analysis
from the Analysis menu and selecting an available response. A second y-axis
is added to the right side of the response plot. The Analysis Parameters dialog
box shows parameters for the x-axis and both y-axes.

Controlling FVTool from the MATLAB Command Line
After you obtain the handle for FVTool, you can control some aspects of FVTool
from the command line. In addition to the standard Handle Graphics®
properties (see Handle Graphics in the MATLAB documentation), FVTool has
the following properties:

• 'Filters' — returns a cell array of the filters in FVTool.

• 'Analysis' — displays the specified type of analysis plot. The following
table lists the analyses and corresponding analysis strings.

Analysis Type Analysis String

Magnitude plot 'magnitude'

Phase plot 'phase'

Magnitude and phase plot `freq'

Group delay plot 'grpdelay'

Phase delay plot `phasedelay'

Impulse response plot 'impulse'

Step response plot 'step'

Pole-zero plot 'polezero'

Filter coefficients 'coefficients'

Filter information 'info'
7-320

fvtool
• 'Grid' — controls whether the grid is 'on' or 'off'

• 'Legend' — controls whether the legend is 'on' or 'off'

• 'Fs' — controls the sampling frequency of filters in FVTool. The sampling
frequency vector must be of the same length as the number of filters or a
scalar value. If it is a vector, each value is applied to its corresponding filter.
If it is a scalar, the same value is applied to all filters.

• SosViewSettings — (This option is available only if you have the Filter
Deisgn Toolbox.) For second-order sections filters, this controls how the filter
is displayed. The SOSViewSettings property contains an object so you must
use this syntax to set it: set(h.SOSViewSettings,'View',viewtype),
where viewtype is one of the following:

- 'Complete' — Displays the complete response of the overall filter

- 'Individual' — Displays the response of each section separately

- 'Cumulative' — Displays the response for each section accumulated with
each prior section. If your filter has three sections, the first plot shows
section one, the second plot shows the accumlation of sections one and two,
and the third plot show the accumulation of all three sections.

You can also define whether to use SecondaryScaling, which determines
where the sections should be split. The secondary scaling points are the
scaling locations between the recursive and the nonrecursive parts of the
section. The default value is false, which does not use secondary scaling.
To turn on secondary scaling, use this syntax:
set(h.SOSViewSettings,'View','Cumulative',true)

- 'UserDefined' — Allows you to define which sections to display and the
order in which to display them. Enter a cell array where each section is
represented by its index. If you enter one index, only that section is
plotted. If you enter a range of indices, the combined response of that
range of sections is plotted. For example, if your filter has four sections,
entering {1:4} plots the combined response for all four sections, and
entering {1,2,3,4} plots the response for each section individually.

Magnitude response estimate
(available only with Filter Design Toolbox)

'magestimate'

Round-off noise power
(available only with Filter Design Toolbox)

'noisepower'
7-321

fvtool
Note You can change other properties of FVTool from the command line
using the set function. Use get(h) to view property tags and current
property settings.

You can use the following methods with the FVTool handle.

addfilter(h,filtobj) adds a new filter to FVTool. The new filter, filtobj,
must be a dfilt filter object. You can specify the sampling frequency of the
new filter with addfilter(h,filtobj,'Fs',10)

setfilter(h,filtobj) replaces the filter in FVTool with the filter specified
in filtobj. You can set the sampling frequency as described above.

deletefilter(h, index) deletes the filter at the FVTool cell array index
location.

legend(h,str1,str2,...) creates a legend in FVTool by associating str1
with filter 1, str2 with filter 2, etc. See legend in the MATLAB documentation
for information.

For more information on using FVTool from the command line, see the demo
fvtooldemo.

Examples Example 1
Display the magnitude response of an elliptic filter, starting FVTool from the
command line:

[b,a]=ellip(6,3,50,300/500);
fvtool(b,a);
7-322

fvtool
Example 2
Display and analyze multiple FIR filters, starting FVTool from the command
line. Then, display the associated analysis parameters for the magnitude:

b1 = firpm(20,[0 0.4 0.5 1],[1 1 0 0]);
b2 = firpm(40,[0 0.4 0.5 1],[1 1 0 0]);
fvtool(b1,1,b2,1);
7-323

fvtool
7-324

fvtool
Right-click on the plot and select Analysis Parameters..

Example 3
Create a lowpass, equiripple filter of order 20 in FDATool and display it in
FVTool.

fdatool %start FDATool

Set these parameters in fdatool:

Parameter Setting

Response Type Lowpass

Design Method FIR Equiripple

Filter Order Specify order: 20

Density factor 16

Frequency specifications units Normalized (0 to 1)

Wpass 0.4
7-325

fvtool
and then click the Design Filter button.

Wstop 0.5

Magnitude specifications Wpass
and Wstop

1

Parameter Setting
7-326

fvtool
Click the Full View Analysis button to start FVTool.
7-327

fvtool
Example 4
Create an elliptic filter and use some of FVTool’s figure handle commands:

[b,a]=ellip(6,3,50,300/500);
h = fvtool(b,a); % Create handle, h and start FVTool

% with magnitude plot
7-328

fvtool
set(h,'Analysis','phase') % Change display to phase plot
7-329

fvtool
set(h,'Legend','on') % Turn legend on
legend(h,'Phase plot') % Add legend text

get(h) % View all properties
% FVTool-specific properties are
% at the end of this list.

 AlphaMap: [1x64 double]
 BackingStore: 'on'
 CloseRequestFcn: 'closereq'
 Color: [0.8314 0.8157 0.7843]
 ColorMap: [64x3 double]
 CurrentAxes: 208.0084
 CurrentCharacter: ''
 CurrentObject: []
 CurrentPoint: [0 0]
 DockControls: 'on'
7-330

fvtool
 DoubleBuffer: 'on'
 FileName: ''
 FixedColors: [11x3 double]
 IntegerHandle: 'on'
 InvertHardcopy: 'on'
 KeyPressFcn: ''
 MenuBar: 'none'
 MinColormap: 64
 Name: 'Filter Visualization Tool - Phase Response'
 NextPlot: 'new'
 NumberTitle: 'on'
 PaperUnits: 'inches'
 PaperOrientation: 'portrait'
 PaperPosition: [0.2500 2.5000 8 6]
 PaperPositionMode: 'manual'
 PaperSize: [8.5000 11]
 PaperType: 'usletter'
 Pointer: 'arrow'
 PointerShapeCData: [16x16 double]
 PointerShapeHotSpot: [1 1]
 Position: [360 292 560 345]
 Renderer: 'painters'
 RendererMode: 'auto'
 Resize: 'on'
 ResizeFcn: ''
 SelectionType: 'normal'
 ShareColors: 'on'
 Toolbar: 'auto'
 Units: 'pixels'
 WindowButtonDownFcn: ''
 WindowButtonMotionFcn: ''
 WindowButtonUpFcn: ''
 WindowStyle: 'normal'
 BeingDeleted: 'off'
 ButtonDownFcn: ''
 Children: [15x1 double]
 Clipping: 'on'
 CreateFcn: ''
 DeleteFcn: ''
 BusyAction: 'queue'
7-331

fvtool
 HandleVisibility: 'on'
 HitTest: 'on'
 Interruptible: 'on'
 Parent: 0
 Selected: 'off'
 SelectionHighlight: 'on'
 Tag: 'filtervisualizationtool'
 UIContextMenu: []
 UserData: []
 Visible: 'on'
 AnalysisToolbar: 'on'
 FigureToolbar: 'on'
 Filters: {[1x1 dfilt.df2t]}
 Grid: 'on'
 Legend: 'on'
 DesignMask: 'off'
 Fs: 1
 SOSViewSettings: [1x1 dspopts.sosview]
 Analysis: 'phase'
 OverlayedAnalysis: ''
 ShowReference: 'on'
 PolyphaseView: 'off'
 NormalizedFrequency: 'on'
 FrequencyScale: 'Linear'
 FrequencyRange: '[0, pi)'
 NumberofPoints: 8192
 FrequencyVector: [1x256 double]
 PhaseUnits: 'Radians'
 PhaseDisplay: 'Phase'

See Also fdatool, sptool
7-332

gauspuls
7gauspulsPurpose Gaussian-modulated sinusoidal pulse

Syntax yi = gauspuls(t,fc,bw)
yi = gauspuls(t,fc,bw,bwr)
[yi,yq] = gauspuls(...)
[yi,yq,ye] = gauspuls(...)
tc = gauspuls('cutoff',fc,bw,bwr,tpe)

Description gauspuls generates Gaussian-modulated sinusoidal pulses.

yi = gauspuls(t,fc,bw) returns a unity-amplitude Gaussian RF pulse at the
times indicated in array t, with a center frequency fc in hertz and a fractional
bandwidth bw, which must be greater than 0. The default value for fc is
1000 Hz and for bw is 0.5.

yi = gauspuls(t,fc,bw,bwr) returns a unity-amplitude Gaussian RF pulse
with a fractional bandwidth of bw as measured at a level of bwr dB with respect
to the normalized signal peak. The fractional bandwidth reference level bwr
must be less than 0, because it indicates a reference level less than the peak
(unity) envelope amplitude. The default value for bwr is -6 dB.

[yi,yq] = gauspuls(...) returns both the in-phase and quadrature pulses.

[yi,yq,ye] = gauspuls(...) returns the RF signal envelope.

tc = gauspuls('cutoff',fc,bw,bwr,tpe) returns the cutoff time tc (greater
than or equal to 0) at which the trailing pulse envelope falls below tpe dB with
respect to the peak envelope amplitude. The trailing pulse envelope level tpe
must be less than 0, because it indicates a reference level less than the peak
(unity) envelope amplitude. The default value for tpe is -60 dB.

Remarks Default values are substituted for empty or omitted trailing input arguments.
7-333

gauspuls
Examples Plot a 50 kHz Gaussian RF pulse with 60% bandwidth, sampled at a rate of
1 MHz. Truncate the pulse where the envelope falls 40 dB below the peak:

tc = gauspuls('cutoff',50e3,0.6,[],-40);
t = -tc : 1e-6 : tc;
yi = gauspuls(t,50e3,0.6);
plot(t,yi)

See Also chirp, cos, diric, pulstran, rectpuls, sawtooth, sin, sinc, square, tripuls

-4 -2 0 2 4

x 10
-5

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

7-334

gaussfir
7gaussfirPurpose Gaussian FIR pulse-shaping filter

Syntax h = gaussfir(bt)
h = gausswin(bt,n)
h = gausswin(bt,n,o)

Description This filter is used primarily in Gaussian minimum shift keying (GMSK)
communications applications.

h = gaussfir(bt) designs a low pass FIR Gaussian pulse-shaping filter and
returns the filter coefficients in the h vector. bt is the 3-dB bandwidth-symbol
time product where b is the two-sided bandwidth in hertz and t is in seconds.
Smaller bt products produce larger pulse widths. The number of symbol
periods (n) defaults to 3 and the oversampling factor (o) defaults to 2.

The length of the impulse response of the filter is given by 2*o*n+1. The
coefficients h are normalized so that the nominal passband gain is always equal
to 1.

h = gaussfir(bt,n) uses n number of symbol periods between the start of the
filter impulse response and its peak.

h = gaussfir(bt,n,o) uses an oversampling factor of o, which is the number
of samples per symbol.

Examples Design a Gaussian filter to be used in a Global System for Mobile
communications (GSM) GMSK scheme.

bt = .3; % 3-dB bandwidth-symbol time
o = 8; % Oversampling factor
n = 2; % 2 symbol periods to the filters peak.
h = gaussfir(bt,n,o);
hfvt = fvtool(h,'impulse');
7-335

gaussfir
References [1] Rappaport T.S., Wireless Communications Principles and Practice, Prentice
Hall, 1996.

[2] Krishnapura N., Pavan S., Mathiazhagan C., Ramamurthi B., “A Baseband
Pulse Shaping Filter for Gaussian Minimum Shift Keying,” Proceedings of the
1998 IEEE International Symposium on Circuits and Systems, 1998.

See Also firrcos, rcosfir
7-336

gausswin
7gausswinPurpose Gaussian window

Syntax w = gausswin(n)
w = gausswin(n,α)

Description w = gausswin(n) returns an n-point Gaussian window in the column vector w.
n is a positive integer. The coefficients of a Gaussian window are computed
from the following equation.

where and .

w = gausswin(n,α) returns an n-point Gaussian window where α is the
reciprocal of the standard deviation. The width of the window is inversely
related to the value of α; a larger value of α produces a more narrow window.
If α is omitted, it defaults to 2.5.

Note If the window appears to be clipped, increase the number of points (n)
used for gausswin(n) .

Examples Create a 64-point Gaussian window and display the result in WVTool:

N=64;
wvtool(gausswin(N))

w k 1+ e

1
2
---– α

k N
2
----–

N 2⁄

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

2

=

0 k N≤ ≤ α 2≥
7-337

gausswin
Note The shape of this window is similar in the frequency domain because
the Fourier transform of a Gaussian is also a Gaussian.

References [1] Harris, F.J. “On the Use of Windows for Harmonic Analysis with the
Discrete Fourier Transform.” Proceedings of the IEEE. Vol. 66, No. 1 (January
1978).

[2] Roberts, Richard A., and C.T. Mullis. Digital Signal Processing. Reading,
MA: Addison-Wesley, 1987, pp. 135-136.

See Also chebwin, kaiser, tukeywin, window, wintool, wvtool
7-338

gmonopuls
7gmonopulsPurpose Gaussian monopulse

Syntax y = gmonopuls(t,fc)
tc = gmonopuls('cutoff',fc)

Description y = gmonopuls(t,fc) returns samples of the unity-amplitude Gaussian
monopulse with center frequency fc (in hertz) at the times indicated in array t.
By default, fc = 1000 Hz.

tc = gmonopuls('cutoff',fc) returns the time duration between the
maximum and minimum amplitudes of the pulse.

Remarks Default values are substituted for empty or omitted trailing input arguments.

Examples Example 1
Plot a 2 GHz Gaussian monopulse sampled at a rate of 100 GHz:

fc = 2E9; fs=100E9;
tc = gmonopuls('cutoff',fc);
t = -2*tc : 1/fs : 2*tc;
y = gmonopuls(t,fc); plot(t,y)

−4 −3 −2 −1 0 1 2 3 4

x 10
−10

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

7-339

gmonopuls
Example 2
Construct a pulse train from the monopulse of Example 1 using a spacing of
7.5 ns:

fc = 2E9; fs=100E9; % center freq, sample freq
D = [2.5 10 17.5]' * 1e-9; % pulse delay times
tc = gmonopuls('cutoff',fc); % width of each pulse
t = 0 : 1/fs : 150*tc; % signal evaluation time
yp = pulstran(t,D,@gmonopuls,fc);
plot(t,yp)

See Also chirp, gauspuls, pulstran, rectpuls, tripuls

0 0.5 1 1.5 2 2.5

x 10
−8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

7-340

goertzel
7goertzelPurpose Discrete Fourier transform using second order Goertzel algorithm

Syntax y = goertzel(x,i)
y = goertzel(x,i,dim)

Description goertzel computes the discrete Fourier transform (DFT) of specific indices in
a vector or matrix.

y = goertzel(x,i) returns the DFT of vector x at the indices in vector i,
computed using the second-order Goertzel algorithm. If x is a matrix, goertzel
computes each column separately. The indices in vector i must be integer
values from 1 to N, where N is the length of the first matrix dimension of x that
is greater than 1. The resulting y has the same dimensions as x. If i is omitted,
it is assumed to be [1:N], which results in a full DFT computation.

y = goertzel(x,i,dim) returns the discrete Fourier transform (DFT) of
matrix x at the indices in vector i, computed along the dimension dim of x.

Note fft computes all DFT values at all indices, while goertzel computes
DFT values at a specified subset of indices (i.e., a portion of the signal’s
frequency range). If less than log2(N) points are required, goertzel is more
efficient than the Fast Fourier Transform (fft).

Two examples where goertzel can be useful are spectral analysis of very large
signals and dual-tone multifrequency (DTMF) signal detection.

Examples Estimate the frequency of the two tones generated by the “1” button on a
telephone keypad.

% Frequency tones of the telephone pad (Hz)
f = [697 770 852 941 1209 1336 1477];
Fs = 8000;
N = 205;
% Tones of 25.6 ms
tones = sum(sin(2*pi*[697;1209]*(0:N-1)/Fs));
k = round(f/Fs*N); % Indices of the DFT
ydft = goertzel(tones,k+1); % DC is represented by the value 1
7-341

goertzel
estim_f = round(k*Fs/N); % Frequencies at which DFT estimated
stem(estim_f,abs(ydft)) % Peaks detected around 697 & 1209 Hz

Algorithm goertzel implements this transfer function

where N is the length of the signal and k is the index of the computed DFT. k
is related to the indices in vector i above as k = i - 1.

The signal flow graph for this transfer function is

Hk z()
1 WN

k z 1–
–

1 2 2π
N
------k⎝ ⎠

⎛ ⎞ z 1– z 2–
+cos–

--=
7-342

goertzel
and it is implemented as

where

and

To compute X[k] for a particular k, the Goertzel algorithm requires 4N real
multiplications and 4N real additions. Although this is less efficient than
computing the DFT by the direct method, Goertzel uses recursion to compute

 and

which are evaluated only at n = N. The direct DFT does not use recursion and
must compute each complex term separately.

vk n[] xe n[] 2 2πk
N

----------⎝ ⎠
⎛ ⎞ vk n 1–[] vk n 2–[]–cos+=

xe n()
x n() 0, n N 1–≤ ≤

0 n 0 n N≥,<,⎩
⎨
⎧

=

X k[] yk N[] vk N[] WN
k vk N 1–[]–= =

WN
k 2πk

N
----------⎝ ⎠

⎛ ⎞cos
7-343

goertzel
References [1] Burrus, C.S. and T.W. Parks. DFT/FFT and Convolution Algorithms. John
Wiley & Sons, 1985, pp. 32-26.

[2] Mitra, Sanjit K. Digital Signal Processing: A Computer-Based Approach.
New York, NY: McGraw-Hill, 1998, pp. 520-523.

See Also fft, fft2
7-344

grpdelay
7grpdelayPurpose Average filter delay (group delay)

Syntax grpdelay(b,a)
[gd,w] = grpdelay(b,a,n)
[gd,f] = grpdelay(b,a,n,fs)
[gd,w] = grpdelay(b,a,n,'whole')
[gd,f] = grpdelay(b,a,n,'whole',fs)
gd = grpdelay(b,a,w)
gd = grpdelay(b,a,f,fs)
grpdelay(Hd)

Description The group delay of a filter is a measure of the average delay of the filter as a
function of frequency. It is the negative first derivative of the phase response
of the filter. If the complex frequency response of a filter is , then the
group delay is

where ω is frequency and θ is the phase angle of .

grpdelay(b,a) with no output arguments plots the group delay versus
frequency in the current figure window.

[gd,w] = grpdelay(b,a,l) returns the i-point group delay, , of the
digital filter

given the numerator and denominator coefficients in vectors b and a. grpdelay
returns both gd, the group delay, and w, a vector containing the n frequency
points in radians. grpdelay evaluates the group delay at n points equally
spaced around the upper half of the unit circle, so w contains n points between
0 and π.

[gd,f] = grpdelay(b,a,n,fs) specifies a positive sampling frequency fs in
hertz. It returns a length n vector f containing the actual frequency points at
which the group delay is calculated, also in hertz. f contains n points between
0 and fs/2.

H ejω()

τg ω() dθ ω()
dω

---------------–=

H ejω()

τg ω()

H z() B z()
A z()
----------- b 1() b 2()z 1– b n 1+()z n–+ + +

a 1() a 2()z 1– a m 1+()z m–+ + +
--= =
7-345

grpdelay
[gd,w] = grpdelay(b,a,n,'whole') and

[gd,f] = grpdelay(b,a,n,'whole',fs) use n points around the whole unit
circle (from 0 to 2π, or from 0 to fs).

gd = grpdelay(b,a,w) and

gd = grpdelay(b,a,f,fs) return the group delay evaluated at the points in w
(in radians) or f (in hertz), respectively, where fs is the sampling frequency in
hertz.

grpdelay(Hd) plots the group delay and displays the plot in fvtool. The input
Hd is a dfilt filter object or an array of dfilt filter objects.

grpdelay works for both real and complex filters.

Examples Plot the group delay of Butterworth filter b(z)/a(z):

[b,a] = butter(6,0.2);
grpdelay(b,a,128)

The same example using a dfilt object and displaying the result in the Filter
Visualization Tool (fvtool) is

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

Normalized Frequency (×π rad/sample)

G
ro

up
 d

el
ay

 (
sa

m
pl

es
)

7-346

grpdelay
[b,a] = butter(6,0.2);
Hd=dfilt.df1(b,a);
grpdelay(Hd,128)

Plot both the group and phase delays of a system on the same graph:

gd = grpdelay(b,a,512);
gd(1) = []; % Avoid NaNs
[h,w] = freqz(b,a,512); h(1) = []; w(1) = [];
pd = -unwrap(angle(h))./w;
plot(w,gd,w,pd,':')
xlabel('Frequency (rad/sec)'); grid;
legend('Group Delay','Phase Delay');
7-347

grpdelay
Algorithm grpdelay multiplies the filter coefficients by a unit ramp. After Fourier
transformation, this process corresponds to differentiation.

See Also cceps, fft, freqz, hilbert, icceps, rceps

0 0.5 1 1.5 2 2.5 3 3.5
10

20

30

40

50

60

70

80

90

100

Frequency (rad/sec)

Group Delay
Phase Delay
7-348

hamming
7hammingPurpose Hamming window

Syntax w = hamming(n)
w = hamming(n,'sflag')

Description w = hamming(n) returns an n-point symmetric Hamming window in the
column vector w. n should be a positive integer. The coefficients of a Hamming
window are computed from the following equation.

w = hamming(n,'sflag') returns an n-point Hamming window using the
window sampling specified by 'sflag', which can be either 'periodic' or
'symmetric' (the default). When 'periodic' is specified, hamming computes a
length n+1 window and returns the first n points.

Note If you specify a one-point window (n=1), the value 1 is returned.

Examples Create a 64-point Hamming window and display the result in WVTool:

N=64;
wvtool(hamming(N))

w k 1+[] 0.54 0.46 2π k
n 1–
-------------⎝ ⎠

⎛ ⎞cos– k 0= … n 1–, , ,=
7-349

hamming
References [1] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing,
Prentice-Hall, 1989, pp. 447-448.

See Also blackman, flattopwin, hann, window, wintool, wvtool
7-350

hann
7hannPurpose Hann (Hanning) window

Syntax w = hann(n)
w = hann(n,'sflag')

Description w = hann(n) returns an n-point symmetric Hann window in the column
vector w. n must be a positive integer. The coefficients of a Hann window are
computed from the following equation.

w = hann(n,'sflag') returns an n-point Hann window using the window
sampling specified by 'sflag', which can be either 'periodic' or
'symmetric' (the default). When 'periodic' is specified, hann computes a
length n+1 window and returns the first n points.

Note If you specify a one-point window (n=1), the value 1 is returned.

Examples Create a 64-point Hann window and display the result in WVTool:

N=64;
wvtool(hann(N))

w k 1+[] 0.5 1 2π k
n 1–
-------------⎝ ⎠

⎛ ⎞cos–⎝ ⎠
⎛ ⎞ k 0= … n 1–, , ,=
7-351

hann
References [1] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing,
Prentice-Hall, 1989, pp. 447-448.

See Also blackman, flattopwin, hamming, window, wintool, wvtool
7-352

hilbert
7hilbertPurpose Discrete-time analytic signal using Hilbert transform

Syntax x = hilbert(xr)
x = hilbert(xr,n)

Description x = hilbert(xr) returns a complex helical sequence, sometimes called the
analytic signal, from a real data sequence. The analytic signal x = xr + i*xi
has a real part, xr, which is the original data, and an imaginary part, xi, which
contains the Hilbert transform. The imaginary part is a version of the original
real sequence with a 90° phase shift. Sines are therefore transformed to cosines
and vice versa. The Hilbert transformed series has the same amplitude and
frequency content as the original real data and includes phase information that
depends on the phase of the original data.

If xr is a matrix, x = hilbert(xr) operates columnwise on the matrix, finding
the Hilbert transform of each column.

x = hilbert(xr,n) uses an n point FFT to compute the Hilbert transform.
The input data xr is zero-padded or truncated to length n, as appropriate.

The Hilbert transform is useful in calculating instantaneous attributes of a
time series, especially the amplitude and frequency. The instantaneous
amplitude is the amplitude of the complex Hilbert transform; the
instantaneous frequency is the time rate of change of the instantaneous phase
angle. For a pure sinusoid, the instantaneous amplitude and frequency are
constant. The instantaneous phase, however, is a sawtooth, reflecting the way
in which the local phase angle varies linearly over a single cycle. For mixtures
of sinusoids, the attributes are short term, or local, averages spanning no more
than two or three points.

Reference [1] describes the Kolmogorov method for minimum phase
reconstruction, which involves taking the Hilbert transform of the logarithm of
the spectral density of a time series. The toolbox function rceps performs this
reconstruction.

For a discrete-time analytic signal x, the last half of fft(x) is zero, and the
first (DC) and center (Nyquist) elements of fft(x) are purely real.

Examples xr = [1 2 3 4];
x = hilbert(xr)
7-353

hilbert
x =
 1.0000+1.0000i 2.0000-1.0000i 3.0000-1.0000i 4.0000+1.0000i

You can see that the imaginary part, imag(x) = [1 -1 -1 1], is the Hilbert
transform of xr, and the real part, real(x) = [1 2 3 4], is simply xr itself.
Note that the last half of fft(x) = [10 -4+4i -2 0] is zero (in this example,
the last half is just the last element), and that the DC and Nyquist elements of
fft(x), 10 and -2 respectively, are purely real.

Algorithm The analytic signal for a sequence x has a one-sided Fourier transform, that is,
negative frequencies are 0. To approximate the analytic signal, hilbert
calculates the FFT of the input sequence, replaces those FFT coefficients that
correspond to negative frequencies with zeros, and calculates the inverse FFT
of the result.

In detail, hilbert uses a four-step algorithm:

1 It calculates the FFT of the input sequence, storing the result in a vector x.

2 It creates a vector h whose elements h(i) have the values:

- 1 for i = 1, (n/2)+1

- 2 for i = 2, 3, ... , (n/2)

- 0 for i = (n/2)+2, ... , n

3 It calculates the element-wise product of x and h.

4 It calculates the inverse FFT of the sequence obtained in step 3 and returns
the first n elements of the result.

If the input data xr is a matrix, hilbert operates in a similar manner,
extending each step above to handle the matrix case.

References [1] Claerbout, J.F., Fundamentals of Geophysical Data Processing,
McGraw-Hill, 1976, pp. 59-62.

[2] Marple, S.L., “Computing the discrete-time analytic signal via FFT,” IEEE
Transactions on Signal Processing, Vol. 47, No. 9 (September 1999),
pp. 2600-2603.

[3] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing,
2nd ed., Prentice-Hall, 1998.

See Also fft, ifft, rceps
7-354

icceps
7iccepsPurpose Inverse complex cepstrum

Syntax x = icceps(xhat,nd)

Description Note icceps only works on real data.

x = icceps(xhat,nd) returns the inverse complex cepstrum of the real data
sequence xhat, removing nd samples of delay. If xhat was obtained with
cceps(x), then the amount of delay that was added to x was the element of
round(unwrap(angle(fft(x)))/pi) corresponding to π radians.

References [1] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing,
Prentice-Hall, 1989.

See Also cceps, hilbert, rceps, unwrap
7-355

idct
7idctPurpose Inverse discrete cosine transform

Syntax x = idct(y)
x = idct(y,n)

Description The inverse discrete cosine transform reconstructs a sequence from its discrete
cosine transform (DCT) coefficients. The idct function is the inverse of the dct
function.

x = idct(y) returns the inverse discrete cosine transform of y

where

and N = length(x), which is the same as length(y). The series is indexed
from n = 1 and k = 1 instead of the usual n = 0 and k = 0 because MATLAB
vectors run from 1 to N instead of from 0 to N-1.

x = idct(y,n) appends zeros or truncates the vector y to length n before
transforming.

If y is a matrix, idct transforms its columns.

References [1] Jain, A.K., Fundamentals of Digital Image Processing, Prentice-Hall, 1989.

[2] Pennebaker, W.B., and J.L. Mitchell, JPEG Still Image Data Compression
Standard, Van Nostrand Reinhold, 1993, Chapter 4.

See Also dct, dct2, idct2, ifft

x n() w k()y k() π 2n 1–() k 1–()
2N

---cos

k 1=

N

∑ n 1 … N, ,=,=

w k()

1
N

--------- k 1=,

2
N
---- 2 k N≤ ≤,

⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

7-356

ifft
7ifftPurpose One-dimensional inverse fast Fourier transform

ifft is a MATLAB function.
7-357

ifft2
7ifft2Purpose Two-dimensional inverse fast Fourier transform

ifft2 is a MATLAB function.
7-358

impinvar
7impinvarPurpose Impulse invariance method for analog-to-digital filter conversion

Syntax [bz,az] = impinvar(b,a,fs)
[bz,az] = impinvar(b,a)
[bz,az] = impinvar(b,a,fs,tol)

Description [bz,az] = impinvar(b,a,fs) creates a digital filter with numerator and
denominator coefficients bz and az, respectively, whose impulse response is
equal to the impulse response of the analog filter with coefficients b and a,
scaled by 1/fs. If you leave out the argument fs, or specify fs as the empty
vector [], it takes the default value of 1 Hz.

[bz,az] = impinvar(b,a,fs,tol) uses the tolerance specified by tol to
determine whether poles are repeated. A larger tolerance increases the
likelihood that impinvar interprets closely located poles as multiplicities
(repeated ones). The default is 0.001, or 0.1% of a pole’s magnitude. Note that
the accuracy of the pole values is still limited to the accuracy obtainable by the
roots function.

Examples Example 1
Convert an analog lowpass filter to a digital filter using impinvar with a
sampling frequency of 10 Hz:

[b,a] = butter(4,0.3,'s');
[bz,az] = impinvar(b,a,10)

bz =

 1.0e-006 *

 -0.0000 0.1324 0.5192 0.1273 0

az =

 1.0000 -3.9216 5.7679 -3.7709 0.9246
7-359

impinvar
Example 2
Illustrate the relationship between analog and digital impulse responses [2].

Note This example requires the impulse function from the Control System
Toolbox.

The steps used in this example are:

1 Create an analog Butterworth filter

2 Use impinvar with a sampling frequency Fs of 10 Hz to scale the coefficients
by 1/Fs. This compensates for the gain that will be introduced in Step 4
below.

3 Use Control System Toolbox impulse function to plot the continuous-time
unit impulse response of an LTI system.

4 Plot the digital impulse response, multiplying the numerator by a constant
(Fs) to compenstate for the 1/Fs gain introduced in the impulse response of
the derived digital filter.

[b,a] = butter(4,0.3,'s');
[bz,az] = impinvar(b,a,10);
sys = tf(b,a);
impulse(sys);
hold on;
impz(10*bz,az,[],10);

Zooming the resulting plot shows that the analog and digital impulse responses
are the same.
7-360

impinvar
f

Algorithm impinvar performs the impulse-invariant method of analog-to-digital transfer
function conversion discussed in reference [1]:

1 It finds the partial fraction expansion of the system represented by b and a.

2 It replaces the poles p by the poles exp(p/fs).

3 It finds the transfer function coefficients of the system from the residues
from step 1 and the poles from step 2.

References [1] Parks, T.W., and C.S. Burrus, Digital Filter Design, John Wiley & Sons,
1987, pp. 206-209.

[2] Antoniou, Andreas, Digital Filters, McGraw Hill, Inc, 1993, pp.221-224.

See Also bilinear, lp2bp, lp2bs, lp2hp, lp2lp

4 6 8 10 12 14 16

0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

Impulse Response

nT (seconds) (sec)

 A
m

pl
itu

de
7-361

impz
7impzPurpose Impulse response of digital filters

Syntax [h,t] = impz(b,a)
[h,t] = impz(b,a,n)
[h,t] = impz(b,a,n,fs)
impz(b,a)
impz(Hd)

Description [h,t] = impz(b,a) computes the impulse response of the filter with
numerator coefficients b and denominator coefficients a. impz chooses the
number of samples and returns the response in the column vector h and sample
times in the column vector t (where t = [0:n-1]', and n = length(t) is
computed automatically).

[h,t] = impz(b,a,n) computes n samples of the impulse response when n is
an integer (t = [0:n-1]'). If n is a vector of integers, impz computes the
impulse response at those integer locations, starting the response computation
from 0 (and t = n or t = [0 n]). If, instead of n, you include the empty vector []
for the second argument, the number of samples is computed automatically by
default.

[h,t] = impz(b,a,n,fs) computes n samples and produces a vector t of
length n so that the samples are spaced 1/fs units apart.

impz(b,a) with no output arguments plots the impulse response and displays
the response in the current figure window.

impz(Hd) plots the impulse responsee of the filter and displays the plot in
fvtool. The input Hd is a dfilt filter object or an array of dfilt filter objects.

Note impz works for both real and complex input systems.

Examples Plot the first 50 samples of the impulse response of a fourth-order lowpass
elliptic filter with cutoff frequency of 0.4 times the Nyquist frequency:

[b,a] = ellip(4,0.5,20,0.4);
impz(b,a,50)
7-362

impz
The same example using a dfilt object and displaying the result in the Filter
Tool (fvtool) is

[b,a] = ellip(4,0.5,20,0.4);
Hd = dfilt.df1(b,a)
impz(Hd,50)

0 5 10 15 20 25 30 35 40 45
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
7-363

impz
Algorithm impz filters a length n impulse sequence using

filter(b,a,[1 zeros(1,n-1)])

and plots the results using stem.

To compute n in the auto-length case, impz either uses n = length(b) for the
FIR case or first finds the poles using p = roots(a), if length(a) is greater
than 1.

If the filter is unstable, n is chosen to be the point at which the term from the
largest pole reaches 10^6 times its original value.

If the filter is stable, n is chosen to be the point at which the term due to the
largest amplitude pole is 5*10^-5 of its original amplitude.
7-364

impz
If the filter is oscillatory (poles on the unit circle only), impz computes five
periods of the slowest oscillation.

If the filter has both oscillatory and damped terms, n is chosen to equal five
periods of the slowest oscillation or the point at which the term due to the
largest (nonunity) amplitude pole is 5*10^-5 of its original amplitude,
whichever is greater.

impz also allows for delays in the numerator polynomial. The number of delays
is incorporated into the computation for the number of samples.

See Also impulse, stem
7-365

interp
7interpPurpose Interpolation — increase sampling rate by integer factor

Syntax y = interp(x,r)
y = interp(x,r,l,alpha)
[y,b] = interp(x,r,l,alpha)

Description Interpolation increases the original sampling rate for a sequence to a higher
rate. interp performs lowpass interpolation by inserting zeros into the original
sequence and then applying a special lowpass filter.

y = interp(x,r) increases the sampling rate of x by a factor of r. The
interpolated vector y is r times longer than the original input x.

y = interp(x,r,l,alpha) specifies l (filter length) and alpha (cut-off
frequency). The default value for l is 4 and the default value for alpha is 0.5.

[y,b] = interp(x,r,l,alpha) returns vector b containing the filter
coefficients used for the interpolation.

Examples Interpolate a signal by a factor of four:

t = 0:0.001:1; % Time vector
x = sin(2*pi*30*t) + sin(2*pi*60*t);
y = interp(x,4);
stem(x(1:30));
title('Original Signal');
figure
stem(y(1:120));
title('Interpolated Signal');
7-366

interp
Algorithm interp uses the lowpass interpolation Algorithm 8.1 described in [1]:

1 It expands the input vector to the correct length by inserting zeros between
the original data values.

2 It designs a special symmetric FIR filter that allows the original data to pass
through unchanged and interpolates between so that the mean-square
errors between the interpolated points and their ideal values are minimized.

3 It applies the filter to the input vector to produce the interpolated output
vector.

The length of the FIR lowpass interpolating filter is 2*l*r+1. The number of
original sample values used for interpolation is 2*l. Ordinarily, l should be less
than or equal to 10. The original signal is assumed to be band limited with
normalized cutoff frequency 0 ≤ alpha ≤ 1, where 1 is half the original sampling
frequency (the Nyquist frequency). The default value for l is 4 and the default
value for alpha is 0.5.

Diagnostics If r is not an integer, interp gives the following error message:

Resampling rate R must be an integer.

References [1] Programs for Digital Signal Processing, IEEE Press, New York, 1979,
Algorithm 8.1.

See Also decimate, downsample, interp1, resample, spline, upfirdn, upsample

0 20 40 60 80 100 120
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Interpolated Signal

0 5 10 15 20 25 30
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Original Signal
7-367

intfilt
7intfiltPurpose Interpolation FIR filter design

Syntax b = intfilt(l,p,alpha)
b = intfilt(l,n,'Lagrange')

Description b = intfilt(l,p,alpha) designs a linear phase FIR filter that performs ideal
bandlimited interpolation using the nearest 2*p nonzero samples, when used
on a sequence interleaved with l-1 consecutive zeros every l samples. It
assumes an original bandlimitedness of alpha times the Nyquist frequency. The
returned filter is identical to that used by interp. b is length 2*l*p-1

alpha is inversely proportional to the transition bandwidth of the filter and it
also affects the bandwith of the don’t-care regions in the stopband. Specifying
alpha allows you to specify how much of the Nyquist interval your input signal
occupies. This is beneficial, particularly for signals to be interpolated, because
it allows you to increase the transition bandwidth without affecting the
interpolation and results in better stopband attenuation for a given l and p. If
you set alpha to 1, your signal is assumed to occupy the entire Nyquist interval.
Setting alpha to less than one allows for don’t-care regions in the stopband. For
example, if your input occupies half the Nyquist interval, you could set alpha to
0.5.

b = intfilt(l,n,'Lagrange') designs an FIR filter that performs nth-order
Lagrange polynomial interpolation on a sequence interleaved with l-1
consecutive zeros every r samples. b has length (n + 1)*l for n even, and length
(n + 1)*l-1 for n odd. If both n and l are even, the filter designed is not linear
phase.

Both types of filters are basically lowpass and have a gain of l in the passband..

Examples Design a digital interpolation filter to upsample a signal by four, using the
bandlimited method:

alpha = 0.5; % "Bandlimitedness" factor
h1 = intfilt(4,2,alpha); % Bandlimited interpolation

The filter h1 works best when the original signal is bandlimited to alpha times
the Nyquist frequency. Create a bandlimited noise signal:

randn('state',0)
x = filter(fir1(40,0.5),1,randn(200,1)); % Bandlimit
7-368

intfilt
Now zero pad the signal with three zeros between every sample. The resulting
sequence is four times the length of x:

xr = reshape([x zeros(length(x),3)]',4*length(x),1);

Interpolate using the filter command:

y = filter(h1,1,xr);

y is an interpolated version of x, delayed by seven samples (the group-delay of
the filter). Zoom in on a section of one hundred samples to see this:

plot(100:200,y(100:200),7+(101:4:196),x(26:49),'o')

intfilt also performs Lagrange polynomial interpolation of the original
signal. For example, first-order polynomial interpolation is just linear
interpolation, which is accomplished with a triangular filter:

h2 = intfilt(4,1,'l') % Lagrange interpolation

h2 =
 0.2500 0.5000 0.7500 1.0000 0.7500 0.5000 0.2500

Algorithm The bandlimited method uses firls to design an interpolation FIR equivalent
to that presented in [1]. The polynomial method uses Lagrange’s polynomial
interpolation formula on equally spaced samples to construct the appropriate
filter.

100 110 120 130 140 150 160 170 180 190 200
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
7-369

intfilt
References [1] Oetken, Parks, and Schüßler, “New Results in the Design of Digital
Interpolators,” IEEE Trans. Acoust., Speech, Signal Processing, Vol. ASSP-23
(June 1975), pp. 301-309.

See Also decimate, downsample, interp, resample, upsample
7-370

invfreqs
7invfreqsPurpose Identify continuous-time filter parameters from frequency response data

Syntax [b,a] = invfreqs(h,w,n,m)
[b,a] = invfreqs(h,w,n,m,wt)
[b,a] = invfreqs(h,w,n,m,wt,iter)
[b,a] = invfreqs(h,w,n,m,wt,iter,tol)
[b,a] = invfreqs(h,w,n,m,wt,iter,tol,'trace')

[b,a] = invfreqs(h,w,'complex',n,m,...)

Description invfreqs is the inverse operation of freqs. It finds a continuous-time transfer
function that corresponds to a given complex frequency response. From a
laboratory analysis standpoint, invfreqs is useful in converting magnitude
and phase data into transfer functions.

[b,a] = invfreqs(h,w,n,m) returns the real numerator and denominator
coefficient vectors b and a of the transfer function

whose complex frequency response is given in vector h at the frequency points
specified in vector w. Scalars n and m specify the desired orders of the
numerator and denominator polynomials.

Frequency is specified in radians between 0 and π, and the length of h must be
the same as the length of w. invfreqs uses conj(h) at -w to ensure the proper
frequency domain symmetry for a real filter.

[b,a] = invfreqs(h,w,n,m,wt) weights the fit-errors versus frequency,
where wt is a vector of weighting factors the same length as w.

[b,a] = invfreqs(h,w,n,m,wt,iter) and

[b,a] = invfreqs(h,w,n,m,wt,iter,tol) provide a superior algorithm that
guarantees stability of the resulting linear system and searches for the best fit
using a numerical, iterative scheme. The iter parameter tells invfreqs to end
the iteration when the solution has converged, or after iter iterations,
whichever comes first. invfreqs defines convergence as occurring when the
norm of the (modified) gradient vector is less than tol, where tol is an optional
parameter that defaults to 0.01. To obtain a weight vector of all ones, use

H s() B s()
A s()
----------- b 1()sn b 2()sn 1– b n 1+()+ + +

a 1()sm a 2()sm 1– a m 1+()+ + +
--= =
7-371

invfreqs
invfreqs(h,w,n,m,[],iter,tol)

[b,a] = invfreqs(h,w,n,m,wt,iter,tol,'trace') displays a textual
progress report of the iteration.

[b,a] = invfreqs(h,w,'complex',n,m,...) creates a complex filter. In this
case no symmetry is enforced, and the frequency is specified in radians
between -π and π.

Remarks When building higher order models using high frequencies, it is important to
scale the frequencies, dividing by a factor such as half the highest frequency
present in w, so as to obtain well conditioned values of a and b. This corresponds
to a rescaling of time.

Examples Example 1
Convert a simple transfer function to frequency response data and then back
to the original filter coefficients:

a = [1 2 3 2 1 4]; b = [1 2 3 2 3];
[h,w] = freqs(b,a,64);
[bb,aa] = invfreqs(h,w,4,5)

bb =

 1.0000 2.0000 3.0000 2.0000 3.0000

aa =

 1.0000 2.0000 3.0000 2.0000 1.0000 4.0000
7-372

invfreqs
Notice that bb and aa are equivalent to b and a, respectively. However, aa has
poles in the left half-plane and thus the system is unstable. Use invfreqs’s
iterative algorithm to find a stable approximation to the system:

[bbb,aaa] = invfreqs(h,w,4,5,[],30)

bbb =

 0.6816 2.1015 2.6694 0.9113 -0.1218

aaa =

 1.0000 3.4676 7.4060 6.2102 2.5413 0.0001

Example 2
Suppose you have two vectors, mag and phase, that contain magnitude and
phase data gathered in a laboratory, and a third vector w of frequencies. You
can convert the data into a continuous-time transfer function using invfreqs:

[b,a] = invfreqs(mag.*exp(j*phase),w,2,3);

Algorithm By default, invfreqs uses an equation error method to identify the best model
from the data. This finds b and a in

by creating a system of linear equations and solving them with the MATLAB \
operator. Here A(w(k)) and B(w(k)) are the Fourier transforms of the
polynomials a and b, respectively, at the frequency w(k), and n is the number
of frequency points (the length of h and w). This algorithm is based on Levi [1].
Several variants have been suggested in the literature, where the weighting
function wt gives less attention to high frequencies.

min
b a,

wt k() h k()A w k()() B w k()()– 2

k 1=

n

∑

7-373

invfreqs
The superior (“output-error”) algorithm uses the damped Gauss-Newton method
for iterative search [2], with the output of the first algorithm as the initial
estimate. This solves the direct problem of minimizing the weighted sum of the
squared error between the actual and the desired frequency response points.

References [1] Levi, E.C., “Complex-Curve Fitting,” IRE Trans. on Automatic Control,
Vol. AC-4 (1959), pp. 37-44.

[2] Dennis, J.E., Jr., and R.B. Schnabel. Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. Englewood Cliffs, NJ: Prentice-Hall,
1983.

See Also freqs, freqz, invfreqz, prony

min
b a,

wt k() h k() B w k()()
A w k()()
--------------------–

2

k 1=

n

∑

7-374

invfreqz
7invfreqzPurpose Identify discrete-time filter parameters from frequency response data

Syntax [b,a] = invfreqz(h,w,n,m)
[b,a] = invfreqz(h,w,n,m,wt)
[b,a] = invfreqz(h,w,n,m,wt,iter)
[b,a] = invfreqz(h,w,n,m,wt,iter,tol)
[b,a] = invfreqz(h,w,n,m,wt,iter,tol,'trace')
[b,a] = invfreqz(h,w,'complex',n,m,...)

Description invfreqz is the inverse operation of freqz; it finds a discrete-time transfer
function that corresponds to a given complex frequency response. From a
laboratory analysis standpoint, invfreqz can be used to convert magnitude
and phase data into transfer functions.

[b,a] = invfreqz(h,w,n,m) returns the real numerator and denominator
coefficients in vectors b and a of the transfer function

whose complex frequency response is given in vector h at the frequency points
specified in vector w. Scalars n and m specify the desired orders of the
numerator and denominator polynomials.

Frequency is specified in radians between 0 and π, and the length of h must be
the same as the length of w. invfreqz uses conj(h) at -w to ensure the proper
frequency domain symmetry for a real filter.

[b,a] = invfreqz(h,w,n,m,wt) weights the fit-errors versus frequency,
where wt is a vector of weighting factors the same length as w.

[b,a] = invfreqz(h,w,n,m,wt,iter) and

[b,a] = invfreqz(h,w,n,m,wt,iter,tol) provide a superior algorithm that
guarantees stability of the resulting linear system and searches for the best fit
using a numerical, iterative scheme. The iter parameter tells invfreqz to end
the iteration when the solution has converged, or after iter iterations,
whichever comes first. invfreqz defines convergence as occurring when the
norm of the (modified) gradient vector is less than tol, where tol is an optional
parameter that defaults to 0.01. To obtain a weight vector of all ones, use

H z() B z()
A z()
----------- b 1() b 2()z 1– b n 1+()z n–+ + +

a 1() a 2()z 1– a m 1+()z m–+ + +
--= =
7-375

invfreqz
invfreqz(h,w,n,m,[],iter,tol)

[b,a] = invfreqz(h,w,n,m,wt,iter,tol,'trace') displays a textual
progress report of the iteration.

[b,a] = invfreqz(h,w,'complex',n,m,...) creates a complex filter. In this
case no symmetry is enforced, and the frequency is specified in radians
between -π and π.

Examples Convert a simple transfer function to frequency response data and then back
to the original filter coefficients:

a = [1 2 3 2 1 4]; b = [1 2 3 2 3];
[h,w] = freqz(b,a,64);
[bb,aa] = invfreqz(h,w,4,5)

bb =

 1.0000 2.0000 3.0000 2.0000 3.0000

aa =

 1.0000 2.0000 3.0000 2.0000 1.0000 4.0000

Notice that bb and aa are equivalent to b and a, respectively. However, aa has
poles outside the unit circle and thus the system is unstable. Use invfreqz’s
iterative algorithm to find a stable approximation to the system:

[bbb,aaa] = invfreqz(h,w,4,5,[],30)

bbb =

 0.2427 0.2788 0.0069 0.0971 0.1980

aaa =

 1.0000 -0.8944 0.6954 0.9997 -0.8933 0.6949

Algorithm By default, invfreqz uses an equation error method to identify the best model
from the data. This finds b and a in
7-376

invfreqz
by creating a system of linear equations and solving them with the MATLAB \
operator. Here A(ω(k)) and B(ω(k)) are the Fourier transforms of the
polynomials a and b, respectively, at the frequency ω(k), and n is the number
of frequency points (the length of h and w). This algorithm is a based on Levi [1].

The superior (“output-error”) algorithm uses the damped Gauss-Newton
method for iterative search [2], with the output of the first algorithm as the
initial estimate. This solves the direct problem of minimizing the weighted sum
of the squared error between the actual and the desired frequency response
points.

References [1] Levi, E.C., “Complex-Curve Fitting,” IRE Trans. on Automatic Control,
Vol. AC-4 (1959), pp. 37-44.

[2] Dennis, J.E., Jr., and R.B. Schnabel, Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, Prentice-Hall, 1983.

See Also freqs, freqz, invfreqz, prony

min
b a,

wt k() h k()A ω k()() B ω k()()– 2

k 1=

n

∑

min
b a,

wt k() h k() B ω k()()
A ω k()()
-------------------–

2

k 1=

n

∑

7-377

is2rc
7is2rcPurpose Convert inverse sine parameters to reflection coefficients

Syntax k = is2rc(isin)

Description k = is2rc(isin) returns a vector of reflection coefficients k from a vector of
inverse sine parameters isin.

Examples isin = [0.2000 0.8727 0.0020 0.0052 -0.0052];
k = is2rc(isin)

k =
 0.3090 0.9801 0.0031 0.0082 -0.0082

References [1] Deller, J.R., J.G. Proakis, and J.H.L. Hansen, “Discrete-Time Processing of
Speech Signals,” Prentice-Hall, 1993.

