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Spike timing dependent plasticity (STDP) is a learning rule that modifies synaptic strength as a function of the relative
timing of pre- and postsynaptic spikes. When a neuron is repeatedly presented with similar inputs, STDP is known to
have the effect of concentrating high synaptic weights on afferents that systematically fire early, while postsynaptic
spike latencies decrease. Here we use this learning rule in an asynchronous feedforward spiking neural network that
mimics the ventral visual pathway and shows that when the network is presented with natural images, selectivity to
intermediate-complexity visual features emerges. Those features, which correspond to prototypical patterns that are
both salient and consistently present in the images, are highly informative and enable robust object recognition, as
demonstrated on various classification tasks. Taken together, these results show that temporal codes may be a key to
understanding the phenomenal processing speed achieved by the visual system and that STDP can lead to fast and
selective responses.
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Introduction

Temporal constraints pose a major challenge to models of
object recognition in cortex. When two images are simulta-
neously flashed to the left and right of fixation, human
subjects can make reliable saccades to the side where there is
a target animal in as little as 120–130 ms [1]. If we allow 20–30
ms for motor delays in the oculomotor system, this implies
that the underlying visual processing can be done in 100 ms
or less. In monkeys, recent recordings from inferotemporal
cortex (IT) showed that spike counts over time bins as small as
12.5 ms (which produce essentially a binary vector with either
ones or zeros) and only about 100 ms after stimulus onset
contain remarkably accurate information about the nature of
a visual stimulus [2]. This sort of rapid processing presumably
depends on the ability of the visual system to learn to
recognize familiar visual forms in an unsupervised manner.
Exactly how this learning occurs constitutes a major challenge
for theoretical neuroscience. Here we explored the capacity
of simple feedforward network architectures that have two
key features. First, when stimulated with a flashed visual
stimulus, the neurons in the various layers of the system fire
asynchronously, with the most strongly activated neurons
firing first—a mechanism that has been shown to efficiently
encode image information [3]. Second, neurons at later stages
of the system implement spike timing dependent plasticity
(STDP), which is known to have the effect of concentrating
high synaptic weights on afferents that systematically fire
early [4,5]. We demonstrate that when such a hierarchical
system is repeatedly presented with natural images, these
intermediate-level neurons will naturally become selective to
patterns that are reliably present in the input, while their
latencies decrease, leading to both fast and informative
responses. This process occurs in an entirely unsupervised
way, but we then show that these intermediate features are
able to support categorization.

Our network belongs to the family of feedforward

hierarchical convolutional networks, as in [6–10]. To be
precise, its architecture is inspired from Serre, Wolf, and
Poggio’s model of object recognition [6], a model that itself
extends HMAX [7] and performs remarkably well with natural
images. Like them, in an attempt to model the increasing
complexity and invariance observed along the ventral path-
way [11,12], we use a four-layer hierarchy (S1–C1–S2–C2) in
which simple cells (S) gain their selectivity from a linear sum
operation, while complex cells (C) gain invariance from a
nonlinear max pooling operation (see Figure 1 and Methods
for a complete description of our model).
Nevertheless, our network does not only rely on static

nonlinearities: it uses spiking neurons and operates in the
temporal domain. At each stage, the time to first spike with
respect to stimulus onset (or, to be precise, the rank of the
first spike in the spike train, as we will see later) is supposed to
be the ‘‘key variable,’’ that is, the variable that contains
information and that is indeed read out and processed by
downstream neurons. When presented with an image, the
first layer’s S1 cells, emulating V1 simple cells, detect edges
with four preferred orientations, and the more strongly a cell
is activated, the earlier it fires. This intensity–latency
conversion is in accordance with recordings in V1 showing
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that response latency decreases with the stimulus contrast
[13,14] and with the proximity between the stimulus
orientation and the cell’s preferred orientation [15]. It has
already been shown how such orientation selectivity can
emerge in V1 by applying STDP on spike trains coming from
retinal ON- and OFF-center cells [16], so we started our
model from V1 orientation-selective cells. We also limit the
number of spikes at this stage by introducing competition
between S1 cells through a one-winner-take-all mechanism: at
a given location—corresponding to one cortical column—
only the spike corresponding to the best matching orienta-
tion is propagated (sparsity is thus 25% at this stage). Note
that k-winner-take-all mechanisms are easy to implement in
the temporal domain using inhibitory GABA interneurons
[17].

These S1 spikes are then propagated asynchronously
through the feedforward network of integrate-and-fire
neurons. Note that within this time-to-first-spike framework,
the maximum operation of complex cells simply consists of
propagating the first spike emitted by a given group of
afferents [18]. This can be done efficiently with an integrate-
and-fire neuron with low threshold that has synaptic
connections from all neurons in the group.

Images are processed one by one, and we limit activity to at
most one spike per neuron, that is, only the initial spike wave
is propagated. Before presenting a new image, every neuron’s
potential is reset to zero. We process various scaled versions
of the input image (with the same filter size). There is one S1–
C1–S2 pathway for each processing scale (not represented on
Figure 1). This results in S2 cells with various receptive field
sizes (see Methods). Then C2 cells take the maximum response
(i.e., first spike) of S2 cells over all positions and scales,
leading to position and scale invariant responses.