See Also ac2rc, lar2rc, poly2rc, rc2is
7-378

kaiser
7kaiserPurpose Kaiser window

Syntax w = kaiser(n,beta)

Description w = kaiser(n,beta) returns an n-point Kaiser (I0 – sinh) window in the
column vector w. beta is the Kaiser window β parameter that affects the
sidelobe attenuation of the Fourier transform of the window. The default value
for beta is 0.5.

To obtain a Kaiser window that designs an FIR filter with sidelobe height
-α dB, use the following β.

Increasing beta widens the main lobe and decreases the amplitude of the
sidelobes (increases the attenuation).

Examples Create a 200-point Kaiser window with a beta of 2.5 and display the result
using WVTool:

w = kaiser(200,2.5);
wvtool(w)

β
0.1102 α 8.7–(), α 50>

0.5842 α 21–()0.4 0.07886 α 21–()+ , 50 α 21≥ ≥
0, α 21<⎩

⎪
⎨
⎪
⎧

=

7-379

kaiser

References [1] Kaiser, J.F., “Nonrecursive Digital Filter Design Using the - sinh
Window Function,” Proc. 1974 IEEE Symp. Circuits and Systems, (April 1974),
pp. 20-23.

[2] Selected Papers in Digital Signal Processing II, IEEE Press, New York,
1975.

[3] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing,
Prentice-Hall, 1989, p. 453.

See Also chebwin, gausswin, kaiserord, tukeywin, window, wintool, wvtool

I0
7-380

kaiserord
7kaiserordPurpose Kaiser window FIR filter design estimation parameters

Syntax [n,Wn,beta,ftype] = kaiserord(f,a,dev)
[n,Wn,beta,ftype] = kaiserord(f,a,dev,fs)
c = kaiserord(f,a,dev,fs,'cell')

Description kaiserord returns a filter order n and beta parameter to specify a Kaiser
window for use with the fir1 function. Given a set of specifications in the
frequency domain, kaiserord estimates the minimum FIR filter order that will
approximately meet the specifications. kaiserord converts the given filter
specifications into passband and stopband ripples and converts cutoff
frequencies into the form needed for windowed FIR filter design.

[n,Wn,beta,ftype] = kaiserord(f,a,dev) finds the approximate order n,
normalized frequency band edges Wn, and weights that meet input
specifications f, a, and dev. f is a vector of band edges and a is a vector
specifying the desired amplitude on the bands defined by f. The length of f is
twice the length of a, minus 2. Together, f and a define a desired piecewise
constant response function. dev is a vector the same size as a that specifies the
maximum allowable error or deviation between the frequency response of the
output filter and its desired amplitude, for each band. The entries in dev
specify the passband ripple and the stopband attenuation. You specify each
entry in dev as a positive number, representing absolute filter gain (not in
decibels).

Note If, in the vector dev, you specify unequal deviations across bands, the
minimum specified deviation is used, since the Kaiser window method is
constrained to produce filters with minimum deviation in all of the bands.

fir1 can use the resulting order n, frequency vector Wn, multiband magnitude
type ftype, and the Kaiser window parameter beta. The ftype string is
intended for use with fir1; it is equal to 'high' for a highpass filter and 'stop'
for a bandstop filter. For multiband filters, it can be equal to 'dc-0' when the
first band is a stopband (starting at f = 0) or 'dc-1' when the first band is a
passband.
7-381

kaiserord
To design an FIR filter b that approximately meets the specifications given by
kaiser parameters f, a, and dev, use the following command.

b = fir1(n,Wn,kaiser(n+1,beta),ftype,'noscale')

[n,Wn,beta,ftype] = kaiserord(f,a,dev,fs) uses a sampling frequency fs
in Hz. If you don’t specify the argument fs, or if you specify it as the empty
vector [], it defaults to 2 Hz, and the Nyquist frequency is 1 Hz. You can use
this syntax to specify band edges scaled to a particular application’s sampling
frequency. The frequency band edges in f must be from 0 to fs/2.

c = kaiserord(f,a,dev,fs,'cell') is a cell-array whose elements are the
parameters to fir1.

Note In some cases, kaiserord underestimates or overestimates the order n.
If the filter does not meet the specifications, try a higher order such as n+1, n+2,
and so on, or a try lower order.

Results are inaccurate if the cutoff frequencies are near 0 or the Nyquist
frequency, or if dev is large (greater than 10%).

Remarks Be careful to distinguish between the meanings of filter length and filter order.
The filter length is the number of impulse response samples in the FIR filter.
Generally, the impulse response is indexed from n = 0 to n = L-1, where L is the
filter length. The filter order is the highest power in a z-transform
representation of the filter. For an FIR transfer function, this representation is
a polynomial in z, where the highest power is zL-1 and the lowest power is z0.
The filter order is one less than the length (L-1) and is also equal to the number
of zeros of the z polynomial.

Examples Example 1
Design a lowpass filter with passband defined from 0 to 1 kHz and stopband
defined from 1500 Hz to 4 kHz. Specify a passband ripple of 5% and a stopband
attenuation of 40 dB:

fsamp = 8000;
7-382

kaiserord
fcuts = [1000 1500];
mags = [1 0];
devs = [0.05 0.01];
[n,Wn,beta,ftype] = kaiserord(fcuts,mags,devs,fsamp);
hh = fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale');
freqz(hh)

Example 2
Design an odd-length bandpass filter (note that odd length means even order,
so the input to fir1 must be an even integer):

fsamp = 8000;
fcuts = [1000 1300 2210 2410];
mags = [0 1 0];
devs = [0.01 0.05 0.01];
[n,Wn,beta,ftype] = kaiserord(fcuts,mags,devs,fsamp);
n = n + rem(n,2);
hh = fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale');
[H,f] = freqz(hh,1,1024,fsamp);
plot(f,abs(H)), grid on

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1400

−1200

−1000

−800

−600

−400

−200

0

Normalized Frequency (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

7-383

kaiserord
Example 3
Design a lowpass filter with a passband cutoff of 1500 Hz, a stopband cutoff of
2000 Hz, passband ripple of 0.01, stopband ripple of 0.1, and a sampling
frequency of 8000 Hz:

[n,Wn,beta,ftype] = kaiserord([1500 2000],[1 0],...
[0.01 0.1],8000);

b = fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale');

This is equivalent to

c = kaiserord([1500 2000],[1 0],[0.01 0.1],8000,'cell');
b = fir1(c{:});

Algorithm kaiserord uses empirically derived formulas for estimating the orders of
lowpass filters, as well as differentiators and Hilbert transformers. Estimates
for multiband filters (such as bandpass filters) are derived from the lowpass
design formulas.

The design formulas that underlie the Kaiser window and its application to
FIR filter design are

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

1.2

1.4
7-384

kaiserord
where α = -20log10δ is the stopband attenuation expressed in decibels (recall
that δp = δs is required).

The design formula is

where n is the filter order and ∆ω is the width of the smallest transition region.

References [1] Kaiser, J.F., “Nonrecursive Digital Filter Design Using the - sinh
Window Function,” Proc. 1974 IEEE Symp. Circuits and Systems, (April 1974),
pp. 20-23.

[2] Selected Papers in Digital Signal Processing II, IEEE Press, New York,
1975, pp. 123-126.

[3] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing,
Prentice-Hall, 1989, pp. 458-562.

See Also fir1, kaiser, firpmord

β
0.1102 α 8.7–(), α 50>

0.5842 α 21–()0.4 0.07886 α 21–()+ , 50 α 21≥ ≥
0, α 21<⎩

⎪
⎨
⎪
⎧

=

n α 7.95–
2.285 ω∆()
----------------------------=

I0
7-385

lar2rc
7lar2rcPurpose Convert log area ratio parameters to reflection coefficients

Syntax k = lar2rc(g)

Description k = lar2rc(g) returns a vector of reflection coefficients k from a vector of log
area ratio parameters g.

Examples g = [0.6389 4.5989 0.0063 0.0163 -0.0163];
k = lar2rc(g)

k =
 0.3090 0.9801 0.0031 0.0081 -0.0081

References [1] Deller, J.R., J.G. Proakis, and J.H.L. Hansen, “Discrete-Time Processing of
Speech Signals,” Prentice-Hall, 1993.

See Also ac2rc, is2rc, poly2rc, rc2lar
7-386

latc2tf
7latc2tfPurpose Convert lattice filter parameters to transfer function form

Syntax [num,den] = latc2tf(k,v)
[num,den] = latc2tf(k,'iiroption')
num = latc2tf(k,'firoption')
num = latc2tf(k)

Description [num,den] = latc2tf(k,v) finds the transfer function numerator num and
denominator den from the IIR lattice coefficients k and ladder coefficients v.

[num,den] = latc2tf(k,'iiroption') produces an IIR filter transfer
function according to the value of the string 'iiroption':

• 'allpole': Produces an all-pole filter transfer function from the associated
all-pole IIR lattice filter coefficients k.

• 'allpass': Produces an allpass filter transfer function from the associated
allpass IIR lattice filter coefficients k.

num = latc2tf(k,'firoption') produces an FIR filter according to the value
of the string 'firoption':

• 'min': Produces a minimum-phase FIR filter numerator from the associated
minimum-phase FIR lattice filter coefficients k.

• 'max': Produces a maximum-phase FIR filter numerator from the associated
maximum-phase FIR lattice filter coefficients k.

• 'FIR': Produces a general FIR filter numerator from the lattice filter
coefficients k (default, if you leave off the string altogether).

See Also latcfilt, tf2latc
7-387

latcfilt
7latcfiltPurpose Lattice and lattice-ladder filter implementation

Syntax [f,g] = latcfilt(k,x)
[f,g] = latcfilt(k,v,x)
[f,g] = latcfilt(k,1,x)
[f,g,zf] = latcfilt(...,'ic',zi)

Description When filtering data, lattice coefficients can be used to represent

• FIR filters

• All-pole IIR filters

• Allpass IIR filters

• General IIR filters

[f,g] = latcfilt(k,x) filters x with the FIR lattice coefficients in the
vector k. f is the forward lattice filter result and g is the backward filter result.
If , f corresponds to the minimum-phase output, and g corresponds to the
maximum-phase output.

If k and x are vectors, the result is a (signal) vector. Matrix arguments are
permitted under the following rules:

• If x is a matrix and k is a vector, each column of x is processed through the
lattice filter specified by k.

• If x is a vector and k is a matrix, each column of k is used to filter x, and a
signal matrix is returned.

• If x and k are both matrices with the same number of columns, then the ith
column of k is used to filter the ith column of x. A signal matrix is returned.

[f,g] = latcfilt(k,v,x) filters x with the IIR lattice coefficients k and
ladder coefficients v. k and v must be vectors, while x can be a signal matrix.

[f,g] = latcfilt(k,1,x) filters x with the IIR lattice specified by k, where k
and x can be vectors or matrices. f is the all-pole lattice filter result and g is the
allpass filter result.

[f,g,zf] = latcfilt(...,'ic',zi) accepts a length-k vector zi specifying
the initial condition of the lattice states. Output zf is a length-k vector
specifying the final condition of the lattice states.

k 1≤
7-388

latcfilt
See Also filter, latc2tf, tf2latc
7-389

levinson
7levinsonPurpose Levinson-Durbin recursion

Syntax a = levinson(r,n)
[a,e] = levinson(r,n)
[a,e,k] = levinson(r,n)

Description The Levinson-Durbin recursion is an algorithm for finding an all-pole IIR filter
with a prescribed deterministic autocorrelation sequence. It has applications in
filter design, coding, and spectral estimation. The filter that levinson produces
is minimum phase.

a = levinson(r,n) finds the coefficients of an nth-order autoregressive linear
process which has r as its autocorrelation sequence. r is a real or complex
deterministic autocorrelation sequence. If r is a matrix, levinson finds the
coefficients for each column of r and returns them in the rows of a. n is the
order of denominator polynomial A(z); that is, a = [1 a(2) ... a(n+1)]. The
filter coefficients are ordered in descending powers of z.

[a,e] = levinson(r,n) returns the prediction error, e, of order n.

[a,e.k] = levinson(r,n) returns the reflection coefficients k as a column
vector of length n.

Note k is computed internally while computing the a coefficients, so
returning k simultaneously is more efficient than converting a to k with
tf2latc.

Algorithm levinson solves the symmetric Toeplitz system of linear equations

H z() 1
A z()
----------- 1

1 a 2()z 1– a n 1+()z n–+ + +
---= =
7-390

levinson
where r = [r(1) ... r(n+1)] is the input autocorrelation vector, and r(i)*
denotes the complex conjugate of r(i). The algorithm requires O(n2) flops and is
thus much more efficient than the MATLAB \ command for large n. However,
the levinson function uses \ for low orders to provide the fastest possible
execution.

References [1] Ljung, L., System Identification: Theory for the User, Prentice-Hall, 1987,
pp. 278-280.

See Also lpc, prony, rlevinson, schurrc, stmcb

r 1() r 2()
∗ r n()

∗

r 2() r 1() r n 1–()
∗

r n() r 2() r 1()

a 2()

a 3()

a n 1+()

r 2()–

r 3()–

r n 1+()–

=

7-391

lp2bp
7lp2bpPurpose Transform lowpass analog filters to bandpass

Syntax [bt,at] = lp2bp(b,a,Wo,Bw)
[At,Bt,Ct,Dt] = lp2bp(A,B,C,D,Wo,Bw)

Description lp2bp transforms analog lowpass filter prototypes with a cutoff angular
frequency of 1 rad/s into bandpass filters with desired bandwidth and center
frequency. The transformation is one step in the digital filter design process for
the butter, cheby1, cheby2, and ellip functions.

lp2bp can perform the transformation on two different linear system
representations: transfer function form and state-space form. In both cases, the
input system must be an analog filter prototype.

Transfer Function Form (Polynomial)

[bt,at] = lp2bp(b,a,Wo,Bw) transforms an analog lowpass filter prototype
given by polynomial coefficients into a bandpass filter with center frequency Wo
and bandwidth Bw. Row vectors b and a specify the coefficients of the numerator
and denominator of the prototype in descending powers of s.

Scalars Wo and Bw specify the center frequency and bandwidth in units of rad/s.
For a filter with lower band edge w1 and upper band edge w2, use
Wo = sqrt(w1*w2) and Bw = w2-w1.

lp2bp returns the frequency transformed filter in row vectors bt and at.

State-Space Form

[At,Bt,Ct,Dt] = lp2bp(A,B,C,D,Wo,Bw) converts the continuous-time
state-space lowpass filter prototype in matrices A, B, C, D shown below

b s()
a s()
---------- b 1()sn b n()s b n 1+()+ + +

a 1()sm a m()s a m 1+()+ + +
---=

x· Ax Bu+=

y Cx Du+=
7-392

lp2bp
into a bandpass filter with center frequency Wo and bandwidth Bw. For a filter
with lower band edge w1 and upper band edge w2, use Wo = sqrt(w1*w2) and
Bw = w2-w1.

The bandpass filter is returned in matrices At, Bt, Ct, Dt.

Algorithm lp2bp is a highly accurate state-space formulation of the classic analog filter
frequency transformation. Consider the state-space system

where u is the input, x is the state vector, and y is the output. The Laplace
transform of the first equation (assuming zero initial conditions) is

Now if a bandpass filter is to have center frequency ω0 and bandwidth Bw, the
standard s-domain transformation is

where Q = ω0/Bw and p = s/ω0. Substituting this for s in the Laplace
transformed state-space equation, and considering the operator p as d/dt
results in

or

Now define

which, when substituted, leads to

The last two equations give equations of state. Write them in standard form
and multiply the differential equations by ω0 to recover the time/frequency
scaling represented by p and find state matrices for the bandpass filter:

x· Ax Bu+=

y Cx Du+=

sX s() AX s() BU s()+=

s Q p2 1+() p⁄=

Qx·· Qx+ A· x Bu·+=

Qx·· A·– x B– u· Qx–=

Qω· Qx–=

Qx· Ax Qω Bu+ +=
7-393

lp2bp
Q = Wo/Bw; [ma,m] = size(A);
At = Wo*[A/Q eye(ma,m);-eye(ma,m) zeros(ma,m)];
Bt = Wo*[B/Q; zeros(ma,n)];
Ct = [C zeros(mc,ma)];
Dt = d;

If the input to lp2bp is in transfer function form, the function transforms it into
state-space form before applying this algorithm.

See Also bilinear, impinvar, lp2bs, lp2hp, lp2lp
7-394

lp2bs
7lp2bsPurpose Transform lowpass analog filters to bandstop

Syntax [bt,at] = lp2bs(b,a,Wo,Bw)
[At,Bt,Ct,Dt] = lp2bs(A,B,C,D,Wo,Bw)

Description lp2bs transforms analog lowpass filter prototypes with a cutoff angular
frequency of 1 rad/s into bandstop filters with desired bandwidth and center
frequency. The transformation is one step in the digital filter design process for
the butter, cheby1, cheby2, and ellip functions.

lp2bs can perform the transformation on two different linear system
representations: transfer function form and state-space form. In both cases, the
input system must be an analog filter prototype.

Transfer Function Form (Polynomial)

[bt,at] = lp2bs(b,a,Wo,Bw) transforms an analog lowpass filter prototype
given by polynomial coefficients into a bandstop filter with center frequency Wo
and bandwidth Bw. Row vectors b and a specify the coefficients of the numerator
and denominator of the prototype in descending powers of s.

Scalars Wo and Bw specify the center frequency and bandwidth in units of
radians/second. For a filter with lower band edge w1 and upper band edge w2,
use Wo = sqrt(w1*w2) and Bw = w2-w1.

lp2bs returns the frequency transformed filter in row vectors bt and at.

State-Space Form

[At,Bt,Ct,Dt] = lp2bs(A,B,C,D,Wo,Bw) converts the continuous-time
state-space lowpass filter prototype in matrices A, B, C, D shown below

b s()
a s()
---------- b 1()sn b n()s b n 1+()+ + +

a 1()sm a m()s a m 1+()+ + +
---=

x· Ax Bu+=

y Cx Du+=
7-395

lp2bs
into a bandstop filter with center frequency Wo and bandwidth Bw. For a filter
with lower band edge w1 and upper band edge w2, use Wo = sqrt(w1*w2) and
Bw = w2-w1.

The bandstop filter is returned in matrices At, Bt, Ct, Dt.

Algorithm lp2bs is a highly accurate state-space formulation of the classic analog filter
frequency transformation. If a bandstop filter is to have center frequency ω0
and bandwidth Bw, the standard s-domain transformation is

where Q = ω0/Bw and p = s/ω0. The state-space version of this transformation is

Q = Wo/Bw;
At = [Wo/Q*inv(A) Wo*eye(ma);-Wo*eye(ma) zeros(ma)];
Bt = -[Wo/Q*(A B); zeros(ma,n)];
Ct = [C/A zeros(mc,ma)];
Dt = D - C/A*B;

See lp2bp for a derivation of the bandpass version of this transformation.

See Also bilinear, impinvar, lp2bp, lp2hp, lp2lp

s p
Q p2 1+()
------------------------=
7-396

lp2hp
7lp2hpPurpose Transform lowpass analog filters to highpass

Syntax [bt,at] = lp2hp(b,a,Wo)
[At,Bt,Ct,Dt] = lp2hp(A,B,C,D,Wo)

Description lp2hp transforms analog lowpass filter prototypes with a cutoff angular
frequency of 1 rad/s into highpass filters with desired cutoff angular frequency.
The transformation is one step in the digital filter design process for the
butter, cheby1, cheby2, and ellip functions.

The lp2hp function can perform the transformation on two different linear
system representations: transfer function form and state-space form. In both
cases, the input system must be an analog filter prototype.

Transfer Function Form (Polynomial)

[bt,at] = lp2hp(b,a,Wo) transforms an analog lowpass filter prototype
given by polynomial coefficients into a highpass filter with cutoff angular
frequency Wo. Row vectors b and a specify the coefficients of the numerator and
denominator of the prototype in descending powers of s.

Scalar Wo specifies the cutoff angular frequency in units of radians/second. The
frequency transformed filter is returned in row vectors bt and at.

State-Space Form

[At,Bt,Ct,Dt] = lp2hp(A,B,C,D,Wo) converts the continuous-time
state-space lowpass filter prototype in matrices A, B, C, D below

into a highpass filter with cutoff angular frequency Wo. The highpass filter is
returned in matrices At, Bt, Ct, Dt.

b s()
a s()
---------- b 1()sn b n()s b n 1+()+ + +

a 1()sm a m()s a m 1+()+ + +
---=

x· Ax Bu+=

y Cx Du+=
7-397

lp2hp
Algorithm lp2hp is a highly accurate state-space formulation of the classic analog filter
frequency transformation. If a highpass filter is to have cutoff angular
frequency ω0, the standard s-domain transformation is

The state-space version of this transformation is

At = Wo*inv(A);
Bt = -Wo*(A\B);
Ct = C/A;
Dt = D - C/A*B;

See lp2bp for a derivation of the bandpass version of this transformation.

See Also bilinear, impinvar, lp2bp, lp2bs, lp2lp

s
ω0
p

-------=
7-398

lp2lp
7lp2lpPurpose Change cutoff frequency for lowpass analog filter

Syntax [bt,at] = lp2lp(b,a,Wo)
[At,Bt,Ct,Dt] = lp2lp(A,B,C,D,Wo)

Description lp2lp transforms an analog lowpass filter prototype with a cutoff angular
frequency of 1 rad/s into a lowpass filter with any specified cutoff angular
frequency. The transformation is one step in the digital filter design process for
the butter, cheby1, cheby2, and ellip functions.

The lp2lp function can perform the transformation on two different linear
system representations: transfer function form and state-space form. In both
cases, the input system must be an analog filter prototype.

Transfer Function Form (Polynomial)

[bt,at] = lp2lp(b,a,Wo) transforms an analog lowpass filter prototype
given by polynomial coefficients into a lowpass filter with cutoff angular
frequency Wo. Row vectors b and a specify the coefficients of the numerator and
denominator of the prototype in descending powers of s.

Scalar Wo specifies the cutoff angular frequency in units of radians/second.
lp2lp returns the frequency transformed filter in row vectors bt and at.

State-Space Form

[At,Bt,Ct,Dt] = lp2lp(A,B,C,D,Wo) converts the continuous-time
state-space lowpass filter prototype in matrices A, B, C, D below

into a lowpass filter with cutoff angular frequency Wo. lp2lp returns the
lowpass filter in matrices At, Bt, Ct, Dt.

b s()
a s()
---------- b 1()sn b n()s b n 1+()+ + +

a 1()sm a m()s a m 1+()+ + +
---=

x· Ax Bu+=

y Cx Du+=
7-399

lp2lp
Algorithm lp2lp is a highly accurate state-space formulation of the classic analog filter
frequency transformation. If a lowpass filter is to have cutoff angular frequency
ω0, the standard s-domain transformation is

The state-space version of this transformation is

At = Wo*A;
Bt = Wo*B;
Ct = C;
Dt = D;

See lp2bp for a derivation of the bandpass version of this transformation.

See Also bilinear, impinvar, lp2bp, lp2bs, lp2hp

s p ω0⁄=
7-400

lpc
7lpcPurpose Linear prediction filter coefficients

Syntax [a,g] = lpc(x,p)

Description lpc determines the coefficients of a forward linear predictor by minimizing the
prediction error in the least squares sense. It has applications in filter design
and speech coding.

[a,g] = lpc(x,p) finds the coefficients of a pth-order linear predictor (FIR
filter) that predicts the current value of the real-valued time series x based on
past samples.

p is the order of the prediction filter polynomial, a = [1 a(2) ... a(p+1)]. If
p is unspecified, lpc uses as a default p = length(x)-1. If x is a matrix
containing a separate signal in each column, lpc returns a model estimate for
each column in the rows of matrix a and a row vector of prediction error
variances g. The length of p must be less than or equal to the lenght of x.

Examples Estimate a data series using a third-order forward predictor, and compare to
the original signal.

First, create the signal data as the output of an autoregressive process driven
by white noise. Use the last 4096 samples of the AR process output to avoid
start-up transients:

randn('state',0);
noise = randn(50000,1); % Normalized white Gaussian noise
x = filter(1,[1 1/2 1/3 1/4],noise);
x = x(45904:50000);

Compute the predictor coefficients, estimated signal, prediction error, and
autocorrelation sequence of the prediction error:

a = lpc(x,3);

est_x = filter([0 -a(2:end)],1,x); % Estimated signal
e = x - est_x; % Prediction error
[acs,lags] = xcorr(e,'coeff'); % ACS of prediction error

x̂ n() a– 2()x n 1–() a– 3()x n 2–() – a p 1+()x n p–()–=
7-401

lpc
The prediction error, e(n), can be viewed as the output of the prediction error
filter A(z) shown below, where H(z) is the optimal linear predictor, x(n) is the
input signal, and is the predicted signal.

Compare the predicted signal to the original signal:

plot(1:97,x(4001:4097),1:97,est_x(4001:4097),'--');
title('Original Signal vs. LPC Estimate');
xlabel('Sample Number'); ylabel('Amplitude'); grid;
legend('Original Signal','LPC Estimate')

Look at the autocorrelation of the prediction error:

plot(lags,acs);
title('Autocorrelation of the Prediction Error');
xlabel('Lags'); ylabel('Normalized Value'); grid;

x̂ n()

H z() a– 2()z
1–

a– 3()z
2– – a– n 1+()z

p–
= Σ

x̂ n()x n()
–

+
e n()

Prediction Error

A z()

0 10 20 30 40 50 60 70 80 90 100
−3

−2

−1

0

1

2

3

4

5
Original Signal vs. LPC Estimate

Sample Number

A
m

pl
itu

de

Original Signal
LPC Estimate
7-402

lpc
The prediction error is approximately white Gaussian noise, as expected for a
third-order AR input process.

Algorithm lpc uses the autocorrelation method of autoregressive (AR) modeling to find
the filter coefficients. The generated filter might not model the process exactly
even if the data sequence is truly an AR process of the correct order. This is
because the autocorrelation method implicitly windows the data, that is, it
assumes that signal samples beyond the length of x are 0.

lpc computes the least squares solution to

where

−5000 −4000 −3000 −2000 −1000 0 1000 2000 3000 4000 5000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Autocorrelation of the Prediction Error

Lags

N
or

m
al

iz
ed

 V
al

ue

Xa b≈

X

x 1() 0 0
x 2() x 1()

x 2() 0
x m() x 1()

0 x m() x 2()

0 0 x m()

= a

1
a 2()

a p 1+()

= b

1
0

0

=, ,
7-403

lpc
and m is the length of x. Solving the least squares problem via the normal
equations

leads to the Yule-Walker equations

where r = [r(1) r(2) ... r(p+1)] is an autocorrelation estimate for x computed
using xcorr. The Yule-Walker equations are solved in O(p2) flops by the
Levinson-Durbin algorithm (see levinson).

References [1] Jackson, L.B., Digital Filters and Signal Processing, Second Edition,
Kluwer Academic Publishers, 1989. pp. 255-257.

See Also aryule, levinson, prony, pyulear, stmcb

XHXa XHb=

r 1() r 2()* r p()*
r 2() r 1()

r 2()*
r p() r 2() r 1()

a 2()

a 3()

a p 1+()

r 2()–

r 3()–

r p 1+()–

=

7-404

lsf2poly
7lsf2polyPurpose Convert line spectral frequencies to prediction filter coefficients

Syntax a = lsf2poly(lsf)

Description a = lsf2poly(lsf) returns a vector a containing the prediction filter
coefficients from a vector lsf of line spectral frequencies.

Examples lsf = [0.7842 1.5605 1.8776 1.8984 2.3593];
a = lsf2poly(lsf)

a =
 1.0000 0.6148 0.9899 0.0001 0.0031 -0.0081

References [1] Deller, J.R., J.G. Proakis, and J.H.L. Hansen, “Discrete-Time Processing of
Speech Signals,” Prentice-Hall, 1993.

[2] Rabiner, L.R., and R.W. Schafer, “Digital Processing of Speech Signals,”
Prentice-Hall, 1978.

See Also ac2poly, poly2lsf, rc2poly
7-405

maxflat
7maxflatPurpose Generalized digital Butterworth filter design

Syntax [b,a] = maxflat(n,m,Wn)
b = maxflat(n,'sym',Wn)
[b,a,b1,b2] = maxflat(n,m,Wn)
[b,a,b1,b2,sos,g] = maxflat(n,m,Wn)
[...] = maxflat(n,m,Wn,'design_flag')

Description [b,a] = maxflat(n,m,Wn) is a lowpass Butterworth filter with numerator
and denominator coefficients b and a of orders n and m respectively. Wn is the
normalized cutoff frequency at which the magnitude response of the filter is
equal to (approx. -3 dB). Wn must be between 0 and 1, where 1 corresponds
to the Nyquist frequency.

b = maxflat(n,'sym',Wn) is a symmetric FIR Butterworth filter. n must be
even, and Wn is restricted to a subinterval of [0,1]. The function raises an error
if Wn is specified outside of this subinterval.

[b,a,b1,b2] = maxflat(n,m,Wn) returns two polynomials b1 and b2 whose
product is equal to the numerator polynomial b (that is, b = conv(b1,b2)).
b1 contains all the zeros at z = -1, and b2 contains all the other zeros.

[b,a,b1,b2,sos,g] = maxflat(n,m,Wn) returns the second-order sections
representation of the filter as the filter matrix sos and the gain g.

[...] = maxflat(n,m,Wn,'design_flag') enables you to monitor the filter
design, where 'design_flag' is

• 'trace' for a textual display of the design table used in the design

• 'plots' for plots of the filter’s magnitude, group delay, and zeros and poles

• 'both' for both the textual display and plots

Examples n = 10; m = 2; Wn = 0.2;
[b,a] = maxflat(n,m,Wn)
fvtool(b,a) % Display the magnitude plot

1 2⁄
7-406

maxflat
Algorithm The method consists of the use of formulae, polynomial root finding, and a
transformation of polynomial roots.

References [1] Selesnick, I.W., and C.S. Burrus, “Generalized Digital Butterworth Filter
Design,” Proceedings of the IEEE Int. Conf. Acoust., Speech, Signal Processing,
Vol. 3 (May 1996).

See Also butter, filter, freqz
7-407

medfilt1
7medfilt1Purpose One-dimensional median filtering

Syntax y = medfilt1(x,n)
y = medfilt1(x,n,blksz)

y = medfilt1(x,n,blksz,dim)

Description y = medfilt1(x,n) applies an order n one-dimensional median filter to
vector x; the function considers the signal to be 0 beyond the end points.
Output y has the same length as x.

For n odd, y(k) is the median of x(k-(n-1)/2:k+(n-1)/2).

For n even, y(k) is the median of x(k-n/2), x(k-(n/2)+1), ..., x(k+(n/2)-1).
In this case, medfilt1 sorts the numbers, then takes the average of the n/2 and
(n/2)+1 elements.

The default for n is 3.

y = medfilt1(x,n,blksz) uses a for-loop to compute blksz (block size)
output samples at a time. Use blksz << length(x) if you are low on memory,
since medfilt1 uses a working matrix of size n-by-blksz. By default,
blksz = length(x); this provides the fastest execution if you have sufficient
memory.

If x is a matrix, medfilt1 median filters its columns using

 y(:,i) = medfilt1(x(:,i),n,blksz)

in a loop over the columns of x.

y = medfilt1(x,n,blksz,dim) specifies the dimension, dim, along which the
filter operates.

References [1] Pratt, W.K., Digital Image Processing, John Wiley & Sons, 1978,
pp. 330-333.

See Also filter, medfilt2, median
7-408

modulate
7modulatePurpose Modulation for communications simulation

Syntax y = modulate(x,fc,fs,'method')
y = modulate(x,fc,fs,'method',opt)
[y,t] = modulate(x,fc,fs)

Description y = modulate(x,fc,fs,'method') and

y = modulate(x,fc,fs,'method',opt) modulate the real message signal x
with a carrier frequency fc and sampling frequency fs, using one of the options
listed below for 'method'. Note that some methods accept an option, opt...

Method Description

amdsb-sc
or

am

Amplitude modulation, double sideband, suppressed carrier.
Multiplies x by a sinusoid of frequency fc.

y = x.*cos(2*pi*fc*t)

amdsb-tc Amplitude modulation, double sideband, transmitted carrier.
Subtracts scalar opt from x and multiplies the result by a sinusoid
of frequency fc.

y = (x-opt).*cos(2*pi*fc*t)

If the opt parameter is not present, modulate uses a default of
min(min(x)) so that the message signal (x-opt) is entirely
nonnegative and has a minimum value of 0.

amssb Amplitude modulation, single sideband. Multiplies x by a
sinusoid of frequency fc and adds the result to the Hilbert transform
of x multiplied by a phase shifted sinusoid of frequency fc.

y =
x.*cos(2*pi*fc*t)+imag(hilbert(x)).*sin(2*pi*fc*t)

This effectively removes the upper sideband.
7-409

modulate
fm Frequency modulation. Creates a sinusoid with instantaneous
frequency that varies with the message signal x.

y = cos(2*pi*fc*t + opt*cumsum(x))

cumsum is a rectangular approximation to the integral of x.
modulate uses opt as the constant of frequency modulation. If opt
is not present, modulate uses a default of

opt = (fc/fs)*2*pi/(max(max(x)))

so the maximum frequency excursion from fc is fc Hz.

pm Phase modulation. Creates a sinusoid of frequency fc whose
phase varies with the message signal x.

y = cos(2*pi*fc*t + opt*x)

modulate uses opt as the constant of phase modulation. If opt is
not present, modulate uses a default of

opt = pi/(max(max(x)))

so the maximum phase excursion is π radians.

pwm Pulse-width modulation. Creates a pulse-width modulated
signal from the pulse widths in x. The elements of x must be
between 0 and 1, specifying the width of each pulse in fractions of
a period. The pulses start at the beginning of each period, that is,
they are left justified.

modulate(x,fc,fs,'pwm','centered')

yields pulses centered at the beginning of each period. y is length
length(x)*fs/fc.

ppm Pulse-position modulation. Creates a pulse-position modulated
signal from the pulse positions in x. The elements of x must be
between 0 and 1, specifying the left edge of each pulse in fractions
of a period. opt is a scalar between 0 and 1 that specifies the
length of each pulse in fractions of a period. The default for opt is
0.1. y is length length(x)*fs/fc.

qam Quadrature amplitude modulation. Creates a quadrature
amplitude modulated signal from signals x and opt.

y = x.*cos(2*pi*fc*t) + opt.*sin(2*pi*fc*t)

opt must be the same size as x.
7-410

modulate
If you do not specify 'method', then modulate assumes am. Except for the pwm
and ptm cases, y is the same size as x.

If x is an array, modulate modulates its columns.

[y,t] = modulate(x,fc,fs) returns the internal time vector t that modulate
uses in its computations.

See Also demod, vco, fskdemod, genqamdemod, mskdemod, pamdemod, pmdemod, qamdemod
7-411

mscohere
7mscoherePurpose Magnitude squared coherence function

Syntax Cxy = mscohere(x,y)
Cxy = mscohere(x,y,window)
Cxy = mscohere(x,y,window,noverlap)
[Cxy,W] = mscohere(x,y,window,noverlap,nfft)
[Cxy,F] = mscohere(x,y,window,noverlap,nfft,fs)
[...] = mscohere(x,y,...,'whole')
mscohere(x,y,...)

Description Cxy = mscohere(x,y) finds the magnitude squared coherence estimate Cxy of
the input signals x and y using Welch’s averaged, modified periodogram
method. The magnitude squared coherence estimate is a function of frequency
with values between 0 and 1 that indicates how well x corresponds to y at each
frequency. The coherence is a function of the power spectral density (Pxx and
Pyy) of x and y and the cross power spectral density (Pxy) of x and y.

x and y must be the same length. For real x and y, mscohere returns a one-sided
coherence estimate and for complex x or y, it returns a two-sided estimate.

Cxy f()
Pxy f() 2

Pxx f()Pyy f()
-------------------------------=
7-412

mscohere
mscohere uses the following default values:

Note You can use the empty matrix [] to specify the default value for any
input argument except x or y. For example, Pxy = mschoere(x,y,[],[],128 uses a
Hamming window, default noverlap to obtain 50% overlap, and the specified
128 nfft.

Parameter Description Default Value

nfft FFT length which determines
the frequencies at which the
coherence is estimated

For real x and y, the length of
Cxy is (nfft/2+1) if nfft is
even or (nfft+1)/2 if nfft is
odd. For complex x or y, the
length of Cxy is nfft.

If nfft is greater than the
signal length, the data is
zero-padded. If nfft is less
than the signal length, the
segment is wrapped using
datawrap so that the length is
equal to nfft.

Maximum of 256 or the
next power of 2 greater
than the length of each
section of x or y

fs Sampling frequency 1

window Windowing function and
number of samples to use for
each section

Periodic Hamming
window of length to
obtain eight equal
sections of x and y

noverlap Number of samples by which
the sections overlap

Value to obtain 50%
overlap
7-413

mscohere
Cxy = mscohere(x,y,window) specifies a windowing function, divides x and y
into equal overlapping sections of the specified window length, and windows
each section using the specified window function. If you supply a scalar for
window, Cxy uses a Hamming window of that length. mscohere zero pads the
sections if the window length exceeds nfft.

Cxy = mscohere(x,y,window,noverlap) overlaps the sections of x by
noverlap samples. noverlap must be an integer smaller than the length of
window.

[Pxy,W] = mscohere(x,y,window,noverlap,nfft) uses the specified FFT
length nfft to calculate the coherence estimate. It also returns W, which is the
vector of normalized frequencies (in rad/sample) at which the coherence is
estimated. For real x and y, Cxy length is (nfft/2 +1) if nfft is even and if nfft
is odd, the length is (nfft+1)/2. For complex x or y, the length of Cxy is nfft.
For real signals, the range of W is [0, pi] when nfft is even and [0, pi) when nfft
is odd. For complex signals, the range of W is [0, 2*pi).

[Cxy,F] = mscohere(x,y,window,noverlap,nfft,fs) returns Cxy as a
function of frequency and a vector F of frequencies at which the coherence is
estimated. fs is the sampling frequency in Hz. For real signals, the range of F
is [0, fs/2] when nfft is even and [0, fs/2) when nfft is odd. For complex
signals, the range of F is [0, fs).

[...] = mscohere(x,y,...,'whole') returns a coherence estimate with
frequencies that range over the whole Nyquist interval. Specifying 'half' uses
half the Nyquist interval.

mscohere(...) plots the magnitude squared coherence versus frequency in the
current figure window.

Note If you use mscohere on two linearly related signals [1] with a single,
non-overlapping window, the output for all frequencies is Cxy = 1.

Examples Compute and plot the coherence estimate between two colored noise sequences
x and y:
7-414

mscohere
randn('state',0);
h = fir1(30,0.2,rectwin(31));
h1 = ones(1,10)/sqrt(10);
r = randn(16384,1);
x = filter(h1,1,r);
y = filter(h,1,x);
mscohere(x,y,hanning(1024),512,1024)

Algorithm mscohere estimates the magnitude squared coherence function [2] using
Welch’s averaged periodogram method (see references [3] and [4]).

References [1] Stoica, P., and R. Moses. Introduction to Spectral Analysis. Upper Saddle
River, NJ: Prentice-Hall, 1997. Pgs. 61-64.
7-415

mscohere
[2] Kay, S.M. Modern Spectral Estimation. Englewood Cliffs, NJ:
Prentice-Hall, 1988. Pg. 454.

[3] Rabiner, L.R., and B. Gold. Theory and Application of Digital Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975.

[4] Welch, P.D. “The Use of Fast Fourier Transform for the Estimation of Power
Spectra: A Method Based on Time Averaging Over Short, Modified
Periodograms.” IEEE Trans. Audio Electroacoust. Vol. AU-15 (June 1967).
Pgs. 70-73.

See Also cpsd, periodogram, pwelch, spectrum.welch, tfestimate
7-416

nuttallwin
7nuttallwinPurpose Nuttall-defined minimum 4-term Blackman-Harris window

Syntax w = nuttallwin(n)

Description w = nuttallwin(n) returns a minimum, n-point, 4-term Blackman-harris
window in the column vector w. The window is minimum in the sense that its
maximum sidelobes are minimized. The coefficients for this window differ from
the Blackman-Harris window coefficients computed with blackmanharris and
produce slightly lower sidelobes.

Examples Compare 64-point Blackman-Harris and Nuttall’s Blackman-Harris windows
and plot them using WVTool:

N = 64;
w = blackmanharris(N);
y = nuttallwin(N);
wvtool(w,y)

The maximum difference between the two windows is

max(abs(y-w))
7-417

nuttallwin
ans =

 0.0099

Algorithm The equation for computing the coefficients of a minimum 4-term
Blackman-harris window, according to Nuttall, is

where .

The coefficients for this window are

a0 = 0.3635819
a1 = 0.4891775
a2 = 0.1365995
a3 = .0106411

References [1] Nuttall, Albert H. “Some Windows with Very Good Sidelobe Behavoir.”
IEEE Transactions on Acoustics, Speech, and Signal Processing. Vol. ASSP-29
(February 1981). pp. 84-91.

See Also barthannwin, bartlett, blackmanharris, bohmanwin, parzenwin, rectwin,
triang, window, wintool, wvtool

w k 1+[] a0 a1 2π k
n 1–
-------------⎝ ⎠

⎛ ⎞ a2 4π k
n 1–
-------------⎝ ⎠

⎛ ⎞cos a3 6π k
n 1–
-------------⎝ ⎠

⎛ ⎞cos–+cos–=

0 k n 1–()≤ ≤
7-418

parzenwin
7parzenwinPurpose Parzen (de la Valle-Poussin) window

Syntax w = parzenwin(n)

Description w = parzenwin(n) returns the n-point Parzen (de la Valle-Poussin) window in
column vector w. Parzen windows are piecewise cubic approximations of
Gaussian windows. Parzen window sidelobes fall off as .

Examples Compare 64-point Parzen and Gaussian windows and display the result using
sigwin window objects and wintool:

wintool(sigwin.parzenwin(64),sigwin.gausswin(64))

1 ω4⁄
7-419

parzenwin
Algorithm The Parzen window is defined as

References Harris, F.J. “On the Use of Windows for Harmonic Analysis with the Discrete
Fourier Transform.” Proceedings of the IEEE. Vol. 66, No. 1 (January 1978).

See Also barthannwin, bartlett, blackmanharris, bohmanwin, nuttallwin, rectwin,
triang, window, wintool, wvtool

w n() 1.0 6 n
N 2⁄

2
1.0 n

N 2⁄
------------– 0 n N

4
----≤ ≤–=

w n() 2 1.0 n
N 2⁄
------------–

3 N
4
---- n N

2
----≤ ≤=
7-420

pburg
7pburgPurpose Power spectral density using Burg method

Syntax Pxx = pburg(x,p)
[Pxx,w] = pburg(x,p)
[Pxx,w] = pburg(x,p,nfft)
[Pxx,f] = pburg(x,p,nfft,fs)
[Pxx,f] = pburg(x,p,nfft,fs,'range')
[Pxx,w] = pburg(x,p,nfft,'range')
pburg(...)

Description Pxx = pburg(x,p) implements the Burg algorithm, a parametric spectral
estimation method, and returns Pxx, an estimate of the power spectral density
(PSD) of the vector x. The entries of x represent samples of a discrete-time
signal, and p is the integer specifying the order of an autoregressive (AR)
prediction model for the signal, used in estimating the PSD.

The power spectral density is calculated in units of power per radians per
sample. Real-valued inputs produce full power one-sided (in frequency) PSDs
(by default), while complex-valued inputs produce two-sided PSDs.

In general, the length of the FFT and the values of the input x determine the
length of Pxx and the range of the corresponding normalized frequencies. For
this syntax, the (default) FFT length is 256. The following table indicates the
length of Pxx and the range of the corresponding normalized frequencies for
this syntax.

[Pxx,w] = pburg(x,p) also returns w, a vector of frequencies at which the
PSD is estimated. Pxx and w have the same length. The units for frequency are
rad/sample.

PSD Vector Characteristics for an FFT Length of 256 (Default)

Real/Complex
Input Data

 Length of Pxx Range of the Corresponding
Normalized Frequencies

Real-valued 129 [0, π]

Complex-valued 256 [0, 2π)
7-421

pburg
[Pxx,w] = pburg(x,p,nfft) uses the Burg method to estimate the PSD while
specifying the length of the FFT with the integer nfft. If you specify nfft as
the empty vector [], it takes the default value of 256.

The length of Pxx and the frequency range for w depend on nfft and the values
of the input x. The following table indicates the length of Pxx and the frequency
range for w in this syntax.

[Pxx,f] = pburg(x,p,nfft,fs) uses the sampling frequency fs specified as
an integer in hertz (Hz) to compute the PSD vector (Pxx) and the corresponding
vector of frequencies (f). In this case, the units for the frequency vector are
in Hz. The spectral density produced is calculated in units of power per Hz. If
you specify fs as the empty vector [], the sampling frequency defaults to 1 Hz.

The frequency range for f depends on nfft, fs, and the values of the input x.
The length of Pxx is the same as in the table above. The following table
indicates the frequency range for f for this syntax.

[Pxx,f] = pburg(x,p,nfft,fs,'range') or

PSD and Frequency Vector Characteristics

Real/Complex
Input Data

nfft Even/Odd Length of Pxx Range of w

Real-valued Even (nfft/2 + 1) [0, π]

Real-valued Odd (nfft + 1)/2 [0, π)

Complex-valued Even or odd nfft [0, 2π)

PSD and Frequency Vector Characteristics with fs Specified

Real/Complex
Input Data

nfft Even/Odd Range of f

Real-valued Even [0,fs/2]

Real-valued Odd [0,fs/2)

Complex-valued Even or odd [0,fs)
7-422

pburg
[Pxx,w] = pburg(x,p,nfft,'range') specifies the range of frequency values
to include in f or w. This syntax is useful when x is real. 'range' can be either:

• 'twosided': Compute the two-sided PSD over the frequency range [0,fs).
This is the default for determining the frequency range for complex-valued x.

- If you specify fs as the empty vector, [], the frequency range is [0,1).

- If you don’t specify fs, the frequency range is [0, 2π).

• 'onesided': Compute the one-sided PSD over the frequency ranges specified
for real x. This is the default for determining the frequency range for
real-valued x.

Note You can put the string argument 'range' anywhere in the input
argument list after p.

pburg(...) with no outputs plots the power spectral density in the current
figure window. The frequency range on the plot is the same as the range of
output w (or f) for a given set of parameters.

Remarks The power spectral density is computed as the distribution of power per unit
frequency.

This algorithm depends on your selecting an appropriate model order for your
signal.

Examples The Burg method estimates the spectral density by fitting an AR prediction
model of a given order to the signal, so first generate a signal from an AR
(all-pole) model of a given order. Use freqz to check the magnitude of the
frequency response of your AR filter. Then, generate the input signal x by
filtering white noise through the AR filter. Estimate the PSD of x based on a
fourth-order AR prediction model because in this case we know that the
original AR system model a has order 4:

a = [1 -2.2137 2.9403 -2.1697 0.9606]; % AR filter coefficients
[H,w] = freqz(1,a,256); % AR filter freq response

% Scale to make one-sided PSD
Hp = plot(w/pi,20*log10(2*abs(H)/(2*pi)),'r');
7-423

pburg
hold on;
randn('state',1);
x = filter(1,a,randn(256,1)); % AR system output
pburg(x,4,511);
xlabel('Normalized frequency (\times \pi rad/sample)')
ylabel('One-sided PSD (dB/rad/sample)')
legend('PSD of model output','PSD estimate of x')

Algorithm Linear prediction filters can be used to model the second-order statistical
characteristics of a signal. The prediction filter output can be used to model the
signal when the input is white noise.

The Burg method fits an AR linear prediction filter model of the specified order
to the input signal by minimizing (using least squares) the arithmetic mean of
7-424

pburg
the forward and backward prediction errors. The spectral density is then
computed from the frequency response of the prediction filter. The AR filter
parameters are constrained to satisfy the Levinson-Durbin recursion.

References [1] Marple, S.L. Digital Spectral Analysis, Englewood Cliffs, NJ, Prentice-Hall,
1987, Chapter 7.

[2] Stoica, P., and R.L. Moses, Introduction to Spectral Analysis, Prentice-Hall,
1997.

See Also arburg, lpc, pcov, peig, periodogram, pmcov, pmtm, pmusic, pwelch, pyulear
7-425

pcov
7pcovPurpose Power spectral density using covariance method

Syntax Pxx = pcov(x,p)
[Pxx,w] = pcov(x,p)
[Pxx,w] = pcov(x,p,nfft)
[Pxx,f] = pcov(x,p,nfft,fs)
[Pxx,f] = pcov(x,p,nfft,fs,'range')
[Pxx,w] = pcov(x,p,nfft,'range')
pcov(...)

Description Pxx = pcov(x,p) implements the covariance algorithm, a parametric spectral
estimation method, and returns Pxx, an estimate of the power spectral density
(PSD) of the vector x. The entries of x represent samples of a discrete-time
signal, and where p is the integer specifying the order of an autoregressive (AR)
prediction model for the signal, used in estimating the PSD.

The power spectral density is calculated in units of power per radians per
sample. Real-valued inputs produce full power one-sided (in frequency) PSDs
(by default), while complex-valued inputs produce two-sided PSDs.

In general, the length of the FFT and the values of the input x determine the
length of Pxx and the range of the corresponding normalized frequencies. For
this syntax, the (default) FFT length is 256. The following table indicates the
length of Pxx and the range of the corresponding normalized frequencies for
this syntax.

[Pxx,w] = pcov(x,p) also returns w, a vector of frequencies at which the PSD
is estimated. Pxx and w have the same length. The units for frequency are
rad/sample.

PSD Vector Characteristics for an FFT Length of 256 (Default)

Real/Complex
Input Data

 Length of Pxx Range of the Corresponding
Normalized Frequencies

Real-valued 129 [0, π]

Complex-valued 256 [0, 2π)
7-426

pcov
[Pxx,w] = pcov(x,p,nfft) uses the covariance method to estimate the PSD
while specifying the length of the FFT with the integer nfft. If you specify nfft
as the empty vector [], it takes the default value of 256.

The length of Pxx and the frequency range for w depend on nfft and the values
of the input x. The following table indicates the length of Pxx and the frequency
range for w in this syntax.

[Pxx,f] = pcov(x,p,nfft,fs) uses the sampling frequency fs specified as an
integer in hertz (Hz) to compute the PSD vector (Pxx) and the corresponding
vector of frequencies (f). In this case, the units for the frequency vector are
in Hz. The spectral density produced is calculated in units of power per Hz. If
you specify fs as the empty vector [], the sampling frequency defaults to 1 Hz.

The frequency range for f depends on nfft, fs, and the values of the input x.
The length of Pxx is the same as in the table above. The following table
indicates the frequency range for f for this syntax.

[Pxx,f] = pcov(x,p,nfft,fs,'range') or

PSD and Frequency Vector Characteristics

Real/Complex
Input Data

nfft Even/Odd Length of Pxx Range of w

Real-valued Even (nfft/2 + 1) [0, π]

Real-valued Odd (nfft + 1)/2 [0, π)

Complex-valued Even or odd nfft [0, 2π)

PSD and Frequency Vector Characteristics with fs Specified

Real/Complex Input Data nfft Even/Odd Range of f

Real-valued Even [0,fs/2]

Real-valued Odd [0,fs/2)

Complex-valued Even or odd [0,fs)
7-427

pcov
[Pxx,w] = pcov(x,p,nfft,'range') specifies the range of frequency values
to include in f or w. This syntax is useful when x is real. 'range' can be either:

• 'twosided': Compute the two-sided PSD over the frequency range [0,fs).
This is the default for determining the frequency range for complex-valued x.

- If you specify fs as the empty vector, [], the frequency range is [0,1).

- If you don’t specify fs, the frequency range is [0, 2π).

• 'onesided': Compute the one-sided PSD over the frequency ranges specified
for real x. This is the default for determining the frequency range for
real-valued x.

Note You can put the string argument 'range' anywhere in the input
argument list after p.

pcov(...) with no outputs plots the power spectral density in the current
figure window. The frequency range on the plot is the same as the range of
output w (or f) for a given set of parameters.

Remarks The power spectral density is computed as the distribution of power per unit
frequency.

This algorithm depends on your selecting an appropriate model order for your
signal.

Examples Because the covariance method estimates the spectral density by fitting an AR
prediction model of a given order to the signal, first generate a signal from an
AR (all-pole) model of a given order. You can use freqz to check the magnitude
of the frequency response of your AR filter. This will give you an idea of what
to expect when you estimate the PSD using pcov:

a = [1 -2.2137 2.9403 -2.1697 0.9606]; % AR filter coefficients
freqz(1,a) % AR filter frequency response
title('AR System Frequency Response')
7-428

pcov
Now generate the input signal x by filtering white noise through the AR filter.
Estimate the PSD of x based on a fourth-order AR prediction model since in this
case we know that the original AR system model a has order 4:

randn('state',1);
x = filter(1,a,randn(256,1)); % Signal generated from AR filter
pcov(x,4) % Fourth-order estimate

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−200

−150

−100

−50

0

50

100

Normalized Frequency (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−20

−10

0

10

20

30

40

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

AR System Frequency Response
7-429

pcov
Algorithm Linear prediction filters can be used to model the second-order statistical
characteristics of a signal. The prediction filter output can be used to model the
signal when the input is white noise.

The covariance method estimates the PSD of a signal using the covariance
method. The covariance (or nonwindowed) method fits an AR linear prediction
filter model to the signal by minimizing the forward prediction error (based on
causal observations of your input signal) in the least squares sense. The
spectral estimate returned by pcov is the squared magnitude of the frequency
response of this AR model.

References [1] Marple, S.L. Digital Spectral Analysis, Englewood Cliffs, NJ, Prentice-Hall,
1987, Chapter 7.
7-430

pcov
[2] Stoica, P., and R.L. Moses, Introduction to Spectral Analysis, Prentice-Hall,
1997.

See Also arcov, lpc, pburg, peig, periodogram, pmcov, pmtm, pmusic, pwelch, pyulear
7-431

peig
7peigPurpose Pseudospectrum using eigenvector method

Syntax [S,w] = peig(x,p)
[S,w] = peig(...,nfft)
[S,f] = peig(x,p,nfft,fs)
[S,f] = peig(...,'corr')
[S,f] = peig(x,p,nfft,fs,nwin,noverlap)
[...] = peig(...,'range')
[...,v,e] = peig(...)
peig(...)

Description [S,w] = peig(x,p) implements the eigenvector spectral estimation method
and returns S, the pseudospectrum estimate of the input signal x, and w, a
vector of normalized frequencies (in rad/sample) at which the pseudospectrum
is evaluated. The pseudospectrum is calculated using estimates of the
eigenvectors of a correlation matrix associated with the input data x, where x
is specified as either:

• A row or column vector representing one observation of the signal

• A rectangular array for which each row of x represents a separate
observation of the signal (for example, each row is one output of an array of
sensors, as in array processing), such that x'*x is an estimate of the
correlation matrix

Note You can use the output of corrmtx to generate such an array x.

You can specify the second input argument p as either:

• A scalar integer. In this case, the signal subspace dimension is p.

• A two-element vector. In this case, p(2), the second element of p, represents
a threshold that is multiplied by λmin, the smallest estimated eigenvalue of
the signal’s correlation matrix. Eigenvalues below the threshold λmin*p(2)
are assigned to the noise subspace. In this case, p(1) specifies the maximum
dimension of the signal subspace.
7-432

peig
The extra threshold parameter in the second entry in p provides you more
flexibility and control in assigning the noise and signal subspaces.

S and w have the same length. In general, the length of the FFT and the values
of the input x determine the length of the computed S and the range of the
corresponding normalized frequencies. The following table indicates the length
of S (and w) and the range of the corresponding normalized frequencies for this
syntax.

[S,w] = peig(...,nfft) specifies the length of the FFT used to estimate the
pseudospectrum with the integer nfft. The default value for nfft (entered as
an empty vector []) is 256.

The following table indicates the length of S and w, and the frequency range
for w for this syntax.

[S,f] = peig(x,p,nfft,fs)) returns the pseudospectrum in the vector S
evaluated at the corresponding vector of frequencies f (in Hz). You supply the
sampling frequency fs in Hz. If you specify fs with the empty vector [], the
sampling frequency defaults to 1 Hz.

S Characteristics for an FFT Length of 256 (Default)

Real/Complex
Input Data

Length of S and w Range of the Corresponding
Normalized Frequencies

Real-valued 129 [0, π]

Complex-valued 256 [0, 2π)

S and Frequency Vector Characteristics

Real/Complex
Input Data

nfft Even/Odd Length of S
and w

Range of w

Real-valued Even (nfft/2 + 1) [0, π]

Real-valued Odd (nfft + 1)/2 [0, π)

Complex-valued Even or odd nfft [0, 2π)
7-433

peig
The frequency range for f depends on nfft, fs, and the values of the input x.
The length of S (and f) is the same as in the Table , S and Frequency Vector
Characteristics above. The following table indicates the frequency range for f
for this syntax.

[S,f] = peig(...,'corr') forces the input argument x to be interpreted as a
correlation matrix rather than matrix of signal data. For this syntax x must be
a square matrix, and all of its eigenvalues must be nonnegative.

[S,f] = peig(x,p,nfft,fs,nwin,noverlap) allows you to specify nwin, a
scalar integer indicating a rectangular window length, or a real-valued vector
specifying window coefficients. Use the scalar integer noverlap in conjunction
with nwin to specify the number of input sample points by which successive
windows overlap. noverlap is not used if x is a matrix. The default value for
nwin is 2*p(1) and noverlap is nwin-1.

With this syntax, the input data x is segmented and windowed before the
matrix used to estimate the correlation matrix eigenvalues is formulated. The
segmentation of the data depends on nwin, noverlap, and the form of x.
Comments on the resulting windowed segments are described in the following
table.

S and Frequency Vector Characteristics with fs Specified

Real/Complex Input Data nfft Even/Odd Range of f

Real-valued Even [0,fs/2]

Real-valued Odd [0,fs/2)

Complex-valued Even or odd [0,fs)

Windowed Data Depending on x and nwin

Input data x Form of nwin Windowed Data

Data vector Scalar Length is nwin

Data vector Vector of coefficients Length is length(nwin)
7-434

peig
See the Table , Eigenvector Length Depending on Input Data and Syntax below
for related information on this syntax.

Note The arguments nwin and noverlap are ignored when you include the
string 'corr' in the syntax.

[...] = peig(...,'range') specifies the range of frequency values to include
in f or w. This syntax is useful when x is real. 'range' can be either:

• 'whole': Compute the pseudospectrum over the frequency range [0,fs).
This is the default for determining the frequency range for complex-valued x.

- If you specify fs as the empty vector, [], the frequency range is [0,1).

- If you don’t specify fs, the frequency range is [0, 2π).

• 'half': Compute the pseudospectrum over the frequency ranges specified
for real x. This is the default for determining the frequency range for
real-valued x.

Note You can put the string arguments 'range' or 'corr' anywhere in the
input argument list after p.

[...,v,e] = peig(...) returns the matrix v of noise eigenvectors, along with
the associated eigenvalues in the vector e. The columns of v span the noise
subspace of dimension size(v,2). The dimension of the signal subspace is
size(v,1)-size(v,2). For this syntax, e is a vector of estimated eigenvalues
of the correlation matrix.

Data matrix Scalar Data is not windowed.

Data matrix Vector of coefficients length(nwin) must be the same
as the column length of x, and
noverlap is not used.

Windowed Data Depending on x and nwin (Continued)

Input data x Form of nwin Windowed Data
7-435

peig
peig(...) with no output arguments plots the pseudospectrum in the current
figure window.

Remarks In the process of estimating the pseudospectrum, peig computes the noise and
signal subspaces from the estimated eigenvectors vj and eigenvalues λj of the
signal’s correlation matrix. The smallest of these eigenvalues is used in
conjunction with the threshold parameter p(2) to affect the dimension of the
noise subspace in some cases.

The length n of the eigenvectors computed by peig is the sum of the dimensions
of the signal and noise subspaces. This eigenvector length depends on your
input (signal data or correlation matrix) and the syntax you use.

The following table summarizes the dependency of the eigenvector length on
the input argument.

You should specify nwin > p(1) or length(nwin) > p(1) if you want p(2) > 1 to
have any effect.

Eigenvector Length Depending on Input Data and Syntax

Form of Input Data x Comments on the Syntax Length n of
Eigenvectors

Row or column vector nwin is specified as a scalar
integer.

nwin

Row or column vector nwin is specified as a vector. length(nwin)

Row or column vector nwin is not specified. 2*p(1)

l-by-m matrix If nwin is specified as a
scalar, it is not used. If nwin
is specified as a vector,
length(nwin) must equal
m.

m

m-by-m nonnegative
definite matrix

The string 'corr' is
specified and nwin is not
used.

m

7-436

peig
Examples Implement the eigenvector method to find the pseudospectrum of the sum of
three sinusoids in noise, using the default FFT length of 256. Use the modified
covariance method for the correlation matrix estimate:

randn('state',1); n=0:99;
s=exp(i*pi/2*n)+2*exp(i*pi/4*n)+exp(i*pi/3*n)+randn(1,100);
X=corrmtx(s,12,'mod');
peig(X,3,'whole') % Uses the default NFFT of 256.

Algorithm The eigenvector method estimates the pseudospectrum from a signal or a
correlation matrix using a weighted version of the MUSIC algorithm derived
from Schmidt’s eigenspace analysis method [1][2]. The algorithm performs
eigenspace analysis of the signal’s correlation matrix in order to estimate the
signal’s frequency content. The eigenvalues and eigenvectors of the signal’s
7-437

peig
correlation matrix are estimated using svd if you don’t supply the correlation
matrix. This algorithm is particularly suitable for signals that are the sum of
sinusoids with additive white Gaussian noise.

The eigenvector method produces a pseudospectrum estimate given by

where N is the dimension of the eigenvectors and vk is the kth eigenvector of
the correlation matrix of the input signal. The integer p is the dimension of the
signal subspace, so the eigenvectors vk used in the sum correspond to the
smallest eigenvalues of the correlation matrix. The eigenvectors used in the
PSD estimate span the noise subspace. The vector e(f) consists of complex
exponentials, so the inner product

amounts to a Fourier transform. This is used for computation of the PSD
estimate. The FFT is computed for each vk and then the squared magnitudes
are summed and scaled.

References [1] Marple, S.L. Digital Spectral Analysis, Englewood Cliffs, NJ, Prentice-Hall,
1987, pp. 373-378.

[2] Schmidt, R.O, “Multiple Emitter Location and Signal Parameter
Estimation,” IEEE Trans. Antennas Propagation, Vol. AP-34 (March 1986),
pp. 276-280.

[3] Stoica, P., and R.L. Moses, Introduction to Spectral Analysis, Prentice-Hall,
1997.

See Also corrmtx, pburg, periodogram, pmtm, pmusic, prony, pwelch, rooteig,
rootmusic

Pev f() 1

vk
He f() 2

k 1+

N

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

λk⁄

---=

λk

vk
He f()
7-438

periodogram
7periodogramPurpose Power spectral density (PSD) using a periodogram

Syntax [Pxx,w] = periodogram(x)
[Pxx,w] = periodogram(x,window)
[Pxx,w] = periodogram(x,window,nfft)
[Pxx,f] = periodogram(x,window,nfft,fs)
[Pxx,...] = periodogram(x,...,'range')
periodogram(...)

Description [Pxx,w] = periodogram(x) returns the power spectral density (PSD)
estimate Pxx of the sequence x using a periodogram. The power spectral
density is calculated in units of power per radians per sample. The
corresponding vector of frequencies w is computed in radians per sample, and
has the same length as Pxx.

A real-valued input vector x produces a full power one-sided (in frequency) PSD
(by default), while a complex-valued x produces a two-sided PSD.

In general, the length N of the FFT and the values of the input x determine the
length of Pxx and the range of the corresponding normalized frequencies. For
this syntax, the (default) length N of the FFT is the larger of 256 and the next
power of 2 greater than the length of x. The following table indicates the length
of Pxx and the range of the corresponding normalized frequencies for this
syntax.

[Pxx,w] = periodogram(x,window) returns the PSD estimate Pxx computed
using the modified periodogram method. The vector window specifies the
coefficients of the window used in computing a modified periodogram of the
input signal. Both input arguments must be vectors of the same length. When
you don’t supply the second argument window, or set it to the empty vector [],

PSD Vector Characteristics for an FFT Length of N (Default)

Real/Complex
Input Data

 Length of Pxx Range of the Corresponding
Normalized Frequencies

Real-valued (N/2) +1 [0, π]

Complex-valued N [0, 2π)
7-439

periodogram
a rectangular window (rectwin) is used by default. In this case the standard
periodogram is calculated.

[Pxx,w] = periodogram(x,window,nfft) uses the modified periodogram to
estimate the PSD while specifying the length of the FFT with the integer nfft.
If you set nfft to the empty vector [], it takes the default value for N listed in
the previous syntax.

The length of Pxx and the frequency range for w depend on nfft and the values
of the input x. The following table indicates the length of Pxx and the frequency
range for w for this syntax.

Note periodogram uses an nfft-point FFT of the windowed data (x.*window)
to compute the periodogram. If the value you specify for nfft is less than the
length of x, then x.*window is wrapped modulo nfft. If the value you specify
for nfft is greater than the length of x, then x.*window is zero-padded to
compute the FFT.

[Pxx,f] = periodogram(x,window,nfft,fs) uses the sampling frequency fs
specified as an integer in hertz (Hz) to compute the PSD vector (Pxx) and the
corresponding vector of frequencies (f). In this case, the units for the frequency
vector are in Hz. The spectral density produced is calculated in units of power
per Hz. If you specify fs as the empty vector [], the sampling frequency
defaults to 1 Hz.

PSD and Frequency Vector Characteristics

Real/Complex
Input Data

nfft Even/Odd Length of Pxx Range of w

Real-valued Even (nfft/2 + 1) [0, π]

Real-valued Odd (nfft + 1)/2 [0, π)

Complex-valued Even or odd nfft [0, 2π)
7-440

periodogram
The frequency range for f depends on nfft, fs, and the values of the input x.
The length of Pxx is the same as in the table above. The following table
indicates the frequency range for f for this syntax.

[Pxx,f] = periodogram(x,window,nfft,fs,'range') or

[Pxx,w] = periodogram(x,window,nfft,'range') specifies the range of
frequency values to include in f or w. This syntax is useful when x is real.
'range' can be either:

• 'twosided': Compute the two-sided PSD over the frequency range [0,fs).
This is the default for determining the frequency range for complex-valued x.

- If you specify fs as the empty vector, [], the frequency range is [0,1).

- If you don’t specify fs, the frequency range is [0, 2π).

• 'onesided': Compute the one-sided PSD over the frequency ranges specified
for real x. This is the default for determining the frequency range for
real-valued x.

Note You can put the string argument 'range' anywhere in the input
argument list after window.

periodogram(...) with no outputs plots the power spectral density in dB per
unit frequency in the current figure window. The frequency range on the plot
is the same as the range of output w (or f) for the syntax you use.

Examples Compute the periodogram of a 200 Hz signal embedded in additive noise using
the default window:

PSD and Frequency Vector Characteristics with fs Specified

Real/Complex Input Data nfft Even/Odd Range of f

Real-valued Even [0,fs/2]

Real-valued Odd [0,fs/2)

Complex-valued Even or odd [0,fs)
7-441

periodogram
randn('state',0);
Fs = 1000;
t = 0:1/Fs:.3;
x = cos(2*pi*t*200)+0.1*randn(size(t));
periodogram(x,[],'twosided',512,Fs)

Algorithm The periodogram for a sequence [x1, ... , xn] is given by the following formula:

This expression forms an estimate of the power spectrum of the signal defined
by the sequence [x1, ... , xn].

S ejω() 1
n
--- xle

jωl–

l 1=

n

∑
2

=

7-442

periodogram
If you weight your signal sequence by a window [w1, ... , wn], then the weighted
or modified periodogram is defined as

In either case, periodogram uses an nfft-point FFT to compute the power
spectral density as , where F is

• 2π when you do not supply the sampling frequency

• fs when you supply the sampling frequency

References [1] Stoica, P., and R.L. Moses, Introduction to Spectral Analysis, Prentice-Hall,
1997, pp. 24-26.

[2] Welch, P.D, “The Use of Fast Fourier Transform for the Estimation of Power
Spectra: A Method Based on Time Averaging Over Short, Modified
Periodograms,” IEEE Trans. Audio Electroacoustics, Vol. AU-15 (June 1967),
pp. 70-73.

[3] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing,
Prentice-Hall, 1989, pp. 730-742.

See Also dspdata.msspectrum, pburg, pcov, peig, pmcov, pmtm, pmusic, pwelch,
pyulear

S ejω()

1
n
--- wlxle

jωl–

l 1=

n

∑
2

1
n
--- wl

2

l 1

n

∑

---=

S ejω() F⁄
7-443

phasedelay
7phasedelayPurpose CPhase delay of digital filters

Syntax [phi,w] = phasedelay(b,a,n)
[phi,w] = phasedelay(b,a,n,'whole')
phi = phasedelay(b,a,w)
[phi,f] = phasedelay(b,a,n,fs)
[phi,f] = phasedelay(b,a,n,'whole',fs)
phi = phasedelay(b,a,f,fs)
[phi,w,s] = phasedelay(...)
[phi,f,s] = phasedelay(...)
phasedelay(b,a,...)

Description [phi,w] = phasedelay(b,a,n) returns the n-point phase delay response
vector phi and the n-point frequency reponse vector w (in radians/sample) of the
filter defined by numerator coefficients b and denominator coefficients a. The
phase delay response is evaluated at n equally spaced points around the upper
half of the unit circle. If n is omitted, it defaults to 512.

[phi,w] = phasedelay(b,a,n,'whole') uses n equally spaced points around
the whole unit circle.

phi = phasedelay(b,a,w) returns the phase delay response at frequencies
specified in vector w (in radians/sample). The frequencies are normally
between 0 and π.

[phi,f] = phasedelay(b,a,n,fs) and
[phi,f] = phasedelay(b,a,n,'whole',fs) return the phase delay vector f
(in Hz), using the sampling frequency fs (in Hz).

phi = phasedelay(b,a,f,fs) returns the phase delay response at the
frequencies specified in vector f (in Hz), using the sampling frequency fs (in
Hz)..

[phi,w,s] = phasedelay(...) and [phi,f,s] = phasedelay(...) return
plotting information, where s is a structure with fields you can change to
display different frequency response plots.

phasedelay(b,a,...) with no output arguments, plots the phase delay
response of the filter.
7-444

phasedelay
Examples Example 1
Plot the phase delay response of a constrained least squares FIR filter:

b=fircls1(54,.3,.02,.008);
phasedelay(b)

Example 2
Plot the phase delay response of an elliptic filter:

[b,a] = ellip(10,.5,20,.4);
phasedelay(b,a,512,'whole')

0 0.2 0.4 0.6 0.8 1
5

10

15

20

25

30

Normalized Frequency (×π rad/sample)

P
ha

se
 d

el
ay

 (
sa

m
pl

es
)

7-445

phasedelay
See Also freqz, fvtool, phasez, grpdelay

0 0.5 1 1.5 2
−2

−1

0

1

2

3

4

5

Normalized Frequency (×π rad/sample)

P
ha

se
 d

el
ay

 (
sa

m
pl

es
)

7-446

phasez
7phasezPurpose Phase response of digital filters

Syntax [phi,w] = phasez(b,a,n)
[phi,w] = phasez(b,a,n,'whole')
phi = phasez(b,a,w)
[phi,f] = phasez(b,a,n,fs)
[phi,f] = phasez(b,a,n,'whole',fs)
phi = phasez(b,a,f,fs)
[phi,w,s] = phasez(...)
[phi,f,s] = phasez(...)
phasez(b,a,...)
phasez(Hd)

Description [phi,w] = phasez(b,a,n) returns the n-point phase response vector phi and
the n-point frequency reponse vector w (in radians/sample) of the filter defined
by numerator coefficients b and denominator coefficients a. The phase
response is evaluated at n equally spaced points around the upper half of the
unit circle. If n is omitted, it defaults to 512.

[phi,w] = phasez(b,a,n,'whole') uses n equally spaced points around the
whole unit circle.

phi = phasez(b,a,w) returns the phase response at frequencies specified in
vector w (in radians/sample). The frequencies are normally between 0 and π.

[phi,f] = phasez(b,a,n,fs) and [phi,f] = phasez(b,a,n,'whole',fs)
return the phase vector f (in Hz), using the sampling frequency fs (in Hz).

phi = phasez(b,a,f,fs) returns the phase response at the frequencies
specified in vector f (in Hz), using the sampling frequency fs (in Hz)..

[phi,w,s] = phasez(...) and [phi,f,s] = phasez(...) return plotting
information, where s is a structure with fields you can change to display
different frequency response plots.

phasez(b,a,...) with no output arguments, plots the phase response of the
filter in the current filter window.
7-447

phasez
phasez(Hd) plots the phase response of the filter and displays the plot in
fvtool. The input Hd is a dfilt filter object.

Examples Example 1
Plot the phase response of a constrained least squares FIR filter:

b=fircls1(54,.3,.02,.008);
phasez(b)

The same example using a dfilt filter object and displaying the result in
fvtool, where you can perform more analyses, is

b=fircls1(54,.3,.02,.008);
Hd=dfilt.dffir(b);
phasez(Hd)

0 0.2 0.4 0.6 0.8 1
−1800

−1600

−1400

−1200

−1000

−800

−600

−400

−200

0

Normalized Frequency (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)
7-448

phasez
Example 2
Plot the phase response of an elliptic filter:

[b,a] = ellip(10,.5,20,.4);
phasez(b,a,512,'whole')
7-449

phasez
See Also freqz, fvtool, phasedelay, grpdelay

0 0.5 1 1.5 2
−400

−300

−200

−100

0

100

200

300

400

Normalized Frequency (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)
7-450

pmcov
7pmcovPurpose Power spectral density using modified covariance method

Syntax Pxx = pmcov(x,p)
[Pxx,w] = pmcov(x,p)
[Pxx,w] = pmcov(x,p,nfft)
[Pxx,f] = pmcov(x,p,nfft,fs)
[Pxx,f] = pmcov(x,p,nfft,fs,'range')
[Pxx,w] = pmcov(x,p,nfft,'range')
pmcov(...)

Description Pxx = pmcov(x,p) implements the modified covariance algorithm, a
parametric spectral estimation method, and returns Pxx, an estimate of the
power spectral density (PSD) of the vector x. The entries of x represent samples
of a discrete-time signal, and p is the integer specifying the order of an
autoregressive (AR) prediction model for the signal, used in estimating the
PSD.

The power spectral density is calculated in units of power per radians per
sample. Real-valued inputs produce full power one-sided (in frequency) PSDs
(by default), while complex-valued inputs produce two-sided PSDs.

In general, the length of the FFT and the values of the input x determine the
length of Pxx and the range of the corresponding normalized frequencies. For
this syntax, the (default) FFT length is 256. The following table indicates the
length of Pxx and the range of the corresponding normalized frequencies for
this syntax.

[Pxx,w] = pmcov(x,p) also returns w, a vector of frequencies at which the
PSD is estimated. Pxx and w have the same length. The units for frequency are
rad/sample.

PSD Vector Characteristics for an FFT Length of 256 (Default)

Real/Complex
Input Data

 Length of Pxx Range of the Corresponding
Normalized Frequencies

Real-valued 129 [0, π]

Complex-valued 256 [0, 2π)
7-451

pmcov
[Pxx,w] = pmcov(x,p,nfft) uses the covariance method to estimate the PSD
while specifying the length of the FFT with the integer nfft. If you specify nfft
as the empty vector [], it takes the default value of 256.

The length of Pxx and the frequency range for w depend on nfft and the values
of the input x. The following table indicates the length of Pxx and the frequency
range for w for this syntax.

[Pxx,f] = pmcov(x,p,nfft,fs) uses the sampling frequency fs specified as
an integer in hertz (Hz) to compute the PSD vector (Pxx) and the corresponding
vector of frequencies (f). In this case, the units for the frequency vector are
in Hz. The spectral density produced is calculated in units of power per Hz. If
you specify fs as the empty vector [], the sampling frequency defaults to 1 Hz.

The frequency range for f depends on nfft, fs, and the values of the input x.
The length of Pxx is the same as in the Table , PSD and Frequency Vector
Characteristics above. The following table indicates the frequency range for f
in this syntax.

[Pxx,f] = pmcov(x,p,nfft,fs,'range') or

PSD and Frequency Vector Characteristics

Real/Complex
Input Data

nfft Even/Odd Length of Pxx Range of w

Real-valued Even (nfft/2 + 1) [0, π]

Real-valued Odd (nfft + 1)/2 [0, π)

Complex-valued Even or odd nfft [0, 2π)

PSD and Frequency Vector Characteristics with fs Specified

Real/Complex Input Data nfft Even/Odd Range of f

Real-valued Even [0,fs/2]

Real-valued Odd [0,fs/2)

Complex-valued Even or odd [0,fs)
7-452

pmcov
[Pxx,w] = pmcov(x,p,nfft,'range') specifies the range of frequency values
to include in f or w. This syntax is useful when x is real. 'range' can be either:

• 'twosided': Compute the two-sided PSD over the frequency range [0,fs).
This is the default for determining the frequency range for complex-valued x.

- If you specify fs as the empty vector, [], the frequency range is [0,1).

- If you don’t specify fs, the frequency range is [0, 2π).

• 'onesided': Compute the one-sided PSD over the frequency ranges specified
for real x. This is the default for determining the frequency range for
real-valued x.

Note You can put the string argument 'range' anywhere in the input
argument list after p.

pmcov(...) with no outputs plots the power spectral density in the current
figure window. The frequency range on the plot is the same as the range of
output w (or f) for a given set of parameters.

Remarks The power spectral density is computed as the distribution of power per unit
frequency.

This algorithm depends on your selecting an appropriate model order for your
signal.

Examples Because the modified covariance method estimates the spectral density by
fitting an AR prediction model of a given order to the signal, first generate a
signal from an AR (all-pole) model of a given order. You can use freqz to check
the magnitude of the frequency response of your AR filter. This will give you an
idea of what to expect when you estimate the PSD using pmcov:

a = [1 -2.2137 2.9403 -2.1697 0.9606]; % AR filter coefficients
freqz(1,a) % AR filter frequency response
title('AR System Frequency Response')
7-453

pmcov
Now generate the input signal x by filtering white noise through the AR filter.
Estimate the PSD of x based on a fourth-order AR prediction model since in this
case we know that the original AR system model a has order 4:

randn('state',1);
x = filter(1,a,randn(256,1)); % AR filter output
pmcov(x,4) % Fourth-order estimate

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−200

−150

−100

−50

0

50

100

Normalized Frequency (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−20

−10

0

10

20

30

40

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

AR System Frequency Response
7-454

pmcov
Algorithm Linear prediction filters can be used to model the second-order statistical
characteristics of a signal. The prediction filter output can be used to model the
signal when the input is white noise.

pmcov estimates the PSD of the signal vector using the modified covariance
method. This method fits an autoregressive (AR) linear prediction filter model
to the signal by simultaneously minimizing the forward and backward
prediction errors (based on causal observations of your input signal) in the
least squares sense. The spectral estimate returned by pmcov is the magnitude
squared frequency response of this AR model.

References [1] Marple, S.L. Digital Spectral Analysis, Englewood Cliffs, NJ, Prentice-Hall,
1987, Chapter 7.
7-455

pmcov
[2] Stoica, P., and R.L. Moses, Introduction to Spectral Analysis, Prentice-Hall,
1997.

See Also armcov, lpc, pburg, pcov, peig, periodogram, pmtm, pmusic, pwelch, prony,
pyulear
7-456

pmtm
7pmtmPurpose Power spectral density using multitaper method (MTM)

Syntax [Pxx,w] = pmtm(x,nw)
[Pxx,w] = pmtm(x,nw,nfft)
[Pxx,f] = pmtm(x,nw,nfft,fs)
[Pxx,Pxxc,f] = pmtm(x,nw,nfft,fs)
[Pxx,Pxxc,f] = pmtm(x,nw,nfft,fs,p)
[Pxx,Pxxc,f] = pmtm(x,e,v,nfft,fs,p)
[Pxx,Pxxc,f] = pmtm(x,dpss_params,nfft,fs,p)
[...] = pmtm(...,'method')
[...] = pmtm(...,'range')
pmtm(...)

Description pmtm estimates the power spectral density (PSD) of the time series x using the
multitaper method (MTM) described in [1]. This method uses linear or
nonlinear combinations of modified periodograms to estimate the PSD. These
periodograms are computed using a sequence of orthogonal tapers (windows in
the frequency domain) specified from the discrete prolate spheroidal sequences
(see dpss).

[Pxx,w] = pmtm(x,nw) estimates the PSD Pxx for the input signal x, using
2*nw-1 discrete prolate spheroidal sequences as data tapers for the multitaper
estimation method. nw is the time-bandwidth product for the discrete prolate
spheroidal sequences. If you specify nw as the empty vector [], a default value
of 4 is used. Other typical choices are 2, 5/2, 3, or 7/2. pmtm also returns w, a
vector of frequencies at which the PSD is estimated. Pxx and w have the same
length. The units for frequency are rad/sample.

The power spectral density is calculated in units of power per radians per
sample. Real-valued inputs produce (by default) full power one-sided (in
frequency) PSDs, while complex-valued inputs produce two-sided PSDs.

In general, the length N of the FFT and the values of the input x determine the
length of Pxx and the range of the corresponding normalized frequencies. For
this syntax, the (default) length N of the FFT is the larger of 256 and the next
power of 2 greater than the length of the segment. The following table indicates
7-457

pmtm
the length of Pxx and the range of the corresponding normalized frequencies for
this syntax.

[Pxx,w] = pmtm(x,nw,nfft) uses the multitaper method to estimate the PSD
while specifying the length of the FFT with the integer nfft. If you specify nfft
as the empty vector [], it adopts the default value for N described in the
previous syntax.

The length of Pxx and the frequency range for w depend on nfft and the values
of the input x. The following table indicates the length of Pxx and the frequency
range for w for this syntax.

[Pxx,f] = pmtm(x,nw,nfft,fs) uses the sampling frequency fs specified as
an integer in hertz (Hz) to compute the PSD vector (Pxx) and the corresponding
vector of frequencies (f). In this case, the units for the frequency vector f are
in Hz. The spectral density produced is calculated in units of power per Hz. If
you specify fs as the empty vector [], the sampling frequency defaults to 1 Hz.

The frequency range for f depends on nfft, fs, and the values of the input x.
The length of Pxx is the same as in the Table , PSD and Frequency Vector

PSD Vector Characteristics for an FFT Length of N (Default)

Real/Complex
Input Data

 Length of Pxx Range of the Corresponding
Normalized Frequencies

Real-valued (N/2) +1 [0, π]

Complex-valued N [0, 2π)

PSD and Frequency Vector Characteristics

Real/Complex
Input Data

nfft Even/Odd Length of Pxx Range of w

Real-valued Even (nfft/2 + 1) [0, π]

Real-valued Odd (nfft + 1)/2 [0, π)

Complex-valued Even or odd nfft [0, 2π)
7-458

pmtm
Characteristics above. The following table indicates the frequency range for f
for this syntax.

[Pxx,Pxxc,f] = pmtm(x,nw,nfft,fs) returns Pxxc, the 95% confidence
interval for Pxx. Confidence intervals are computed using a chi-squared
approach. Pxxc is a two-column matrix with the same number of rows as Pxx.
Pxxc(:,1) is the lower bound of the confidence interval and Pxxc(:,2) is the
upper bound of the confidence interval.

[Pxx,Pxxc,f] = pmtm(x,nw,nfft,fs,p) returns Pxxc, the p*100% confidence
interval for Pxx, where p is a scalar between 0 and 1. If you don’t specify p, or
if you specify p as the empty vector [], the default 95% confidence interval is
used.

[Pxx,Pxxc,f] = pmtm(x,e,v,nfft,fs,p) returns the PSD estimate Pxx, the
confidence interval Pxxc, and the frequency vector f from the data tapers
contained in the columns of the matrix e, and their concentrations in the
vector v. The length of v is the same as the number of columns in e. You can
obtain the data to supply as these arguments from the outputs of dpss.

[Pxx,Pxxc,f] = pmtm(x,dpss_params,nfft,fs,p) uses the cell array
dpss_params containing the input arguments to dpss (listed in order, but
excluding the first argument) to compute the data tapers. For example,
pmtm(x,{3.5,'trace'},512,1000) calculates the prolate spheroidal
sequences for nw = 3.5, using nfft = 512, and fs = 1000, and displays the
method that dpss uses for this calculation. See dpss for other options.

[...] = pmtm(...,'method') specifies the algorithm used for combining the
individual spectral estimates. The string 'method' can be one of the following:

• 'adapt': Thomson’s adaptive nonlinear combination (default)

PSD and Frequency Vector Characteristics with fs Specified

Real/Complex Input Data nfft Even/Odd Range of f

Real-valued Even [0, fs/2]

Real-valued Odd [0, fs/2)

Complex-valued Even or odd [0, fs)
7-459

pmtm
• 'unity': A linear combination of the weighted periodograms with unity
weights

• 'eigen': A linear combination of the weighted periodograms with
eigenvalue weights

[...] = pmtm(...,'range') specifies the range of frequency values to include
in f or w. This syntax is useful when x is real. 'range' can be either:

• 'twosided': Compute the two-sided PSD over the frequency range [0,fs).
This is the default for determining the frequency range for complex-valued x.

- If you specify fs as the empty vector, [], the frequency range is [0,1).

- If you don’t specify fs, the frequency range is [0, 2π).

• 'onesided': Compute the one-sided PSD over the frequency ranges specified
for real x. This is the default for determining the frequency range for
real-valued x.

Note You can put the string arguments 'range' or 'method' anywhere after
the input argument nw or v.

pmtm(...) with no output arguments plots the PSD estimate and the
confidence intervals in the current figure window. If you don’t specify fs, the
95% confidence interval is plotted. If you do specify fs, the confidence intervals
plotted depend on the value of p.
7-460

pmtm
Examples This example analyzes a sinusoid in white noise:

randn('state',0);
fs = 1000;
t = 0:1/fs:0.3;
x = cos(2*pi*t*200) + 0.1*randn(size(t));
[Pxx,Pxxc,f] = pmtm(x,3.5,512,fs,0.99);
hpsd = dspdata.psd([Pxx Pxxc],'Fs',fs);
plot(hpsd)

References [1] Percival, D.B., and A.T. Walden, Spectral Analysis for Physical
Applications: Multitaper and Conventional Univariate Techniques, Cambridge
University Press, 1993.
7-461

pmtm
[2] Thomson, D.J., “Spectrum estimation and harmonic analysis,” Proceedings
of the IEEE, Vol. 70 (1982), pp. 1055-1096.

See Also dpss, pburg, pcov, peig, periodogram, pmcov, pmusic, pwelch, pyulear
7-462

pmusic
7pmusicPurpose Pseudospectrum using MUSIC algorithm

Syntax [S,w] = pmusic(x,p)
[S,w] = pmusic(...,nfft)
[S,f] = pmusic(x,p,nfft,fs))
[S,f] = pmusic(...,'corr')
[S,f] = pmusic(x,p,nfft,fs,nwin,noverlap)
[...] = pmusic(...,'range')
[...,v,e] = pmusic(...)
pmusic(...)

Description [S,w] = pmusic(x,p) implements the MUSIC (Multiple Signal Classification)
algorithm and returns S, the pseudospectrum estimate of the input signal x,
and a vector w of normalized frequencies (in rad/sample) at which the
pseudospectrum is evaluated. The pseudospectrum is calculated using
estimates of the eigenvectors of a correlation matrix associated with the input
data x, where x is specified as either:

• A row or column vector representing one observation of the signal

• A rectangular array for which each row of x represents a separate
observation of the signal (for example, each row is one output of an array of
sensors, as in array processing), such that x'*x is an estimate of the
correlation matrix

Note You can use the output of corrmtx to generate such an array x.

You can specify the second input argument p as either:

• A scalar integer. In this case, the signal subspace dimension is p.

• A two-element vector. In this case, p(2), the second element of p, represents
a threshold that is multiplied by λmin, the smallest estimated eigenvalue of
the signal’s correlation matrix. Eigenvalues below the threshold λmin*p(2)
are assigned to the noise subspace. In this case, p(1) specifies the maximum
dimension of the signal subspace.
7-463

pmusic
The extra threshold parameter in the second entry in p provides you more
flexibility and control in assigning the noise and signal subspaces.

S and w have the same length. In general, the length of the FFT and the values
of the input x determine the length of the computed S and the range of the
corresponding normalized frequencies. The following table indicates the length
of S (and w) and the range of the corresponding normalized frequencies for this
syntax.

[S,w] = pmusic(...,nfft) specifies the length of the FFT used to estimate
the pseudospectrum with the integer nfft. The default value for nfft (entered
as an empty vector []) is 256.

The following table indicates the length of S and w, and the frequency range for
w in this syntax.

[S,f] = pmusic(x,p,nfft,fs) returns the pseudospectrum in the vector S
evaluated at the corresponding vector of frequencies f (in Hz). You supply the
sampling frequency fs in Hz. If you specify fs with the empty vector [], the
sampling frequency defaults to 1 Hz.

S Characteristics for an FFT Length of 256 (Default)

Real/Complex
Input Data

Length of S and w Range of the Corresponding
Normalized Frequencies

Real-valued 129 [0, π]

Complex-valued 256 [0, 2π)

S and Frequency Vector Characteristics

Real/Complex
Input Data

nfft Even/Odd Length of S
and w

Range of w

Real-valued Even (nfft/2 + 1) [0, π]

Real-valued Odd (nfft + 1)/2 [0, π)

Complex-valued Even or odd nfft [0, 2π)
7-464

pmusic
The frequency range for f depends on nfft, fs, and the values of the input x.
The length of S (and f) is the same as in the Table , S and Frequency Vector
Characteristics above. The following table indicates the frequency range for f
for this syntax.

[S,f] = pmusic(...,'corr') forces the input argument x to be interpreted as
a correlation matrix rather than matrix of signal data. For this syntax x must
be a square matrix, and all of its eigenvalues must be nonnegative.

[S,f] = pmusic(x,p,nfft,fs,nwin,noverlap) allows you to specify nwin, a
scalar integer indicating a rectangular window length, or a real-valued vector
specifying window coefficients. Use the scalar integer noverlap in conjunction
with nwin to specify the number of input sample points by which successive
windows overlap. noverlap is not used if x is a matrix. The default value for
nwin is 2*p(1) and noverlap is nwin-1.

With this syntax, the input data x is segmented and windowed before the
matrix used to estimate the correlation matrix eigenvalues is formulated. The
segmentation of the data depends on nwin, noverlap, and the form of x.
Comments on the resulting windowed segments are described in the following
table.

S and Frequency Vector Characteristics with fs Specified

Real/Complex Input Data nfft Even/Odd Range of f

Real-valued Even [0,fs/2]

Real-valued Odd [0,fs/2)

Complex-valued Even or odd [0,fs)

Windowed Data Depending on x and nwin

Input data x Form of nwin Windowed Data

Data vector Scalar Length is nwin

Data vector Vector of coefficients Length is length(nwin)
7-465

pmusic
See the Table , Eigenvector Length Depending on Input Data and Syntax below
for related information on this syntax.

Note The arguments nwin and noverlap are ignored when you include the
string 'corr' in the syntax.

[...] = pmusic(...,'range') specifies the range of frequency values to
include in f or w. This syntax is useful when x is real. 'range' can be either:

• 'whole': Compute the pseudospectrum over the frequency range [0,fs).
This is the default for determining the frequency range for complex-valued x.

- If you specify fs as the empty vector, [], the frequency range is [0,1).

- If you don’t specify fs, the frequency range is [0, 2π).

• 'half': Compute the pseudospectrum over the frequency ranges specified
for real x. This is the default for determining the frequency range for
real-valued x.

Note You can put the string arguments 'range' or 'corr' anywhere in the
input argument list after p.

[...,v,e] = pmusic(...) returns the matrix v of noise eigenvectors, along
with the associated eigenvalues in the vector e. The columns of v span the noise
subspace of dimension size(v,2). The dimension of the signal subspace is
size(v,1)-size(v,2). For this syntax, e is a vector of estimated eigenvalues
of the correlation matrix.

Data matrix Scalar Data is not windowed.

Data matrix Vector of coefficients length(nwin) must be the same
as the column length of x, and
noverlap is not used.

Windowed Data Depending on x and nwin (Continued)

Input data x Form of nwin Windowed Data
7-466

pmusic
pmusic(...) with no output arguments plots the pseudospectrum in the
current figure window.

Remarks In the process of estimating the pseudospectrum, pmusic computes the noise
and signal subspaces from the estimated eigenvectors vj and eigenvalues λj of
the signal’s correlation matrix. The smallest of these eigenvalues is used in
conjunction with the threshold parameter p(2) to affect the dimension of the
noise subspace in some cases.

The length n of the eigenvectors computed by pmusic is the sum of the
dimensions of the signal and noise subspaces. This eigenvector length depends
on your input (signal data or correlation matrix) and the syntax you use.

The following table summarizes the dependency of the eigenvector length on
the input argument.

You should specify nwin > p(1) or length(nwin) > p(1) if you want p(2) > 1 to
have any effect.

Eigenvector Length Depending on Input Data and Syntax

Form of Input Data x Comments on the Syntax Length n of
Eigenvectors

Row or column vector nwin is specified as a scalar
integer.

nwin

Row or column vector nwin is specified as a vector. length(nwin)

Row or column vector nwin is not specified. 2*p(1)

l-by-m matrix If nwin is specified as a
scalar, it is not used. If nwin
is specified as a vector,
length(nwin) must equal
m.

m

m-by-m nonnegative
definite matrix

The string 'corr' is
specified and nwin is not
used.

m

7-467

pmusic
Examples Example 1: pmusic with no Sampling Specified
This example analyzes a signal vector x, assuming that two real sinusoidal
components are present in the signal subspace. In this case, the dimension of
the signal subspace is 4 because each real sinusoid is the sum of two complex
exponentials:

randn('state',0);
n = 0:199;
x = cos(0.257*pi*n) + sin(0.2*pi*n) + 0.01*randn(size(n));
pmusic(x,4)

Example 2: Specifying Sampling Frequency and Subspace Dimensions
This example analyzes the same signal vector x with an eigenvalue cutoff of
10% above the minimum. Setting p(1) = Inf forces the signal/noise subspace
7-468

pmusic
decision to be based on the threshold parameter p(2). Specify the eigenvectors
of length 7 using the nwin argument, and set the sampling frequency fs to
8 kHz:

randn('state',0);
n = 0:199;
x = cos(0.257*pi*n) + sin(0.2*pi*n) + 0.01*randn(size(n));
[P,f] = pmusic(x,[Inf,1.1],[],8000,7); % Window length = 7

Example 3: Entering a Correlation Matrix
Supply a positive definite correlation matrix R for estimating the spectral
density. Use the default 256 samples:

R = toeplitz(cos(0.1*pi*[0:6])) + 0.1*eye(7);
[P,f] = pmusic(R,4,'corr');

Example 4: Entering a Signal Data Matrix Generated from corrmtx
Enter a signal data matrix Xm generated from data using corrmtx:

randn('state',0);
n = 0:699;
x = cos(0.257*pi*(n)) + 0.1*randn(size(n));
Xm = corrmtx(x,7,'mod');
[P,w] = pmusic(Xm,2);

Example 5: Using Windowing to Create the Effect of a Signal Data Matrix
Use the same signal, but let pmusic form the 100-by-7 data matrix using its
windowing input arguments. In addition, specify an FFT of length 512:

randn('state',0);
n = 0:699;
x = cos(0.257*pi*(n)) + 0.1*randn(size(n));
[PP,ff] = pmusic(x,2,512,[],7,0);

Algorithm The name MUSIC is an acronym for MUltiple SIgnal Classification. The
MUSIC algorithm estimates the pseudospectrum from a signal or a correlation
matrix using Schmidt’s eigenspace analysis method [1]. The algorithm
performs eigenspace analysis of the signal’s correlation matrix in order to
estimate the signal’s frequency content. This algorithm is particularly suitable
for signals that are the sum of sinusoids with additive white Gaussian noise.
7-469

pmusic
The eigenvalues and eigenvectors of the signal’s correlation matrix are
estimated if you don’t supply the correlation matrix.

The MUSIC pseudospectrum estimate is given by

where N is the dimension of the eigenvectors and vk is the k-th eigenvector of
the correlation matrix. The integer p is the dimension of the signal subspace,
so the eigenvectors vk used in the sum correspond to the smallest eigenvalues
and also span the noise subspace. The vector e(f) consists of complex
exponentials, so the inner product

amounts to a Fourier transform. This is used for computation of the
pseudospectrum estimate. The FFT is computed for each vk and then the
squared magnitudes are summed.

References [1] Marple, S.L. Digital Spectral Analysis, Englewood Cliffs, NJ, Prentice-Hall,
1987, pp. 373-378.

[2] Schmidt, R.O, “Multiple Emitter Location and Signal Parameter
Estimation,” IEEE Trans. Antennas Propagation, Vol. AP-34 (March 1986),
pp. 276-280.

[3] Stoica, P., and R.L. Moses, Introduction to Spectral Analysis, Prentice-Hall,
Englewood Cliffs, NJ, 1997.

See Also corrmtx, pburg, peig, periodogram, pmtm, prony, pwelch, rooteig, rootmusic

Pmusic f() 1

eH f() vkvk
H

k 1+

N

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

e f()

-- 1

vk
He f() 2

k p 1+=

N

∑

--= =

vk
He f()
7-470

poly2ac
7poly2acPurpose Convert prediction filter polynomial to autocorrelation sequence

Syntax r = poly2ac(a,efinal)

Description r = poly2ac(a,efinal) finds the autocorrelation vector r corresponding to
the prediction filter polynomial a. The autocorrelation sequence produced is
approximately the same as that of the output of the autoregressive prediction
filter whose coefficients are determined by a. poly2ac also produces the final
length(r) step prediction error efinal. If a(1) is not equal to 1, poly2ac
normalizes the prediction filter polynomial by a(1). a(1) cannot be 0.

Remarks You can apply this function to both real and complex polynomials.

Examples a = [1.0000 0.6147 0.9898 0.0004 0.0034 -0.0077];
efinal = 0.2;
r = poly2ac(a,efinal)

r =
 5.5917
 -1.7277
 -4.4231
 4.3985
 1.6426
 -5.3126

References [1] Kay, S.M. Modern Spectral Estimation, Englewood Cliffs, NJ,
Prentice-Hall, 1988.

See Also ac2poly, poly2rc, rc2ac
7-471

poly2lsf
7poly2lsfPurpose Convert prediction filter coefficients to line spectral frequencies

Syntax lsf = poly2lsf(a)

Description lsf = poly2lsf(a) returns a vector lsf of line spectral frequencies from a
vector a of prediction filter coefficients.

Examples a = [1.0000 0.6149 0.9899 0.0000 0.0031 -0.0082];
lsf = poly2lsf(a)

lsf =
 0.7842
 1.5605
 1.8776
 1.8984
 2.3593

References [1] Deller, J.R., J.G. Proakis, and J.H.L. Hansen, “Discrete-Time Processing of
Speech Signals,” Prentice-Hall, 1993.

[2] Rabiner, L.R., and R.W. Schafer, “Digital Processing of Speech Signals,”
Prentice-Hall, 1978.

See Also lsf2poly
7-472

poly2rc
7poly2rcPurpose Convert prediction filter polynomial to reflection coefficients

Syntax k = poly2rc(a)
[k,r0] = poly2rc(a,efinal)

Description k = poly2rc(a) converts the prediction filter polynomial a to the reflection
coefficients of the corresponding lattice structure. a can be real or complex, and
a(1) cannot be 0. If a(1) is not equal to 1, poly2rc normalizes the prediction
filter polynomial by a(1). k is a row vector of size length(a)-1.

[k,r0] = poly2rc(a,efinal) returns the zero-lag autocorrelation, r0, based
on the final prediction error, efinal.

A simple, fast way to check if a has all of its roots inside the unit circle is to
check if each of the elements of k has magnitude less than 1.

stable = all(abs(poly2rc(a))<1)

Examples a = [1.0000 0.6149 0.9899 0.0000 0.0031 -0.0082];
efinal = 0.2;

[k,r0] = poly2rc(a,efinal)

k =

 0.3090
 0.9801
 0.0031
 0.0081
 -0.0082

r0 =

 5.6032

Limitations If abs(k(i)) == 1 for any i, finding the reflection coefficients is an
ill-conditioned problem. poly2rc returns some NaNs and provide a warning
message in this case.

Algorithm poly2rc implements this recursive relationship:
7-473

poly2rc
This relationship is based on Levinson’s recursion [1]. To implement it,
poly2rc loops through a in reverse order after discarding its first element. For
each loop iteration i, the function:

1 Sets k(i) equal to a(i)

2 Applies the second relationship above to elements 1 through i of the
vector a.
a = (a k(i)*fliplr(a))/(1 k(i)^2);

References [1] Kay, S.M. Modern Spectral Estimation, Englewood Cliffs, NJ,
Prentice-Hall, 1988.

See Also ac2rc, latc2tf, latcfilt, poly2ac, rc2poly, tf2latc

k n() an n()=

an 1– m()
an m() k n()an n m–()–

1 k n()2–
-- m 1= 2 … n 1–, , , ,=
7-474

polyscale
7polyscalePurpose Scale the roots of a polynomial

Syntax b = polyscale(a,alpha)

Description b = polyscale(a,alpha) scales the roots of a polynomial in the z-plane,
where a is a vector containing the polynomial coefficients and alpha is the
scaling factor.

If alpha is a real value in the range [0 1], then the roots of a are radially scaled
toward the origin in the z-plane. Complex values for alpha allow arbitrary
changes to the root locations.

Remark By reducing the radius of the roots in an autoregressive polynomial, the
bandwidth of the spectral peaks in the frequency response is expanded
(flattened). This operation is often referred to as bandwidth expansion.

See Also polystab, roots
7-475

polystab
7polystabPurpose Stabilize polynomial

Syntax b = polystab(a)

Description polystab stabilizes a polynomial with respect to the unit circle; it reflects roots
with magnitudes greater than 1 inside the unit circle.

b = polystab(a) returns a row vector b containing the stabilized polynomial,
where a is a vector of polynomial coefficients, normally in the z-domain.

Examples polystab can convert a linear-phase filter into a minimum-phase filter with
the same magnitude response:

h = fir1(25,0.4);
hmin = polystab(h) * norm(h)/norm(polystab(h));

Algorithm polystab finds the roots of the polynomial and maps those roots found outside
the unit circle to the inside of the unit circle:

v = roots(a);
vs = 0.5*(sign(abs(v)-1)+1);
v = (1-vs).*v + vs./conj(v);
b = a(1)*poly(v);

See Also roots

a z() a 1() a 2()z 1– a m 1+()z m–+ + +=
7-476

prony
7pronyPurpose Prony’s method for time domain IIR filter design

Syntax [b,a] = prony(h,n,m)

Description Prony’s method is an algorithm for finding an IIR filter with a prescribed time
domain impulse response. It has applications in filter design, exponential
signal modeling, and system identification (parametric modeling).

[b,a] = prony(h,n,m) finds a filter with numerator order n, denominator
order m, and the time domain impulse response in h. If the length of h is less
than the largest order (n or m), h is padded with zeros. prony returns the filter
coefficients in row vectors b and a, of length n + 1 and m + 1, respectively. The
filter coefficients are in descending powers of z.

Examples Recover the coefficients of a Butterworth filter from its impulse response:

[b,a] = butter(4,0.2)

b =
0.0048 0.0193 0.0289 0.0193 0.0048

a =
1.0000 -2.3695 2.3140 -1.0547 0.1874

h = filter(b,a,[1 zeros(1,25)]);
[bb,aa] = prony(h,4,4)

bb =
0.0048 0.0193 0.0289 0.0193 0.0048

ab =
1.0000 -2.3695 2.3140 -1.0547 0.1874

Algorithm prony implements the method described in reference [1]. This method uses a
variation of the covariance method of AR modeling to find the denominator
coefficients a and then finds the numerator coefficients b for which the impulse

H z() B z()
A z()
----------- b 1() b 2()z 1– b n 1+()z n–+ + +

a 1() a 2()z 1– a m 1+()z m–+ + +
--= =
7-477

prony
response of the output filter matches exactly the first n + 1 samples of x. The
filter is not necessarily stable, but potentially can recover the coefficients
exactly if the data sequence is truly an autoregressive moving-average (ARMA)
process of the correct order.

References [1] Parks, T.W., and C.S. Burrus, Digital Filter Design, John Wiley & Sons,
1987, pp. 226-228.

See Also butter, cheby1, cheby2, ellip, invfreqz, levinson, lpc, stmcb
7-478

pulstran
7pulstranPurpose Pulse train

Syntax y = pulstran(t,d,'func')
y = pulstran(t,d,'func',p1,p2,...)
y = pulstran(t,d,p,fs)
y = pulstran(t,d,p)

Description pulstran generates pulse trains from continuous functions or sampled
prototype pulses.

y = pulstran(t,d,'func') generates a pulse train based on samples of a
continuous function, 'func', where 'func' is

• 'gauspuls', for generating a Gaussian-modulated sinusoidal pulse

• 'rectpuls', for generating a sampled aperiodic rectangle

• 'tripuls', for generating a sampled aperiodic triangle

pulstran is evaluated length(d) times and returns the sum of the evaluations
y = func(t-d(1)) + func(t-d(2)) + ...

The function is evaluated over the range of argument values specified in
array t, after removing a scalar argument offset taken from the vector d. Note
that func must be a vectorized function that can take an array t as an
argument.

An optional gain factor may be applied to each delayed evaluation by specifying
d as a two-column matrix, with the offset defined in column 1 and associated
gain in column 2 of d. Note that a row vector will be interpreted as specifying
delays only.

pulstran(t,d,'func',p1,p2,...) allows additional parameters to be passed
to 'func' as necessary. For example:

func(t-d(1),p1,p2,...) + func(t-d(2),p1,p2,...) + ...

pulstran(t,d,p,fs) generates a pulse train that is the sum of multiple
delayed interpolations of the prototype pulse in vector p, sampled at the
rate fs, where p spans the time interval [0,(length(p)-1)/fs], and its
samples are identically 0 outside this interval. By default, linear interpolation
is used for generating delays.
7-479

pulstran
pulstran(t,d,p) assumes that the sampling rate fs is equal to 1 Hz.

pulstran(...,'func') specifies alternative interpolation methods. See
interp1 for a list of available methods.

Examples Example 1
This example generates an asymmetric sawtooth waveform with a repetition
frequency of 3 Hz and a sawtooth width of 0.1s. It has a signal length of 1s and
a 1 kHz sample rate:

t = 0 : 1/1e3 : 1; % 1 kHz sample freq for 1 sec
d = 0 : 1/3 : 1; % 3 Hz repetition freq
y = pulstran(t,d,'tripuls',0.1,-1);
plot(t,y)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7-480

pulstran
Example 2
This example generates a periodic Gaussian pulse signal at 10 kHz, with 50%
bandwidth. The pulse repetition frequency is 1 kHz, sample rate is 50 kHz, and
pulse train length is 10 msec. The repetition amplitude should attenuate by 0.8
each time:

t = 0 : 1/50E3 : 10e-3;
d = [0 : 1/1E3 : 10e-3 ; 0.8.^(0:10)]';
y = pulstran(t,d,'gauspuls',10e3,0.5);
plot(t,y)

0 0.002 0.004 0.006 0.008 0.01
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

7-481

pulstran
Example 3
This example generates a train of 10 Hamming windows:

p = hamming(32);
t = 0:320; d = (0:9)'*32;
y = pulstran(t,d,p);
plot(t,y)

See Also chirp, cos, diric, gauspuls, rectpuls, sawtooth, sin, sinc, square, tripuls

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7-482

pwelch
7pwelchPurpose Power spectral density (PSD) using Welch’s method

Syntax [Pxx,w] = pwelch(x)
[Pxx,w] = pwelch(x,window)
[Pxx,w] = pwelch(x,window,noverlap)
[Pxx,w] = pwelch(x,window,noverlap,nfft)
[Pxx,f] = pwelch(x,window,noverlap,nfft,fs)
[...] = pwelch(x,window,noverlap,...,'range')
pwelch(...)

Description Note pwelch computes the power spectral density, not the power spectrum.
The difference between them is discussed in “Spectral Analysis” on page 3-5.

[Pxx,w] = pwelch(x) estimates the power spectral density Pxx of the input
signal vector x using Welch’s averaged modified periodogram method of
spectral estimation. With this syntax:

• The vector x is segmented into eight sections of equal length, each with 50%
overlap.

• Any remaining (trailing) entries in x that cannot be included in the eight
segments of equal length are discarded.

• Each segment is windowed with a Hamming window (see hamming) that is
the same length as the segment.

The power spectral density is calculated in units of power per radians per
sample. The corresponding vector of frequencies w is computed in radians per
sample, and has the same length as Pxx.

A real-valued input vector x produces a full power one-sided (in frequency) PSD
(by default), while a complex-valued x produces a two-sided PSD.

In general, the length N of the FFT and the values of the input x determine the
length of Pxx and the range of the corresponding normalized frequencies. For
this syntax, the (default) length N of the FFT is the larger of 256 and the next
power of 2 greater than the length of the segment. The following table indicates
7-483

pwelch
the length of Pxx and the range of the corresponding normalized frequencies for
this syntax.

[Pxx,w] = pwelch(x,window) calculates the modified periodogram using
either:

• The window length window for the Hamming window when window is a
positive integer

• The window weights specified in window when window is a vector

With this syntax, the input vector x is divided into an integer number of
segments with 50% overlap, and each segment is the same length as the
window. Entries in x that are left over after it is divided into segments are
discarded. If you specify window as the empty vector [], then the signal data is
divided into eight segments, and a Hamming window is used on each one.

[Pxx,w] = pwelch(x,window,noverlap) divides x into segments according to
window, and uses the integer noverlap to specify the number of signal samples
(elements of x) that are common to two adjacent segments. noverlap must be
less than the length of the window you specify. If you specify noverlap as the
empty vector [], then pwelch determines the segments of x so that there is 50%
overlap (default).

[Pxx,w] = pwelch(x,window,noverlap,nfft) uses Welch’s method to
estimate the PSD while specifying the length of the FFT with the integer nfft.
If you set nfft to the empty vector [], it adopts the default value for N listed
in the previous syntax.

PSD Vector Characteristics for an FFT Length of N (Default)

Real/Complex
Input Data

 Length of Pxx Range of the Corresponding
Normalized Frequencies

Real-valued (N/2) +1 [0, π]

Complex-valued N [0, 2π)
7-484

pwelch
The length of Pxx and the frequency range for w depend on nfft and the values
of the input x. The following table indicates the length of Pxx and the frequency
range for w for this syntax.

[Pxx,f] = pwelch(x,window,noverlap,nfft,fs) uses the sampling
frequency fs specified in hertz (Hz) to compute the PSD vector (Pxx) and the
corresponding vector of frequencies (f). In this case, the units for the frequency
vector are in Hz. The spectral density produced is calculated in units of power
per Hz. If you specify fs as the empty vector [], the sampling frequency
defaults to 1 Hz.

The frequency range for f depends on nfft, fs, and the values of the input x.
The length of Pxx is the same as in the Table , PSD and Frequency Vector
Characteristics above. The following table indicates the frequency range for f
for this syntax.

[...] = pwelch(x,window,noverlap,...,'range') specifies the range of
frequency values. This syntax is useful when x is real. The string 'range' can be
either:

PSD and Frequency Vector Characteristics

Real/Complex
Input Data

nfft Even/Odd Length of Pxx Range of w

Real-valued Even (nfft/2 + 1) [0, π]

Real-valued Odd (nfft + 1)/2 [0, π)

Complex-valued Even or odd nfft [0, 2π)

PSD and Frequency Vector Characteristics with fs Specified

Real/Complex Input Data nfft Even/Odd Range of f

Real-valued Even [0,fs/2]

Real-valued Odd [0,fs/2)

Complex-valued Even or odd [0,fs)
7-485

pwelch
• 'twosided': Compute the two-sided PSD over the frequency range [0,fs).
This is the default for determining the frequency range for complex-valued x.

- If you specify fs as the empty vector, [], the frequency range is [0,1).

- If you don’t specify fs, the frequency range is [0, 2π).

• 'onesided': Compute the one-sided PSD over the frequency ranges specified
for real x. This is the default for determining the frequency range for
real-valued x.

The string 'range' can appear anywhere in the syntax after noverlap.

pwelch(x,...) with no output arguments plots the PSD estimate in dB per
unit frequency in the current figure window.

Examples Estimate the PSD of a signal composed of a sinusoid plus noise, sampled at
1000 Hz. Use 33-sample windows with 32-sample overlap, and the default FFT
length, and display the two-sided PSD estimate:

randn('state',0);
Fs = 1000; t = 0:1/Fs:.3;
x = cos(2*pi*t*200) + randn(size(t)); % 200Hz cosine plus noise
pwelch(x,33,32,[],Fs,'twosided')
7-486

pwelch
Algorithm pwelch calculates the power spectral density using Welch’s method (see
references):

1 The input signal vector x is divided into k overlapping segments according
to window and noverlap (or their default values).

2 The specified (or default) window is applied to each segment of x.

3 An nfft-point FFT is applied to the windowed data.

4 The (modified) periodogram of each windowed segment is computed.

5 The set of modified periodograms is averaged to form the spectrum estimate
S(ejω).

6 The resulting spectrum estimate is scaled to compute the power spectral
density as , where F isS ejω() F⁄
7-487

pwelch
- 2π when you do not supply the sampling frequency

- fs when you supply the sampling frequency

The number of segments k that x is divided into is calculated as:

• Eight if you don’t specify window, or if you specify it as the empty vector []

• if you specify window as a nonempty vector or a scalar

In this equation, m is the length of the signal vector x, o is the number of
overlapping samples (noverlap), and l is the length of each segment (the
window length).

References [1] Hayes, M., Statistical Digital Signal Processing and Modeling, John Wiley
& Sons, 1996.

[2] Stoica, P., and R.L. Moses, Introduction to Spectral Analysis, Prentice-Hall,
Englewood Cliffs, NJ, 1997, pp. 52-54.

[3] Welch, P.D, “The Use of Fast Fourier Transform for the Estimation of Power
Spectra: A Method Based on Time Averaging Over Short, Modified
Periodograms,” IEEE Trans. Audio Electroacoustics, Vol. AU-15 (June 1967),
pp. 70-73.

See Also dspdata.msspectrum, pburg, pcov, peig, periodogram, pmcov, pmtm, pmusic,
pyulear

k m o–
l o–

--------------=
7-488

pyulear
7pyulearPurpose Power spectral density using Yule-Walker AR method

Syntax Pxx = pyulear(x,p)
[Pxx,w] = pyulear(x,p,nfft)
[Pxx,f] = pyulear(x,p,nfft,fs)
[Pxx,f] = pyulear(x,p,nfft,fs,'range')
[Pxx,w] = pyulear(x,p,nfft,'range')
pyulear(...)

Description Pxx = pyulear(x,p) implements the Yule-Walker algorithm, a parametric
spectral estimation method, and returns Pxx, an estimate of the power spectral
density (PSD) of the vector x. The entries of x represent samples of a
discrete-time signal. p is the integer specifying the order of an autoregressive
(AR) prediction model for the signal, used in estimating the PSD. This estimate
is also an estimate of the maximum entropy.

The power spectral density is calculated in units of power per radians per
sample. Real-valued inputs produce full power one-sided (in frequency) PSDs
(by default), while complex-valued inputs produce two-sided PSDs.

In general, the length of the FFT and the values of the input x determine the
length of Pxx and the range of the corresponding normalized frequencies. For
this syntax, the (default) FFT length is 256. The following table indicates the
length of Pxx and the range of the corresponding normalized frequencies for
this syntax.

[Pxx,w] = pyulear(x,p) also returns w, a vector of frequencies at which the
PSD is estimated. Pxx and w have the same length. The units for frequency are
rad/sample.

PSD Vector Characteristics for an FFT Length of 256 (Default)

Real/Complex
Input Data

 Length of Pxx Range of the Corresponding
Normalized Frequencies

Real-valued 129 [0, π]

Complex-valued 256 [0, 2π)
7-489

pyulear
[Pxx,w] = pyulear(x,p,nfft) uses the Yule-walker method to estimate the
PSD while specifying the length of the FFT with the integer nfft. If you specify
nfft as the empty vector [], it adopts the default value of 256.

The length of Pxx and the frequency range for w depend on nfft and the values
of the input x. The following table indicates the length of Pxx and the frequency
range for w for this syntax.

[Pxx,f] = pyulear(x,p,nfft,fs) uses the sampling frequency fs specified
as an integer in hertz (Hz) to compute the PSD vector (Pxx) and the
corresponding vector of frequencies (f). In this case, the units for the frequency
vector are in Hz. The spectral density produced is calculated in units of power
per Hz. If you specify fs as the empty vector [], the sampling frequency
defaults to 1 Hz.

The frequency range for f depends on nfft, fs, and the values of the input x.
The length of Pxx is the same as in the Table , PSD and Frequency Vector
Characteristics above. The following table indicates the frequency range for f
for this syntax.

[Pxx,f] = pyulear(x,p,nfft,fs,'range') or

PSD and Frequency Vector Characteristics

Real/Complex
Input Data

nfft Even/Odd Length of Pxx Range of w

Real-valued Even (nfft/2 + 1) [0, π]

Real-valued Odd (nfft + 1)/2 [0, π)

Complex-valued Even or odd nfft [0, 2π)

PSD and Frequency Vector Characteristics with fs Specified

Real/Complex Input Data nfft Even/Odd Range of f

Real-valued Even [0,fs/2]

Real-valued Odd [0,fs/2)

Complex-valued Even or odd [0,fs)
7-490

pyulear
[Pxx,w] = pyulear(x,p,nfft,'range') specifies the range of frequency
values to include in f or w. This syntax is useful when x is real. 'range' can be
either:

• 'twosided': Compute the two-sided PSD over the frequency range [0,fs).
This is the default for determining the frequency range for complex-valued x.

- If you specify fs as the empty vector, [], the frequency range is [0,1).

- If you don’t specify fs, the frequency range is [0, 2π).

• 'onesided': Compute the one-sided PSD over the frequency ranges specified
for real x. This is the default for determining the frequency range for
real-valued x.

Note You can put the string argument 'range' anywhere in the input
argument list after p.

pyulear(...) plots the power spectral density in the current figure window.
The frequency range on the plot is the same as the range of output w (or f) for
a given set of parameters.

Remarks The power spectral density is computed as the distribution of power per unit
frequency.

This algorithm depends on your selecting an appropriate model order for your
signal.

Examples Because the Yule-walker method estimates the spectral density by fitting an
AR prediction model of a given order to the signal, first generate a signal from
an AR (all-pole) model of a given order. You can use freqz to check the
magnitude of the frequency response of your AR filter. This will give you an
idea of what to expect when you estimate the PSD using pyulear:

a = [1 -2.2137 2.9403 -2.1697 0.9606]; % AR filter coefficients
freqz(1,a) % AR filter frequency response
title('AR System Frequency Response')
7-491

pyulear
Now generate the input signal x by filtering white noise through the AR filter.
Estimate the PSD of x based on a fourth-order AR prediction model, since in
this case, we know that the original AR system model a has order 4:

randn('state',1);
x = filter(1,a,randn(256,1)); % AR system output
pyulear(x,4) % Fourth-order estimate

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−200

−150

−100

−50

0

50

100

Normalized Frequency (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−20

−10

0

10

20

30

40

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

AR System Frequency Response
7-492

pyulear
Algorithm Linear prediction filters can be used to model the second-order statistical
characteristics of a signal. The prediction filter output can be used to model the
signal when the input is white noise.

pyulear estimates the PSD of an input signal vector using the Yule-Walker AR
method. This method, also called the autocorrelation or windowed method, fits
an autoregressive (AR) linear prediction filter model to the signal by
minimizing the forward prediction error (based on all observations of the in put
sequence) in the least squares sense. This formulation leads to the
Yule-Walker equations, which are solved by the Levinson-Durbin recursion.
The spectral estimate returned by pyulear is the squared magnitude of the
frequency response of this AR model.
7-493

pyulear
References [1] Marple, S.L., Digital Spectral Analysis, Prentice-Hall, 1987, Chapter 7.

[2] Stoica, P., and R.L. Moses, Introduction to Spectral Analysis, Prentice-Hall,
1997.

See Also aryule, lpc, pburg, pcov, peig, periodogram, pmcov, pmtm, pmusic, prony,
pwelch
7-494

rc2ac
7rc2acPurpose Convert reflection coefficients to autocorrelation sequence

Syntax r = rc2ac(k,r0)

Description r = rc2ac(k,r0) finds the autocorrelation coefficients, r, of the output of the
discrete-time prediction error filter from the lattice-form reflection coefficients
k and initial zero-lag autocorrelation r0.

Examples k = [0.3090 0.9800 0.0031 0.0082 -0.0082];
r0 = 0.1;
a = rc2ac(k,r0)

a =
 0.1000
 -0.0309
 -0.0791
 0.0787
 0.0294
 -0.0950

References [1] Kay, S.M., Modern Spectral Estimation, Prentice-Hall, Englewood Cliffs,
NJ, 1988.

See Also ac2rc, poly2ac, rc2poly
7-495

rc2is
7rc2isPurpose Convert reflection coefficients to inverse sine parameters

Syntax isin = rc2is(k)

Description isin = is2rc(k) returns a vector of inverse sine parameters isin from a
vector of reflection coefficients k.

Examples k = [0.3090 0.9801 0.0031 0.0082 -0.0082];
isin = rc2is(k)

isin =

 0.2000 0.8728 0.0020 0.0052 -0.0052

References [1] Deller, J.R., J.G. Proakis, and J.H.L. Hansen, “Discrete-Time Processing of
Speech Signals,” Prentice-Hall, 1993.

See Also is2rc
7-496

rc2lar
7rc2larPurpose Convert reflection coefficients to log area ratio parameters

Syntax g = rc2lar(k)

Description g = rc2lar(k) returns a vector of log area ratio parameters g from a vector of
reflection coefficients k.

Examples k = [0.3090 0.9801 0.0031 0.0082 -0.0082];
g = rc2lar(k)

g =
 0.6389 4.6002 0.0062 0.0164 -0.0164

References [1] Deller, J.R., J.G. Proakis, and J.H.L. Hansen, “Discrete-Time Processing of
Speech Signals,” Prentice-Hall, 1993.

See Also lar2rc
7-497

rc2poly
7rc2polyPurpose Convert reflection coefficients to prediction filter polynomial

Syntax a = rc2poly(k)
[a,efinal] = rc2poly(k,r0)

Description a = rc2poly(k) converts the reflection coefficients k corresponding to the
lattice structure to the prediction filter polynomial a, with a(1) = 1. The output
a is row vector of length length(k)+1.

[a,efinal] = rc2poly(k,r0) returns the final prediction error efinal based
on the zero-lag autocorrelation, r0.

Examples Consider a lattice IIR filter given by reflection coefficients k:

k = [0.3090 0.9800 0.0031 0.0082 -0.0082];

Its equivalent prediction filter representation is given by

a = rc2poly(k)

a =
 1.0000 0.6148 0.9899 0.0000 0.0032 -0.0082

Algorithm rc2poly computes output a using Levinson’s recursion [1]. The function:

1 Sets the output vector a to the first element of k

2 Loops through the remaining elements of k

For each loop iteration i, a = [a + a(i-1:-1:1)*k(i) k(i)].

3 Implements a = [1 a]

References [1] Kay, S.M., Modern Spectral Estimation, Prentice-Hall, Englewood Cliffs,
NJ, 1988.

See Also ac2poly, latc2tf, latcfilt, poly2rc, rc2ac, rc2is, rc2lar, tf2latc
7-498

rceps
7rcepsPurpose Real cepstrum and minimum phase reconstruction

Syntax y = rceps(x)
[y,ym] = rceps(x)

Description The real cepstrum is the inverse Fourier transform of the real logarithm of the
magnitude of the Fourier transform of a sequence.

Note rceps only works on real data.

rceps(x) returns the real cepstrum of the real sequence x. The real cepstrum
is a real-valued function.

[y,ym] = rceps(x) returns both the real cepstrum y and a minimum phase
reconstructed version ym of the input sequence.

Algorithm rceps is an M-file implementation of algorithm 7.2 in [2], that is,

y = real(ifft(log(abs(fft(x)))));

Appropriate windowing in the cepstral domain forms the reconstructed
minimum phase signal:

w = [1; 2*ones(n/2-1,1); ones(1 - rem(n,2),1); zeros(n/2-1,1)];
ym = real(ifft(exp(fft(w.*y))));

References [1] Oppenheim, A.V., and R.W. Schafer, Digital Signal Processing, Englewood
Cliffs, NJ, Prentice-Hall, 1975.

[2] Programs for Digital Signal Processing, IEEE Press, New York, 1979.

See Also cceps, fft, hilbert, icceps, unwrap
7-499

rectpuls
7rectpulsPurpose Sampled aperiodic rectangle

Syntax y = rectpuls(t)
y = rectpuls(t,w)

Description y = rectpuls(t) returns a continuous, aperiodic, unity-height rectangular
pulse at the sample times indicated in array t, centered about t = 0 and with a
default width of 1. Note that the interval of non-zero amplitude is defined to be
open on the right, that is, rectpuls(-0.5) = 1 while rectpuls(0.5) = 0.

y = rectpuls(t,w) generates a rectangle of width w.

rectpuls is typically used in conjunction with the pulse train generating
function pulstran.

See Also chirp, cos, diric, gauspuls, pulstran, sawtooth, sin, sinc, square, tripuls
7-500

rectwin
7rectwinPurpose Rectangular window

Syntax w = rectwin(n)

Description w = rectwin(n) returns a rectangular window of length n in the column
vector w. This function is provided for completeness; a rectangular window is
equivalent to no window at all.

Algorithm w = ones(n,1);

References [1] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing.
Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 468-471.

See Also barthannwin, bartlett, blackmanharris, bohmanwin, nuttallwin, parzenwin,
triang, window, wintool, wvtool
7-501

resample
7resamplePurpose Change sampling rate by rational factor

Syntax y = resample(x,p,q)
y = resample(x,p,q,n)
y = resample(x,p,q,n,beta)
y = resample(x,p,q,b)
[y,b] = resample(x,p,q)

Description y = resample(x,p,q) resamples the sequence in vector x at p/q times the
original sampling rate, using a polyphase filter implementation. p and q must
be positive integers. The length of y is equal to ceil(length(x)*p/q). If x is a
matrix, resample works down the columns of x.

resample applies an anti-aliasing (lowpass) FIR filter to x during the
resampling process. It designs the filter using firls with a Kaiser window.

y = resample(x,p,q,n) uses n terms on either side of the current sample,
x(k), to perform the resampling. The length of the FIR filter resample uses is
proportional to n; larger values of n provide better accuracy at the expense of
more computation time. The default for n is 10. If you let n = 0, resample
performs a nearest-neighbor interpolation

y(k) = x(round((k-1)*q/p)+1)

where y(k) = 0 if the index to x is greater than length(x).

y = resample(x,p,q,n,beta) uses beta as the design parameter for the
Kaiser window that resample employs in designing the lowpass filter. The
default for beta is 5.

y = resample(x,p,q,b) filters x using the vector of filter coefficients b.

[y,b] = resample(x,p,q) returns the vector b, which contains the
coefficients of the filter applied to x during the resampling process.

Examples Resample a simple linear sequence at 3/2 the original rate:

fs1 = 10; % Original sampling frequency in Hz
t1 = 0:1/fs1:1; % Time vector
x = t1; % Define a linear sequence
y = resample(x,3,2); % Now resample it
7-502

resample
t2 = (0:(length(y)-1))*2/(3*fs1); % New time vector
plot(t1,x,'*',t2,y,'o',-0.5:0.01:1.5,-0.5:0.01:1.5,':')
legend('original','resampled'); xlabel('Time')

Notice that the last few points of the output y are inaccurate. In its filtering
process, resample assumes the samples at times before and after the given
samples in x are equal to zero. Thus large deviations from zero at the end
points of the sequence x can cause inaccuracies in y at its end points. The
following two plots illustrate this side effect of resample:

x = [1:10 9:-1:1]; y = resample(x,3,2);
subplot(2,1,1);
plot(1:19,x,'*',(0:28)*2/3 + 1,y,'o');
title('Edge Effects Not Noticeable');
legend('original','resampled');

x = [10:-1:1 2:10]; y = resample(x,3,2);
subplot(2,1,2);
plot(1:19,x,'*',(0:28)*2/3 + 1,y,'o')
title('Edge Effects Very Noticeable');
legend('original','resampled');

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

Time

original
resampled
7-503

resample
Algorithm resample performs an FIR design using firls, followed by rate changing
implemented with upfirdn.

See Also decimate, downsample, firls, interp, interp1, intfilt, kaiser, mfilt,
spline, upfirdn, upsample

0 5 10 15 20
0

2

4

6

8

10
Edge Effects Not Noticeable

original
resampled

0 5 10 15 20
0

5

10

15
Edge Effects Very Noticeable

original
resampled
7-504

residuez
7residuezPurpose z-transform partial-fraction expansion

Syntax [r,p,k] = residuez(b,a)
[b,a] = residuez(r,p,k)

Description residuez converts a discrete time system, expressed as the ratio of two
polynomials, to partial fraction expansion, or residue, form. It also converts the
partial fraction expansion back to the original polynomial coefficients.

[r,p,k] = residuez(b,a) finds the residues, poles, and direct terms of a
partial fraction expansion of the ratio of two polynomials, b(z) and a(z).
Vectors b and a specify the coefficients of the polynomials of the discrete-time
system b(z)/a(z) in descending powers of z.

If there are no multiple roots and a > n-1,

The returned column vector r contains the residues, column vector p contains
the pole locations, and row vector k contains the direct terms. The number of
poles is

n = length(a)-1 = length(r) = length(p)

The direct term coefficient vector k is empty if length(b) is less than
length(a); otherwise:

length(k) = length(b) - length(a) + 1

If p(j) = ... = p(j+s-1) is a pole of multiplicity s, then the expansion
includes terms of the form

b z() b0 b1z 1– b2z 2– bmz m–+ + + +=

a z() a0 a1z 1– a2z 2– anz n–+ + + +=

b z()
a z()
---------- r 1()

1 p 1()z 1––
---------------------------- r n()

1 p n()z 1––
----------------------------- k 1() k 2()z 1– k m n 1+–()z m n–()–+ + + + + +=

r j()
1 p j()z 1––
--------------------------- r j 1+()

1 p j()z 1––()2

r j sr 1–+()

1 p j()z 1––()sr
------------------------------------+ + +
7-505

residuez
[b,a] = residuez(r,p,k) with three input arguments and two output
arguments, converts the partial fraction expansion back to polynomials with
coefficients in row vectors b and a.

The residue function in the standard MATLAB language is very similar to
residuez. It computes the partial fraction expansion of continuous-time
systems in the Laplace domain (see reference [1]), rather than discrete-time
systems in the z-domain as does residuez.

Algorithm residuez applies standard MATLAB functions and partial fraction techniques
to find r, p, and k from b and a. It finds

• The direct terms a using deconv (polynomial long division) when
length(b) > length(a)-1.

• The poles using p = roots(a).

• Any repeated poles, reordering the poles according to their multiplicities.

• The residue for each nonrepeating pole pi by multiplying b(z)/a(z) by
1/(1 - piz

-1) and evaluating the resulting rational function at z = pi.

• The residues for the repeated poles by solving

S2*r2 = h - S1*r1

for r2 using \. h is the impulse response of the reduced b(z)/a(z), S1 is a
matrix whose columns are impulse responses of the first-order systems made
up of the nonrepeating roots, and r1 is a column containing the residues for
the nonrepeating roots. Each column of matrix S2 is an impulse response.
For each root pj of multiplicity sj, S2 contains sj columns representing the
impulse responses of each of the following systems.

The vector h and matrices S1 and S2 have n + xtra rows, where n is the total
number of roots and the internal parameter xtra, set to 1 by default,
determines the degree of overdetermination of the system of equations.

References [1] Oppenheim, A.V., and R.W. Schafer, Digital Signal Processing,
Prentice-Hall, Englewood Cliffs, NJ, 1975, pp. 166-170.

1
1 pjz 1––
----------------------- 1

1 pjz 1––()2
------------------------------- 1

1 pjz 1––()sj
--------------------------------, , ,
7-506

residuez
See Also convmtx, deconv, poly, prony, residue, roots, ss2tf, tf2ss, tf2zp, tf2zpk,
zp2ss
7-507

rlevinson
7rlevinsonPurpose Reverse Levinson-Durbin recursion

Syntax r = rlevinson(a,efinal)
[r,u] = rlevinson(a,efinal)
[r,u,k] = rlevinson(a,efinal)
[r,u,k,e] = rlevinson(a,efinal)

Description The reverse Levinson-Durbin recursion implements the step-down algorithm
for solving the following symmetric Toeplitz system of linear equations for r,
where r = [r(1) r(p+1)] and r(i)* denotes the complex conjugate of r(i).

r = rlevinson(a,efinal) solves the above system of equations for r given
vector a, where a = [1 a(2) a(p+1)]. In linear prediction applications, r
represents the autocorrelation sequence of the input to the prediction error
filter, where r(1) is the zero-lag element. The figure below shows the typical
filter of this type, where H(z) is the optimal linear predictor, x(n) is the input
signal, is the predicted signal, and e(n) is the prediction error.

Input vector a represents the polynomial coefficients of this prediction error
filter in descending powers of z.

r 1() r 2()∗ r p()∗

r 2() r 1() r p 1–()∗

r p() r 2() r 1()

a 2()
a 3()

a p 1+()

r 2()–

r 3()–

r p 1+()–

=

x̂ n()

H z() a– 2()z
1–

a– 3()z
2– – a– n 1+()z

p–
= Σ

x̂ n()x n()
–

+
e n()

Prediction Error

A z()

A z() 1 a 2()z 1– a n 1+()z p–+ + +=
7-508

rlevinson
The filter must be minimum phase to generate a valid autocorrelation
sequence. efinal is the scalar prediction error power, which is equal to the
variance of the prediction error signal, σ2(e).

[r,u] = rlevinson(a,efinal) returns upper triangular matrix U from the
UDU* decomposition

where

and E is a diagonal matrix with elements returned in output e (see below). This
decomposition permits the efficient evaluation of the inverse of the
autocorrelation matrix, R-1.

Output matrix u contains the prediction filter polynomial, a, from each
iteration of the reverse Levinson-Durbin recursion

where ai(j) is the jth coefficient of the ith order prediction filter polynomial (i.e.,
step i in the recursion). For example, the 5th order prediction filter polynomial
is

a5 = u(5:-1:1,5)'

Note that u(p+1:-1:1,p+1)' is the input polynomial coefficient vector a.

R 1– UE 1– U∗
=

R

r 1() r 2()∗ r p()∗

r 2() r 1() r p 1–()∗

r p() r 2() r 1()

=

U

a1 1()∗ a2 2()∗ ap 1+ p 1+()∗

0 a2 1()∗ ap 1+ p()∗

0 0 ap 1+ p 1–()∗

0 0 ap 1+ 1()∗

=

7-509

rlevinson
[r,u,k] = rlevinson(a,efinal) returns a vector k of length (p+1) containing
the reflection coefficients. The reflection coefficients are the conjugates of the
values in the first row of u.

k = conj(u(1,2:end))

[r,u,k,e] = rlevinson(a,efinal) returns a vector of length p+1 containing
the prediction errors from each iteration of the reverse Levinson-Durbin
recursion: e(1) is the prediction error from the first-order model, e(2) is the
prediction error from the second-order model, and so on.

These prediction error values form the diagonal of the matrix E in the UDU*
decomposition of R-1.

References [1] Kay, S.M., Modern Spectral Estimation: Theory and Application,
Prentice-Hall, Englewood Cliffs, NJ, 1988.

See Also levinson, lpc, prony, stmcb

R 1– UE 1– U∗
=

7-510

rooteig
7rooteigPurpose Frequency and power content using eigenvector method

Syntax [w,pow] = rooteig(x,p)
[f,pow] = rooteig(...,fs)
[w,pow] = rooteig(...,'corr')

Description [w,pow] = rooteig(x,p) estimates the frequency content in the time samples
of a signal x, and returns w, a vector of frequencies in rad/sample, and the
corresponding signal power in the vector pow in units of power, such as volts^2.
The input signal x is specified either as:

• A row or column vector representing one observation of the signal

• A rectangular array for which each row of x represents a separate
observation of the signal (for example, each row is one output of an array of
sensors, as in array processing), such that x'*x is an estimate of the
correlation matrix

Note You can use the output of corrmtx to generate such an array x.

You can specify the second input argument p as either:

• A scalar integer. In this case, the signal subspace dimension is p.

• A two-element vector. In this case, p(2), the second element of p, represents
a threshold that is multiplied by λmin, the smallest estimated eigenvalue of
the signal’s correlation matrix. Eigenvalues below the threshold λmin*p(2)
are assigned to the noise subspace. In this case, p(1) specifies the maximum
dimension of the signal subspace.

The extra threshold parameter in the second entry in p provides you more
flexibility and control in assigning the noise and signal subspaces.

The length of the vector w is the computed dimension of the signal subspace.
For real-valued input data x, the length of the corresponding power vector pow
is given by

length(pow) = 0.5*length(w)

For complex-valued input data x, pow and w have the same length.
7-511

rooteig
[f,pow] = rooteig(...,fs) returns the vector of frequencies f calculated
in Hz. You supply the sampling frequency fs in Hz. If you specify fs with the
empty vector [], the sampling frequency defaults to 1 Hz.

[w,pow] = rooteig(...,'corr') forces the input argument x to be
interpreted as a correlation matrix rather than a matrix of signal data. For this
syntax, you must supply a square matrix for x, and all of its eigenvalues must
be nonnegative.

Note You can place the string 'corr' anywhere after p.

Examples Find the frequency content in a signal composed of three complex exponentials
in noise. Use the modified covariance method to estimate the correlation
matrix used by the eigenvector method:

randn('state',1); n=0:99;
s = exp(i*pi/2*n)+2*exp(i*pi/4*n)+exp(i*pi/3*n)+randn(1,100);

% Estimate correlation matrix using modified covariance method.

X=corrmtx(s,12,'mod');
[W,P] = rooteig(X,3)

W =
 0.7811
 1.5767
 1.0554

P =
 3.9971
 1.1362
 1.4102

Algorithm The eigenvector method used by rooteig is the same as that used by peig. The
algorithm performs eigenspace analysis of the signal’s correlation matrix in
order to estimate the signal’s frequency content.

The difference between peig and rooteig is:
7-512

rooteig
• peig returns the pseudospectrum at all frequency samples.

• rooteig returns the estimated discrete frequency spectrum, along with the
corresponding signal power estimates.

rooteig is most useful for frequency estimation of signals made up of a sum of
sinusoids embedded in additive white Gaussian noise.

See Also corrmtx, peig, pmusic, powerest method of spectrum, rootmusic,
spectrum.eigenvector
7-513

rootmusic
7rootmusicPurpose Ffrequency and power content using root MUSIC algorithm

Syntax [w,pow] = rootmusic(x,p)
[f,pow] = rootmusic(...,fs)
[w,pow] = rootmusic(...,'corr')

Description [w,pow] = rootmusic(x,p) estimates the frequency content in the time
samples of a signal x, and returns w, a vector of frequencies in rad/sample, and
the corresponding signal power in the vector pow in dB per rad/sample. The
input signal x is specified either as:

• A row or column vector representing one observation of the signal

• A rectangular array for which each row of x represents a separate
observation of the signal (for example, each row is one output of an array of
sensors, as in array processing), such that x'*x is an estimate of the
correlation matrix

Note You can use the output of corrmtx to generate such an array x.

The second input argument, p is the number of complex sinusoids in x. You can
specify p as either:

• A scalar integer. In this case, the signal subspace dimension is p.

• A two-element vector. In this case, p(2), the second element of p, represents
a threshold that is multiplied by λmin, the smallest estimated eigenvalue of
the signal’s correlation matrix. Eigenvalues below the threshold λmin*p(2)
are assigned to the noise subspace. In this case, p(1) specifies the maximum
dimension of the signal subspace.

The extra threshold parameter in the second entry in p provides you more
flexibility and control in assigning the noise and signal subspaces.

The length of the vector w is the computed dimension of the signal subspace.
For real-valued input data x, the length of the corresponding power vector pow
is given by

length(pow) = 0.5*length(w)
7-514

rootmusic
For complex-valued input data x, pow and w have the same length.

[f,pow] = rootmusic(...,fs) returns the vector of frequencies f calculated
in Hz. You supply the sampling frequency fs in Hz. If you specify fs with the
empty vector [], the sampling frequency defaults to 1 Hz.

[w,pow] = rootmusic(...,'corr') forces the input argument x to be
interpreted as a correlation matrix rather than a matrix of signal data. For this
syntax, you must supply a square matrix for x, and all of its eigenvalues must
be nonnegative.

Note You can place the string 'corr' anywhere after p.

Examples Find the frequency content in a signal composed of three complex exponentials
in noise. Use the modified covariance method to estimate the correlation
matrix used by the MUSIC algorithm:

randn('state',1); n=0:99;
s = exp(i*pi/2*n)+2*exp(i*pi/4*n)+exp(i*pi/3*n)+randn(1,100);

% Estimate correlation matrix using modified covariance method.

X=corrmtx(s,12,'mod');
[W,P] = rootmusic(X,3)

W =
 1.5769
 0.7817
 1.0561

P =
 1.1358
 3.9975
 1.4102

Algorithm The MUSIC algorithm used by rootmusic is the same as that used by pmusic.
The algorithm performs eigenspace analysis of the signal’s correlation matrix
in order to estimate the signal’s frequency content.
7-515

rootmusic
The difference between pmusic and rootmusic is:

• pmusic returns the pseudospectrum at all frequency samples.

• rootmusic returns the estimated discrete frequency spectrum, along with
the corresponding signal power estimates.

rootmusic is most useful for frequency estimation of signals made up of a sum
of sinusoids embedded in additive white Gaussian noise.

Diagnostics If the input signal, x is real and an odd number of sinusoids, p is specified, this
error message is displayed

Real signals require an even number p of complex sinusoids.

See Also corrmtx, peig, pmusic, powerest method of spectrum, rooteig,
spectrum.music
7-516

sawtooth
7sawtoothPurpose Sawtooth or triangle wave

Syntax x = sawtooth(t)
x = sawtooth(t,width)

Description sawtooth(t) generates a sawtooth wave with period 2π for the elements of
time vector t. sawtooth(t) is similar to sin(t), but creates a sawtooth wave
with peaks of -1 and 1 instead of a sine wave. The sawtooth wave is defined to
be -1 at multiples of 2π and to increase linearly with time with a slope of 1/π at
all other times.

sawtooth(t,width) generates a modified triangle wave where width, a scalar
parameter between 0 and 1, determines the point between 0 and 2π at which
the maximum occurs. The function increases from -1 to 1 on the interval 0 to
2π*width, then decreases linearly from 1 to -1 on the interval 2π*width to 2π.
Thus a parameter of 0.5 specifies a standard triangle wave, symmetric about
time instant π with peak-to-peak amplitude of 1. sawtooth(t,1) is equivalent
to sawtooth(t).

See Also chirp, cos, diric, gauspuls, pulstran, rectpuls, sin, sinc, square, tripuls
7-517

schurrc
7schurrcPurpose Compute reflection coefficients from autocorrelation sequence

Syntax k = schurrc(r)
[k,e] = schurrc(r)

Description k = schurrc(r) uses the Schur algorithm to compute a vector k of reflection
coefficients from a vector r representing an autocorrelation sequence. k and r
are the same size. The reflection coefficients represent the lattice parameters
of a prediction filter for a signal with the given autocorrelation sequence, r.
When r is a matrix, schurrc treats each column of r as an independent
autocorrelation sequence, and produces a matrix k, the same size as r. Each
column of k represents the reflection coefficients for the lattice filter for
predicting the process with the corresponding autocorrelation sequence r.

[k,e] = schurrc(r) also computes the scalar e, the prediction error variance.
When r is a matrix, e is a row vector. The length of e is the same as the number
of columns of r.

Examples Create an autocorrelation sequence from the MATLAB speech signal contained
in mtlb.mat, and use the Schur algorithm to compute the reflection coefficients
of a lattice prediction filter for this autocorrelation sequence:

load mtlb
r = xcorr(mtlb(1:5),'unbiased');
k = schurrc(r(5:end))

k =
 -0.7583
 0.1384
 0.7042
 -0.3699

References [1] Proakis, J. and D. Manolakis, Digital Signal Processing: Principles,
Algorithms, and Applications, Third edition, Prentice-Hall, 1996, pp. 868-873.

See Also levinson
7-518

seqperiod
7seqperiodPurpose Compute the period of a sequence

Syntax p = seqperiod(x)
[p,num] = seqperiod(x)

Description p = seqperiod(x) returns the integer p that corresponds to the period of the
sequence in a vector x. The period p is computed as the minimum length of a
subsequence x(1:p) of x that repeats itself continuously every p samples in x.
The length of x does not have to be a multiple of p, so that an incomplete
repetition is permitted at the end of x. If the sequence x is not periodic, then
p = length(x).

• If x is a matrix, then seqperiod checks for periodicity along each column of x.
The resulting output p is a row vector with the same number of columns as x.

• If x is a multidimensional array, then seqperiod checks for periodicity along
the first nonsingleton dimension of x. In this case:

- p is a multidimensional array of integers with a leading singleton
dimension.

- The lengths of the remaining dimensions of p correspond to those of the
dimensions of x after the first nonsingleton one.

[p,num] = seqperiod(x) also returns the number num of repetitions of x(1:p)
in x. num might not be an integer.

Examples x = [4 0 1 6;
2 0 2 7;
4 0 1 5;
2 0 5 6];

p = seqperiod(x)

p =
 2 1 4 3

The result implies:

• The first column of x has period 2.

• The second column of x has period 1.

• The third column of x is not periodic, so p(3) is just the number of rows of x.
7-519

seqperiod
• The fourth column of x has period 3, although the last (second) repetition of
the periodic sequence is incomplete.
7-520

sgolay
7sgolayPurpose Savitzky-Golay filter design

Syntax b = sgolay(k,f)
b = sgolay(k,f,w)
[b,g] = sgolay(...)

Description b = sgolay(k,f) designs a Savitzky-Golay FIR smoothing filter b. The
polynomial order k must be less than the frame size, f, which must be odd. If
k = f-1, the designed filter produces no smoothing. The output, b, is an f-by-f
matrix whose rows represent the time-varying FIR filter coefficients. In a
smoothing filter implementation (for example, sgolayfilt), the last (f-1)/2
rows (each an FIR filter) are applied to the signal during the startup transient,
and the first (f-1)/2 rows are applied to the signal during the terminal
transient. The center row is applied to the signal in the steady state.

b = sgolay(k,f,w) specifies a weighting vector w with length f, which
contains the real, positive-valued weights to be used during the least-squares
minimization.

[b,g] = sgolay(...) returns the matrix g of differentiation filters. Each
column of g is a differentiation filter for derivatives of order p-1 where p is the
column index. Given a signal x of length f, you can find an estimate of the pth
order derivative, xp, of its middle value from:

xp((f+1)/2) = (factorial(p)) * g(:,p+1)' * x

Remarks Savitzky-Golay smoothing filters (also called digital smoothing polynomial
filters or least squares smoothing filters) are typically used to “smooth out” a
noisy signal whose frequency span (without noise) is large. In this type of
application, Savitzky-Golay smoothing filters perform much better than
standard averaging FIR filters, which tend to filter out a significant portion of
the signal’s high frequency content along with the noise. Although
Savitzky-Golay filters are more effective at preserving the pertinent high
frequency components of the signal, they are less successful than standard
averaging FIR filters at rejecting noise.

Savitzky-Golay filters are optimal in the sense that they minimize the
least-squares error in fitting a polynomial to each frame of noisy data.
7-521

sgolay
Examples Use sgolay to smooth a noisy sinusoid and display the result and the first and
second derivatives:

N = 4;
F = 21;
[b,g]=sgolay(N,F);
x=5*sin(.4*pi*0:.2:199);
y=x+randn(1,996); % Noisy sinusoid

for n = (F+1)/2:996-(F+1)/2,
% Zero-th order derivative (equivalent to sgolayfilt except
% that it doesn't compute transients)

z0(n)=g(:,1)'*y(n - (F+1)/2 + 1: n + (F+1)/2 - 1)';
% 1st order derivative

z1(n)=g(:,2)'*y(n - (F+1)/2 + 1: n + (F+1)/2 - 1)';
% 2nd order derivative

z2(n)=2*g(:,3)'*y(n - (F+1)/2 + 1: n + (F+1)/2 - 1)';
end

plot([x(1:length(z0))',y(1:length(z0))',z0'])
legend('Noiseless sinusoid','Noisy sinusoid',...
'Smoothed sinusoid')
figure
plot([diff(x(1:length(z0)+1))',z1'])
legend('Noiseless first-order derivative',...
'Smoothed first-order derivative')
figure
plot([diff(diff(x(1:length(z0)+2)))',z2'])
legend('Noiseless second-order derivative',...
'Smoothed second-order derivative')

Note The figures below are zoomed in the figure window to show more detail.
7-522

sgolay
Zeroth Order
7-523

sgolay
First Derivative
7-524

sgolay
Second Derivative

References [1] Orfanidis, S.J., Introduction to Signal Processing, Prentice-Hall, Englewood
Cliffs, NJ, 1996.

See Also fir1, firls, filter, sgolayfilt
7-525

sgolayfilt
7sgolayfiltPurpose Savitzky-Golay filtering

Syntax y = sgolayfilt(x,k,f)
y = sgolayfilt(x,k,f,w)
y = sgolayfilt(x,k,f,w,dim)

Description y = sgolayfilt(x,k,f) applies a Savitzky-Golay FIR smoothing filter to the
data in vector x. If x is a matrix, sgolayfilt operates on each column. The
polynomial order k must be less than the frame size, f, which must be odd. If
k = f-1, the filter produces no smoothing.

y = sgolayfilt(x,k,f,w) specifies a weighting vector w with length f, which
contains the real, positive-valued weights to be used during the least-squares
minimization. If w is not specified or if it is specified as empty, [], w defaults to
an identity matrix.

y = sgolayfilt(x,k,f,w,dim) specifies the dimension, dim, along which the
filter operates. If dim is not specified, sgolayfilt operates along the first
non-singleton dimension; that is, dimension 1 for column vectors and
nontrivial matrices, and dimension 2 for row vectors.

Remarks Savitzky-Golay smoothing filters (also called digital smoothing polynomial
filters or least-squares smoothing filters) are typically used to “smooth out” a
noisy signal whose frequency span (without noise) is large. In this type of
application, Savitzky-Golay smoothing filters perform much better than
standard averaging FIR filters, which tend to filter out a significant portion of
the signal’s high frequency content along with the noise. Although
Savitzky-Golay filters are more effective at preserving the pertinent high
frequency components of the signal, they are less successful than standard
averaging FIR filters at rejecting noise.

Savitzky-Golay filters are optimal in the sense that they minimize the
least-squares error in fitting a polynomial to frames of noisy data.

Examples Smooth the mtlb signal by applying a cubic Savitzky-Golay filter to data
frames of length 41:

load mtlb % Load the data.
smtlb = sgolayfilt(mtlb,3,41); % Apply the 3rd-order filter.
7-526

sgolayfilt
subplot(2,1,1)
plot([1:2000],mtlb(1:2000)); axis([0 2000 -4 4]);
title('mtlb'); grid;

subplot(2,1,2)
plot([1:2000],smtlb(1:2000)); axis([0 2000 -4 4]);
title('smtlb'); grid;

References [1] Orfanidis, S.J., Introduction to Signal Processing, Prentice-Hall, Englewood
Cliffs, NJ, 1996.

See Also medfilt1, filter, sgolay, sosfilt

0 500 1000 1500 2000
−4

−2

0

2

4
mtlb

0 500 1000 1500 2000
−4

−2

0

2

4
smtlb
7-527

sigwin
7sigwinPurpose Signal processing windows

Syntax w = sigwin.window(input1,...)

Description w = sigwin.window returns a window object, w, of type window. Each window
takes one or more inputs. If you specify a sigwin.window with no inputs, a
default window of length 64 is created.

Note You must use a window with sigwin.

Constructors
window for sigwin specifies the type of window. All windows in the Signal
Processing Toolbox are available for use with sigwin. For a complete list, see
the window reference page.

Methods
Methods provide ways of performing functions directly on your sigwin object
without having to specify the window parameters again. You can apply this
method directly on the variable you assigned to your sigwin object.

Method Description

generate Returns a column vector of values representing the window.

info Returns information about the window object.

winwrite Writes an ASCII file that contains window weights for a
single window object or a vector of window objects. Default
filename is untitled.wf.

winwrite(Hd,filename) writes to a disk file named
filename in the current working directory. The .wf
extension is added automatically.
7-528

sigwin
Viewing Object Parameters
As with any object, you can use get to view a sigwin object’s parameters. To
see a specific parameter,

 get(w,'parameter')

or to see all parameters for an object,

get(w)

Changing Object Parameters
To set specific parameters,

set(w,'parameter1',value,'parameter2',value,...)

Note that you must use single quotation marks around the parameter name.

Examples Create a default Bartlett window and view the results in the Window
Visualization Tool (wvtool). See bartlett for information on Bartlett windows:

w=sigwin.bartlett

w =
 Length: 64
 Name: 'Bartlett'

wvtool(w)
7-529

sigwin
Create a 128-point Chebyshev window with 100 dB of sidelobe attenuation.
(See chebwin for information on Chebyshev windows.) View the results of this
and the above Bartlett window in the Window Design and Analysis Tool
(wintool):

w1=sigwin.chebwin(128,100)

w1 =

 Length: 128
 Name: 'Chebyshev'

SidelobeAtten: 100

wintool(w,w1)
7-530

sigwin
To save the window values in a vector, use:

d = generate(w);

See Also window, wintool, wvtool
7-531

sinc
7sincPurpose Sinc function

Syntax y = sinc(x)

Description sinc computes the sinc function of an input vector or array, where the sinc
function is

This function is the continuous inverse Fourier transform of the rectangular
pulse of width 2π and height 1.

y = sinc(x) returns an array y the same size as x, whose elements are the
sinc function of the elements of x.

The space of functions bandlimited in the frequency range is
spanned by the infinite (yet countable) set of sinc functions shifted by integers.
Thus any such bandlimited function g(t) can be reconstructed from its samples
at integer spacings.

Examples Perform ideal bandlimited interpolation by assuming that the signal to be
interpolated is 0 outside of the given time interval and that it has been sampled
at exactly the Nyquist frequency:

t = (1:10)'; % A column vector of time samples
randn('state',0);
x = randn(size(t)); % A column vector of data

ts = linspace(-5,15,600)'; % times at which to interpolate data

sinc t()
1 t 0=,

πt()sin
πt

------------------- t 0≠,
⎩
⎪
⎨
⎪
⎧

=

sinc t() 1
2π
------ ejωt ωd

π–

π

∫=

ω π– π[,]∈

g t() g n()sinc t n–()

n ∞–=

∞

∑=
7-532

sinc
y = sinc(ts(:,ones(size(t))) - t(:,ones(size(ts)))')*x;
plot(t,x,'o',ts,y)

See Also chirp, cos, diric, gauspuls, pulstran, rectpuls, sawtooth, sin, square,
tripuls

−5 0 5 10 15
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

7-533

sos2cell
7sos2cellPurpose Convert second-order sections matrix to cell arrays

Syntax c = sos2cell(m)

c = sos2cell(m,g)

Description c = sos2cell(m) changes an L-by-6 second-order section matrix m generated
by tf2sos into a 1-by-L cell array of 1-by-2 cell arrays c. You can use c to
specify a quantized filter with L cascaded second-order sections.

The matrix m should have the form

m = [b1 a1;b2 a2; ... ;bL aL]

where both bi and ai, with i = 1, ..., L, are 1-by-3 row vectors. The resulting c
is a 1-by-L cell array of cells of the form

c = { {b1 a1} {b2 a2} ... {bL aL} }

c = sos2cell(m,g) with the optional gain term g, prepends the constant
value g to c. When you use the added gain term in the command, c is a 1-by-L
cell array of cells of the form

c = {{g,1} {b1,a1} {b2,a2}...{bL,aL} }

Examples Use sos2cell to convert the 2-by-6 second-order section matrix produced by
tf2sos into a 1-by-2 cell array c of cells. Display the second entry in the first
cell in c:

[b,a] = ellip(4,0.5,20,0.6);
m = tf2sos(b,a);
c = sos2cell(m);
c{1}{2}

ans =

 1.0000 0.1677 0.2575

See Also tf2sos, cell2sos
7-534

sos2ss
7sos2ssPurpose Convert digital filter second-order section parameters to state-space form

Syntax [A,B,C,D] = sos2ss(sos)
[A,B,C,D] = sos2ss(sos,g)

Description sos2ss converts a second-order section representation of a given digital filter
to an equivalent state-space representation.

[A,B,C,D] = sos2ss(sos) converts the system sos, in second-order section
form, to a single-input, single-output state-space representation.

The discrete transfer function in second-order section form is given by

sos is a L-by-6 matrix organized as

The entries of sos must be real for proper conversion to state space. The
returned matrix A is size N-by-N, where N = 2L-1, B is a length N-1 column
vector, C is a length N-1 row vector, and D is a scalar.

[A,B,C,D] = sos2ss(sos,g) converts the system sos in second-order section
form with gain g.

x n 1+[] Ax n[] Bu n[]+=

y n[] Cx n[] Du n[]+=

H z() Hk z()

k 1=

L

∏
b0k b1kz 1– b2kz 2–+ +

1 a1kz 1– a2kz 2–+ +
--

k 1=

L

∏= =

sos

b01 b11 b21 1 a11 a21

b02 b12 b22 1 a12 a22

b0L b1L b2L 1 a1L a2L

=

H z() g Hk z()

k 1=

L

∏=
7-535

sos2ss
Examples Compute the state-space representation of a simple second-order section
system with a gain of 2:

sos = [1 1 1 1 0 -1; -2 3 1 1 10 1];
[A,B,C,D] = sos2ss(sos)

A =
 -10 0 10 1
 1 0 0 0
 0 1 0 0
 0 0 1 0

B =
 1
 0
 0
 0

C =
 21 2 -16 -1

D =
 -2

Algorithm sos2ss first converts from second-order sections to transfer function using
sos2tf, and then from transfer function to state-space using tf2ss.

See Also sos2tf, sos2zp, ss2sos, tf2ss, zp2ss
7-536

sos2tf
7sos2tfPurpose Convert digital filter second-order section data to transfer function form

Syntax [b,a] = sos2tf(sos)
[b,a] = sos2tf(sos,g)

Description sos2tf converts a second-order section representation of a given digital filter
to an equivalent transfer function representation.

[b,a] = sos2tf(sos) returns the numerator coefficients b and denominator
coefficients a of the transfer function that describes a discrete-time system
given by sos in second-order section form. The second-order section format of
H(z) is given by

sos is an L-by-6 matrix that contains the coefficients of each second-order
section stored in its rows.

Row vectors b and a contain the numerator and denominator coefficients of
H(z) stored in descending powers of z.

[b,a] = sos2tf(sos,g) returns the transfer function that describes a
discrete-time system given by sos in second-order section form with gain g.

H z() Hk z()

k 1=

L

∏
b0k b1kz 1– b2kz 2–+ +

1 a1kz 1– a2kz 2–+ +
--

k 1=

L

∏= =

sos

b01 b11 b21 1 a11 a21

b02 b12 b22 1 a12 a22

b0L b1L b2L 1 a1L a2L

=

H z() B z()
A z()

b1 b2z 1– bn 1+ z n–+ + +

a1 a2z 1– am 1+ z m–+ + +
--= =

H z() g Hk z()

k 1=

L

∏=
7-537

sos2tf
Examples Compute the transfer function representation of a simple second-order section
system:

sos = [1 1 1 1 0 -1; -2 3 1 1 10 1];
[b,a] = sos2tf(sos)

b =
 -2 1 2 4 1

a =
 1 10 0 -10 -1

Algorithm sos2tf uses the conv function to multiply all of the numerator and
denominator second-order polynomials together.

See Also latc2tf, sos2ss, sos2zp, ss2tf, tf2sos, zp2tf
7-538

sos2zp
7sos2zpPurpose Convert digital filter second-order section parameters to zero-pole-gain form

Syntax [z,p,k] = sos2zp(sos)
[z,p,k] = sos2zp(sos,g)

Description sos2zp converts a second-order section representation of a given digital filter
to an equivalent zero-pole-gain representation.

[z,p,k] = sos2zp(sos) returns the zeros z, poles p, and gain k of the system
given by sos in second-order section form. The second-order section format of
H(z) is given by

sos is an L-by-6 matrix that contains the coefficients of each second-order
section in its rows.

Column vectors z and p contain the zeros and poles of the transfer
function H(z).

where the orders n and m are determined by the matrix sos.

[z,p,k] = sos2zp(sos,g) returns the zeros z, poles p, and gain k of the
system given by sos in second-order section form with gain g.

H z() Hk z()

k 1=

L

∏
b0k b1kz 1– b2kz 2–+ +

1 a1kz 1– a2kz 2–+ +
--

k 1=

L

∏= =

sos

b01 b11 b21 1 a11 a21

b02 b12 b22 1 a12 a22

b0L b1L b2L 1 a1L a2L

=

H z() k
z z1–() z z2–() z zn–()

p p1–() p p2–() p pm–()
--=

H z() g Hk z()

k 1=

L

∏=
7-539

sos2zp
Examples Compute the poles, zeros, and gain of a simple system in second-order section
form:

sos = [1 1 1 1 0 -1; -2 3 1 1 10 1];
[z,p,k] = sos2zp(sos)

z =
 -0.5000 + 0.8660i
 -0.5000 - 0.8660i
 1.7808
 -0.2808

p =
 -1.0000
 1.0000
 -9.8990
 -0.1010

k =
 -2

Algorithm sos2zp finds the poles and zeros of each second-order section by repeatedly
calling tf2zp.

See Also sos2ss, sos2tf, ss2zp, tf2zp, tf2zpk, zp2sos
7-540

sosfilt
7sosfiltPurpose Second-order (biquadratic) IIR digital filtering

Syntax y = sosfilt(sos,x)

Description y = sosfilt(sos,x) applies the second-order section digital filter sos to the
vector x. The output, y, is the same length as x.

sos represents the second-order section digital filter H(z)

by an L-by-6 matrix containing the coefficients of each second-order section in
its rows.

If x is a matrix, sosfilt applies the filter to each column of x independently.
Output y is a matrix of the same size, containing the filtered data
corresponding to each column of x.

References [1] Orfanidis, S.J., Introduction to Signal Processing, Prentice-Hall, Englewood
Cliffs, NJ, 1996.

See Also filter, medfilt1, sgolayfilt

H z() Hk z()

k 1=

L

∏
b0k b1kz 1– b2kz 2–+ +

1 a1kz 1– a2kz 2–+ +
--

k 1=

L

∏= =

sos

b01 b11 b21 1 a11 a21

b02 b12 b22 1 a12 a22

b0L b1L b2L 1 a1L a2L

=

7-541

spectrogram
7spectrogramPurpose Spectrogram using short-time Fourier transform

Syntax S = spectrogram(x)
S = spectrogram(x,window)
S = spectrogram(x,window,noverlap)
S = spectrogram(x,window,noverlap,nfft)
S = spectrogram(x,window,noverlap,nfft,fs)
S = spectrogram(x,window,noverlap,F)
S = spectrogram(x,window,noverlap,F,fs)
[S,F,T] = spectrogram(...)
[S,F,T,P] = spectrogram(...)
spectrogram(...)

Description spectrogram computes the short-time Fourier transform of a signal. The
spectrogram is the magnitude of this function.

S = spectrogram(x) returns the spectrogram of the input signal vector x. By
default, x is divided into eight segments. If x cannot be divided exactly into
eight segments, it is truncated. These default values are used.

• window is a Hamming window of length nfft.

• noverlap is the value that produces 50% overlap between segments.

• nfft is the FFT length and is the maximum of 256 or the next power of 2
greater than the length of each segment of x.

• fs is the sampling frequency, which defaults to normalized frequency.

Each column of S contains an estimate of the short-term, time-localized
frequency content of x. Time increases across the columns of S and frequency
increases down the rows.

If x is a length Nx complex signal, S is a complex matrix with nfft rows and k
colums, where

k = fix((Nx-noverlap)/(length(window-noverlap))

For real x, the output S has (nfft/2+1) rows if nfft is even, and (nfft+1)/2 rows
if nfft is odd.

S = spectrogram(x,window) uses the window specified. If window is an
integer, x is divided into segments equal to that integer value and a Hamming
7-542

spectrogram
window is used. If window is a vector, x is divided into segments equal to the
length of window and then the segments are windowed using the window
functions specified in the window vector.

S = spectrogram(x,window,noverlap) overlaps noverlap samples of each
segment. noverlap must be an integer smaller than window or if window is a
vector, smaller than the length of window.

S = spectrogram(x,window,noverlap,nfft) uses the nfft number of
sampling points to calculate the discrete Fourier transform. nfft must be a
scalar.

S = spectrogram(x,window,noverlap,nfft,fs) uses fs sampling frequency
in Hz. If fs is specified as empty [], it defaults to 1 Hz.

S = spectrogram(x,window,noverlap,F) uses a vector F of frequencies in Hz.
F must be a vector with at least two elements. This case computes the
spectrogram at the frequencies in F using the Goertzel algorithm. In all other
syntax cases where nfft or a default for nfft is used, the short-time Fourier
transform is used.

S = spectrogram(x,window,noverlap,F,fs) uses a vector F of frequencies in
Hz as above and uses the fs sampling frequency in Hz. If fs is specified as
empty [], it defaults to 1 Hz.

[S,F,T] = spectrogram(...) returns a vector of frequencies F and a vector of
times T at which the spectrogram is computed. The length of F is equal to the
number of rows of S. The length of T is equal to k, as defined above and each
value corresponds to the center of each segment.

[S,F,T,P] = spectrogram(...) returns a matrix P containing the power
spectral density (PSD) of each segment. For real x, P contains the one-sided
modified periodogram estimate of the PSD of each segment. For complex x and
when you specify a vector of frequencies F, P contains the two-sided PSD.

spectrogram(...) plots the PSD estimate for each segment on a surface in a
figure window. The plot is created using surf(F,T,10*log10(abs(P)).

Using spectrogram(...,'freqloc') syntax and adding a 'freqloc' string
(either 'xaxis' or 'yaxis') controls where MATLAB displays the frequency
7-543

spectrogram
axis. Using 'xaxis' displays the frequency on the x-axis. Using 'yaxis'
displays frequency on the y-axis and time on the x-axis. The default is 'xaxis'.
If you specify both a 'freqloc' string and output arguments, 'freqloc' is
ignored.

Examples Compute and display the PSD of each segment of a quadratic chirp, which
starts at 100 Hz and crosses 200 Hz at t = 1 sec.

T = 0:0.001:2;
X = chirp(T,100,1,200,'q');
spectrogram(X,128,120,128,1E3);
title('Quadratic Chirp');
7-544

spectrogram
Compute and display the PSD of each segment of a linear chirp, which starts
at DC and crosses 150 Hz at t = 1 sec. Display the frequency on the y-axis.

T = 0:0.001:2;
X = chirp(T,0,1,150);
F = 0:.1:100;
[Y,F,T,P] = spectrogram(X,256,250,F,1E3,'yaxis');

% The following code produces the same result as calling
% spectrogram with no outputs:
surf(T,F,10*log10(abs(P)),'EdgeColor','none');
axis xy; axis tight; colormap(jet); view(0,90);
xlabel('Time');
ylabel('Frequency (Hz)');
7-545

spectrogram
References [1] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing,
Prentice-Hall, Englewood Cliffs, NJ, 1989, pp. 713-718.

[2] Rabiner, L.R., and R.W. Schafer, Digital Processing of Speech Signals,
Prentice-Hall, Englewood Cliffs, NJ, 1978.

See Also goertzel, periodogram, pwelch, spectrum.periodogram, spectrum.welch
7-546

spectrum
7spectrumPurpose Spectral estimation functions

Syntax Hs = spectrum.estmethod(input1,...)

Description Hs = spectrum.estmethod(input1,...) returns a spectral estimation object
Hs of type estmethod. This object contains all the parameter information
needed for the specified estimation method. Each estimation method takes one
or more inputs, which are described on the individual reference pages.

Note If you need to obtain confidence intervals, use the pmtm function.

Estimation Methods

Note You must use a spectral estmethod with spectrum.

Estimation methods for spectrum specify the type of spectral estimation
method to use. Available estimation methods for spectrum are listed below.

spectrum.estmethod Description Corresponding Function

spectrum.burg Burg pburg

spectrum.cov Covariance pcov

spectrum.eigenvector Eigenvector peig

spectrum.mcov Modified covariance pmcov

spectrum.mtm Thompson multitaper pmtm

spectrum.music Multiple Signal Classification pmusic

spectrum.periodogram Periodogram periodogram

spectrum.welch Welch pwelch

spectrum.yulear Yule-Walker pyulear
7-547

spectrum
For more information on each estimation method, refer to its reference page.

Note For estimation methods that use overlap and window length inputs,
you specify the number of overlap samples as a percent overlap and you
specify the segment length instead of the window length.

For estimation methods that use windows, if the window uses an additional
parameter, a property is dynamically added to the spectrum object for that
parameter. You can change that property using set (see Changing Object
Properties on page 555).

Methods
Methods provide ways of performing functions directly on your spectrum object
without having to specify the spectral estimation parameters again. You can
apply these methods directly on the variable you assigned to your spectrum
object. For more information on any of these methods, use the syntax
help spectrum/estmethod at the MATLAB prompt.
7-548

spectrum
Method Options Description

msspectrum 'onesided'
'twosided'
Fs

Note that the msspectrum method is only available for the
periodogram and welch spectrum estimation objects.

The mean-squared spectrum is intended for discrete
spectra. Unlike the power spectral density (psd), the peaks
in the mean-square spectrum reflect the power in the
signal at a given frequency.

Hmss = msspectrum(Hs,X) returns a mean-square
spectrum object containing the mean-square (power)
estimate of the discrete-time signal X using the spectrum
object Hs. Default for real X is the 'onesided' and for
complex X is the 'twosided' Nyquist frequency range.
Hmss contains a vector of normalized frequencies W at
which the mean-sqaure spectrum is estimated. For real
signals, the range of W is [0,pi] if the number of FFT points
(NFFT) is even and [0,pi) if NFFT is odd. For complex
signals, the range of W is [0,2pi).

Hmss = msspectrum(Hs,X,'Fs',Fs) returns a
mean-square spectrum object computed as a function of
frequency, where Fs is the sampling frequency in Hz.

Hmss = msspectrum(...,'SpectrumType','twosided')
returns the two-sided mean-square spectrum. The
spectrum length (NFFT) is computed over [0,2pi), or if Fs
is specified, [0,Fs) . Entering 'onesided' returns the
one-sided mean-square spectrum, which contains the total
signal power.
Hmss = msspectrum(...,'NFFT',nfft) specifes the
number of FFT points to use.
7-549

spectrum
Hmss = msspectrum(...,'Centerdc',true) shifts the
data and frequency values so that the DC component is at
the center of the spectrum. The default value is false.

msspectrum(...) with no output arguments plots the
mean-square spectrum in dB.

msspectrumopts Hopts = msspectrumopts(Hs) returns an object that
contains options for the spectrum object Hs.
Hopts = msspectrumopts(Hs,X) returns an object with
data-specific options and defaults.
You can pass an Hopts options object as an argument to
the msspectrum method. Any indivudual option you specify
after the Hopts object overrides the value in Hopts. For
example,
Hmss = msspectrum(Hs,X,Hopts,'SpectrumType',
'twosided') overrides the SpectrumType value in Hopts.

psd 'onesided'
'twosided'
Fs

Note that music and eigenvector spectrum objects do not
support the psd method. See the pseudospectrum method
below.

The power spectral density (PSD) is intended for
continuous spectra. The integral of the PSD over a given
frequency band computes the average power in the signal
over that frequency band. In contrast to the msspectrum,
the peaks in this spectra do not reflect the power at a given
frequency. See the avgpower method of dspdata for more
information.

Hpsd = psd(Hs,X) returns a power spectral density object
containing the power spectral density estimate of the
discrete-time signal X using the spectrum object Hs. The
PSD is the distribution of power per unit frequency.
Default for real X is 'onesided'and for complex X is
'twosided'.

Method Options Description
7-550

spectrum
Hpsd contains a vector of normalized frequencies W at
which the PSD is estimated. For real signals, the range of
W is [0,pi] if the number of FFT points (NFFT) is even and
[0,pi) if NFFT is odd. For complex signals, the range of W is
[0,2pi).

Hpsd = psd(Hs,X,'Fs',Fs) returns a power spectral
density object computed as a function of frequency, where
Fs is the sampling frequency in Hz.
Hpsd = psd(...,'SpectrumType','twosided') returns
the two-sided power spectral density of X. The spectrum
length is NFFT and is computed over [0,2pi) if Fs is not
specified or [0,Fs) if Fs is specified. Entering 'onesided'
returns the one-sided psd, which contains the total signal
power.

Hpsd = psd(...,'NFFT',nfft) specifes the number of
FFT points to use.
Hpsd = psd(...,'Centerdc',true) shifts the data and
frequency values so that the DC component is at the center
of the spectrum. The default value is false.

psd(...) with no output arguments plots the power
spectral density estimate in dB per unit frequency.

Method Options Description
7-551

spectrum
psdopts Hopts = psdopts(Hs) returns an object that contains
options for the spectrum object Hs. See dspopts, which is
simlar to psdopts, for an example.

Hopts = psdopts(Hs,X) returns an object with
data-specific options and defaults.

You can pass an Hopts options object as an argument to
the psd method. Any individual option you specify after
the Hopts object overrides the value in Hopts. For example,
Hpsd = psd(Hs,X,Hopts,'SpectrumType', 'twosided')
overrides the SpectrumType value in Hopts.

pseudospectrum 'half'
'whole'
Fs

Note that this method is used for only music or
eigenvector spectrum objects.

Hps = pseudospectrum(Hs,X) returns an object
containing the pseudospectrum estimate of the
discrete-time signal X using the spectrum object Hs. Hs
must be a music or eigenvector object. Default for real X
is 'half' and for complex X is the 'whole' Nyquist
frequency range.

Hps contains a vector of normalized frequencies W at which
the pseudospectrum is estimated. For real signals, the
range of W is [0,pi] if the number of FFT points (NFFT) is
even and [0,pi) if NFFT is odd. For complex signals, the
range of W is [0,2pi).

Method Options Description
7-552

spectrum
Hps = pseudospectrum(Hs,X,'Fs',Fs) returns a
pseudospectrum object computed as a function of
frequency, where Fs is the sampling frequency in Hz.
Hmps = pseudospectrum(...,'SpectrumRange','whole')
returns the pseudospectrum over the whole Nyquist range.
The spectrum length is NFFT and is computed over [0,2pi)
if Fs is not specified or [0,Fs) if Fs is specified. Entering
'half' returns the pseudospectrum calculated over half
the Nyquist range.

Hps = pseudospectrum(...,'NFFT',nfft) specifes the
number of FFT points to use

Hps = pseudospectrum(...,'Centerdc',true) shifts the
data and frequency values so that the DC component is at
the center of the spectrum. The default value is false.

pseudospectrum(...) with no output arguments plots the
pseudospectrum in dB.

Method Options Description
7-553

spectrum
Viewing Object Properties
As with any object, you can use get to view a spectrum object’s properties. To
see a specific property, use

 get(Hs,'property')

where 'property' is the specific property name.

pseudospecrumopts Hopts = pseudospectrumopts(Hs) returns an object that
contains options for the spectrum object Hs.

Hopts = pseudospectrumopts(Hs,X) returns an object
with data-specific options and defaults.

You can pass an Hopts options object as an argument to
the pseudospectrum method. Any indivudual option you
specify after the Hopts object overrides the value in Hopts.
For example, Hpseudospectrum= pseudospectrum(Hs,X,
Hopts,'SpectrumRange', 'whole') overrides the
SpectrumRange value in Hopts.

powerest Fs Note that powerest is available only for music and
eigenvector spectrum objects.

POW = powerest(Hs,X) returns a vector POW containing
estimates of the powers of the complex sinusoids in X. The
input X can be a vector or a matrix. If it is a matrix it can
be a data matrix, where X'*X=R or a correlation matrix R.
The value the InputType property of Hs determines how X
is interpreted. Hs must be a music or eigenvector
spectrum object.

[POW,W]=powerest(Hs,X) returns POW and a vector W of the
frequencies in rad/sample of the sinusoids in X.
[POW,F]=powerest(Hs,X,Fs) returns POW and a vector F of
the frequencies in Hz of the sinusoids in X. Fs is the
sampling frequency.

Method Options Description
7-554

spectrum
To see all properties for an object, use

get(Hs)

Changing Object Properties
To set specific properties, use

set(Hs,'property1',value, 'property2',value,...)

where 'property1', 'property2', etc. are the specific property names.

To view the options for a property use set without specifying a value

set(Hs,'property')

Note that you must use single quotation marks around the property name. For
example, to change the order of a Burg spectrum object Hs to 6, use

set(Hs,'order',6)

Another example of using set to change an object’s properties is this example
of changing the dynamically created window property of a periodogram
spectrum object.

Hs=spectrum.periodogram %Create periodogram object

Hs =

 EstimationMethod: 'Periodogram'
 FFTLength: 'NextPow2'
 WindowName: 'Rectangular'

set(Hs,'WindowName','Chebyshev')%Change window type
Hs %View changed object and

%Note changed property

Hs =

 EstimationMethod: 'Periodogram'
 FFTLength: 'NextPow2'
 WindowName: 'Chebyshev'
 SidelobeAtten: 100
7-555

spectrum
set(Hs,'SidelobeAtten',150) %Change dynamic property
Hs %View changed object

Hs =

 EstimationMethod: 'Periodogram'
 FFTLength: 'NextPow2'
 WindowName: 'Chebyshev'
 SidelobeAtten: 150

All spectrum object properties can be changed using the set command, except
for the EstimationMethod property.

Another way to change an object’s properties is by using the inspect command
which opens the Property Inspector window where you can edit any property,
except dynamic properties, such as those used with windows.

inspect(Hs)

Copying an Object
To create a copy of an object, use the copy method.

H2 = copy(Hs)

Note Using the syntax H2 = Hs copies only the object handle and does not
create a new object.

Examples Define a cosine of 200 Hz, add some noise and then view its power spectral
density estimate generated with the periodogram algorithm.

Fs = 1000;
t = 0:1/Fs:.3;
x=cos(2*pi*t*200)+randn(size(t));
Hs=spectrum.periodogram;
psd(Hs,x,'Fs',Fs)
7-556

spectrum
Refer to the reference pages for each estimation method for more examples.

See Also dspdata, dspopts, spectrum.burg, spectrum.cov, spectrum.mcov,
spectrum.yulear, spectrum.periodogram, spectrum.welch, spectrum.mtm,
spectrum.eigenvector, spectrum.music
7-557

spectrum.burg
7spectrum.burgPurpose Burg spectrum

Syntax Hs = spectrum.burg
Hs = spectrum.burg(order)
Hs = spectrum.burg(order,FFTLength)

Description Hs = spectrum.burg returns a default Burg spectrum object, Hs, that defines
the parameters for the Burg parametric spectral estimation algorithm. The
Burg algorithm estimates the spectral content by fitting an auto-regressive
(AR) linear prediction filter model of a given order to the signal.

Hs = spectrum.burg(order) returns a spectrum object, Hs with the specified
order and the FFTLength determined using NextPow2. The default value for
order is 4.

Hs = spectrum.burg(order,FFTLength) returns a spectrum object, Hs with
the specified order of the AR model and the specified way of determining the
FFTLength. Valid values of the FFTLength string are:

Note See pburg for more information on the Burg algorithm.

Examples Define a fourth order auto-regressive model and view its power spectral density
using the Burg algorithm.

FFTLength string Description

'InputLength' Use the length of the input signal as the
FFT length

'NextPow2' Use the next power of 2 greater than the
input signal length as the FFT length. This
is the default value.

'UserDefined' Use the FFT length provided as an input to
the psd method or via a dspopts object. See
dspopts for an example.
7-558

spectrum.burg
randn('state',1);
x=randn(100,1);
x=filter(1,[1 1/2 1/3 1/4 1/5],x);%Fourth order AR filter
Hs=spectrum.burg; %Fourth order AR model
psd(Hs,x,'NFFT',512)

See Also dspdata, dspopts, spectrum, spectrum.cov, spectrum.mcov,
spectrum.yulear, spectrum.periodogram, spectrum.welch, spectrum.mtm,
spectrum.eigenvector, spectrum.music
7-559

spectrum.cov
7spectrum.covPurpose Covariance spectrum

Syntax Hs = spectrum.cov
Hs = spectrum.cov(order)
Hs = spectrum.cov(order,FFTLength)

Description Hs = spectrum.cov returns a default covariance spectrum object, Hs, that
defines the parameters for the covariance spectral estimation algorithm. The
covariance algorithm estimates the spectral content by fitting an
auto-regressive (AR) linear prediction model of a given order to the signal.

Hs = spectrum.cov(order) returns a spectrum object, Hs with the specified
order and the FFTLength determined using NextPow2. The default value for
order is 4.

Hs = spectrum.cov(order,FFTLength) returns a covariance spectrum object,
Hs with the order of the covariance model and the specified way of determining
the FFTLength. Valid values of the FFTLength string are:

Note See pcov for more information on the covariance algorithm.

Examples Define a fourth order auto-regressive model and view its power spectral density
using the covariance algorithm.

FFTLength string Description

'InputLength' Use the length of the input signal as the
FFT length

'NextPow2' Use the next power of 2 greater than the
input signal length as the FFT length. This
is the default value.

'UserDefined' Use the FFT length provided as an input to
the psd method or via a dspopts object.
See dspopts for an example.
7-560

spectrum.cov
randn('state',1);
x=randn(100,1);
x=filter(1,[1 1/2 1/3 1/4 1/5],x);%Fourth order AR filter
Hs=spectrum.cov; %Fourth order AR model
psd(Hs,x,'NFFT',512)

See Also dspdata, dspopts, spectrum, spectrum.burg, spectrum.mcov,
spectrum.yulear, spectrum.periodogram, spectrum.welch, spectrum.mtm,
spectrum.eigenvector, spectrum.music
7-561

spectrum.eigenvector
7spectrum.eigenvectorPurpose Eigenvector spectrum

Syntax Hs = spectrum.eigenvector
Hs = spectrum.eigenvector(NSinusoids)
Hs = spectrum.eigenvector(NSinusoids,SegmentLength)
Hs = spectrum.eigenvector(...,OverlapPercent)
Hs = spectrum.eigenvector(...,WindowName)
Hs = spectrum.eigenvector(...,SubspaceThreshold)
Hs = spectrum.eigenvector(...,FFTLength)
Hs = spectrum.eigenvector(...,InputType)

Description Hs = spectrum.eigenvector returns a default eigenvector spectrum object,
Hs, that defines the parameters for an eigenanalysis spectral estimation
method. This object uses the following default values:

Property Name Default Value Description

NSinusoids 2 Number of complex sinusoids

SegmentLength 4 Segment length

OverlapPercent 50 Percent overlap between
segments
7-562

spectrum.eigenvector
WindowName 'Rectangular' Window name string or 'User
Defined' (see window for valid
window names). For more
information on each window,
refer to its reference page.

This argument can also be a cell
array containing the window
name string or 'User Defined'
and, if used for the particular
window, an optional parameter
value. The syntax is
{wname,wparam}.

You can use set to change the
value of the additional
parameter or to define the
MATLAB expression and
parameters for a user-defined
window (see spectrum for
information on using set).

SubspaceThreshold 0 Threshold is the cutoff for signal
and noise separation. The
threshold is multiplied by λmin ,
the smallest estimated
eigenvalue of the signal’s
correlation matrix. Eigenvalues
below the threshold
(λmin*threshold) are assigned
to the noise subspace.

Property Name Default Value Description
7-563

spectrum.eigenvector
Hs = spectrum.eigenvector(NSinusoids) returns a spectrum object, Hs,
with the specified number of sinusoids and default values for all other
properties. Refer to the table above for default values.

Hs = spectrum.eigenvector(NSinusoids,SegmentLength) returns a
spectrum object, Hs, with the specified segment length.

Hs = spectrum.eigenvector(...,OverlapPercent) returns a spectrum
object, Hs, with the specified overlap between segments.

Hs = spectrum.eigenvector(...,WindowName) returns a spectrum object,
Hs, with the specified window.

FFTlength 'NextPow2' String defining how the number
of FFT points is determined. The
default is the next power of 2
that is greater than the input
length. Other valid values are
'InputLength' and
'UserDefined'. InputLength
uses the length of the input
signal as the FFT length.
UserDefined uses the value
provided via the
pseudospectrum method or a
dspopts object. See dspopts for
an example.

InputType 'Vector' Type of input that will be used
with this spectrum object. Valid
values are 'Vector',
'DataMatrix' and
'CorrelationMatrix'.

Property Name Default Value Description
7-564

spectrum.eigenvector
Note Window names must be enclosed in single quotes, such as
spectrum.eigenvector(3,32,50,'chebyshev') or
spectrum.eigenvector(3,32,50,{'chebyshev',60})

Hs = spectrum.eigenvector(...,SubspaceThreshold) returns a spectrum
object, Hs, with the specified subspace threshold.

Hs = spectrum.eigenvector(...,FFTLength) returns a spectrum object, Hs,
with the specified way of the determing the FFT length.

Hs = spectrum.eigenvector(...,InputType) returns a spectrum object, Hs,
with the specified input type.

Note See peig for more information on the eigenanalysis algorithm.

Examples Define a complex signal with three sinusoids, add noise, and view its
pseudospectrum using eigenanalysis. Set the FFT length to 128.

randn('state',1);
n=0:99;
s=exp(i*pi/2*n)+2*exp(i*pi/4*n)+exp(i*pi/3*n)+randn(1,100);
Hs=spectrum.eigenvector(3,32,95,'rectangular',5);
pseudospectrum(Hs,s,'NFFT',128)
7-565

spectrum.eigenvector
See Also dspdata, dspopts, spectrum, spectrum.music, spectrum.burg, spectrum.cov,
spectrum.mcov, spectrum.yulear, spectrum.periodogram, spectrum.welch,
spectrum.mtm
7-566

spectrum.mcov
7spectrum.mcovPurpose Modified covariance spectrum

Syntax Hs = spectrum.mcov
Hs = spectrum.mcov(order)
Hs = spectrum.mcov(order,FFTLength)

Description Hs = spectrum.mcov returns a default modified covariance spectrum object,
Hs, that defines the parameters for the modified covariance spectral estimation
algorithm. The modified covariance algorithm estimates the spectral content
by fitting an auto-regressive (AR) linear prediction filter model of a given order
to the signal.

Hs = spectrum.mcov(order) returns a spectrum object, Hs with the specified
order and the FFTLength determined using NextPow2. The default value for
order is 4.

Hs = spectrum.mcov(order,FFTLength) returns a spectrum object, Hs with
specified order and and the specified way of detrmining the FFTLength. Valid
values of the FFTLength string are as follows:

Note See pmcov for more information on the modified covariance algorithm.

FFTLength string Description

'InputLength' Use the length of the input signal as the
FFT length

'NextPow2' Use the next power of 2 greater than the
input signal length as the FFT length. This
is the default value.

'UserDefined' Use the FFT length provided as an input to
the psd method or via a dspopts object.
See dspopts for an example.
7-567

spectrum.mcov
Examples Define a fourth order auto-regressive model and view its power spectral density
using the modified covariance algorithm.

randn('state',1);
x=randn(100,1);
x=filter(1,[1 1/2 1/3 1/4 1/5],x); %Fourth order AR filter
Hs=spectrum.mcov; %Fourth order AR model
psd(Hs,x,'NFFT',512)

See Also dspdata, dspopts, spectrum, spectrum.burg, spectrum.cov,
spectrum.yulear, spectrum.periodogram, spectrum.welch, spectrum.mtm,
spectrum.eigenvector, spectrum.music
7-568

spectrum.mtm
7spectrum.mtmPurpose Thompson multitaper spectrum

Syntax Hs = spectrum.mtm
Hs = spectrum.mtm(TimeBW)
Hs = spectrum.mtm(DPSS,Concentrations)
Hs = spectrum.mtm(...,CombineMethod)
Hs = spectrum.mtm(...,FFTLength)

Description Hs = spectrum.mtm returns a default Thompson multitaper spectrum object,
Hs that defines the parameters for the Thompson multitaper spectral
estimation algorithm, which uses a linear or nonlinear combination of modified
periodograms. The periodograms are computed using a sequence of orthogonal
tapers (windows in the frequency domain) specified from discrete prolate
spheroidal sequences (dpss). This object uses the following default values:

Property Name Default Value Description

TimeBW 4 Product of time and bandwidth for
the discrete prolate spheroidal
sequences (or Slepian sequences)
used as data windows
7-569

spectrum.mtm
Hs = spectrum.mtm(TimeBW) returns a spectrum object, Hs with the specified
time-bandwidth product.

Hs = spectrum.mtm(DPSS,Concentrations) returns a spectrum object, Hs
with the specified dpss data tapers and their concentrations.

Note You can either specify the time-bandwidth product (TimeBW) or the DPSS
data tapers and their Concentrations. See dpss and pmtm for more
information.

Hs = spectrum.mtm(...,CombineMethod) returns a spectrum object, Hs,
with the specified method for combining the spectral estimates. Refer to the
table above for valid CombineMethod values.

CombineMethod 'adaptive' Algorithm for combining the
individual spectral estimates. Valid
values are
'adaptive'—adaptive (nonlinear)
'unity'—unity weights (linear)
'eigenvector'—Eigenvalue
weights (linear)

FFTlength 'NextPow2' String defining how the number of
FFT points is determined. The
default is the next power of 2 that is
greater than the input length. Other
valid values are: 'InputLength'
and 'UserDefined'. InputLength
uses the length of the input signal
as the FFT length. UserDefined
uses the value provided via a psd
method or dspopts object. See
dspopts for an example.

Property Name Default Value Description
7-570

spectrum.mtm
Hs = spectrum.mtm(...,FFTLength) returns a spectrum object, Hs with the
specified way of determining the FFTLength. Refer to the table above for valid
FFTLength values.

Examples Define a cosine of 200 Hz, add noise and view its power spectral density using
the Thompson multitaper algorithm with a time-bandwidth product of 3.5.

Fs=1000;
t=0:1/Fs:.3;
x=cos(2*pi*t*200)+randn(size(t));
Hs=spectrum.mtm(3.5);
psd(Hs,x,'Fs',Fs)
7-571

spectrum.mtm
The above example could be done by specifying the data tapers and
concentrations instead of the time-bandwidth product.

Fs=1000;
t=0:1/Fs:.3;
x=cos(2*pi*t*200)+randn(size(t));
[e,v]=dpss(length(x),3.5);
Hs=spectrum.mtm(e,v);
psd(Hs,x,'Fs',Fs)

See Also dspdata, dspopts, spectrum, spectrum.periodogram, spectrum.welch,
spectrum.burg, spectrum.cov, spectrum.mcov, spectrum.yulear,
spectrum.eigenvector, spectrum.music
7-572

spectrum.music
7spectrum.musicPurpose Multiple signal classification spectrum

Syntax Hs = spectrum.music
Hs = spectrum.music(NSinusoids)
Hs = spectrum.music(NSinusoids,SegmentLength)
Hs = spectrum.music(...,OverlapPercent)
Hs = spectrum.music(...,WindowName)
Hs = spectrum.music(...,SubspaceThreshold)
Hs = spectrum.music(...,FFTLength)
Hs = spectrum.music(...,InputType)

Description Hs = spectrum.music returns a default multiple signal classification
(MUSIC) spectrum object, Hs, that defines the parameters for the MUSIC
spectral estimation algorithm, which uses Schmidt’s eigenspace analysis
algorithm. This object uses the following default values.

Property Name Default Value Description

NSinusoids 2 Number of complex sinusoids

SegmentLength 4 Segment length

OverlapPercent 50 Percent overlap between
segments
7-573

spectrum.music
WindowName 'Rectangular' Window name string or 'User
Defined' (see window for valid
window names). For more
information on each window,
refer to its reference page).

This argument can also be a cell
array containing the window
name string or 'User Defined'
and, if used for the particular
window, an optional parameter
value. The syntax is
{wname,wparam}.

You can use set to change the
value of the additional
parameter or to define the
MATLAB expression and
parameters for a user-defined
window (see spectrum for
information on using set).

SubspaceThreshold 0 Threshold is the cutoff for signal
and noise separation. The
threshold is multiplied by λmin ,
the smallest estimated
eigenvalue of the signal’s
correlation matrix. Eigenvalues
below the threshold
(λmin*threshold) are assigned
to the noise subspace.

Property Name Default Value Description
7-574

spectrum.music
Hs = spectrum.music(NSinusoids) returns a spectrum object, Hs, with the
specified number of sinusoids and default values for all other properties. Refer
to the table above for default values.

Hs = spectrum.eigenvector(NSinusoids,SegmentLength) returns a
spectrum object, Hs, with the specified segment length.

Hs = spectrum.music(...,OverlapPercent) returns a spectrum object, Hs,
with the specified overlap between segments.

Hs = spectrum.music(...,WindowName) returns a spectrum object, Hs, with
the specified window.

FFTlength 'NextPow2' String defining how the number
of FFT points is determined. The
default is the next power of 2
that is greater than the input
length. Other valid values are
'InputLength' and
'UserDefined'. InputLength
uses the length of the input
signal as the FFT length.
UserDefined uses the value
provided via a pseudospectrum
method or dspopts object. See
dspopts for an example.

InputType 'Vector' Type of input that will be used
with this spectrum object. Valid
values are 'Vector',
'DataMatrix' and
'CorrelationMatrix'.

Property Name Default Value Description
7-575

spectrum.music
Note Window names must be enclosed in single quotes, such as
spectrum.music(3,32,50,'chebyshev') or
spectrum.music(3,32,50,{'chebyshev',60})

Hs = spectrum.music(...,SubspaceThreshold) returns a spectrum object,
Hs, with the specified subspace threshold.

Hs = spectrum.music(...,FFTLength) returns a spectrum object, Hs, with
the specified FFT length type.

Hs = spectrum.music(...,InputType) returns a spectrum object, Hs, with
the specified input type.

Note See pmusic for more information on the MUSIC algorithm.

Examples Define a complex signal with three sinusoids, add noise, and estimate its
pseudospectrum using the MUSIC algorithm.

randn('state',1);
n=0:99;
s=exp(i*pi/2*n)+2*exp(i*pi/4*n)+exp(i*pi/3*n)+randn(1,100);
Hs=spectrum.music(3);
pseudospectrum(Hs,s,'NFFT',512)
7-576

spectrum.music
See Also dspdata, dspopts, spectrum, spectrum.eigenvector, spectrum.burg,
spectrum.cov, spectrum.mcov, spectrum.yulear, spectrum.periodogram,
spectrum.welch, spectrum.mtm
7-577

spectrum.periodogram
7spectrum.periodogramPurpose Periodogram spectrum

Syntax Hs = spectrum.periodogram
Hs = spectrum.periodogram(winname)
Hs = spectrum.periodogram({winname,winparameter})
Hs = spectrum.periodogram(...,FFTLength)

Description Hs = spectrum.periodogram returns a default periodogram spectrum object,
Hs, that defines the parameters for theperiodogram spectral estimation
method. This default object uses a rectangular window and a default FFT
length equal to the next power of 2 (NextPow2) that is greater than the input
length.

Hs = spectrum.periodogram(winname) returns a spectrum object, Hs, that
uses the specified window. If the window uses an optional associated window
parameter, it is set to the default value. This object uses the default FFT
length.

Hs = spectrum.periodogram({winname,winparameter}) returns a
spectrum object, Hs, that uses the specified window and optional associated
window parameter, if any. You specify the window and window parameter in a
cell array with a windowname string and the parameter value. This object uses
the default FFT length.

Valid windowname strings are any valid window in the Signal Processing
Toolbox or a user-defined window. Refer to the corresponding window function
page for window parameter information.

You can use set to change the value of the additional parameter or to define
the MATLAB expression and parameters for a user-defined window (see
spectrum for information on using set).

Note Window names must be enclosed in single quotes, such as
spectrum.periodogram('tukey') or
spectrum.periodogram({'tukey',0.7})
7-578

spectrum.periodogram
Hs = spectrum.periodogram(...,FFTLength) returns a spectrum object, Hs
that uses the specified way of determining the FFTLength. Valid values of the
FFTLength string are as follows.

Note See periodogram for more information on the periodogram algorithm.

Examples Define a cosine of 200 Hz, add noise and view its spectral content using the
periodogram spectral estimation technique.

Fs=1000;
t=0:1/Fs:.3;
x=cos(2*pi*t*200)+randn(size(t));
Hs=spectrum.periodogram; % Use default values
psd(Hs,x,'Fs',Fs)

FFTLength string Description

'InputLength' Use the length of the input signal as the
FFT length

'NextPow2' Use the next power of 2 greater than the
input signal length as the FFT length. This
is the default value.

'UserDefined' Use the FFT length provided as an input to
the psd method or via a dspopts object. See
dspopts for an example.
7-579

spectrum.periodogram
See Also dspdata, dspopts, spectrum, spectrum.welch, spectrum.mtm, spectrum.burg,
spectrum.cov, spectrum.mcov, spectrum.yulear, spectrum.eigenvector,
spectrum.music
7-580

spectrum.welch
7spectrum.welchPurpose Welch spectrum

Syntax Hs = spectrum.welch
Hs = spectrum.welch(WindowName)
Hs = spectrum.welch({WindowName,winparam})
Hs = spectrum.welch(...,SegmentLength)
Hs = spectrum.welch(...,OverlapPercent)
Hs = spectrum.welch(...,FFTLength)

Description Hs = spectrum.welch returns a default Welch spectrum object, Hs, that
defines the parameters for Welch’s averaged, modified periodogram spectral
estimation method. The object uses these default values.

Property Name Default Value Description

WindowName 'Hamming',
SamplingFlag:
symmetric

Window name string or 'User
Defined' (see window for valid
window names). If the window uses
an optional property, it is set to the
default value.

{WindowName,
winparam}

Cell array
containing
WindowName
and optional
window
parameter

'Hamming',
SamplingFlag:
symmetric

Cell array containing the window
name string or 'User Defined'
and, if used for the particular
window, an optional parameter
value. (See window for valid window
names and for more information on
each window, refer to its reference
page.)

You can use set to change the
value of the additional parameter
or to define the MATLAB
expression and parameters for a
user-defined window. (See
spectrum for information on using
set.)
7-581

spectrum.welch
Hs = spectrum.welch(WindowName) returns a spectrum object, Hs, using
Welch’s method with the specified window and the default values for all other
parameters

Note Window names must be enclosed in single quotes, such as
spectrum.welch('chebyshev',32,50) or
spectrum.music({'chebyshev',60},32,50)

Hs = spectrum.welch({WindowName,winparam}) returns a spectrum object,
Hs with the specified window and associated parameter.

Hs = spectrum.welch(...,SegmentLength) returns a spectrum object, Hs
with the specified segment length.

Hs = spectrum.welch(...,OverlapPercent) returns a spectrum object, Hs
with the specified percentage overlap between segments.

SegmentLength 64 Segment length

OverlapPercent 50% Percent overlap between segments

FFTlength 'NextPow2' String defining how the number of
FFT points is determined. The
default is the next power of 2 that
is greater than the input length.
Other valid values are
'InputLength' and
'UserDefined'. InputLength uses
the length of the input signal as the
FFT length. UserDefined uses the
value provided via the psd method
or dspopts object. See dspopts for
an example.

Property Name Default Value Description
7-582

spectrum.welch
Hs = spectrum.welch(...,FFTLength) returns a spectrum object, Hs with
the specified FFT length type.

Note See pwelch for more information on the Welch algorithm.

Examples Define a cosine of 200 Hz, add noise and view its spectral content using the
Welch algorithm.

Fs=1000;
t=0:1/Fs:.3;
x=cos(2*pi*t*200)+randn(size(t));
Hs=spectrum.welch;
psd(Hs,x,'Fs',Fs)
7-583

spectrum.welch
See Also dspdata, dspopts, spectrum, spectrum.periodogram, spectrum.mtm,
spectrum.burg, spectrum.cov, spectrum.mcov, spectrum.yulear,
spectrum.eigenvector, spectrum.music
7-584

spectrum.yulear
7spectrum.yulearPurpose Yule-Walker spectrum object

Syntax Hs = spectrum.yulear
Hs = spectrum.yulear(order)
Hs = spectrum.yulear(order,FFTLength)

Description Hs = spectrum.yulear returns a default Yule-Walker spectrum object, Hs,
that defines the parameters for the Yule-Walker spectral estimation algorithm.
This method is also called the auto-correlation or windowed method. The
Yule-Walker algorithm estimates the spectral content by fitting an
auto-regressive (AR) linear prediction filter model of a given order to the
signal. This leads to a set of Yule-Walker equations, which are solved using
Levinson-Durbin recursion.

Hs = spectrum.yulear(order) returns a spectrum object, Hs, with the
specified order and the FFTLength determined using NextPow2. The default
value for order is 4.

Hs = spectrum.yulear(order,FFTLength) returns a spectrum object, Hs,
with the specified order of the AR model and the specified way of determining
the FFTLength. Valid values of the FFTLength string are as follows.

Note See pyulear for more information on the Yule-Walker algorithm.

FFTLength string Description

'InputLength' Use the length of the input signal as the
FFT length

'NextPow2' Use the next power of 2 greater than the
input signal length as the FFT length. This
is the default value.

'UserDefined' Use the FFT length provided as an input to
the psd method or via a dspopts object. See
dspopts for an example.
7-585

spectrum.yulear
Examples Define a fourth order auto-regressive model and view its spectral content using
the Yule-Walker algorithm.

randn('state',1);
x=randn(100,1);
x=filter(1,[1 1/2 1/3 1/4 1/5],x);%Fourth order AR filter
Hs=spectrum.yulear; %Fourth order AR model
psd(Hs,x,'NFFT',512)

See Also dspdata, dspopts, spectrum, spectrum.burg, spectrum.cov, spectrum.mcov,
spectrum.periodogram, spectrum.welch, spectrum.mtm,
spectrum.eigenvector, spectrum.music
7-586

sptool
7sptoolPurpose Interactive digital signal processing tool

Syntax sptool

Description sptool opens SPTool, a graphical user interface (GUI) that manages a suite of
four other GUIs: Signal Browser, Filter Designer, FVTool, and Spectrum
Viewer. These GUIs provide access to many of the signal, filter, and spectral
analysis functions in the toolbox. When you type sptool at the command line,
the SPTool GUI opens.

Using SPTool you can

• Analyze signals listed in the Signals list box with the Signal Browser

• Design or edit filters with the Filter Designer (includes a Pole/Zero Editor)

• Analyze filter responses for filters listed in the Filters list box with FVTool

• Apply filters in the Filters list box to signals in the Signals list box

• Create and analyze signal spectra with the Spectrum Viewer

• Print the Signal Browser, Filter Designer, and Spectrum Viewer

You can activate the four integrated signal processing GUIs from SPTool.
7-587

sptool
Signal Browser
The Signal Browser allows you to view, measure, and analyze the time-domain
information of one or more signals. To activate the Signal Browser, press the
View button under the Signals list box in SPTool.

Filter Designer
The Filter Designer allows you to design and edit FIR and IIR filters of various
lengths and types, with standard (lowpass, highpass, bandpass, bandstop, and
multiband) configurations. To activate the Filter Designer, press either the
New button or the Edit button under the Filters list box in SPTool.

The Filter Designer has a Pole/Zero Editor you can access from the Algorithms
pulldown.
7-588

sptool
Filter Visualization Tool
The Filter Visualization Tool (fvtool) allows you to view the characteristics of
a designed or imported filter, including its magnitude response, phase
response, group delay, phase delay, pole-zero plot, impulse response, and step
response. To activate FVTool, click the View button under the Filters list box
in SPTool.
7-589

sptool
Spectrum Viewer
The Spectrum Viewer allows you to analyze frequency-domain data graphically
using a variety of methods of spectral density estimation, including the Burg
method, the FFT method, the multitaper method, the MUSIC eigenvector
method, Welch’s method, and the Yule-Walker autogressive method. To
activate the Spectrum Viewer:

• Click the Create button under the Spectra list box to compute the power
spectral density for a signal selected in the Signals list box in SPTool. You
may need to click Apply to view the spectra.

• Click the View button to analyze spectra selected under the Spectra list box
in SPTool.

• Click the Update button under the Spectra list box in SPTool to modify a
selected power spectral density signal.
7-590

sptool
In addition, you can right-click in any plot display area of the GUIs to modify
signal properties.

See Chapter 6, “SPTool: A Signal Processing GUI Suite,” for a full discussion of
how to use SPTool.

See Also fdatool, fvtool
7-591

square
7squarePurpose Square wave

Syntax x = square(t)
x = square(t,duty)

Description x = square(t) generates a square wave with period 2π for the elements of
time vector t. square(t) is similar to sin(t), but creates a square wave with
peaks of ±1 instead of a sine wave.

x = square(t,duty) generates a square wave with specified duty cycle, duty,
which is a number between 0 and 100. The duty cycle is the percent of the
period in which the signal is positive.

See Also chirp, cos, diric, gauspuls, pulstran, rectpuls, sawtooth, sin, square,
tripuls
7-592

ss2sos
7ss2sosPurpose Convert digital filter state-space parameters to second-order sections form

Syntax [sos,g] = ss2sos(A,B,C,D)
[sos,g] = ss2sos(A,B,C,D,iu)
[sos,g] = ss2sos(A,B,C,D,'order')
[sos,g] = ss2sos(A,B,C,D,iu,'order')
[sos,g] = ss2sos(A,B,C,D,iu,'order','scale')
sos = ss2sos(...)

Description ss2sos converts a state-space representation of a given digital filter to an
equivalent second-order section representation.

[sos,g] = ss2sos(A,B,C,D) finds a matrix sos in second-order section form
with gain g that is equivalent to the state-space system represented by input
arguments A, B, C, and D. The input system must be single output and real. sos
is an L-by-6 matrix

whose rows contain the numerator and denominator coefficients bik and aik of
the second-order sections of H(z).

[sos,g] = ss2sos(A,B,C,D,iu) specifies a scalar iu that determines which
input of the state-space system A, B, C, D is used in the conversion. The default
for iu is 1.

[sos,g] = ss2sos(A,B,C,D,'order') and

[sos,g] = ss2sos(A,B,C,D,iu,'order') specify the order of the rows in sos,
where 'order' is

sos

b01 b11 b21 1 a11 a21

b02 b12 b22 1 a12 a22

b0L b1L b2L 1 a1L a2L

=

H z() g Hk z()

k 1=

L

∏ g
b0k b1kz 1– b2kz 2–+ +

1 a1kz 1– a2kz 2–+ +
--

k 1=

L

∏= =
7-593

ss2sos
• 'down', to order the sections so the first row of sos contains the poles closest
to the unit circle

• 'up', to order the sections so the first row of sos contains the poles farthest
from the unit circle (default)

The zeros are always paired with the poles closest to them.

[sos,g] = ss2sos(A,B,C,D,iu,'order','scale') specifies the desired
scaling of the gain and the numerator coefficients of all second-order sections,
where 'scale' is

• 'none', to apply no scaling (default)

• 'inf', to apply infinity-norm scaling

• 'two', to apply 2-norm scaling

Using infinity-norm scaling in conjunction with up-ordering minimizes the
probability of overflow in the realization. Using 2-norm scaling in conjunction
with down-ordering minimizes the peak round-off noise.

Note Infinity-norm and 2-norm scaling are appropriate only for
direct-form II implementations.

sos = ss2sos(...) embeds the overall system gain, g, in the first section,
H1(z), so that

Note Embedding the gain in the first section when scaling a direct-form II
structure is not recommended and may result in erratic scaling. To avoid
embedding the gain, use ss2sos with two outputs.

Examples Find a second-order section form of a Butterworth lowpass filter:

H z() Hk z()

k 1=

L

∏=
7-594

ss2sos
[A,B,C,D] = butter(5,0.2);
sos = ss2sos(A,B,C,D)

sos =

 0.0013 0.0013 0 1.0000 -0.5095 0
 1.0000 2.0008 1.0008 1.0000 -1.0966 0.3554
 1.0000 1.9979 0.9979 1.0000 -1.3693 0.6926

Algorithm ss2sos uses a four-step algorithm to determine the second-order section
representation for an input state-space system:

1 It finds the poles and zeros of the system given by A, B, C, and D.

2 It uses the function zp2sos, which first groups the zeros and poles into
complex conjugate pairs using the cplxpair function. zp2sos then forms the
second-order sections by matching the pole and zero pairs according to the
following rules:

a Match the poles closest to the unit circle with the zeros closest to those
poles.

b Match the poles next closest to the unit circle with the zeros closest to
those poles.

c Continue until all of the poles and zeros are matched.

ss2sos groups real poles into sections with the real poles closest to them in
absolute value. The same rule holds for real zeros.

3 It orders the sections according to the proximity of the pole pairs to the unit
circle. ss2sos normally orders the sections with poles closest to the unit
circle last in the cascade. You can tell ss2sos to order the sections in the
reverse order by specifying the 'down' flag.

4 ss2sos scales the sections by the norm specified in the 'scale' argument.
For arbitrary H(ω), the scaling is defined by

where p can be either ∞ or 2. See the references for details. This scaling is
an attempt to minimize overflow or peak round-off noise in fixed point filter
implementations.

H p
1

2π
------ H ω() p ωd

0

2π

∫

1
p

=

7-595

ss2sos
Diagnostics If there is more than one input to the system, ss2sos gives the following error
message:

State-space system must have only one input.

References [1] Jackson, L.B., Digital Filters and Signal Processing, 3rd ed., Kluwer
Academic Publishers, Boston, 1996. Chapter 11.

[2] Mitra, S.K., Digital Signal Processing: A Computer-Based Approach,
McGraw-Hill, New York, 1998. Chapter 9.

[3] Vaidyanathan, P.P.,“Robust Digital Filter Structures,” Handbook for
Digital Signal Processing, S.K. Mitra and J.F. Kaiser, ed., John Wiley & Sons,
New York, 1993, Chapter 7.

See Also cplxpair, sos2ss, ss2tf, ss2zp, tf2sos, zp2sos
7-596

ss2tf
7ss2tfPurpose Convert state-space filter parameters to transfer function form

Syntax [b,a] = ss2tf(A,B,C,D,iu)

Description ss2tf converts a state-space representation of a given system to an equivalent
transfer function representation.

[b,a] = ss2tf(A,B,C,D,iu) returns the transfer function

of the system

from the iu-th input. Vector a contains the coefficients of the denominator in
descending powers of s. The numerator coefficients are returned in array b with
as many rows as there are outputs y. ss2tf also works with systems in discrete
time, in which case it returns the z-transform representation.

The ss2tf function is part of the standard MATLAB language.

Algorithm The ss2tf function uses poly to find the characteristic polynomial det(sI-A)
and the equality:

See Also latc2tf, sos2tf, ss2sos, ss2zp, tf2ss, zp2tf

H s() B s()
A s()
----------- C sI A–() 1– B D+= =

x· Ax Bu+=

y Cx Du+=

H s() C sI A–() 1– B det sI A– BC+() det sI A–()–
det sI A–()

--= =
7-597

ss2zp
7ss2zpPurpose Convert state-space filter parameters to zero-pole-gain form

Syntax [z,p,k] = ss2zp(A,B,C,D,i)

Description ss2zp converts a state-space representation of a given system to an equivalent
zero-pole-gain representation. The zeros, poles, and gains of state-space
systems represent the transfer function in factored form.

[z,p,k] = ss2zp(A,B,C,D,i) calculates the transfer function in factored
form

of the continuous-time system

from the ith input (using the ith columns of B and D). The column vector p
contains the pole locations of the denominator coefficients of the transfer
function. The matrix z contains the numerator zeros in its columns, with as
many columns as there are outputs y (rows in C). The column vector k contains
the gains for each numerator transfer function.

ss2zp also works for discrete time systems. The input state-space system must
be real.

The ss2zp function is part of the standard MATLAB language.

Examples Here are two ways of finding the zeros, poles, and gains of a discrete-time
transfer function:

b = [2 3];
a = [1 0.4 1];
[b,a] = eqtflength(b,a);
[z,p,k] = tf2zp(b,a)

H s() Z s()
P s()
---------- k

s z1–() s z2–() s zn–()
s p1–() s p2–() s pn–()

--= =

x· Ax Bu+=

y Cx Du+=

H z() 2 3z 1–
+

1 0.4z 1– z 2–
+ +

---=
7-598

ss2zp
z =
 0.0000
 -1.5000

p =
-0.2000 + 0.9798i
-0.2000 - 0.9798i

k =
2

[A,B,C,D] = tf2ss(b,a);
[z,p,k] = ss2zp(A,B,C,D,1)

z =
 0.0000
 -1.5000

p =
-0.2000 + 0.9798i
-0.2000 - 0.9798i

k =
2

Algorithm ss2zp finds the poles from the eigenvalues of the A array. The zeros are the
finite solutions to a generalized eigenvalue problem:

z = eig([A B;C D], diag([ones(1,n) 0]);

In many situations this algorithm produces spurious large, but finite, zeros.
ss2zp interprets these large zeros as infinite.

ss2zp finds the gains by solving for the first nonzero Markov parameters.

References [1] Laub, A.J., and B.C. Moore, “Calculation of Transmission Zeros Using QZ
Techniques,” Automatica 14 (1978), p. 557.

See Also pzmap, sos2zp, ss2sos, ss2tf, tf2zp, tf2zpk, zp2ss
7-599

stepz
7stepzPurpose Step response of digital filters

Syntax [h,t] = stepz(b,a)
[h,t] = stepz(b,a,n)
[h,t] = stepz(b,a,n,fs)
stepz(b,a)
stepz(Hd)

Description [h,t] = stepz(b,a) computes the step response of the filter with numerator
coefficients b and denominator coefficients a. stepz chooses the number of
samples and returns the response in the column vector h and sample times in
the column vector t (where t = [0:n-1]', and n = length(t) is computed
automatically).

[h,t] = stepz(b,a,n) computes the first n samples of the step response when
n is an integer (t = [0:n-1]'). I

[h,t] = stepz(b,a,n,fs) computes n samples and produces a vector t of
length n so that the samples are spaced 1/fs units apart. fs is assumed to be
in Hz.

stepz(b,a) with no output arguments plots the step response in the current
figure window.

stepz(Hd) plots the step responsee of the filter and displays the plot in fvtool.
The input Hd is a dfilt filter object or an array of dfilt filter objects.

stepz works for both real and complex input systems.

Examples Example 1
Plot the step response of a Butterworth filter:

[b,a] = butter(3,.4);
stepz(b,a)
7-600

stepz
The same example using a dfilt object and displaying the result in the Filter
Visualization Tool (fvtool) is

[b,a] = butter(3,.4);
Hd=dfilt.df1(b,a);
stepz(Hd)
7-601

stepz
Example 2
Plot the first 50 samples of the step response of a fourth-order lowpass elliptic
filter with cutoff frequency of 0.4 times the Nyquist frequency:

[b,a] = ellip(4,0.5,20,0.4);
stepz(b,a,50)
7-602

stepz
The same example using a dfilt object and displaying the result in the Filter
Visualization Tool (fvtool) is

[b,a] = ellip(4,0.5,20,0.4);
Hd=dfilt.df1(b,a);
stepz(Hd,50)
7-603

stepz
Algorithm stepz filters a length n step sequence using

filter(b,a,ones(1,n))

and plots the results using stem.

To compute n in the auto-length case, stepz either uses n = length(b) for the
FIR case or first finds the poles using p = roots(a), if length(a) is greater
than 1.

If the filter is unstable, n is chosen to be the point at which the term from the
largest pole reaches 10^6 times its original value.

If the filter is stable, n is chosen to be the point at which the term due to the
largest amplitude pole is 5*10^-5 of its original amplitude.

If the filter is oscillatory (poles on the unit circle only), stepz computes five
periods of the slowest oscillation.
7-604

stepz
If the filter has both oscillatory and damped terms, n is chosen to equal five
periods of the slowest oscillation or the point at which the term due to the
largest (nonunity) amplitude pole is 5*10^-5 of its original amplitude,
whichever is greater.

stepz also allows for delays in the numerator polynomial. The number of
delays is incorporated into the computation for the number of samples.

See Also freqz, grpdelay, impz, phasez, zplane
7-605

stmcb
7stmcbPurpose Compute linear model using Steiglitz-McBride iteration

Syntax [b,a] = stmcb(h,nb,na)
[b,a] = stmcb(y,x,nb,na)
[b,a] = stmcb(h,nb,na,niter)
[b,a] = stmcb(y,x,nb,na,niter)
[b,a] = stmcb(h,nb,na,niter,ai)
[b,a] = stmcb(y,x,nb,na,niter,ai)

Description Steiglitz-McBride iteration is an algorithm for finding an IIR filter with a
prescribed time domain impulse response. It has applications in both filter
design and system identification (parametric modeling).

[b,a] = stmcb(h,nb,na) finds the coefficients b and a of the system b(z)/a(z)
with approximate impulse response h, exactly nb zeros, and exactly na poles.

[b,a] = stmcb(y,x,nb,na) finds the system coefficients b and a of the system
that, given x as input, has y as output. x and y must be the same length.

[b,a] = stmcb(h,nb,na,niter) and

[b,a] = stmcb(y,x,nb,na,niter) use niter iterations. The default for niter
is 5.

[b,a] = stmcb(h,nb,na,niter,ai) and

[b,a] = stmcb(y,x,nb,na,niter,ai) use the vector ai as the initial estimate
of the denominator coefficients. If ai is not specified, stmcb uses the output
argument from [b,ai] = prony(h,0,na) as the vector ai.

stmcb returns the IIR filter coefficients in length nb+1 and na+1 row vectors b
and a. The filter coefficients are ordered in descending powers of z.

Examples Approximate the impulse response of a Butterworth filter with a system of
lower order:

[b,a] = butter(6,0.2);

H z() B z()
A z()
----------- b 1() b 2()z 1– b nb 1+()z nb–+ + +

a 1() a 2()z 1– a na 1+()z na–+ + +
--= =
7-606

stmcb
h = filter(b,a,[1 zeros(1,100)]);
freqz(b,a,128)

[bb,aa] = stmcb(h,4,4);
freqz(bb,aa,128)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−600

−500

−400

−300

−200

−100

0

Normalized Frequency (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−300

−250

−200

−150

−100

−50

0

50

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

0 0.2 0.4 0.6 0.8 1
−800

−600

−400

−200

0

Normalized Frequency (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

0 0.2 0.4 0.6 0.8 1
−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

7-607

stmcb
Algorithm stmcb attempts to minimize the squared error between the impulse response h
of b(z)/a(z) and the input signal x.

stmcb iterates using two steps:

1 It prefilters h and x using 1/a(z).

2 It solves a system of linear equations for b and a using \.

stmcb repeats this process niter times. No checking is done to see if the b and a
coefficients have converged in fewer than niter iterations.

Diagnostics If x and y have different lengths, stmcb produces this error message,

Input signal X and output signal Y must have the same length.

References [1] Steiglitz, K., and L.E. McBride, “A Technique for the Identification of Linear
Systems,” IEEE Trans. Automatic Control, Vol. AC-10 (1965), pp. 461-464.

[2] Ljung, L., System Identification: Theory for the User, Prentice-Hall,
Englewood Cliffs, NJ, 1987, p. 297.

See Also levinson, lpc, aryule, prony

min
a b,

x i() h i()– 2

i 0=

∞

∑

7-608

strips
7stripsPurpose Strip plot

Syntax strips(x)
strips(x,n)
strips(x,sd,fs)
strips(x,sd,fs,scale)

Description strips(x) plots vector x in horizontal strips of length 250. If x is a matrix,
strips(x) plots each column of x. The left-most column (column 1) is the top
horizontal strip.

strips(x,n) plots vector x in strips that are each n samples long.

strips(x,sd,fs) plots vector x in strips of duration sd seconds, given a
sampling frequency of fs samples per second.

strips(x,sd,fs,scale) scales the vertical axes.

If x is a matrix, strips(x,n), strips(x,sd,fs), and strips(x,sd,fs,scale)
plot the different columns of x on the same strip plot.

strips ignores the imaginary part of complex-valued x.

Examples Plot two seconds of a frequency modulated sinusoid in 0.25 second strips:

fs = 1000; % Sampling frequency
t = 0:1/fs:2; % Time vector
x = vco(sin(2*pi*t),[10 490],fs); % FM waveform
strips(x,0.25,fs)
7-609

strips
See Also plot, stem

0 0.05 0.1 0.15 0.2 0.25

1.75

 1.5

1.25

 1

0.75

 0.5

0.25

 0
7-610

tf2latc
7tf2latcPurpose Convert transfer function filter parameters to lattice filter form

Syntax [k,v] = tf2latc(b,a)
k = tf2latc(1,a)
[k,v] = tf2latc(1,a)
k = tf2latc(b)
k = tf2latc(b,'phase')

Description [k,v] = tf2latc(b,a) finds the lattice parameters k and the ladder
parameters v for an IIR (ARMA) lattice-ladder filter, normalized by a(1). Note
that an error is generated if one or more of the lattice parameters are exactly
equal to 1.

k = tf2latc(1,a) finds the lattice parameters k for an IIR all-pole (AR)
lattice filter.

[k,v] = tf2latc(1,a) returns the scalar ladder coefficient at the correct
position in vector v. All other elements of v are zero.

k = tf2latc(b) finds the lattice parameters k for an FIR (MA) lattice filter,
normalized by b(1).

k = tf2latc(b,'phase') specifies the type of FIR (MA) lattice filter, where
'phase' is

• 'max', for a maximum phase filter.

• 'min', for a minimum phase filter.

See Also latc2tf, latcfilt, tf2sos, tf2ss, tf2zp, tf2zpk
7-611

tf2sos
7tf2sosPurpose Convert digital filter transfer function data to second-order sections form

Syntax [sos,g] = tf2sos(b,a)
[sos,g] = tf2sos(b,a,'order')
[sos,g] = tf2sos(b,a,'order','scale')
sos = tf2sos(...)

Description tf2sos converts a transfer function representation of a given digital filter to an
equivalent second-order section representation.

[sos,g] = tf2sos(b,a) finds a matrix sos in second-order section form with
gain g that is equivalent to the digital filter represented by transfer function
coefficient vectors a and b.

sos is an L-by-6 matrix

whose rows contain the numerator and denominator coefficients bik and aik of
the second-order sections of H(z).

[sos,g] = tf2sos(b,a,'order') specifies the order of the rows in sos, where
'order' is

• 'down', to order the sections so the first row of sos contains the poles closest
to the unit circle

H z() B z()
A z()

b1 b2z 1– bn 1+ z n–+ + +

a1 a2z 1– am 1+ z m–+ + +
--= =

sos

b01 b11 b21 1 a11 a21

b02 b12 b22 1 a12 a22

b0L b1L b2L 1 a1L a2L

=

H z() g Hk z()

k 1=

L

∏ g
b0k b1kz 1– b2kz 2–+ +

1 a1kz 1– a2kz 2–+ +
--

k 1=

L

∏= =
7-612

tf2sos
• 'up', to order the sections so the first row of sos contains the poles farthest
from the unit circle (default)

[sos,g] = tf2sos(b,a,'order','scale') specifies the desired scaling of the
gain and numerator coefficients of all second-order sections, where 'scale' is:

• 'none', to apply no scaling (default)

• 'inf', to apply infinity-norm scaling

• 'two', to apply 2-norm scaling

Using infinity-norm scaling in conjunction with up-ordering minimizes the
probability of overflow in the realization. Using 2-norm scaling in conjunction
with down-ordering minimizes the peak round-off noise.

Note Infinity-norm and 2-norm scaling are appropriate only for
direct-form II implementations.

sos = tf2sos(...) embeds the overall system gain, g, in the first section,
H1(z), so that

Note Embedding the gain in the first section when scaling a direct-form II
structure is not recommended and may result in erratic scaling. To avoid
embedding the gain, use ss2sos with two outputs.

Algorithm tf2sos uses a four-step algorithm to determine the second-order section
representation for an input transfer function system:

1 It finds the poles and zeros of the system given by b and a.

2 It uses the function zp2sos, which first groups the zeros and poles into
complex conjugate pairs using the cplxpair function. zp2sos then forms the

H z() Hk z()

k 1=

L

∏=
7-613

tf2sos
second-order sections by matching the pole and zero pairs according to the
following rules:

a Match the poles closest to the unit circle with the zeros closest to those
poles.

b Match the poles next closest to the unit circle with the zeros closest to
those poles.

c Continue until all of the poles and zeros are matched.

tf2sos groups real poles into sections with the real poles closest to them in
absolute value. The same rule holds for real zeros.

3 It orders the sections according to the proximity of the pole pairs to the unit
circle. tf2sos normally orders the sections with poles closest to the unit
circle last in the cascade. You can tell tf2sos to order the sections in the
reverse order by specifying the 'down' flag.

4 tf2sos scales the sections by the norm specified in the 'scale' argument.
For arbitrary H(ω), the scaling is defined by

where p can be either ∞ or 2. See the references for details on the scaling.
This scaling is an attempt to minimize overflow or peak round-off noise in
fixed point filter implementations.

References [1] Jackson, L.B., Digital Filters and Signal Processing, 3rd ed., Kluwer
Academic Publishers, Boston, 1996, Chapter 11.

[2] Mitra, S.K., Digital Signal Processing: A Computer-Based Approach,
McGraw-Hill, New York, 1998, Chapter 9.

[3] Vaidyanathan, P.P., “Robust Digital Filter Structures,” Handbook for
Digital Signal Processing, S.K. Mitra and J.F. Kaiser, ed., John Wiley & Sons,
New York, 1993, Chapter 7.

See Also cplxpair, sos2tf, ss2sos, tf2ss, tf2zp, tf2zpk, zp2sos

H p
1

2π
------ H ω() p ωd

0

2π

∫

1
p

=

7-614

tf2ss
7tf2ssPurpose Convert transfer function filter parameters to state-space form

Syntax [A,B,C,D] = tf2ss(b,a)

Description tf2ss converts the parameters of a transfer function representation of a given
system to those of an equivalent state-space representation.

[A,B,C,D] = tf2ss(b,a) returns the A, B, C, and D matrices of a state space
representation for the single-input transfer function

in controller canonical form

The input vector a contains the denominator coefficients in descending powers
of s. The rows of the matrix b contain the vectors of numerator coefficients (each
row corresponds to an output). In the discrete-time case, you must supply b and
a to correspond to the numerator and denominator polynomials with
coefficients in descending powers of z.

For discrete-time systems you must make b have the same number of columns
as the length of a. You can do this by padding each numerator represented in b
(and possibly the denominator represented in the vector a) with trailing zeros.
You can use the function eqtflength to accomplish this if b and a are vectors
of unequal lengths.

The tf2ss function is part of the standard MATLAB language.

Examples Consider the system:

To convert this system to state-space, type

H s() B s()
A s()

b1sn 1– bn 1– s bn+ + +

a1sm 1– am 1– s am+ + +
-- C sI A–() 1– B D+= = =

x· Ax Bu+=

y Cx Du+=

H s()

2s 3+

s2 2s 1+ +

s2 0.4s 1+ +
---------------------------------=
7-615

tf2ss
b = [0 2 3; 1 2 1];
a = [1 0.4 1];
[A,B,C,D] = tf2ss(b,a)

A =
 -0.4000 -1.0000
 1.0000 0

B =
 1
 0

C =
 2.0000 3.0000
 1.6000 0

D =
 0
 1

Note There is disagreement in the literature on naming conventions for the
canonical forms. It is easy, however, to generate similarity transformations
that convert these results to other forms.

See Also sos2ss, ss2tf, tf2sos, tf2zp, tf2zpk, zp2ss
7-616

tf2zp
7tf2zpPurpose Convert transfer function filter parameters to zero-pole-gain form

Syntax [z,p,k] = tf2zp(b,a)

Description tf2zp finds the zeros, poles, and gains of a continuous-time transfer function.

Note You should use tf2zp when working with positive powers (s2 + s + 1),
such as in continuous-time transfer functions. A similar function, tf2zpk, is
more useful when working with transfer functions expressed in inverse
powers (1 + z-1 + z-2), which is how transfer functions are usually expressed in
DSP.

[z,p,k] = tf2zp(b,a) finds the matrix of zeros z, the vector of poles p, and
the associated vector of gains k from the transfer function parameters b and a:

• The numerator polynomials are represented as columns of the matrix b.

• The denominator polynomial is represented in the vector a.

Given a SIMO continuous-time system in polynomial transfer function form

you can use the output of tf2zp to produce the single-input, multioutput
(SIMO) factored transfer function form

The following describes the input and output arguments for tf2zp:

• The vector a specifies the coefficients of the denominator polynomial A(s)
(or A(z)) in descending powers of s (z-1).

• The ith row of the matrix b represents the coefficients of the ith numerator
polynomial (the ith row of B(s) or B(z)). Specify as many rows of b as there
are outputs.

H s() B s()
A s()

b1sn 1– bn 1– s bn+ + +

a1sm 1– am 1– s am+ + +
--= =

H s() Z s()
P s()
---------- k

s z1–() s z2–() s zm–()
s p1–() s p2–() s pn–()

--= =
7-617

tf2zp
• For continuous-time systems, choose the number nb of columns of b to be less
than or equal to the length na of the vector a.

• For discrete-time systems, choose the number nb of columns of b to be equal
to the length na of the vector a. You can use the function eqtflength to
provide equal length vectors in the case that b and a are vectors of unequal
lengths. Otherwise, pad the numerators in the matrix b (and, possibly, the
denominator vector a) with zeros.

• The zero locations are returned in the columns of the matrix z, with as many
columns as there are rows in b.

• The pole locations are returned in the column vector p and the gains for each
numerator transfer function in the vector k.

The tf2zp function is part of the standard MATLAB language.

Examples Find the zeros, poles, and gains of this continuous-time system:

b = [2 3];
a = [1 0.4 1];

[b,a] = eqtflength(b,a); % Make lengths equal.
[z,p,k] = tf2zp(b,a) % Obtain the zero-pole-gain form.

z =
 0
 -1.5000

p =
 -0.2000 + 0.9798i
 -0.2000 - 0.9798i

k =
 2

See Also sos2zp, ss2zp, tf2sos, tf2ss, tf2zpk, zp2tf

H s() 2s2 3s+

s2 0.4s 1+ +
---------------------------------=
7-618

tf2zpk
7tf2zpkPurpose Convert transfer function filter parameters to zero-pole-gain form

Syntax [z,p,k] = tf2zpk(b,a)

Description tf2zpk finds the zeros, poles, and gains of a discrete-time transfer function.

Note You should use tf2zpk when working with transfer functions expressed
in inverse powers (1 + z-1 + z-2), which is how transfer functions are usually
expressed in DSP. A similar function, tf2zp, is more useful for working with
positive powers (s2 + s + 1), such as in continuous-time transfer functions.

[z,p,k] = tf2zpk(b,a) finds the matrix of zeros z, the vector of poles p, and
the associated vector of gains k from the transfer function parameters b and a:

• The numerator polynomials are represented as columns of the matrix b.

• The denominator polynomial is represented in the vector a.

Given a single-input, multiple output (SIMO) discrete-time system in
polynomial transfer function form

you can use the output of tf2zpk to produce the single-input, multioutput
(SIMO) factored transfer function form

The following describes the input and output arguments for tf2zpk:

• The vector a specifies the coefficients of the denominator polynomial A(z) in
descending powers of z.

• The ith row of the matrix b represents the coefficients of the ith numerator
polynomial (the ith row of B(s) or B(z)). Specify as many rows of b as there
are outputs.

H z() B z()
A z()

b1 b2z 1– bn 1– z n– bnz n– 1–+ + +

a1 a2z 1– am 1– z m– amz m– 1–+ + +
---= =

H z() Z z()
P z()
---------- k

z z1–() z z2–() z zm–()
z p1–() z p2–() z pn–()

---= =
7-619

tf2zpk
• The zero locations are returned in the columns of the matrix z, with as many
columns as there are rows in b.

• The pole locations are returned in the column vector p and the gains for each
numerator transfer function in the vector k.

Examples Find the poles, zeros, and gain of a Butterworth filter:

[b,a] = butter(3,.4);
[z,p,k] = tf2zpk(b,a)

z =
 -1.0000
 -1.0000 + 0.0000i
 -1.0000 - 0.0000i

p =
 0.2094 + 0.5582i
 0.2094 - 0.5582i
 0.1584

k =
 0.0985

See Also sos2zp, ss2zp, tf2sos, tf2ss, tf2zp, zp2tf
7-620

tfestimate
7tfestimatePurpose Transfer function estimate

Syntax Txy = tfestimate(x,y)
Txy = tfestimate(x,y,window)
Txy = tfestimate(x,y,window,noverlap)
[Txy,W] = tfestimate(x,y,window,noverlap,nfft)
[Txy,F] = tfestimate(x,y,window,noverlap,nfft,fs)
[...] = tfestimate(x,y,...,'whole')
tfestimate(...)

Description Txy = tfestimate(x,y) finds a transfer function estimate Txy given input
signal vector x and output signal vector y. Vectors x and y must be the same
length. The relationship between the input x and output y is modeled by the
linear, time-invariant transfer function Txy. The transfer function is the
quotient of the cross power spectral density (Pxy) of x and y and the power
spectral density (Pxx) of x.

If x is real, tfestimate estimates the transfer function at positive frequencies
only; in this case, the output Txy is a column vector of length nfft/2+1 for nfft
even and (nfft+1)/2 for nfft odd. If x or y is complex, tfestimate estimates
the transfer function for both positive and negative frequencies and Txy has
length nfft.

Txy f()
Pxy f()
Pxx f()
---------------=
7-621

tfestimate
tfestimate uses the following default values:

Note You can use the empty matrix [] to specify the default value for any
input argument except x or y. For example,
Txy = tfestimate(x,y,[],[],128 uses a Hamming window, default
noverlap to obtain 50% overlap, and the specified 128 nfft.

Txy = tfestimate(x,y,window) specifies a windowing function, divides x and
y into overlapping sections of the specified window length, and windows each
section using the specified window function. If you supply a scalar for window,
Txy uses a Hamming window of that length. The length of the window must be
less than or equal to nfft. If the length of the window exceeds nfft,
tfestimate zero pads the sections

Parameter Description Default Value

nfft FFT length which determines
the frequencies at which the
power spectrum is estimated

For real x and y, the length of
Txy is (nfft/2+1) if nfft is
even or (nfft+1)/2 if nfft is
odd. For complex x or y, the
length of Txy is nfft.

Maximum of 256 or the
next power of 2 greater
than the length of each
section of x or y

fs Sampling frequency 1

window Windowing function and
number of samples to use to
section x and y

Periodic Hamming
window of length nfft

noverlap Number of samples by which
the sections overlap

Value to obtain 50%
overlap
7-622

tfestimate
Txy = tfestimate(x,y,window,noverlap) overlaps the sections of x by
noverlap samples. noverlap must be an integer smaller than the length of
window.

[Txy,W] = tfestimate(x,y,window,noverlap,nfft) uses the specified FFT
length nfft in estimating the PSD and CPSD estimates for the transfer
function. It also returns W, which is the vector of normalized frequencies
(inrad/sample) at which the tfestimate is estimated. For real signals, the
range of W is [0, pi] when nfft is even and [0, pi) when nfft is odd. For complex
signals, the range of W is [0, 2pi).

[Txy,F] = tfestimate(x,y,window,noverlap,nfft,fs) returns Txy as a
function of frequency and a vector F of frequencies at which tfestimate
estimates the transfer function. fs is the sampling frequency in Hz. F is the
same size as Txy, so plot(f,Txy) plots the transfer function estimate versus
properly scaled frequency. For real signals, the range of F is [0, fs/2] when nfft
is even and [0, fs/2) when nfft is odd. For complex signals, the range of F is
[0, fs).

[...] = tfestimate(x,y,...,'whole') returns a transfer function estimate
with frequencies that range over the whole Nyquist interval. Specifying 'half'
uses half the Nyquist interval.

tfestimate(...) with no output arguments plots the transfer function
estimate in the current figure window.

Examples Compute and plot the transfer function estimate between two colored noise
sequences x and y:

h = fir1(30,0.2,rectwin(31));
x = randn(16384,1);
y = filter(h,1,x);
tfestimate(x,y,1024,[],[],512)
7-623

tfestimate
Algorithm tfestimate uses Welch’s averaged periodogram method. See pwelch for
details.

See Also cpsd, mscohere, periodogram, pwelch, spectrum.welch
7-624

triang
7triangPurpose Triangular window

Syntax w = triang(n)

Description triang(n) returns an n-point triangular window in the column vector w. The
coefficients of a triangular window are:

For n odd:

For n even:

The triangular window is very similar to a Bartlett window. The Bartlett
window always ends with zeros at samples 1 and n, while the triangular
window is nonzero at those points. For n odd, the center n-2 points of
triang(n-2) are equivalent to bartlett(n).

Examples Create a 200-point triangular window and plot the result using WVTool.

N=200;
wvtool(triang(N))

w k[]

2k
n 1+
------------- 1 k n 1+

2
-------------≤ ≤,

2 n k 1+–()
n 1+

------------------------------- n 1+
2

------------- k< n≤,⎩
⎪
⎨
⎪
⎧

=

w k[]

2k 1–
n

---------------- 1 k n
2
---≤ ≤,

2 n k–() 1+
n

------------------------------- n
2
--- 1+ k n≤ ≤,⎩

⎪
⎨
⎪
⎧

=

7-625

triang
References [1] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing,
Prentice-Hall, Englewood Cliffs, NJ, 1989, pp. 447-448.

See Also barthannwin, bartlett, blackmanharris, bohmanwin, nuttallwin, parzenwin,
rectwin, window, wintool, wvtool
7-626

tripuls
7tripulsPurpose Sampled aperiodic triangle

Syntax y = tripuls(T)
y = tripuls(T,w)
y = tripuls(T,w,s)

Description y = tripuls(T) returns a continuous, aperiodic, symmetric, unity-height
triangular pulse at the times indicated in array T, centered about T=0 and with
a default width of 1.

y = tripuls(T,w) generates a triangular pulse of width w.

y = tripuls(T,w,s) generates a triangular pulse with skew s, where
-1 < s < 1. When s is 0, a symmetric triangular pulse is generated.

See Also chirp, cos, diric, gauspuls, pulstran, rectpuls, sawtooth, sin, square,
tripuls
7-627

tukeywin
7tukeywinPurpose Tukey (tapered cosine) window

Syntax w = tukeywin(n,r)

Description w = tukeywin(n,r) returns an n-point, Tukey window in column vector w.
Tukey windows are cosine-tapered windows. r is the ratio of taper to constant
sections and is between 0 and 1. is a rectwin window and is a hann
window. The default value for r is 0.5.

Examples Compute 128-point Tukey windows with five different tapers and display the
results using WVTool:

N=128;
t0=tukeywin(N,0); %Equivalent to rectangular window
t25=tukeywin(N,0.25);
t5=tukeywin(N); %r=0.5
t75=tukeywin(N,0.75);
t1=tukeywin(N,1); %Equivalent to Hann window
wvtool(t0,t25,t5,t75,t1)

Algorithm The equation for computing the coefficients of a Tukey window is

r 0≤ r 1≥
7-628

tukeywin
References [1] Harris, F. J. “On the Use of Windows for Harmonic Analysis with the
Discrete Fourier Transform.” Proceedings of the IEEE. Vol. 66 (January 1978).
pp. 66-67.

See Also chebwin, gausswin, kaiser, window, wintool, wvtool

w k[]

1
2
--- 1 2π

r
------ k 1–()

N 1–()
------------------- π–⎝ ⎠

⎛ ⎞cos+ k r
2
--- N 1–() 1+<

1 r
2
--- N 1–() 1+ k N r

2
--- N 1–()–≤ ≤

1
2
--- 1 2π

r
------ 2π

r
------–

k 1–()
N 1–()

------------------- π–⎝ ⎠
⎛ ⎞cos+ N r

2
--- N 1–()– k<

where k 1= to N⎩
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎧

=

7-629

udecode
7udecodePurpose Decode 2n-level quantized integer inputs to floating-point outputs

Syntax y = udecode(u,n)
y = udecode(u,n,v)
y = udecode(u,n,v,'saturatemode')

Description y = udecode(u,n) inverts the operation of uencode and reconstructs
quantized floating-point values from an encoded multidimensional array of
integers u. The input argument n must be an integer between 2 and 32. The
integer n specifies that there are 2n quantization levels for the inputs, so that
entries in u must be either:

• Signed integers in the range [-2n/2, (2n/2) - 1]

• Unsigned integers in the range [0, 2n-1]

Inputs can be real or complex values of any integer data type (uint8, uint16,
uint32, int8, int16, int32). Overflows (entries in u outside of the ranges
specified above) are saturated to the endpoints of the range interval. The
output y has the same dimensions as u. Its entries have values in the range
[-1,1].

y = udecode(u,n,v) decodes u such that the output y has values in the range
[-v,v], where the default value for v is 1.

y = udecode(u,n,v,'SaturateMode') decodes u and treats input overflows
(entries in u outside of [-v,v]) according to the string 'saturatemode', which
can be one of the following:

• 'saturate': Saturate overflows. This is the default method for treating
overflows.

- Entries in signed inputs u whose values are outside of the range
[-2n/2, (2n/2) - 1] are assigned the value determined by the closest endpoint
of this interval.

- Entries in unsigned inputs u whose values are outside of the range
[0, 2n-1] are assigned the value determined by the closest endpoint of this
interval.

• 'wrap': Wrap all overflows according to the following:
7-630

udecode
- Entries in signed inputs u whose values are outside of the range
[-2n/2, (2n/2) - 1] are wrapped back into that range using modulo 2n

arithmetic (calculated using u = mod(u+2^n/2,2^n)-(2^n/2)).

- Entries in unsigned inputs u whose values are outside of the range
[0, 2n-1] are wrapped back into the required range before decoding using
modulo 2n arithmetic (calculated using u = mod(u,2^n)).

Examples u = int8([-1 1 2 -5]); % Create a signed 8-bit integer string.
ysat = udecode(u,3) % Decode with 3 bits.
ysat =

 -0.2500 0.2500 0.5000 -1.0000

Notice the last entry in u saturates to 1, the default peak input magnitude.
Change the peak input magnitude:

ysatv = udecode(u,3,6) % Set the peak input magnitude to 6.
ysatv =

 -1.5000 1.5000 3.0000 -6.0000

The last input entry still saturates. Try wrapping the overflows:

ywrap = udecode(u,3,6,'wrap')
ywrap =

 -1.5000 1.5000 3.0000 4.5000

Try adding more quantization levels:

yprec = udecode(u,5)
yprec =

 -0.0625 0.0625 0.1250 -0.3125

Algorithm The algorithm adheres to the definition for uniform decoding specified in ITU-T
Recommendation G.701. Integer input values are uniquely mapped (decoded)
from one of 2n uniformly spaced integer values to quantized floating-point
values in the range [-v,v]. The smallest integer input value allowed is
mapped to -v and the largest integer input value allowed is mapped to v.
Values outside of the allowable input range are either saturated or wrapped,
according to specification.
7-631

udecode
The real and imaginary components of complex inputs are decoded
independently.

References General Aspects of Digital Transmission Systems: Vocabulary of Digital
Transmission and Multiplexing, and Pulse Code Modulation (PCM) Terms,
International Telecommunication Union, ITU-T Recommendation G.701,
March, 1993.

See Also uencode
7-632

uencode
7uencodePurpose Quantize and encode floating-point inputs to integer outputs

Syntax y = uencode(u,n)
y = uencode(u,n,v)
y = uencode(u,n,v,'SignFlag')

Description y = uencode(u,n) quantizes the entries in a multidimensional array of
floating-point numbers u and encodes them as integers using 2n-level
quantization. n must be an integer between 2 and 32 (inclusive). Inputs can be
real or complex, double- or single-precision. The output y and the input u are
arrays of the same size. The elements of the output y are unsigned integers
with magnitudes in the range [0, 2n-1]. Elements of the input u outside of the
range [-1,1] are treated as overflows and are saturated.

• For entries in the input u that are less than -1, the value of the output of
uencode is 0.

• For entries in the input u that are greater than 1, the value of the output of
uencode is 2n-1.

y = uencode(u,n,v) allows the input u to have entries with floating-point
values in the range [-v,v] before saturating them (the default value for v is 1).
Elements of the input u outside of the range [-v,v] are treated as overflows
and are saturated:

• For input entries less than -v, the value of the output of uencode is 0.

• For input entries greater than v, the value of the output of uencode is 2n-1.

y = uencode(u,n,v,'SignFlag') maps entries in a multidimensional array of
floating-point numbers u whose entries have values in the range [-v,v] to an
integer output y. Input entries outside this range are saturated. The integer
type of the output depends on the string 'SignFlag' and the number of
quantization levels 2n. The string 'SignFlag' can be one of the following:

• 'signed': Outputs are signed integers with magnitudes in the range
[-2n/2, (2n/2) - 1].

• 'unsigned' (default): Outputs are unsigned integers with magnitudes in the
range [0, 2n-1].
7-633

uencode
The output data types are optimized for the number of bits as shown in the
table below.

Examples Map floating-point scalars in [-1, 1] to uint8 (unsigned) integers, and produce
a staircase plot. Note that the horizontal axis plots from -1 to 1 and the vertical
axis plots from 0 to 7 (2^3-1):

u = [-1:0.01:1];
y = uencode(u,3);
plot(u,y,'.')

Now look at saturation effects when you under specify the peak value for the
input:

u = [-2:0.5:2];
y = uencode(u,5,1)

n Unsigned Integer Signed Integer

2 to 8 uint8 int8

9 to 16 uint16 int16

17 to 32 uint32 int32

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

7-634

uencode
y =
 0 0 0 8 16 24 31 31 31

Now look at the output for

u = [-2:0.5:2];
y = uencode(u,5,2,'signed')

y =
 -16 -12 -8 -4 0 4 8 12 15

Algorithm uencode maps the floating-point input value to an integer value determined by
the requirement for 2n levels of quantization. This encoding adheres to the
definition for uniform encoding specified in ITU-T Recommendation G.701.
The input range [-v,v] is divided into 2n evenly spaced intervals. Input
entries in the range [-v,v] are first quantized according to this subdivision of
the input range, and then mapped to one of 2n integers. The range of the output
depends on whether or not you specify that you want signed integers.

References General Aspects of Digital Transmission Systems: Vocabulary of Digital
Transmission and Multiplexing, and Pulse Code Modulation (PCM) Terms,
International Telecommunication Union, ITU-T Recommendation G.701,
March, 1993.

See Also udecode
7-635

unwrap
7unwrapPurpose Unwrap phase angles

unwrap is a MATLAB function.
7-636

upfirdn
7upfirdnPurpose Upsample, apply FIR filter, and downsample

Syntax yout = upfirdn(xin,h)
yout = upfirdn(xin,h,p)
yout = upfirdn(xin,h,p,q)

Description upfirdn performs a cascade of three operations:

1 Upsampling the input data in the matrix xin by a factor of the integer p
(inserting zeros)

2 FIR filtering the upsampled signal data with the impulse response sequence
given in the vector or matrix h

3 Downsampling the result by a factor of the integer q (throwing away
samples)

upfirdn has been implemented as a MEX-file for maximum speed, so only the
outputs actually needed are computed. The FIR filter is usually a lowpass
filter, which you must design using another function such as firpm or fir1.

Note The function resample performs an FIR design using firls, followed
by rate changing implemented with upfirdn.

yout = upfirdn(xin,h) filters the input signal xin with the FIR filter having
impulse response h. If xin is a row or column vector, then it represents a single
signal. If xin is a matrix, then each column is filtered independently. If h is a
row or column vector, then it represents one FIR filter. If h is a matrix, then
each column is a separate FIR impulse response sequence. If yout is a row or
column vector, then it represents one signal. If yout is a matrix, then each
column is a separate output. No upsampling or downsampling is implemented
with this syntax.

yout = upfirdn(xin,h,p) specifies the integer upsampling factor p, where p
has a default value of 1.

yout = upfirdn(xin,h,p,q) specifies the integer downsampling factor q,
where q has a default value of 1.
7-637

upfirdn
Note Since upfirdn performs convolution and rate changing, the yout
signals have a different length than xin. The number of rows of yout is
approximately p/q times the number of rows of xin.

Remarks Usually the inputs xin and the filter h are vectors, in which case only one
output signal is produced. However, when these arguments are arrays, each
column is treated as a separate signal or filter. Valid combinations are:

1 xin is a vector and h is a vector.

There is one filter and one signal, so the function convolves xin with h. The
output signal yout is a row vector if xin is a row; otherwise, yout is a column
vector.

2 xin is a matrix and h is a vector.

There is one filter and many signals, so the function convolves h with each
column of xin. The resulting yout will be an matrix with the same number
of columns as xin.

3 xin is a vector and h is a matrix.

There are many filters and one signal, so the function convolves each column
of h with xin. The resulting yout will be an matrix with the same number of
columns as h.

4 xin is a matrix and h is a matrix, both with the same number of columns.

There are many filters and many signals, so the function convolves
corresponding columns of xin and h. The resulting yout is an matrix with
the same number of columns as xin and h.

Examples Change the sampling rate by a factor of 147/160. This factor is used to convert
from 48kHz (DAT rate) to 44.1kHz (CD sampling rate).

L = 147; M = 160; % Interpolation/decimation factors.
N = 24*M;
h = fir1(N,1/M,kaiser(N+1,7.8562));
h = L*h; % Passband gain = L
Fs = 48e3; % Original sampling frequency-48kHz
n = 0:10239; % 10240 samples, 0.213 seconds long
x = sin(2*pi*1e3/Fs*n); % Original signal, sinusoid at 1kHz
7-638

upfirdn
y = upfirdn(x,h,L,M); % 9408 samples, still 0.213 seconds

% Overlay original (48kHz) with resampled signal (44.1kHz) in red.

stem(n(1:49)/Fs,x(1:49)); hold on
stem(n(1:45)/(Fs*L/M),y(13:57),'r','filled');
xlabel('Time (sec)');ylabel('Signal value');

Algorithm upfirdn uses a polyphase interpolation structure. The number of multiply-add
operations in the polyphase structure is approximately (LhLx-pLx)/q where Lh
and Lx are the lengths of h[n] and x[n], respectively.

A more accurate flops count is computed in the program, but the actual count
is still approximate. For long signals x[n], the formula is often exact.

Diagnostics If p and q are large and do not have many common factors, you may see this
message:

Filter length is too large - reduce problem complexity.

Instead, you should use an interpolation function, such as interp1, to perform
the resampling and then filter the input.

References [1] Crochiere, R.E., and L.R. Rabiner, Multi-Rate Signal Processing,
Prentice-Hall, Englewood Cliffs, NJ, 1983, pp. 88-91.

[2] Crochiere, R.E., “A General Program to Perform Sampling Rate Conversion
of Data by Rational Ratios,” Programs for Digital Signal Processing, IEEE
Press, New York, 1979, pp. 8.2-1 to 8.2-7.

See Also conv, decimate, downsample, filter, interp, intfilt, resample, upsample
7-639

upsample
7upsamplePurpose Increase sampling rate by integer factor

Syntax y = upsample(x,n)
y = upsample(x,n,phase)

Description y = upsample(x,n) increases the sampling rate of x by inserting n-1 zeros
between samples. x can be a vector or a matrix. If x is a matrix, each column is
considered a separate sequence. The upsampled y has x*n samples.

y = upsample(x,n,phase) specifies the number of samples by which to offset
the upsampled sequence. phase must be an integer from 0 to n-1.

Examples Increase the sampling rate of a sequence by 3:

x = [1 2 3 4];
y = upsample(x,3);
x,y

x =
1 2 3 4

y =
1 0 0 2 0 0 3 0 0 4 0 0

Increase the sampling rate of the sequence by 3 and add a phase offset of 2:

x = [1 2 3 4];
y = upsample(x,3,2);
x,y

x =
1 2 3 4

y =
0 0 1 0 0 2 0 0 3 0 0 4

Increase the sampling rate of a matrix by 3:

x = [1 2; 3 4; 5 6;];
y = upsample(x,3);
x,y

x =
7-640

upsample
1 2
3 4
5 6

y =
1 2
0 0
0 0
3 4
0 0
0 0
5 6
0 0
0 0

See Also decimate, downsample, interp, interp1, resample, spline, upfirdn
7-641

vco
7vcoPurpose Voltage controlled oscillator

Syntax y = vco(x,fc,fs)
y = vco(x,[Fmin Fmax],fs)

Description y = vco(x,fc,fs) creates a signal that oscillates at a frequency determined
by the real input vector or array x with sampling frequency fs. fc is the carrier
or reference frequency; when x is 0, y is an fc Hz cosine with amplitude 1
sampled at fs Hz. x ranges from -1 to 1, where x = -1 corresponds to
0 frequency output, x = 0 corresponds to fc, and x = 1 corresponds to 2*fc.
Output y is the same size as x.

y = vco(x,[Fmin Fmax],fs) scales the frequency modulation range so that
±1 values of x yield oscillations of Fmin Hz and Fmax Hz respectively. For best
results, Fmin and Fmax should be in the range 0 to fs/2.

By default, fs is 1 and fc is fs/4.

If x is a matrix, vco produces a matrix whose columns oscillate according to the
columns of x.

Examples Generate two seconds of a signal sampled at 10,000 samples/second whose
instantaneous frequency is a triangle function of time:

fs = 10000;
t = 0:1/fs:2;
x = vco(sawtooth(2*pi*t,0.75),[0.1 0.4]*fs,fs);

Plot the spectrogram of the generated signal:

spectrogram(x,kaiser(256,5),220,512,fs,'yaxis')
7-642

vco
Algorithm vco performs FM modulation using the modulate function.

Diagnostics If any values of x lie outside [-1, 1], vco gives the following error message.

X outside of range [-1,1].

See Also demod, modulate
7-643

window
7windowPurpose Window function gateway

Syntax window
w = window(fhandle,n)
w = window(fhandle,n,winopt)

Description window opens the Window Design and Analysis Tool (wintool).

w = window(fhandle,n) returns the n-point window, specified by its function
handle, fhandle, in column vector w. Function handles are window function
names preceded by an @.

@barthannwin
@bartlett
@blackman
@blackmanharris
@bohmanwin
@chebwin
@flattopwin
@gausswin
@hamming
@hann
@kaiser
@nuttallwin
@parzenwin
@rectwin
@triang
@tukeywin

Note For chebwin, kaiser, and tukeywin, you must use include a window
parameter using the syntax below.

For more information on each window function and its option(s), refer to its
reference page.

w = window(fhandle,n,winopt) returns the window specified by its function
handle, fhandle, and its winopt value or sampling flag string. For chebwin,
7-644

window
kaiser, and tukeywin, you must enter a winopt value. For the other windows
listed below, winopt values are optional.

Examples Create Blackman Harris, Hamming, and Gaussian windows and plot them in
the same WVTool.

N = 65;
w = window(@blackmanharris,N);
w1 = window(@hamming,N);
w2 = window(@gausswin,N,2.5);
wvtool(w,w1,w2)

Window winopt Description winopt Value

blackman sampling flag string 'periodic'or 'symmetric'

chebwin sidelobe attenuation
relative to mainlobe

numeric

flattopwin sampling flag string 'periodic'or 'symmetric'

gausswin alpha value (reciprocal of
standard deviation)

numeric

hamming sampling flag string 'periodic'or 'symmetric'

hann sampling flag string 'periodic'or 'symmetric'

kaiser beta value numeric

tukeywin ratio of taper to constant
sections

numeric
7-645

window
See Also barthannwin, bartlett, blackman, blackmanharris, bohmanwin, chebwin,
flattopwin, gausswin, hamming, hann, kaiser, nuttallwin, parzenwin,
rectwin, triang, tukeywin
7-646

wintool
7wintoolPurpose Window Design and Analysis Tool (WinTool)

Syntax wintool
wintool(obj1,obj2,...)

Description wintool opens WinTool, a graphical user interface (GUI) for designing and
analyzing spectral windows. It opens with a default 64-point Hamming
window.

wintool(obj1,obj2,...) opens WinTool with the sigwin window object(s)
specified in obj1, obj2, etc.

Note A related tool, wvtool, is available for displaying, annotating, or
printing windows.
7-647

wintool
wintool has three panels:

• Window Viewer displays the time domain and frequency domain
representations of the selected window(s). The currently active window is
shown in bold. Three window measurements are shown below the plots.

- Leakage factor—ratio of power in the sidelobes to the total window power

- Relative sidelobe attenuation—difference in height from the mainlobe
peak to the highest sidelobe peak

- Mainlobe width (-3dB)—width of the mainlobe at 3 dB below the mainlobe
peak

Legend What’s This HelpZoom

Launch a
new WinTool

Print and Preview Full View Analysis
7-648

wintool
• Window List lists the windows available for display in the Window Viewer.
Highlight one or more windows to display them. The Window List buttons
are:

- Add a new window—adds a default Hamming window with length 64 and
symmetric sampling. You can change the information for this window by
applying changes made in the Current Window Information panel.

- Copy window—copies the selected window(s).

- Save to workspace—saves the selected window(s) as vector(s) to the
MATLAB workspace. The name of the window in wintool is used as the
vector name.

- Delete—removes the selected window(s) from the window list.

• Current Window Information displays information about the currently
active window. The active window name is shown in the Name field. To make
another window active, select its name from the Name menu.

Window Parameters
Each window is defined by the parameters in the Current Window
Information panel. You can change the current window’s characteristics by
changing its parameters and clicking Apply. The parameters of the current
window are

- Name—name of the window. The name is used for the legend in the
Window Viewer, in the Window List, and for the vector saved to the
workspace. You can either select a name from the menu or type the desired
name in the edit box.

- Type—algorithm for the window. Select the type from the menu. All
windows in the Signal Processing Toolbox are available.

- MATLAB code—any valid MATLAB expression that returns a vector
defining the window if Type = User Defined.

- Length—number of samples.

- Parameter—additional parameter for windows that require it, such as
Chebyshev, which requires you to specify the sidelobe attenuation. Note
that the title “Parameter” changes to the appropriate parameter name.

- Sampling—type of sampling to use for generalized cosine windows
(Hamming, Hann, and Blackman)—Periodic or Symmetric. Periodic
7-649

wintool
computes a length n+1 window and returns the first n points, and
Symmetric computes and returns the n points specified in Length.

WinTool Menus
In addition to the usual menus items, wintool contains these wintool-specific
menu commands:

File menu:

• Export—exports window coefficent vectors or sigwin window objects to the
MATLAB workspace, a text file, or a MAT-file.

In the Window List in WinTool, highlight the window(s) you want to export
and then select Export from the File menu. For exporting to the workspace
or a MAT-file, specify the variable name for each window coefficient or object.
To overwrite variables in the workspace, select the Overwrite variables
check box.

• Full View Analysis—copies the windows shown in both plots to a separate
wvtool figure window. This is useful for printing and annotating. This option
is also available with the Full View Analysis toolbar button.

View menu:

• Time domain—select to show the time domain plot in the Window Viewer
panel.

• Frequency domain—select to show the frequency domain plot in the
Window Viewer panel.

• Legend—toggles the window name legend on and off. This option is also
available with the Legend toolbar button.

• Analysis Parameters—controls the response plot parameters, including
number of points, range, x- and y-axis units, sampling frequency, and
normalized magnitude.

Checked plot(s) are displayed.
7-650

wintool
You can also access the Analysis Parameters by right-clicking on the x-axis
label of a plot in the Window Viewer panel. The X-axis units for the time
domain plot depend on the selected Sampling Frequency units.

Tools menu:

• Zoom In—zooms in along both x- and y-axes.

• Zoom X—zooms in along the x-axis only. Drag the mouse in the x direction
to select the zoom area.

• Zoom Y—zooms in along the y-axis only. Drag the mouse in the y direction
to select the zoom area.

• Full View—returns to full view.

See Also window, wvtool

Frequency Domain Time Domain

Hz sec

kHz ms

MHz µs

GHz picosec
7-651

wvtool
7wvtoolPurpose Window Visualization Tool

Syntax wvtool(winname(n))
wvtool(winname1(n),winname2(n),...winnamem(n))
wvtool(w)
h = wvtool(...)

Description wvtool(winname(n)) opens WVTool with the time and frequency domain plots
of the n-length window specified in winname, which can be any window in the
Signal Processing Toolbox. For a list of valid window names, see the window
function. In the wvtool command, do not precede the window name with @.

wvtool(winname1(n),winname2(n),...winnamem(n)) opens WVTool with a
time-domain plot and a frequency-domain plot that contain all the windows
specified in winname1,...winnamem. The plots are shown on the same axes so
that window characteristics can be compared and contrasted easily. WVTool is
useful for displaying, annotating, and printing window responses.

wvtool(w) launches the Window Visualization Tool with sigwin object w.

h = wvtool(...) returns the Handle Graphics figure handle h.

Note A related tool, wintool, is available for designing and analyzing
windows.
7-652

wvtool
Note If you launch WVTool from FDATool, an Add/Replace icon, which
controls how new windows are added from FDATool, appears on the toolbar.

WinTool Menus
In addition to the usual menus items, wintool contains these wintool-specific
menu commands:

File menu:

• Export—exports the displayed plot(s) to a graphic file.

Legend What’s This? HelpZoom
Print and
Preview

Edit
plot

Add
text

Add
arrow

Add
line
7-653

wvtool
Edit menu:

• Copy figure—copies the displayed plot(s) to the clipboard.

• Copy options—diplays the Preferences dialog box.

• Figure, Axes, and Current Object Properties—displays the Property
Editor.

View menu:

• Time domain—check to show the time domain plot.

• Frequency domain—check to show the frequency domain plot.

• Legend—toggles the window name legend on and off. This option is also
available with the Legend toolbar button.

• Analysis Parameters—controls the response plot parameters, including
number of points, range, x- and y-axis units, sampling frequency, and
normalized magnitude.

You can also access the Analysis Parameters by right-clicking on the x-axis
label of a plot in the Window Viewer panel.

• Insert menu:

You use the Insert menu to add labels, titles, arrows, lines, text, and axes to
your plots.

Tools menu:

• Edit Plot—turns on plot editing mode

• Zoom In—zooms in along both x- and y-axes.

• Zoom X—zooms in along the x-axis only. Drag the mouse in the x direction
to select the zoom area.

Checked plot(s) are displayed
7-654

wvtool
• Zoom Y—zooms in along the y-axis only. Drag the mouse in the y direction
to select the zoom area.

• Full View—returns to full view.

Examples Compare Hamming, Hann, and Gaussian windows:

wvtool(hamming(64),hann(64),gausswin(64))

See Also fdatool, window, wintool
7-655

xcorr
7xcorrPurpose Cross-correlation function

Syntax c = xcorr(x,y)
c = xcorr(x)
c = xcorr(x,y,'option')
c = xcorr(x,'option')
c = xcorr(x,y,maxlags)
c = xcorr(x,maxlags)
c = xcorr(x,y,maxlags,'option')
c = xcorr(x,maxlags,'option')
[c,lags] = xcorr(...)

Description xcorr estimates the cross-correlation sequence of a random process.
Autocorrelation is handled as a special case.

The true cross-correlation sequence is

where xn and yn are jointly stationary random processes, , and E {·}
is the expected value operator. xcorr must estimate the sequence because, in
practice, only a finite segment of one realization of the infinite-length random
process is available.

c = xcorr(x,y) returns the cross-correlation sequence in a length 2*N-1
vector, where x and y are length N vectors (N>1). If x and y are not the same
length, the shorter vector is zero-padded to the length of the longer vector.

By default, xcorr computes raw correlations with no normalization.

The output vector c has elements given by c(m) = Rxy(m-N), m=1, ..., 2N-1.

Rxy m() E{xn m+ y*n} E{xny*n m– } ==

∞– n ∞< <

R
ˆ

xy m()
xn m+ yn

*

n 0=

N m– 1–

∑ m 0≥

R
ˆ

yx
*

m–() m 0<⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

7-656

xcorr
In general, the correlation function requires normalization to produce an
accurate estimate (see below).

c = xcorr(x) is the autocorrelation sequence for the vector x. If x is an N-by-P
matrix, c is a matrix with 2N-1 rows whose P2 columns contain the
cross-correlation sequences for all combinations of the columns of x. For more
information on matrix processing with xcorr, see “Multiple Channels” on
page 3-4.

c = xcorr(x,y,'option') specifies a normalization option for the
cross-correlation, where 'option' is

• 'biased': Biased estimate of the cross-correlation function

• 'unbiased': Unbiased estimate of the cross-correlation function

• 'coeff': Normalizes the sequence so the autocorrelations at zero lag are
identically 1.0.

• 'none', to use the raw, unscaled cross-correlations (default)

See reference [1] for more information on the properties of biased and unbiased
correlation estimates.

c = xcorr(x,'option') specifies one of the above normalization options for
the autocorrelation.

c = xcorr(x,y,maxlags) returns the cross-correlation sequence over the lag
range [-maxlags:maxlags]. Output c has length 2*maxlags+1.

c = xcorr(x,maxlags) returns the autocorrelation sequence over the lag
range [-maxlags:maxlags]. Output c has length 2*maxlags+1. If x is an
N-by-P matrix, c is a matrix with 2*maxlags+1 rows whose P2 columns contain
the autocorrelation sequences for all combinations of the columns of x.

c = xcorr(x,y,maxlags,'option') specifies both a maximum number of lags
and a scaling option for the cross-correlation.

Rxy biased, m() 1
N
----Rxy m()=

Rxy unbiased, m() 1
N m–
-------------------Rxy m()=
7-657

xcorr
c = xcorr(x,maxlags,'option') specifies both a maximum number of lags
and a scaling option for the autocorrelation.

[c,lags] = xcorr(...) returns a vector of the lag indices at which c was
estimated, with the range [-maxlags:maxlags]. When maxlags is not
specified, the range of lags is [-N+1:N-1].

In all cases, the cross-correlation or autocorrelation computed by xcorr has the
zeroth lag in the middle of the sequence, at element or row maxlags+1 (element
or row N if maxlags is not specified).

Examples The second output, lags, is useful for plotting the cross-correlation or
autocorrelation. For example, the estimated autocorrelation of zero-mean
Gaussian white noise cww(m) can be displayed for -10 ≤ m ≤ 10 using:

ww = randn(1000,1);
[c_ww,lags] = xcorr(ww,10,'coeff');
stem(lags,c_ww)

Swapping the x and y input arguments reverses (and conjugates) the output
correlation sequence. For row vectors, the resulting sequences are reversed left
to right; for column vectors, up and down. The following example illustrates
this property (mat2str is used for a compact display of complex numbers):

x = [1,2i,3]; y = [4,5,6];
[c1,lags] = xcorr(x,y);
c1 = mat2str(c1,2), lags
c1 =

[6-i*8.9e-016 5+i*12 22+i*10 15+i*8 12+i*8.9e-016]
lags =
 -2 -1 0 1 2
c2 = conj(fliplr(xcorr(y,x)));
c2 = mat2str(c2,2)
c2 =

[6-i*8.9e-016 5+i*12 22+i*10 15+i*8 12+i*8.9e-016]

For the case where input argument x is a matrix, the output columns are
arranged so that extracting a row and rearranging it into a square array
produces the cross-correlation matrix corresponding to the lag of the chosen
row. For example, the cross-correlation at zero lag can be retrieved by:

randn('state',0)
7-658

xcorr
X = randn(2,2);
[M,P] = size(X);
c = xcorr(X);
c0 = zeros(P); c0(:) = c(M,:) % Extract zero-lag row

c0 =
 2.9613 -0.5334
 -0.5334 0.0985

You can calculate the matrix of correlation coefficients that the MATLAB
function corrcoef generates by substituting:

c = xcov(X,'coef')

in the last example. The function xcov subtracts the mean and then calls
xcorr.

Use fftshift to move the second half of the sequence starting at the zeroth lag
to the front of the sequence. fftshift swaps the first and second halves of a
sequence.

Algorithm For more information on estimating covariance and correlation functions, see
[1].

References [1] Orfanidis, S.J., Optimum Signal Processing. An Introduction. 2nd Edition,
Prentice-Hall, Englewood Cliffs, NJ, 1996.

See Also conv, corrcoef, cov, xcorr2, xcov
7-659

xcorr2
7xcorr2Purpose Two-dimensional cross-correlation

Syntax C = xcorr2(A)
C = xcorr2(A,B)

Description C = xcorr2(A,B) returns the cross-correlation of matrices A and B with no
scaling. xcorr2 is the two-dimensional version of xcorr. It has its maximum
value when the two matrices are aligned so that they are shaped as similarly
as possible.

If matrix A has dimensions (Ma, Na) and matrix B has dimensions (Mb, Nb),
the equation for the two-dimensional discrete cross-correlation is

where and .

xcorr2(A) is the autocorrelation matrix of input matrix A. It is identical to xco

Examples Output Matrix Size
If matrix I1 has dimensions (4,3) and matrix I2 has dimensions (2,2), the
following equations determine the number of rows and columns of the output
matrix:

The resulting matrix is

C i j,() A m n(,) conj B m i+ n j+(,)()⋅

n 0=

Na 1–()

∑
m 0=

Ma 1–()

∑=

0 i Ma Mb 1–+<≤ 0 j Na Nb 1–+<≤

Cfullrows
I1rows I2rows 1–+ 4 2 1–+ 5= = =

Cfullcolumns
I1columns I2columns 1–+ 3 2 1–+ 4= = =

Cfull

c00 c01 c02 c03

c10 c11 c12 c13

c20 c21 c22 c23

c30 c31 c32 c33

c40 c41 c42 c43

=

7-660

xcorr2
Computing a Specific Element

In cross-correlation, the value of an output element is computed as a weighted
sum of neighboring elements. For example, suppose the first input matrix
represents an image and is defined as

I1 = [17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9]

The second input matrix also represents an image and is defined as

I2 = [8 1 6
 3 5 7
 4 9 2]

The following figure shows how to compute the (2,4) output element
(zero-based indexing) using these steps:

1 Slide the center element of I2 so that lies on top of the (1,3) element of I1.

2 Multiply each weight in I2 by the element of I1 underneath.

3 Sum the individual products from step 2.

The (2,4) output element from the cross-correlation is

Cvalidcolumns
I1columns I2columns– 1+ 2= =

1 8⋅ 8 1⋅ 15 6⋅ 7 3⋅ 14 5⋅ 16 7⋅ 13 4⋅ 20 9⋅ 22 2⋅ 585=+ + + + + + + +
7-661

xcorr2
The normalized cross-correlation of the (2,4) output element is

 585/sqrt(sum(dot(I1p,I1p))*sum(dot(I2,I2))) = 0.8070

where I1p = [1 8 15; 7 14 16; 13 20 22].

See Also conv2, filter2, xcorr

Image pixel values

Values of I2 matrix

Alignment of center
element of I2

17

23

4

10

11

24

5

6

12

18

1

7

4

19

25

8

14

20

21

2

15

16

22

3

9

8 1 6

13

3 5 7

9 2
Alignment of
I2 matrix
7-662

xcov
7xcovPurpose Cross-covariance function (equal to mean-removed cross-correlation)

Syntax v = xcov(x,y)
v = xcov(x)
v = xcov(x,'option')
[c,lags] = xcov(x,y,maxlags)
[c,lags] = xcov(x,maxlags)
[c,lags] = xcov(x,y,maxlags,'option')

Description xcov estimates the cross-covariance sequence of random processes.
Autocovariance is handled as a special case.

The true cross-covariance sequence is the cross-correlation of mean-removed
sequences

where and are the mean values of the two stationary random processes,
and E{·} is the expected value operator. xcov estimates the sequence because,
in practice, access is available to only a finite segment of the infinite-length
random process.

v = xcov(x,y) returns the cross-covariance sequence in a length 2N-1 vector,
where x and y are length N vectors. For information on how arrays are
processed with xcov, see “Multiple Channels” on page 3-4.

v = xcov(x) is the autocovariance sequence for the vector x. Where x is an
N-by-P array, v = xcov(x) returns an array with 2N-1 rows whose P2 columns
contain the cross-covariance sequences for all combinations of the columns of x.

By default, xcov computes raw covariances with no normalization. For a
length N vector

φxy µ() E xn m+ µx–() yn µy–()*{ }=

µx µy

cxy m()
x n m+() 1

N
---- xi

i 0=

N 1–

∑–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

yn
* 1

N
---- yi

*

i 0=

N 1–

∑–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

n 0=

N m– 1–

∑ m 0≥

cyx
* m–() m 0<⎩

⎪
⎪
⎨
⎪
⎪
⎧

=

7-663

xcov
The output vector c has elements given by c(m) = cxy(m-N), m = 1, ..., 2N-1.

The covariance function requires normalization to estimate the function
properly.

v = xcov(x,'option') specifies a scaling option, where 'option' is

• 'biased', for biased estimates of the cross-covariance function

• 'unbiased', for unbiased estimates of the cross-covariance function

• 'coeff', to normalize the sequence so the auto-covariances at zero lag are
identically 1.0

• 'none', to use the raw, unscaled cross-covariances (default)

See [1] for more information on the properties of biased and unbiased
correlation and covariance estimates.

[c,lags] = xcov(x,y,maxlags) where x and y are length m vectors, returns
the cross-covariance sequence in a length 2*maxlags+1 vector c. lags is a
vector of the lag indices where c was estimated, that is, [-maxlags:maxlags].

[c,lags] = xcov(x,maxlags) is the autocovariance sequence over the range
of lags [-maxlags:maxlags].

[c,lags] = xcov(x,maxlags) where x is an m-by-p array, returns array c with
2*maxlags+1 rows whose P2 columns contain the cross-covariance sequences
for all combinations of the columns of x.

[c,lags] = xcov(x,y,maxlags,'option') specifies a scaling option, where
'option' is the last input argument.

In all cases, xcov gives an output such that the zeroth lag of the covariance
vector is in the middle of the sequence, at element or row maxlag+1 or at m.

Examples The second output lags is useful when plotting. For example, the estimated
autocovariance of uniform white noise cww(m) can be displayed for -10 ≤ m ≤ 10
using:

ww = randn(1000,1); % Generate uniform noise with mean = 1/2.
[cov_ww,lags] = xcov(ww,10,'coeff');
stem(lags,cov_ww)
7-664

xcov
Algorithm xcov computes the mean of its inputs, subtracts the mean, and then calls
xcorr. For more information on estimating covariance and correlation
functions, see [1].

Diagnostics xcov does not check for any errors other than the correct number of input
arguments. Instead, it relies on the error checking in xcorr.

References [1] Orfanidis, S.J., Optimum Signal Processing. An Introduction. 2nd Edition,
Prentice-Hall, Englewood Cliffs, NJ, 1996.

See Also conv, corrcoef, cov, xcorr, xcorr2
7-665

yulewalk
7yulewalkPurpose Recursive digital filter design

Syntax [b,a] = yulewalk(n,f,m)

Description yulewalk designs recursive IIR digital filters using a least-squares fit to a
specified frequency response.

[b,a] = yulewalk(n,f,m) returns row vectors b and a containing the n+1
coefficients of the order n IIR filter whose frequency-magnitude characteristics
approximately match those given in vectors f and m:

• f is a vector of frequency points, specified in the range between 0 and 1,
where 1 corresponds to half the sample frequency (the Nyquist frequency).
The first point of f must be 0 and the last point 1, with all intermediate
points in increasing order. Duplicate frequency points are allowed,
corresponding to steps in the frequency response.

• m is a vector containing the desired magnitude response at the points
specified in f.

• f and m must be the same length.

• plot(f,m) displays the filter shape.

The output filter coefficients are ordered in descending powers of z.

When specifying the frequency response, avoid excessively sharp transitions
from passband to stopband. You may need to experiment with the slope of the
transition region to get the best filter design.

Examples Design an 8th-order lowpass filter and overplot the desired frequency response
with the actual frequency response:

f = [0 0.6 0.6 1];
m = [1 1 0 0];
[b,a] = yulewalk(8,f,m);
[h,w] = freqz(b,a,128);
plot(f,m,w/pi,abs(h),'--')
legend('Ideal','yulewalk Designed')
title('Comparison of Frequency Response Magnitudes')

B z()
A z()
----------- b 1() b 2()z 1– b n 1+()z n–+ + +

a 1() a 2()z 1– a n 1+()z n–+ + +
---=
7-666

yulewalk
Algorithm yulewalk performs a least-squares fit in the time domain. It computes the
denominator coefficients using modified Yule-Walker equations, with
correlation coefficients computed by inverse Fourier transformation of the
specified frequency response. To compute the numerator, yulewalk takes the
following steps:

1 Computes a numerator polynomial corresponding to an additive
decomposition of the power frequency response.

2 Evaluates the complete frequency response corresponding to the numerator
and denominator polynomials.

3 Uses a spectral factorization technique to obtain the impulse response of the
filter.

4 Obtains the numerator polynomial by a least-squares fit to this impulse
response.

References [1] Friedlander, B., and B. Porat, “The Modified Yule-Walker Method of ARMA
Spectral Estimation,” IEEE Transactions on Aerospace Electronic Systems,
AES-20, No. 2 (March 1984), pp. 158-173.

See Also butter, cheby1, cheby2, ellip, fir2, firls, maxflat, firpm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Comparison of Frequency Response Magnitudes

Ideal
yulewalk Designed
7-667

zerophase
7zerophasePurpose Zero-phase response of a digital filters

Syntax [Hr,w] = zerophase(b,a)
[Hr,w] = zerophase(b,a,nfft)
[Hr,w] = zerophase(b,a,nfft,'whole')
[Hr,w] = zerophase(b,a,w)
[Hr,f] = zerophase(...,fs)
[Hr,w,phi] = zerophase(...)
zerophase(...)

Description [Hr,w] = zerophase(b,a) returns the zero-phase response Hr, and the
frequency vector w (in radians/sample) at which Hr is computed, given a filter
defined by numerator b and denominator a. For FIR filters where a=1, you can
omit the value a from the command. The zero-phase response is evaluated at
512 equally spaced points on the upper half of the unit circle.

The zero-phase response, Hr(w), is related to the frequency response, H(w) by

 ,

where is the frequency response, Hr(ω) is the zero-phase response and
ϕ(w) is the continuous phase.

Note The zero-phase response is always real, but it is not the equivalent of
the magnitude response. The former can be negative while the latter cannot
be negative.

[Hr,w] = zerophase(b,a,nfft) returns the zero-phase response Hr and
frequency vector w (radians/sample), using nfft frequency points on the upper
half of the unit circle.

[Hr,w] = zerophase(b,a,nfft,'whole') returns the zero-phase response Hr
and frequency vector w (radians/sample), using nfft frequency points around
the whole unit circle.

[Hr,w] = zerophase(b,a,w) returns the zero-phase response Hr and
frequency vector w (radians/sample) at frequencies in vector w.

H ejω() Hr ω() ejϕ ω()
=

H ejω()
7-668

zerophase
[Hr,f] = zerophase(...,fs) returns the zero-phase response Hr and
frequency vector f (Hz), using the sampling frequency fs (in Hz), to determine
the frequency vector f (in Hz) at which Hr is computed.

[Hr,w,phi] = zerophase(...) returns the zero-phase response Hr,
frequency vector w (rad/sample), and the continuous phase component, phi.
(Note that this quantity is not equivalent to the phase response of the filter
when the zero-phase response is negative.)

zerophase(...) with no output arguments, plots the zero-phase response
versus frequency.

Examples Example 1
Plot the zero-phase response of a constrained least squares FIR filter:

b=fircls1(54,.3,.02,.008);
zerophase(b);

Example 2
Plot the zero-phase response of an elliptic filter:

[b,a]=ellip(10,.5,20,.4);
zerophase(b,a,512,'whole');

See Also freqs, freqz, fvtool, grpdelay, invfreqz, phasedelay, phasez
7-669

zp2sos
7zp2sosPurpose Convert zero-pole-gain filter parameters to second-order sections form

Syntax [sos,g] = zp2sos(z,p,k)
[sos,g] = zp2sos(z,p,k,'order')
[sos,g] = zp2sos(z,p,k,'order','scale')
sos = zp2sos(...)

Description zp2sos converts a discrete-time zero-pole-gain representation of a given digital
filter to an equivalent second-order section representation.

Use [sos,g] = zp2sos(z,p,k) to obtain a matrix sos in second-order section
form with gain g equivalent to the discrete-time zero-pole-gain filter
represented by input arguments z, p, and k. Vectors z and p contain the zeros
and poles of the filter’s transfer function H(z), not necessarily in any particular
order.

where n and m are the lengths of z and p, respectively, and k is a scalar gain.
The zeros and poles must be real or complex conjugate pairs. sos is an L-by-6
matrix

whose rows contain the numerator and denominator coefficients bik and aik of
the second-order sections of H(z).

The number L of rows of the matrix sos is the closest integer greater than or
equal to the maximum of n/2 and m/2.

H z() k
z z1–() z z2–() z zn–()

z p1–() z p2–() z pm–()
--=

sos

b01 b11 b21 1 a11 a21

b02 b12 b22 1 a12 a22

b0L b1L b2L 1 a1L a2L

=

H z() g Hk z()

k 1=

L

∏ g
b0k b1kz 1– b2kz 2–+ +

1 a1kz 1– a2kz 2–+ +
--

k 1=

L

∏= =
7-670

zp2sos
[sos,g] = zp2sos(z,p,k,'order') specifies the order of the rows in sos,
where 'order' is

• 'down', to order the sections so the first row of sos contains the poles closest
to the unit circle

• 'up', to order the sections so the first row of sos contains the poles farthest
from the unit circle (default)

[sos,g] = zp2sos(z,p,k,'order','scale') specifies the desired scaling of
the gain and the numerator coefficients of all second-order sections, where
'scale' is

• 'none', to apply no scaling (default)

• 'inf', to apply infinity-norm scaling

• 'two', to apply 2-norm scaling

Using infinity-norm scaling in conjunction with up-ordering minimizes the
probability of overflow in the realization. Using 2-norm scaling in conjunction
with down-ordering minimizes the peak round-off noise.

Note Infinity-norm and 2-norm scaling are appropriate only for
direct-form II implementations.

sos = zp2sos(...) embeds the overall system gain, g, in the first section,
H1(z), so that

Note Embedding the gain in the first section when scaling a direct-form II
structure is not recommended and may result in erratic scaling. To avoid
embedding the gain, use ss2sos with two outputs.

H z() Hk z()

k 1=

L

∏=
7-671

zp2sos
Examples Find a second-order section form of a Butterworth lowpass filter:

[z,p,k] = butter(5,0.2);
sos = zp2sos(z,p,k);

Algorithm zp2sos uses a four-step algorithm to determine the second-order section
representation for an input zero-pole-gain system:

1 It groups the zeros and poles into complex conjugate pairs using the
cplxpair function.

2 It forms the second-order section by matching the pole and zero pairs
according to the following rules:

a Match the poles closest to the unit circle with the zeros closest to those
poles.

b Match the poles next closest to the unit circle with the zeros closest to
those poles.

c Continue until all of the poles and zeros are matched.

zp2sos groups real poles into sections with the real poles closest to them in
absolute value. The same rule holds for real zeros.

3 It orders the sections according to the proximity of the pole pairs to the unit
circle. zp2sos normally orders the sections with poles closest to the unit
circle last in the cascade. You can tell zp2sos to order the sections in the
reverse order by specifying the down flag.

4 zp2sos scales the sections by the norm specified in the 'scale' argument.
For arbitrary H(ω), the scaling is defined by

where p can be either ∞ or 2. See the references for details on the scaling.
This scaling is an attempt to minimize overflow or peak round-off noise in
fixed point filter implementations.

References [1] Jackson, L.B., Digital Filters and Signal Processing, 3rd ed., Kluwer
Academic Publishers, Boston, 1996, Chapter 11.

H p
1

2π
------ H ω() p ωd

0

2π

∫

1
p

=

7-672

zp2sos
[2] Mitra, S.K., Digital Signal Processing: A Computer-Based Approach,
McGraw-Hill, New York, 1998, Chapter 9.

[3] Vaidyanathan, P.P., “Robust Digital Filter Structures,” Handbook for
Digital Signal Processing, S.K. Mitra and J.F. Kaiser, ed., John Wiley & Sons,
New York, 1993, Chapter 7.

See Also cplxpair, filternorm, sos2zp, ss2sos, tf2sos, zp2ss, zp2tf
7-673

zp2ss
7zp2ssPurpose Convert zero-pole-gain filter parameters to state-space form

Syntax [A,B,C,D] = zp2ss(z,p,k)

Description zp2ss converts a zero-pole-gain representation of a given system to an
equivalent state-space representation.

[A,B,C,D] = zp2ss(z,p,k) finds a single input, multiple output, state-space
representation

given a system in factored transfer function form.

Column vector p specifies the pole locations, and matrix z the zero locations
with as many columns as there are outputs. The gains for each numerator
transfer function are in vector k. The A, B, C, and D matrices are returned in
controller canonical form.

Inf values may be used as place holders in z if some columns have fewer zeros
than others.

Algorithm zp2ss, for single-input systems, groups complex pairs together into two-by-two
blocks down the diagonal of the A matrix. This requires the zeros and poles to
be real or complex conjugate pairs.

See Also sos2ss, ss2zp, tf2ss, zp2sos, zp2tf

x· Ax Bu+=

y Cx Du+=

H s() Z s()
P s()
---------- k

s z1–() s z2–() s zn–()
s p1–() s p2–() s pn–()

--= =
7-674

zp2tf
7zp2tfPurpose Convert zero-pole-gain filter parameters to transfer function form

Syntax [b,a] = zp2tf(z,p,k)

Description zp2tf forms transfer function polynomials from the zeros, poles, and gains of a
system in factored form.

[b,a] = zp2tf(z,p,k) finds a rational transfer function

given a system in factored transfer function form

Column vector p specifies the pole locations, and matrix z specifies the zero
locations, with as many columns as there are outputs. The gains for each
numerator transfer function are in vector k. The zeros and poles must be real
or come in complex conjugate pairs. The polynomial denominator coefficients
are returned in row vector a and the polynomial numerator coefficients are
returned in matrix b, which has as many rows as there are columns of z.

Inf values can be used as place holders in z if some columns have fewer zeros
than others.

Algorithm The system is converted to transfer function form using poly with p and the
columns of z.

See Also sos2tf, ss2tf, tf2zp, tf2zpk, zp2sos, zp2ss

B s()
A s()

b1s n 1–() b n 1–()s bn+ + +

a1s m 1–() a m 1–()s am+ + +
--=

H s() Z s()
P s()
---------- k

s z1–() s z2–() s zm–()
s p1–() s p2–() s pn–()

--= =
7-675

zplane
7zplanePurpose Zero-pole plot

Syntax zplane(z,p)
zplane(b,a)
zplane(Hd)
[hz,hp,ht] = zplane(z,p)

Description This function displays the poles and zeros of discrete-time systems.

zplane(z,p) plots the zeros specified in column vector z and the poles specified
in column vector p in the current figure window. The symbol 'o' represents a
zero and the symbol 'x' represents a pole. The plot includes the unit circle for
reference. If z and p are arrays, zplane plots the poles and zeros in the columns
of z and p in different colors.

You can override the automatic scaling of zplane using

axis([xmin xmax ymin ymax])

or

set(gca,'ylim',[ymin ymax])

or

set(gca,'xlim',[xmin xmax])

after calling zplane. This is useful in the case where one or a few of the zeros
or poles have such a large magnitude that the others are grouped tightly
around the origin and are hard to distinguish.

zplane(b,a) where b and a are row vectors, first uses roots to find the zeros
and poles of the transfer function represented by numerator coefficients b and
denominator coefficients a.

zplane(Hd) finds the zeros and poles of the transfer function represented by
the dfilt filter object Hd. The pole-zero plot is displayed in fvtool.

[hz,hp,ht] = zplane(z,p) returns vectors of handles to the zero lines, hz,
and the pole lines, hp. ht is a vector of handles to the axes/unit circle line and
to text objects, which are present when there are multiple zeros or poles. If
there are no zeros or no poles, hz or hp is the empty matrix [].
7-676

zplane
Examples For data sampled at 1000 Hz, plot the poles and zeros of a 4th-order elliptic
lowpass digital filter with cutoff frequency of 200 Hz, 3 dB of ripple in the
passband, and 30 dB of attenuation in the stopband:

[z,p,k] = ellip(4,3,30,200/500);
zplane(z,p);
title('4th-Order Elliptic Lowpass Digital Filter');

To generate the same plot with a transfer function representation of the filter,
use:

[b,a] = ellip(4,3,30,200/500); % Transfer function
zplane(b,a)

To generate the same plot using a dfilt object and displaying the result in the
Filter Visualization Tool (fvtool) use:

[b,a] = ellip(4,3,30,200/500);
Hd=dfilt.df1(b,a);
zplane(Hd)

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Part

Im
ag

in
ar

y
P

ar
t

4th−Order Elliptic Lowpass Digital Filter
7-677

zplane
See Also freqz
7-678

A

Technical Conventions

This manual and the Signal Processing Toolbox functions use the following
technical notations.

Term or Symbol Description

Nyquist frequency One-half the sampling frequency. Some
toolbox functions normalize this value to
1.

x(1) The first element of a data sequence or
filter, corresponding to zero lag.

Ω or w Analog frequency in radians per second.

ω or w Digital frequency in radians per sample.

f Digital frequency in hertz.

[x, y) The interval from x to y, including x but
not including y.

... Ellipses in the argument list for a given
syntax on a function reference page
indicate all possible argument lists for
that function appearing prior to the given
syntax are valid.

A Technical Conventions

A-2

Index
Numerics
2-norm 7-265

A
A/D conversion 7-633
abs function 7-18
ac2poly function 7-19
ac2rc function 7-20
addstages method 7-138
aliasing

impulse invariance 2-45
preventing 4-27
reducing 4-46
sinc functions 1-13

all-pole filters
See IIR filters

all-zero filters
See FIR filters

AM
See amplitude modulation

amdsb function 7-409
amplitude demodulation 7-132
amplitude modulation 7-409
analog filters 2-42

bandpass 7-392
bandstop 7-395
Bessel 7-31
Bessel comparison 2-13
Bessel lowpass 7-30
bilinear transformation 2-47
Butterworth 7-56
Butterworth comparison 2-9
Butterworth lowpass 7-55
Butterworth order estimation 7-62
Chebyshev Type I 7-91
Chebyshev Type I comparison 2-10
Chebyshev Type I lowpass 7-78
Chebyshev Type I order estimation 7-80
Chebyshev Type II 7-97
Chebyshev Type II comparison 2-11
Chebyshev Type II order estimation 7-85
converting to digital 7-359
design 2-7
discretization 2-45
elliptic 7-242
elliptic order estimation 7-250
frequency response 7-307
frequency response example 2-14
highpass 7-397
impulse invariance 2-45
inverse 7-371
lowpass 7-399
models 1-43
plotting 2-14
See also IIR filters

analog frequency A-1
analog signals

See signals
analysis parameters 7-318
analytic signals 7-353
angle function 7-21
anti-symmetric filters 2-27
AR filter stability 7-473
AR models

See autoregressive (AR) models
arburg function 7-22
arcov function 7-23
ARMA filters

coefficients 1-16
Prony’s method 4-18
Steiglitz-McBride method 4-20
See also IIR filters
Index-1

Index

Ind
armcov function 7-24
ARX models 4-18
aryule function 7-25
ASCII files

importing 1-14
autocorrelation 7-657

convert from LP coefficients 7-471
convert from reflection coefficients 7-495
convert to LP coefficients 7-19
convert to reflection coefficients 7-20
estimation 3-4
multiple channel filters 3-4
two-dimensional 7-660
variance 3-4

autocovariance 7-663
multiple channels 3-4

autoregressive (AR) models
Burg method 7-22
coefficients 1-16
covariance method 7-23
modified covariance method 7-24
power spectral density (Burg method) 7-421
power spectral density (covariance method)

7-426
power spectral density (modified covariance

method) 7-451
power spectral density (Yule-Walker method)

7-489
Yule-Walker method 7-25
See also IIR filters

autoregressive moving-average (ARMA) filters
See ARMA filters

avgpower method 7-219
ex-2
B
band edges

prewarping 2-48
bandpass filters

Butterworth 7-56
Chebyshev Type I 7-91
Chebyshev Type I example 2-44
Chebyshev Type II 7-96
design 2-6
elliptic 7-242
FIR 2-22
FIR example 7-275
impulse invariance 2-46
transform from lowpass 7-392

bandstop filters
Butterworth 7-57
Chebyshev Type I 7-92
Chebyshev Type II 7-97
elliptic 7-243
FIR 7-274
transform from lowpass 7-395

bandwidth 2-44
barthannwin Bartlett Hann window function 7-26

comparison 4-2
bartlett window function 7-28

comparison 4-2
Bessel filters

characteristics 2-13
limitations 7-32
lowpass 7-30
prototype 7-30

besselap function 7-30
besself function 7-31

Index
bias 3-3
linear prediction 4-17
power spectral density 3-16
variance trade-off 3-4
Welch 3-23

bilinear function 7-33
bilinear transformations 7-33

characteristics 2-47
output 7-34
prewarping 7-33
prewarping example 2-48

bit reversal 7-38
bitrevorder function 7-38
blackman window function 7-40

comparison 4-2
blackmanharris window function 7-42

comparison 4-2
Nuttall 7-417

block method 7-138
bohmanwin window function 7-44

comparison 4-2
boxcar windows

See rectangular windows
brackets A-1
buffer function 7-46
Burg method

characteristics 3-36
example 3-37
spectral estimation 3-7
Welch’s method comparison 3-38

Burg spectrum object 7-558
buttap function 7-55
butter function 7-56

Butterworth filters 7-56
characteristics 2-9
comparison 2-9
generalized 2-15
limitations 7-60
lowpass 7-55
order estimation 7-61

buttord function 7-61

C
C header files 5-40
canonical forms 1-18

naming conventions 7-616
carrier frequencies 4-35
cascade method 7-138
cascades 1-39
Cauer filters

See elliptic filters
cceps function 7-66
cell2sos function 7-68
center frequency 2-44
centerdc method 7-219
cepstrum 4-28

inverse function 7-499
cfirpm function 7-69
cheb1ap function 7-78
cheb1ord function 7-79
cheb2ap function 7-83
cheb2ord function 7-84
chebwin Chebyshev window function 7-89

comparison 4-2
cheby1 function 7-91
cheby2 function 7-96
Chebyshev error minimization 7-293
Index-3

Index

Ind
Chebyshev Type I filters 7-91
characteristics 2-10
example 2-44
lowpass 7-78
order estimation 7-79

Chebyshev Type II filters 7-96
characteristics 2-11
limitations 7-95
order estimation 2-7

chirp function 7-101
chirp signals 1-10
chirp z-transforms 7-123

characteristics 4-42
CIC filters

exporting from FDATool to Simulink 5-36
coding

PCM 7-633
coefficients

accessing filter 6-35
convert autocorrelation to filter 7-19
convert filter to autocorrelation 7-471
convert filter to reflection 7-473
convert reflection to autocorrelation 7-495
convert reflection to filter 7-498
filter 1-16
lattice 1-39
linear prediction 7-401
reflection 7-20

coefficients method 7-138
coherence 7-412

definition 3-29
linearly dependent data 3-29

colors
sptool GUI 6-51
ex-4
communications
applications 4-35
modeling 4-15
simulation 7-132
See also modulation, demodulation, voltage

controlled oscillation
compaction

discrete cosine transform 4-45
complex envelope

See Hilbert transforms
context-sensitive help 6-7
continuous signals

See signals
continuous-time filters

See analog filters
conv function 7-108
conv2 function 7-109
conversions

autocorrelation to filter coefficients 7-19
autocorrelation to reflection coefficients 7-20
errors 5-26
filter coefficients to autocorrelation 7-471
filter coefficients to reflection coefficients 7-473
functions (table) 1-44
reflection coefficients to autocorrelation 7-495
reflection coefficients to filter coefficients 7-498
second-order section to zero-pole-gain 7-539
second-order sections to state-space 7-535
second-order sections to transfer functions

7-537
state-space to second-order sections 7-593
state-space to zero-pole-gain 7-598
transfer functions to lattice 7-611
transfer functions to second-order sections

7-612
transfer functions to state-space 7-615

Index
zero-pole-gain to second-order sections 7-670
zero-pole-gain to state-space 7-674

convert method 7-138
convmtx function 7-110
convolution

cross-correlation 3-2
filtering 1-15
matrix 1-42
matrix function (convmtx) 7-110

corrcoef function 7-112
correlation

bias 3-3
cross-correlation 7-656
linear prediction 4-17
matrices 7-113
See also autocorrelation, cross-correlation

correlation matrices 7-113
corrmtx function 7-113
cosine windows 4-7
cov function 7-116
covariance

definition 3-8
methods 3-41
modified covariance spectrum object 7-567
spectrum object 7-560
See also autocovariance, cross-covariance,

modified covariance method
cplxpair function 7-117
cpsd function 7-118
cross power spectral density 7-118

definition 3-27
cross spectral density

definition 3-27
See also power spectral density, spectral

estimation

cross-correlation 7-656
discussion 3-2
two-dimensional 7-660

cross-covariance 7-663
comparison to cross-correlation 3-2
multiple channels 3-4

czt function
See also chirp z-transforms

 7-123

D
data

markers 5-17
multichannel matrix 1-5
multichannel signals 1-8
time vectors 1-7
vectors 1-5

DC component suppression 1-48
dct function 7-126
de la Valle-Poussin windows

See Parzen windows
decimate 7-128
decode 7-630
deconv function 7-131
deconvolution 4-41
default session

sptool GUI 6-51
delay 7-150
delays

group 1-30
noninteger 2-28
phase 1-31
signals 2-28

demod 7-132
demod function 7-132
Index-5

Index

Ind
demodulation 7-132
example 4-36

dfilt function 7-135
cascade 7-148
convert structures 7-145
copying 7-145
delay 7-150
direct-form antisymmetric FIR 7-173
direct-form FIR transposed 7-179
direct-form I 7-152
direct-form I sos 7-154
direct-form I transposed 7-157
direct-form I transposed sos 7-159
direct-form II 7-162
direct-form II sos 7-165
direct-form II transposed 7-168
direct-form II transposed sos 7-170
direct-form IIR 7-177
direct-form symmetric FIR 7-181
FFT FIR 7-185
filter implementation 2-50
lattice allpass 7-188
lattice ARMA 7-192
lattice autoregressive 7-190
lattice moving-average maximum 7-194
lattice moving-average minimum 7-196
methods 7-137
parallel 7-198
scalar 7-200
state space 7-203
structures 7-135, 7-270

dfilt.cascade function 7-148
dfilt.delay function 7-150
dfilt.df1 function 7-152
dfilt.df1sos function 7-154
dfilt.df1t function 7-157
dfilt.df1tsos function 7-159
ex-6
dfilt.df2 function 7-162
dfilt.df2sos function 7-165
dfilt.df2t function 7-168
dfilt.df2tsos function 7-170
dfilt.dfasymfir function 7-173
dfilt.dffir function 7-177
dfilt.dffirt function 7-179
dfilt.dfsymfir function 7-181
dfilt.fftfir function 7-185
dfilt.latticeallpass function 7-188
dfilt.latticear function 7-190
dfilt.latticearma function 7-192
dfilt.latticemamax function 7-194
dfilt.latticemamin function 7-196
dfilt.parallel function 7-198
dfilt.scalar function 7-200
dfilt.statespace function 7-203
dft

See discrete Fourier transforms
dftmtx function 7-205
difference equations 1-34
differentiators

definition 2-29
least square linear-phase FIR 7-289
Parks-McClellan FIR 7-295

digit reversal 7-206
digital audio tape standards 4-26
digital filters

anti-causal 1-21
Butterworth 7-56
Butterworth order estimation 7-61
cascade 1-39
Chebyshev Type I order estimation

 7-79
Chebyshev Type II 7-96
Chebyshev Type II order estimation 7-84
coefficients 1-16

Index
comparison to IIR 2-17
convolution 1-15
convolution matrices 1-42
design 2-2
elliptic 7-242
elliptic order estimation 7-249
equiripple FIR order estimation 7-300
FFT FIR overlap-add 7-259
FIR design 2-17
fixed-point implementation 1-39
frequency response 1-26
group delay description 1-30
group delay function 7-345
identification from frequency data 7-375
IIR design 2-4
implementation with filter 1-15
impulse response 7-362
impulse response definition 1-24
initial conditions 1-18
lattice/ladder structures 1-39
models 1-34
order 1-16
phase delay definition 1-31
poles 1-35
second-order sections 1-39
specifications 2-7
state-space 1-36
time-domain representation 1-17
transfer functions representation 1-16
transients 1-23
transposed direct-form II structures 1-18
types 1-16
zero-phase 7-267
zero-phase implementation 1-21
zero-pole analysis 1-32
zeros 1-35
See also FIR filters, IIR filters

digital frequency A-1
digitrevorder function 7-206
diric function 7-208
Dirichlet functions 7-208

definition 1-13
discrete cosine transforms 7-126

definition 4-44
energy compaction property 4-45
example 4-45
inverse 7-356
reconstruct signals 4-45

discrete Fourier transforms
algorithms 1-47
definition 1-46
eigenvector equivalent 3-43
goertzel 1-48
IIR filter implementation 1-23
inverse two-dimensional 1-48
magnitude 1-47
matrix 7-205
phase 1-47
power spectrum estimation 3-9
signal length dependencies 1-47
spectral analysis 3-5
time-dependent 4-33
two-dimensional 1-48
See also fast Fourier transforms

discrete prolate spheroidal sequences
 See dpss

discretization 7-359
bilinear transformations 2-47
filters 2-45
impulse invariance 2-45

downsample function 7-209
dpss function 7-211

example 3-27
dpssclear function 7-214
Index-7

Index

Ind
dpssdir function 7-215
dpssload function 7-216
dpsssave function 7-217
dspdata object 7-218

mean-square spectrum 7-223
psd 7-228
pseudospectrum 7-233

dspdata.msspectrumd function 7-223
dspdata.psd function 7-228
dspdata.pseudospectrum function 7-233
dspopts object 7-239
duty cycles 1-9

E
echo detection 4-28
edge effects 1-23
eigenanalysis 3-43
eigenvector method 7-432

definition 3-42
root MUSIC 7-511
spectral estimation 3-7
spectrum object 7-562
See also multiple signal classification method

ellip function 7-242
ellipap function 7-248
ellipord function 7-249
elliptic filters 7-242

definition 2-12
limitations 7-246
order estimation 7-249

encoding 7-633
eqtflength function 7-254
equiripple 2-23

Chebyshev Type I filters 2-10
Chebyshev Type II filters 2-11
Chebyshev windows 4-14
ex-8
elliptic filters 2-12
elliptic filters (analog) 7-248
elliptic filters (Cauer) 7-242
Parks-McClellan design 7-293

error minimization 2-23
weighted frequency bands 2-27

estimation 3-7
covariance method 7-23
cross spectral density 3-27
modified covariance method 7-24
Yule-Walker method 7-25
See also parametric modeling

export
filter 5-32
window 7-650

F
fast Fourier transforms 1-46

example 1-47
frequency response 1-26
Goertzel algorithm 7-341
implementation 1-23
output 1-48

fcfwrite method 7-139
FDATool

exporting to Simulink 5-36
fdatool GUI 7-255

analysis buttons 5-15
computing coefficients 5-14
design methods 5-9
exporting filters 5-32
filter architecture 5-26
filter design specification 5-10
filter implementation 5-26
filter order specification 5-10
filters structure 5-26

Index
frequency response specification 5-12
group delay 5-15
importing 5-29
impulse response 5-15
magnitude response 5-15
M-files 5-43
opening 5-7
phase delay 5-15
phase response 5-15
pole-zero plots 5-15
response type 5-8
saving coefficients 5-32
second analysis 5-15
sessions 5-46
step response 5-15

FFT
See fast Fourier transforms

fftcoeffs method 7-139
fftfilt function 7-259
fftshift function 7-262
Filter block 5-36
filter design

sptool Filter Designer GUI 6-11
See also fdatool GUI

filter function 7-263
description 1-18

filter method 7-139
Filter Viewer

introduction 7-589
open 6-14
printing 6-28

Filter Visualization Tool
See fvtool GUI

filternorm function 7-265
filters

analog 2-9
analog lowpass 7-30

analog lowpass prototype 7-55
anti-causal 1-21
anti-symmetric 2-27
bit reversal 7-38
Butterworth 7-56
Butterworth (generalized) 2-15
Butterworth order 7-61
C header file 5-40
Chebyshev Type I 7-91
Chebyshev Type I lowpass prototype 7-78
Chebyshev Type I order 7-79
Chebyshev Type II 7-96
Chebyshev Type II order 7-84
coefficients 1-16, 1-17
coefficients in sptool GUI 6-35
convert coefficients to autocorrelation 7-471
convert from reflection coefficients 7-498
convert to reflection coefficients 7-473
convolution 1-15
design 2-5, 6-11
digit reversal 7-206
discretization 2-45
elliptic 7-242
elliptic order 7-249
equiripple 2-23
export 5-32
filter and filtfilt functions comparison

1-21
filter function 1-17
filtstates object 7-270, 7-271
FIR 7-293
FIR design 2-23
FIR single band 2-21
frequency data 7-371
frequency domain 1-23
frequency transformations 2-42
fvtool GUI 7-314
Index-9

Index

Ind
implementation 2-50
importing to sptool GUI 6-40
initial conditions using dfilt 7-145
initial conditions using filter function 1-18
initial conditions using filtic function

7-268
inverse analog 7-371
inverse discrete-time 7-375
lattice/ladder 1-39
linear phase 2-18
linear prediction 4-17
linear system models 1-34
linear time-invariant digital 1-3
median filtering 4-34
median function 7-408
minimax 2-23
minimum phase 7-476
norm 7-265
numerator and denominator length 7-254
objects 7-135
order 1-16
overlap-add using dfilt.fftfir 7-185
overlap-add using fftfilt 7-259
phase delay 7-444
phase distortion removal 1-20
phase modulation 4-30
phase response 7-447
pole-zero editor 5-22
sampling frequency 5-19
saving 5-44
Savitzky-Golay 7-526
Savitzky-Golay design 7-521
Schur realizations 7-518
second-order sections 1-39
second-order sections filtering 7-541
second-order sections IIR 7-541
specfications 2-7
ex-10
sptool GUI Filter Designer 6-11
states 7-145
step response 7-600
structures 2-50
types 1-16
viewing 7-314
zero-phase 7-267
zero-phase implementation 1-21
zero-phase response 7-668
See also fdatool GUI, FIR filters, IIR filters,

digital filters, analog filters
filtfilt function 7-267

filter function comparison 1-21
filtic function 7-268
filtstates object 7-270, 7-271
FIR filters 2-17

arbitrary response 2-36
complex response 7-69
constrained least square 2-30
differentiators 2-29
equiripple 2-23
example 6-21
frequency domain 1-23
frequency response 7-277
Hilbert transformers 2-27
IIR filter comparison 2-17
implementation 1-18
interpolation 7-368
Kaiser windows 4-12
lattice/ladder 1-39
least square and equiripple comparison 2-24
least square linear phase 7-288
least square multiband 2-33
least square weighted 2-34
linear phase 2-18
linear phase Parks-McClellan 7-293
multiband 2-23

Index
multiband example 2-22
nonlinear phase response 7-69
order estimation 7-300
overlap-add 7-259
Parks-McClellan method 7-293
reduced delay response 2-38
resample 1-20
sptool GUI Filter Designer 6-11
standard band 2-21
types 7-298
window-based 7-273
windowing method 2-19

fir1 function 7-273
example 2-21

fir2 function 7-277
fircls function 7-280
fircls1 function 7-284
firls function 7-288

differentiators 2-29
firpm comparison 2-24
weight vectors 2-27

firpm function 7-293
differentiators 2-29
example 2-24
filter characteristics 7-298
firls comparison 2-24
Hilbert transformers 2-27
order estimation 7-300
weight vectors 2-27

firpmord function 7-300
example 2-17

firrcos function 7-303
firtype method 7-139
Filter Designer GUI

See fdatool GUI
flattopwin flat top window function 7-305

FM
See frequency modulation

fopen function 1-14
Fourier transforms

See also discrete Fourier transforms, fast
Fourier transforms

fread function 1-14
freqs function 7-307
frequency 7-294

analog A-1
angular 2-2
center 2-44
cutoff 2-42
demodulation 7-133
digital A-1
estimation 3-42
modulation 7-409
normalization 2-2
Nyquist 2-2, A-1
prewarping 7-33
spectrogram 7-542
vectors 2-26

frequency domain
duality with time-domain 1-23
filters 1-23
FIR filtering 1-20
lowpass to bandpass transformation 7-392
lowpass to bandstop transformation 7-395
lowpass to highpass transformation 7-397
transformation functions 2-42

frequency domain based modeling
See parametric modeling

frequency modulation 7-410
frequency response 1-26

Bessel filters 2-13
Butterworth filters 2-9
Chebyshev Type I filters 2-10
Index-11

Index

Ind
Chebyshev Type II filters 2-11
elliptic filters 2-12
error minimization 2-23
evaluating 1-26
example 1-27
inverse 7-371
Kaiser window 4-10
linear phase 2-18
magnitude 1-29
monotonic 2-9
multiband 2-14
phase 1-29
plotting 1-27
sampling frequency 1-26

freqz function 7-310
sampling frequencies 1-26

freqz method 7-139
From Disk radio button 6-44
FVTool

SOS view settings 7-321
fvtool GUI 7-314

G
gauspuls function 7-333

pulse trains 1-11
gaussfir 7-335
Gaussian monopulse 7-339
Gauss-Newton method

analog domain 7-374
discrete domain 7-377

gausswin Gaussian window function 7-337
generalized Butterworth filters 2-15
generalized cosine windows 4-7
generalized filters 2-5
generate method 7-528
ex-12
Gibbs effect 2-20
reduced by window 4-2

gmonopuls function 7-339
GMSK 7-335
goertzel function 7-341
graphical user interface (GUI) 1-4

See also sptool GUI, fdatool GUI, wintool
GUI, fvtool GUI, wvtool GUI

group delay 1-30
comparison to phase delay 2-18
example 1-31
grpdelay function 7-345
passband 2-13

grpdelay function 7-345
example 1-31

grpdelay method 7-139

H
halfrange method 7-220
hamming window function 7-349

comparison to boxcar 3-18
comparison to Hann 4-7
example 2-20

hann window function 7-351
comparison to Hamming 4-7

hanning
See hann window function

highpass filters
Butterworth 7-56
Butterworth order 7-62
Chebyshev Type I 7-91
Chebyshev Type I order 7-80
Chebyshev Type II 7-96
Chebyshev Type II order 7-85
elliptic 7-243
elliptic order 7-250

Index
FIR 7-275
FIR example 2-22
lowpass transformation 7-397

hilbert transform function 7-353
analytic signals 2-28
description 4-46
example 2-28
using firpls 7-289
using firpm 7-295

homomorphic systems 4-28

I
icceps function 7-355

example 4-30
idct function 7-356

example 4-44
ideal lowpass filters 2-19

See also lowpass filters
ifft function

example 1-48
ifft2 function

example 1-48
IIR filters

analog prototype 2-6
Bessel 2-13
Butterworth 2-9
Chebyshev Type I 2-10
Chebyshev Type II 2-11
comparison 2-9
comparison to FIR 2-4
design 2-4
elliptic 2-12
Filter Designer GUI 6-11
frequency domain implementation 1-23
frequency response 2-14
generalized Butterworth 2-15

lattice/ladder 1-39
Levinson-Durbin recursion 7-390
maximally flat 2-15
multiband 2-14
order estimation 2-7
plotting responses 2-14
Prony’s method 7-477
specifications 2-7
Steiglitz-McBride iteration 7-606
yulewalk function 7-666
Yule-Walker example 2-14
zero-phase implementation 1-21
See also direct design

image processing 1-48
impinvar function 7-359
Import dialog box

sptool from disk 6-44
sptool from workspace 6-22

impulse invariance 7-359
example 2-45

impulse response 1-24
 impz function 7-362
ideal 2-19
impulse invariance 2-45

impz function 7-362
impz method 7-139
impzlength method 7-139
indexing 1-16
inf-norm 7-265
info method

dfilt function 7-139
sigwin function 7-528

initial conditions
using dfilt states 7-145
using filtfilt function 1-22
using filtic function 7-268

instantaneous attributes 4-47
Index-13

Index

Ind
interpolation
bandlimited 7-532
FIR filters 7-368
interp function 7-366

interval notation A-1
intfilt function 7-368
inverse cepstrum, complex 4-30
inverse discrete cosine transforms 7-356

accuracy of signal reconstruction 4-46
inverse discrete Fourier transforms 1-46

example 1-46
matrices 7-205
two-dimensional 1-48

inverse filters
analog 7-371
discrete 7-375

inverse Fourier transforms
 See sinc function

inverse-sine parameters
transformations from reflection coefficients

7-378
transformations to reflection coefficients

7-496
invfreqs function 7-371

example 4-22
invfreqz function 7-375

example 4-22
is2rc function 7-378
isallpass method 7-139
iscascade method 7-140
isfir method 7-140
islinphase method 7-140
ismaxphase method 7-140
isminphase method 7-140
isparallel method 7-140
isreal method 7-140
isscalar method 7-140
ex-14
issos method 7-140
isstable method 7-140

K
kaiser window function 7-379

discussion 4-9
example 3-19
FIR filters 4-12

kaiserord function 7-381

L
ladder filters

See lattice/ladder filters
Lagrange interpolation filter 7-368
Laplace transforms 1-43
lar2rc function 7-386
latc2tf function 7-387

example 1-42
latcfilt function 7-388

example 1-20
lattice/ladder filters 1-39

implementation 1-40
latcfilt function 1-42
Schur algorithm 7-518
transfer functions conversions 7-611

least squares method FIR 7-288
levinson function 7-390

example 4-17
parametric modeling 4-17

line
drawing in FDATool 5-18

line spectral frequencies
transformation from prediction polynomial

7-472
transformation to prediction polynomial 7-405

Index
line style 6-51
linear models

See models
linear phase filters 2-18

least squares FIR 7-288
optimal FIR 7-293

linear prediction
coefficients 7-401
modeling 4-17

linear system transformations
See conversions

log area ratio parameters
transformation from reflection coefficients

7-386
transformation to reflection coefficients 7-497

lowpass filters
Bessel 7-31
Butterworth 7-56
Butterworth order 7-62
Chebyshev Type I 7-91
Chebyshev Type I order 7-80
Chebyshev Type II 7-96
Chebyshev Type II order 7-85
cutoff frequency translation 7-399
decimation 7-128
elliptic 7-242
elliptic order 7-250
FIR 2-22
ideal 2-19
impulse invariance 2-46
impulse response 2-19
interpolation 7-366

lp2bp function 7-392
example 2-44

lp2bs function 7-395
lp2hp function 7-397
lp2lp function 7-399

lpc
See linear predictive coding, Prony’s method,

linear prediction
lpc function 7-401
lse 7-339
lsf2poly function 7-405

M
magnitude

Fourier transforms 1-47
frequency response extraction 1-29
plots 6-50
transfer functions 3-27

match frequency prewarping 7-33
MAT-files

dpss.mat 3-27
format, converting to 1-14
importing 1-14
sptool GUI 6-44

matrices
convolution 1-42
convolution function 7-110
data 1-5
discrete Fourier transforms 7-205
inverse discrete Fourier transforms 7-205

matrix forms
See state-space forms

maxflat function 7-406
discussion 2-15

maximally flat filters
See maxflat function

maximum entropy estimate 3-34
mean-square spectrum 7-223
medfilt1 function 7-408

example 4-34
Index-15

Index

Ind
median filters
See medfilt1 function

MEX-files 1-14
M-files 1-4, 5-43
minimax method

FIR filters 2-23
See also Parks-McClellan method

minimum phase 7-476
models 1-34

autoregressive Burg 7-22
autoregressive Burg PSD 7-421
autoregressive covariance 7-23
autoregressive covariance PSD 7-426
autoregressive modified covariance 7-24
autoregressive modified covariance PSD

7-451
autoregressive Yule-Walker 7-25
autoregressive Yule-Walker PSD 7-489
bilinear transformations 2-47
transformations 2-47

modified covariance method 3-41
modulate function 7-409

definition 4-35
example 4-36
See also amplitude modulation

modulate function
time vector 4-36

modulation 4-35
moving-average (MA) filters 1-16

See also FIR filters
mscohere function 7-412
msspectrum method 7-549
msspectrumopts method 7-550
MTM

See multitaper method
ex-16
multiband filters
FIR 2-22
IIR 2-14

multichannel data 1-8
multiple signal classification method (MUSIC)

correlation matrices 7-113
discussion 3-7
eigenvector method 7-432
example 3-42
pseudospectrum 7-463

multiplicity of zeros and poles 6-49
multirate filters 1-20
multitaper method (MTM) 3-24
multi-taper spectrum object 7-569
MUSIC algorithm

See multiple signal classification method
MUSIC spectrum object 7-573

N
nonrecursive filters

See FIR filters
normalization 3-3

cross-correlation 7-657
modified periodogram 3-17
periodogram bias 3-16
Welch’s power spectral density 3-23

normalizefreq method 7-220
nsections method 7-140
nstages method 7-140
nstate method 7-140
nuttallwin Nuttall window function 7-417
Nyquist frequency A-1

Index
O
object

changing properties 7-145
copying 7-556
dspdata 7-218
dspopts 7-239
filter 7-135
filtstates 7-270, 7-271
spectrum 7-547
viewing properties 7-144
window 7-528

onesided method 7-220
options object 7-239
order

bit reversed 7-38
Butterworth estimation 7-61
Chebyshev Type I estimation 7-79
digit reversed 7-206
elliptic estimation 7-249
estimation 2-7
FIR optimal estimation 7-300

order method 7-141
oscillators 7-642
overlap-add filter 7-185
overlap-add method

FIR filter implementation 1-23
FIR filters 7-259

P
Panner check box 6-51
parallel method 7-141
parametric modeling 4-15

applications 4-15
covariance method 7-23
frequency domain based 4-22
linear predictive coding 4-17

modified covariance method 7-24
Steiglitz-McBride method 4-20
summary 2-5
techniques 4-15
time-domain based 4-17
Yule-Walker method 7-25

parentheses A-1
Parks-McClellan method 7-293
partial fraction expansion 1-43

residue 1-37
z-transform 7-505

parzenwin Parzen window function 7-419
passband

Chebyshev Type I 2-10
equiripple 2-12
group delay 2-13

pburg function 7-421
example 3-37

PCM 7-633
pcov function 7-426

example 3-41
peig function 7-432
period in sequence 7-519
periodic sinc functions 7-208

See also Dirichlet functions
periodogram function 7-439

discussion 3-9
spectrum object 7-578

phase
delay 1-31
demodulation 7-133
distortion 1-21
Fourier transforms 1-47
frequency response 1-29
group delay 7-345
linear delay 2-18
modulation 7-410
Index-17

Index

Ind
transfer functions 3-27
unwrapping 1-29

phase response 7-447
phasedelay function 7-444
phasez function 7-447
phasez method 7-141
plot method 7-221
plots

analog filters 2-14
coherence function 3-29
complex cepstrum 4-29
DFT 1-47
frequency response 1-27
group delay 1-31
magnitude 6-50
magnitude and phase 1-29
phase 1-29
phase delays 1-31
strip plots 7-609
transfer functions 3-28
zero-pole 1-32
zplane functioin 7-676

plug-ins 6-51
pmcov function 7-451

example 3-41
p-model

See parametric modeling
pmtm function 7-457
pmusic function 7-463
pole-zero editor 5-22
pole-zero filters

See IIR filters
poly function

example 1-35
poly2ac function 7-471
poly2lsf function 7-472
poly2rc function 7-473
ex-18
polynomials
division 4-41
roots 1-35
scaling 7-476
stability check 7-473
stabilization 7-475

polyphase filtering techniques 1-20
polyscale function 7-475
polystab function 7-476
power spectral density 3-5

Burg estimation 7-421
Burg estimation example 3-36
covariance estimation 7-426
covariance estimation example 3-41
dspdata object 7-228
eigenvector stimation 7-511
modified covariance estimation 7-451
multitaper estimation 7-457
multitaper estimation example 3-24
MUSIC estimation 7-463
MUSIC estimation example 3-42
periodogram bias 3-16
periodogram normalization 3-16
plots 6-18
sptool GUI 6-42
units 3-6
Welch’s bias 3-23
Welch’s estimation 7-483
Welch’s estimation bias 3-23
Welch’s estimation example 3-20
Welch’s normalization 3-23
Yule-Walker estimation 7-489
Yule-Walker estimation example 3-34

powerest method 7-554
prediction filters 4-17

Index
prediction polynomials
transformations from line spectral frequencies

7-405
transformations to line spectral frequencies

7-472
Preferences menu item 6-51
prewarping 7-33
Print dialog box 6-31
print to figure 5-20
prolate-spheroidal windows 4-9
prony function 7-477

example 4-18
Prony’s method

See prony function
psd method 7-550
psdopts method 7-552
pseudospectrum object 7-233

eigenvector method 7-432
MUSIC algorithm 7-469

pseudospectrumopts object 7-554
pulse position demodulation 7-133
pulse position modulation 4-36
pulse time modulation 7-410
pulse train generator 7-479
pulse trains

example 1-11
Prony’s method 7-479
pulstran function 1-11

pulse width demodulation 7-133
pulse width modulation 7-410
pulse-shaping filter 7-335
pwelch function 7-483
pyulear function 7-489

Burg comparison 3-37
example 3-34

Q
quadrature amplitude demodulation 7-133
quadrature amplitude modulation 7-410
quantization

decoding 7-630
encoding 7-633
reduction with filter norms 7-265

quantized filters
cell arry coefficients 7-534
matrix coefficients 7-68

R
radar applications 4-33
raised cosine filters 7-303
range notation A-1
rc2ac function 7-495
rc2is function 7-496
rc2lar function 7-497
rc2poly function 7-498
rceps function 7-499
rceps function

example 4-30
realizemdl method 7-142
rebuffering 7-46
rectangular windows 4-3

rectwin function 7-501
rectpuls function 7-500
rectwin function 7-501

example 4-3
recursive filters

See IIR filters
references

general DSP 1-49
special topics 4-48
statistical signal processing 3-45
Index-19

Index

Ind
reflection coefficients 1-40
autocorrelation sequence conversion 7-495
conversion from filter coefficients 7-473
conversion to prediction polynomial 7-498
definition 1-39
Schur algorithm 7-518
transformation from inverse sine parameters

7-496
transformation from log area ratio parameters

7-497
transformation to inverse sine parameters

transformation to 7-378
transformation to log area ratio parameters

7-386
rejection area 5-18
Remez exchange algorithm 7-293
removestage method 7-143
resample function 7-502

example 4-26
resampling

See decimation, interpolation
residue forms

See partial fraction expansion
residuez function 7-505
rlevinson function 7-508
rooteig function 7-511
rootmusic function 7-514

eigenvector method 7-511
roots

polynomials 1-35
rulers

sptool GUI 6-51
ex-20
S
sampling frequency 5-19

decrease 7-209
FIR filters 1-20
freqz function 1-28
increase 7-640
integer factor decrease 7-128
integer factor increase 7-366
irregularly spaced data 4-27
Nyquist interval 7-242
range 1-28
resample function 7-502
resampling discussion 4-26
spacing 1-28
using upfirdn function 1-20

saved filters 5-44
saving data

Spectrum Viewer 6-38
Savitzky-Golay filters

design 7-521
filtering 7-526

sawtooth function 7-517
example 1-9

sawtooth wave 1-9
scaling 7-475
Schur algorithm 7-518
schurrc function 7-518
second-order section forms

zero-pole-gain conversion to 7-539
second-order sections 1-39

cell array coefficients 7-534
conversion from transfer function 7-612
conversion to in fdatool 5-27
conversion to transfer functions 7-537
filter 7-541
filters 7-541
matrices 1-39

Index
matrix coefficients 7-68
sptool GUI 6-41
state-space conversion from 7-593
state-space conversion to 7-535
view 7-321
zero-pole-gain conversion from 7-670

seqperiod function 7-519
setstage method 7-143
sgolay function 7-521
sgolayfilt function 7-526
Signal Browser 6-8

axis labels 6-51
markers preferences 6-51
overview 6-8
Panner preferences 6-51
printing 6-28
signals, measuring 6-53
zooming, preferences 6-51

signals 2-28
adding noise 1-7
analytic 4-46
aperiodic 1-10
applications 4-46
array 6-8
buffering 7-46
carrier 4-35
chirp 1-10
continuous (analog) 1-3
DCT coefficients reconstruction 4-45
differentiators 2-29
diric function 1-13
discrete (digital) 1-3
generating 1-8
measurements 6-53
minimum phase reconstruction example

7-499
modulation 7-409

multichannel 3-4
periodic 1-9
plotting 1-7
properties 4-46
pulstran function 1-11
rebuffering 7-46
representing 1-5
sawtooth 1-9
sawtooth function 7-517
sinc 1-12
sinusoidal 1-7
square function 7-592
square wave 1-9
triangle 7-517

sigwin function 7-528
Simulink

exporting from FDATool 5-36
sinc function 7-532

Dirichlet 7-208
example 1-12

Slepian sequences
 See discrete prolate spheroidal sequences

sonar applications 4-33
sos method 7-143
SOS view settings 7-321
sos2cell function 7-534
sos2ss function 7-535
sos2tf function 7-537
sos2zp function 7-539
sosfilt function 7-541
spectral analysis 3-5

cross spectral density 3-27
power spectrum 3-5
Spectrum Viewer 6-18
See also spectral estimation
Index-21

Index

Ind
spectral density 3-5
measurements 6-53
plots 6-18
Spectrum Viewer 6-18
units 3-6
See also power spectral density, cross spectral

density
spectral estimation 3-9

AR covariance method 7-23
AR modified covariance method 7-24
AR Yule-Walker method 7-25
Burg method 7-421
Burg method example 3-36
covariance method 7-426
eigenvector method 7-432
modified covariance method 7-451
multitaper method 7-457
MUSIC method 7-464
periodograms 7-443
root eigenvector 7-511
root MUSIC 7-514
Welch’s method bias 3-23
Welch’s method discussion 3-20
Welch’s method example 3-7
Yule-Walker AR method 7-489
Yule-Walker AR method example 3-34

spectrogram 7-542
definition 4-33
VCO example 7-642

spectrogram function 7-542
example 4-33

spectrum
mask 5-18

spectrum estimation methods 7-218
mean-square 7-223
psd 7-228
pseudospectrum 7-233
ex-22
spectrum function 7-547
burg 7-558
cov 7-560
eigenvector 7-562
estimation methods 7-547
mcov 7-567
methods 7-548
mtm 7-569
music 7-573
periodogram 7-578
welch 7-581
yulear 7-585

Spectrum Viewer 6-18
activating 6-18
axis parameters 6-51
markers, preferences 6-51
measurements 6-53
opening 6-18
overview 6-18
printing 6-31
rulers 6-53
spectra structures 6-38
spectral density plots 6-18
windows 6-19
zooming 6-51

spectrum.mtm function
example 3-25

speech processing
parametric modeling 4-15
resampling 4-27

spline function 4-27
sptool GUI 7-587

colors, customizing 6-51
context-sensitive help 6-7
customizing 6-51
data entering 1-14
data objects 6-45

Index
data structures 6-3
editing 6-46
example 6-21
exporting data 6-33
filter coefficients 6-35
filter design 6-23
filter importing 6-40
filter parameters 6-35
filter saving 6-34
filtering 6-25
filters 6-40
help 6-7
Import dialog 6-22
importing filters and spectra 6-40
importing signals 6-21
items, selecting 6-45
line style 6-51
MAT-files 6-44
MATLAB workspace 6-3
multiselection of items 6-45
operation 6-3
preferences 6-51
printing 6-31
rulers 6-53
sample frequency 6-36
saving 6-33
second-order section forms 6-41
signal analysis 6-27
signal measurement 6-53
signal playing 6-28
sound 6-28
spectra analysis 6-29
spectra import 6-42
spectral densities import 6-40
spectral densities plot 6-42
Spectrum Viewer 6-29
state-space forms 6-41

transfer functions 6-40
transfer functions export 6-35
tutorial 6-3
workspace 6-3
zero-pole-gain forms 6-41

square function 7-592
example 1-9

square wave
 See square function

ss method 7-143
ss2sos function 7-593
ss2tf function 7-597
ss2zp function 7-598
stability check

polynomials 7-473
stabilization 7-476
standards, digital audio tape 4-26
startup transients 1-22
state-space forms 1-36

continuous time 1-43
scalar 1-36
second-order section conversion from 7-535
second-order section conversion to 7-593
sptool GUI 6-41
transfer functions conversions to 7-615
zero-pole-gain conversion from 7-674
zero-pole-gain convertion to 7-598

statistical operations 3-2
See also autocorrelation sequences,

cross-correlation sequences,
cross-covariance

Steiglitz-McBride method 7-606
example 4-20

step response 7-600
stepz method 7-144
stepz function 7-600
Index-23

Index

Ind
stmcb function 7-606
example 4-20

stopband
Chebyshev Type II 2-11
elliptic 2-12

strips function plots 7-609
structures

conversion 5-26
conversion round off 1-44
lattice/ladder 1-39
transposed direct-form II 1-18

swept-frequency cosine generator
See chirp

system identification 4-18

T
tapers (PSD estimates) 3-24
taps 2-18
tf method 7-144
tf2latc function 7-611

example 1-40
tf2sos function 7-612
tf2ss function 7-615
tf2zp function 7-617
tfestimate function 7-621

example 3-27
time series attributes 4-47
time-domain based modeling

See parametric modeling
transfer functions 1-16

coefficients 6-35
discrete time models 1-34
factoring 1-35
lattice conversion to 7-611
partial fractions 1-37
second-order sections conversion from 7-537
ex-24
second-order sections conversion to 7-612
sptool GUI 6-40
state-space conversion to 7-615
Welch’s estimation 3-27
zero-pole-gain forms 1-35

transformations
bilinear 2-47
bilinear function 7-33
frequency 2-42
lowpass analog to bandpass 7-392
lowpass analog to bandstop 7-395
lowpass analog to highpass 7-397
lowpass cutoff change 7-399
models 1-44

transforms 4-42
chirp z-transforms (CZT) 7-123
chirp z-transforms (CZT) discussion 4-42
discrete cosine 7-126
discrete Fourier 1-46
hilbert 7-353
Hilbert discussion 4-46
inverse discrete cosine 7-356
inverse discrete cosine discussion 4-44

transients 1-23
transition band 2-24
transposed direct-form II

initial conditions 7-268
transposed direct-form II structure 1-18
triang triangle window function 7-625

Bartlett comparison 4-4
tripuls function 7-627
Tukey window function

See tukeywin
tukeywin 7-628
two-dimensional operations 1-48
twosided method 7-221

Index
U
udecode function 7-630
uencode function 7-633
uniform encoding 7-633
unit circle 7-476
unit impulse function 1-8
unit ramp function 1-8
unit sample multichannel 1-8
unit step function 1-8
units of power spectral density (PSD) 3-6
unwrap function

example 1-29
upfirdn function 7-637

example 1-20
resampling 4-27

upsample function 7-640

V
variables

load from disk 6-44
variance 3-4
vco

example 4-39
vco function 7-642
vectors

data representation 1-5
frequency 2-26
indexing 1-16
waveform generation 1-7
weighting 7-289

voltage controlled oscillators 7-642
example 4-39

W
waveforms

See signals
Welch spectrum object 7-581
Welch’s method 3-20

AR Yule-Walker comparison 3-34
bias and normalization 3-23
Burg comparison 3-38
MTM comparison 3-27
nonparametric system identification 3-27
power spectral density estimation 3-27

white noise 1-7
wholerange method 7-221
window function 7-644
windows

Bartlett 7-28
Bartlett comparison 4-4
Bartlett-Hanning 7-26
Blackman 7-40
Blackman comparison 4-7
Blackman-Harris 7-42
Blackman-Harris vs. Nuttall 7-417
Bohman 7-44
boxcar 2-19
Chebyshev 4-14, 7-89
cosine 4-7
de la Valle-Poussin 7-419
designing 7-647
filters 2-19
FIR filters 2-19, 7-273

multiband filters 2-22
single band design 2-21

fir1 function 2-22
flat top weighted 7-305
Gaussian 7-337
Hamming 7-349
Hamming discussion 4-7
Index-25

Index

Ind
Hamming rectangular example 3-18
Hamming ringing example 2-20
Hann 7-351
Hann example 4-7
Kaiser 7-379
Kaiser discussion 4-9
Kaiser example 3-19
Nuttall 7-417
object 7-528
Parzen 7-419
prolate-spheroidal 4-9
rectangular 7-501
rectangular example 2-19
shapes 4-3
spectral leakage 3-12
triangular 7-625
Tukey 7-628
viewing 7-652
wintool GUI 7-647
wvtool GUI 7-652

wintool GUI 7-647
winwrite method 7-528
Workspace Contents list 6-22
wvtool GUI 7-652

X
xcorr function 7-656
xcorr2 function 7-660
xcov function 7-663
ex-26
Y
yulewalk function 7-666

example 2-15
Yule-Walker AR method

description 3-34
example 3-37
Welch’s method comparison 3-34

Yule-Walker spectrum object 7-585

Z
zero frequency component, centering 1-48
zero-order hold

See averaging filters
zero-phase

filtering 7-267
response 7-668

zerophase function 7-668
zerophase method 7-144
zero-pole

analysis 7-676
multiplicity 6-49
plots 1-32
transfer functions 1-35

zero-pole-gain 1-35
zero-pole-gain forms 1-43

convert from second-order sections 7-539
convert from state-space 7-598
convert to second-order sections 7-670
convert to state-space 7-674
sptool GUI 6-41

zoom
sptool GUI 6-51

zp2sos function 7-670
zp2ss function 7-674
zp2tf function 7-675
zpk method 7-144

Index
zplane function 7-676
zplane method 7-144
z-transforms

chirp z 4-42
czt function 7-123
definition 1-34
discrete Fourier transforms 1-46
equation 1-16
Index-27

Index

Ind
ex-28

	Signal Processing Basics
	What Is the Signal Processing Toolbox?
	Signal Processing Toolbox Central Features
	Filtering and FFTs
	Signals and Systems
	Key Areas: Filter Design and Spectral Analysis
	Interactive Tools
	Extensibility

	Representing Signals
	Vector Representation

	Waveform Generation: Time Vectors and Sinusoids
	Common Sequences: Unit Impulse, Unit Step, and Unit Ramp
	Multichannel Signals
	Common Periodic Waveforms
	Common Aperiodic Waveforms
	The pulstran Function
	The Sinc Function
	The Dirichlet Function

	Working with Data
	Filter Implementation and Analysis
	Convolution and Filtering
	Filters and Transfer Functions
	Filter Coefficients and Filter Names

	Filtering with the filter Function

	The filter Function
	Other Functions for Filtering
	Multirate Filter Bank Implementation
	Anti-Causal, Zero-Phase Filter Implementation
	Frequency Domain Filter Implementation

	Impulse Response
	Frequency Response
	Digital Domain
	Analog Domain
	Magnitude and Phase
	Delay

	Zero-Pole Analysis
	Linear System Models
	Discrete-Time System Models
	Transfer Function
	Zero-Pole-Gain
	State-Space
	Partial Fraction Expansion (Residue Form)
	Second-Order Sections (SOS)
	Lattice Structure
	Convolution Matrix

	Continuous-Time System Models
	Linear System Transformations

	Discrete Fourier Transform
	Selected Bibliography

	Filter Design and Implementation
	Filter Requirements and Specification
	IIR Filter Design
	Classical IIR Filter Design Using Analog Prototyping
	Complete Classical IIR Filter Design
	Designing IIR Filters to Frequency Domain Specifications

	Comparison of Classical IIR Filter Types
	Butterworth Filter
	Chebyshev Type I Filter
	Chebyshev Type II Filter
	Elliptic Filter
	Bessel Filter
	Direct IIR Filter Design
	Generalized Butterworth Filter Design

	FIR Filter Design
	Linear Phase Filters
	Windowing Method
	Standard Band FIR Filter Design: fir1
	Multiband FIR Filter Design: fir2

	Multiband FIR Filter Design with Transition Bands
	Basic Configurations
	The Weight Vector
	Anti-Symmetric Filters / Hilbert Transformers
	Differentiators

	Constrained Least Squares FIR Filter Design
	Basic Lowpass and Highpass CLS Filter Design
	Multiband CLS Filter Design
	Weighted CLS Filter Design

	Arbitrary-Response Filter Design
	Multiband Filter Design
	Filter Design with Reduced Delay

	Special Topics in IIR Filter Design
	Analog Prototype Design
	Frequency Transformation
	Filter Discretization
	Impulse Invariance
	Bilinear Transformation

	Filter Implementation
	Using dfilt

	Selected Bibliography

	Statistical Signal Processing
	Correlation and Covariance
	Bias and Normalization
	Multiple Channels

	Spectral Analysis
	Spectral Estimation Method
	Nonparametric Methods
	Periodogram
	The Modified Periodogram
	Welch’s Method
	Bias and Normalization in Welch’s Method
	Multitaper Method
	Cross-Spectral Density Function
	Transfer Function Estimate
	Coherence Function

	Parametric Methods
	Yule-Walker AR Method
	Burg Method
	Covariance and Modified Covariance Methods
	MUSIC and Eigenvector Analysis Methods
	Eigenanalysis Overview

	Selected Bibliography

	Special Topics
	Windows
	Graphical User Interface Tools
	Basic Shapes
	Generalized Cosine Windows
	Kaiser Window
	Kaiser Windows in FIR Design

	Chebyshev Window

	Parametric Modeling
	Time-Domain Based Modeling
	Linear Prediction
	Prony’s Method (ARMA Modeling)
	Steiglitz-McBride Method (ARMA Modeling)

	Frequency-Domain Based Modeling

	Resampling
	Cepstrum Analysis
	Inverse Complex Cepstrum

	FFT-Based Time-Frequency Analysis
	Median Filtering
	Communications Applications
	Deconvolution
	Specialized Transforms
	Chirp z-Transform
	Discrete Cosine Transform
	Hilbert Transform

	Selected Bibliography

	FDATool: A Filter Design and Analysis GUI
	Overview
	Filter Design Methods
	Advanced Filter Design Methods

	Using the Filter Design and Analysis Tool
	Analyzing Filter Responses
	Filter Design and Analysis Tool Panels
	Getting Help

	Opening FDATool
	Choosing a Response Type
	Choosing a Filter Design Method
	Setting the Filter Design Specifications
	Filter Order
	Options
	Bandpass Filter Frequency Specifications
	Bandpass Filter Magnitude Specifications

	Computing the Filter Coefficients
	Analyzing the Filter
	Using Data Markers
	Drawing Spectral Masks
	Changing the Sampling Frequency
	Displaying the Response in FVTool

	Editing the Filter Using the Pole/Zero Editor
	Converting the Filter Structure
	Converting to a New Structure
	Converting to Second-Order Sections

	Importing a Filter Design
	Filter Structures
	Direct-form
	Lattice
	Discrete-time Filter (dfilt object)
	Multirate Filter (mfilt object)

	Exporting a Filter Design
	Exporting Coefficients or Objects to the Workspace
	Exporting Coefficients to an ASCII File
	Exporting Coefficients or Objects to a MAT-File
	Exporting to SPTool
	Exporting to Simulink

	Generating a C Header File
	Generating an M-File
	Managing Filters in the Current Session
	Saving and Opening Filter Design Sessions

	SPTool: A Signal Processing GUI Suite
	SPTool: An Interactive Signal Processing Environment
	SPTool Data Structures

	Opening SPTool
	Getting Context-Sensitive Help
	Signal Browser
	Opening the Signal Browser

	Filter Designer
	Filter Types
	FIR Filter Methods
	IIR Filter Methods
	Pole/Zero Editor
	Spectral Overlay Feature
	Opening the Filter Designer

	Filter Visualization Tool
	Opening the Filter Visualization Tool
	Filter Visualization Tool Components
	Using Data Markers
	Analysis Parameters

	Spectrum Viewer
	Opening the Spectrum Viewer

	Filtering and Analysis of Noise
	Step 1: Importing a Signal into SPTool
	Step 2: Designing a Filter
	Opening the Filter Designer
	Specifying the Bandpass Filter

	Step 3: Applying a Filter to a Signal
	Step 4: Analyzing a Signal
	Playing a Signal
	Printing a Signal

	Step 5: Spectral Analysis in the Spectrum Viewer
	Creating a PSD Object From a Signal
	Opening the Spectrum Viewer with Two Spectra
	Printing the Spectra

	Exporting Signals, Filters, and Spectra
	Opening the Export Dialog Box
	Exporting a Filter to the MATLAB Workspace

	Accessing Filter Parameters
	Accessing Filter Parameters in a Saved Filter
	The tf Field: Accessing Filter Coefficients
	The Fs Field: Accessing Filter Sample Frequency
	The specs Field: Accessing other Filter Parameters

	Accessing Parameters in a Saved Spectrum

	Importing Filters and Spectra into SPTool
	Importing Filters
	Transfer Function
	State Space
	Zeros, Poles, Gain
	Second Order Sections

	Importing Spectra

	Loading Variables from the Disk
	Selecting Signals, Filters, and Spectra in SPTool
	Editing Signals, Filters, or Spectra in SPTool
	Designing a Filter with the Pole/Zero Editor
	Positioning Poles and Zeros

	Redesigning a Filter Using the Magnitude Plot
	Setting Preferences
	Making Signal Measurements with Markers

	Function Reference
	Functions — Categorical List
	FIR Digital Filter Design
	IIR Digital Filter Design
	IIR FIlter Order Estimation
	Filter Analysis
	Filter Implementation
	Analog Lowpass Filter Prototypes
	Analog Filter Design
	Analog Filter Transformation
	Filter Discretization
	Linear System Transformations
	Windows
	Transforms
	Cepstral Analysis
	Statistical Signal Processing and Spectral Analysis
	Parametric Modeling
	Linear Prediction
	Multirate Signal Processing
	Waveform Generation
	Specialized Operations
	Graphical User Interfaces

	Functions — Alphabetical List
	abs
	ac2poly
	ac2rc
	angle
	arburg
	arcov
	armcov
	aryule
	barthannwin
	bartlett
	besselap
	besself
	bilinear
	bitrevorder
	blackman
	blackmanharris
	bohmanwin
	buffer
	buttap
	butter
	buttord
	cceps
	cell2sos
	cfirpm
	cheb1ap
	cheb1ord
	cheb2ap
	cheb2ord
	chebwin
	cheby1
	cheby2
	chirp
	conv
	conv2
	convmtx
	corrcoef
	corrmtx
	cov
	cplxpair
	cpsd
	czt
	dct
	decimate
	deconv
	demod
	dfilt
	dfilt.cascade
	dfilt.delay
	dfilt.df1
	dfilt.df1sos
	dfilt.df1t
	dfilt.df1tsos
	dfilt.df2
	dfilt.df2sos
	dfilt.df2t
	dfilt.df2tsos
	dfilt.dfasymfir
	dfilt.dffir
	dfilt.dffirt
	dfilt.dfsymfir
	dfilt.fftfir
	dfilt.latticeallpass
	dfilt.latticear
	dfilt.latticearma
	dfilt.latticemamax
	dfilt.latticemamin
	dfilt.parallel
	dfilt.scalar
	dfilt.statespace
	dftmtx
	digitrevorder
	diric
	downsample
	dpss
	dpssclear
	dpssdir
	dpssload
	dpsssave
	dspdata
	dspdata.msspectrum
	dspdata.psd
	dspdata.pseudospectrum
	dspfwiz
	dspopts
	ellip
	ellipap
	ellipord
	eqtflength
	fdatool
	fft
	fft2
	fftfilt
	fftshift
	filter
	filter2
	filternorm
	filtfilt
	filtic
	filtstates
	filtstates.dfiir
	fir1
	fir2
	fircls
	fircls1
	firls
	firpm
	firpmord
	firrcos
	flattopwin
	freqs
	freqspace
	freqz
	fvtool
	gauspuls
	gaussfir
	gausswin
	gmonopuls
	goertzel
	grpdelay
	hamming
	hann
	hilbert
	icceps
	idct
	ifft
	ifft2
	impinvar
	impz
	interp
	intfilt
	invfreqs
	invfreqz
	is2rc
	kaiser
	kaiserord
	lar2rc
	latc2tf
	latcfilt
	levinson
	lp2bp
	lp2bs
	lp2hp
	lp2lp
	lpc
	lsf2poly
	maxflat
	medfilt1
	modulate
	mscohere
	nuttallwin
	parzenwin
	pburg
	pcov
	peig
	periodogram
	phasedelay
	phasez
	pmcov
	pmtm
	pmusic
	poly2ac
	poly2lsf
	poly2rc
	polyscale
	polystab
	prony
	pulstran
	pwelch
	pyulear
	rc2ac
	rc2is
	rc2lar
	rc2poly
	rceps
	rectpuls
	rectwin
	resample
	residuez
	rlevinson
	rooteig
	rootmusic
	sawtooth
	schurrc
	seqperiod
	sgolay
	sgolayfilt
	sigwin
	sinc
	sos2cell
	sos2ss
	sos2tf
	sos2zp
	sosfilt
	spectrogram
	spectrum
	spectrum.burg
	spectrum.cov
	spectrum.eigenvector
	spectrum.mcov
	spectrum.mtm
	spectrum.music
	spectrum.periodogram
	spectrum.welch
	spectrum.yulear
	sptool
	square
	ss2sos
	ss2tf
	ss2zp
	stepz
	stmcb
	strips
	tf2latc
	tf2sos
	tf2ss
	tf2zp
	tf2zpk
	tfestimate
	triang
	tripuls
	tukeywin
	udecode
	uencode
	unwrap
	upfirdn
	upsample
	vco
	window
	wintool
	wvtool
	xcorr
	xcorr2
	xcov
	yulewalk
	zerophase
	zp2sos
	zp2ss
	zp2tf
	zplane

	Technical Conventions
	Index