This paper explains how STDP can set the C1–S2 synaptic
connections, leading to intermediate-complexity visual fea-
tures, whose equivalent in the brain may be in V4 or IT. STDP
is a learning rule that modifies the strength of a neuron’s
synapses as a function of the precise temporal relations
between pre- and postsynaptic spikes: an excitatory synapse
receiving a spike before a postsynaptic one is emitted is
potentiated (long-term potentiation) whereas its strength is
weakened the other way around (long-term depression) [19].
The amount of modification depends on the delay between

these two events: maximal when pre- and postsynaptic spikes
are close together, and the effects gradually decrease and
disappear with intervals in excess of a few tens of milliseconds
[20–22]. Note that STDP is in agreement with Hebb’s
postulate because presynaptic neurons that fired slightly
before the postsynaptic neuron are those that ‘‘took part in
firing it.’’ Here we used a simplified STDP rule where the
weight modification does not depend on the delay between
pre- and postsynaptic spikes, and the time window is
supposed to cover the whole spike wave (see Methods). We
also use 0 and 1 as ‘‘soft bounds’’ (see Methods), ensuring the
synapses remain excitatory. Several authors have studied the
effect of STDP with Poisson spike trains [4,23]. Here, we
demonstrate STDP’s remarkable ability to detect statistical
regularities in terms of earliest firing afferent patterns within
visual spike trains, despite their very high dimensionality
inherent to natural images.
Visual stimuli are presented sequentially, and the resulting

spike waves are propagated through to the S2 layer, where
STDP is used. We use restricted receptive fields (i.e., S2 cells
only integrate spikes from an s 3 s square neighborhood in
the C1 maps corresponding to one given processing scale)
and weight-sharing (i.e., each prototype S2 cell is duplicated in
retinotopic maps and at all scales). Starting with a random
weight matrix (size ¼ 4 3 s 3 s), we present the first visual
stimuli. Duplicated cells are all integrating the spike train and
compete with each other. If no cell reaches its threshold,
nothing happens and we process the next image. Otherwise
for each prototype the first duplicate to reach its threshold is
the winner. A one-winner-take-all mechanism prevents the
other duplicated cells from firing. The winner thus fires and
the STDP rule is triggered. Its weight matrix is updated, and
the change in weights is duplicated at all positions and scales.
This allows the system to learn patterns despite changes in
position and size in the training examples. We also use local
inhibition between different prototype cells: when a cell fires
at a given position and scale, it prevents all other cells from
firing later at the same scale and within an s/2 3 s/2 square
neighborhood of the firing position. This competition, only
used in the learning phase, prevents all the cells from learning
the same pattern. Instead, the cell population self-organizes,
each cell trying to learn a distinct pattern so as to cover the
whole variability of the inputs.
If the stimuli have visual features in common (which should

be the case if, for example, they contain similar objects), the
STDP process will extract them. That is, for some cells we will
observe convergence of the synaptic weights (by saturation),
which end up being either close to 0 or to 1. During the
convergence process, synapses compete for control of the
timing of postsynaptic spikes [4]. The winning synapses are
those through which the earliest spikes arrive (on average)
[4,5], and this is true even in the presence of jitter and
spontaneous activity [5] (although the model presented in this
paper is fully deterministic). This ‘‘preference’’ for the
earliest spikes is a key point since the earliest spikes, which
correspond in our framework to the most salient regions of
an image, have been shown to be the most informative [3].
During the learning, the postsynaptic spike latency decreases
[4,5,24]. After convergence, the responses become selective
(in terms of latency) [5] to visual features of intermediate
complexity similar to the features used in earlier work [8].
Features can now be defined as clusters of afferents that are
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Author Summary

The paper describes a new biologically plausible mechanism for
generating intermediate-level visual representations using an
unsupervised learning scheme. These representations can then be
used very effectively to perform categorization tasks using natural
images. While the basic hierarchical architecture of the system is
fairly similar to a number of other recent proposals, the key
differences lie in the level of description that is used—individual
neurons and spikes—and in the sort of coding scheme involved.
Essentially, we have found that a combination of a temporal coding
scheme where the most strongly activated neurons fire first with
spike timing dependent plasticity leads to a situation where neurons
in higher order visual areas will gradually become selective to
frequently occurring feature combinations. At the same time, their
responses become more and more rapid. We firmly believe that
such mechanisms are a key to understanding the remarkable
efficiency of the primate visual system.
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consistently among the earliest to fire. STDP detects these
kinds of statistical regularities among the spike trains and
creates one unit for each distinct pattern.

Results

We evaluated our STDP-based learning algorithm on two
California Institute of Technology datasets, one containing
faces and the other motorbikes, and a distractor set
containing backgrounds, all available at http://www.vision.
caltech.edu (see Figure 2 for sample pictures). Note that most
of the images are not segmented. Each dataset was split into a
training set, used in the learning phase, and a testing set, not
seen during the learning phase but used afterward to evaluate
the performance on novel images. This standard cross-
validation procedure allows the measurement of the system’s
ability to generalize, as opposed to learning the specific
training examples. The splits used were the same as Fergus,
Perona, and Zisserman [25]. All images were rescaled to be
300 pixels in height (preserving the aspect ratio) and
converted to grayscale values.

We first applied our unsupervised STDP-based algorithm
on the face and motorbike training examples (separately),
presented in random order, to build two sets of ten class-
specific C2 features. Each C2 cell has one preferred input,
defined as a combination of edges (represented by C1 cells).
Note that many gray-level images may lead to this combina-
tion of edges because of the local max operation of C1 cells
and because we lose the ‘‘polarity’’ information (i.e., which
side of the edge is darker). However, we can reconstruct a
representation of the set of preferred images by convolving

the weight matrix with a set of kernels representing oriented
bars. Since we start with random weight matrices, at the
beginning of the learning process the reconstructed pre-
ferred stimuli do not make much sense. But as the cells learn,
structured representations emerge, and we are usually able to
identify the nature of the cells’ preferred stimuli. Figures 3
and 4 show the reconstructions at various stages of learning
for the face and motorbike datasets, respectively. We stopped
the learning after 10,000 presentations.
Then we turned off the STDP rule and tested these STDP-

obtained features’ ability to support face/nonface and
motorbike/nonmotorbike classification. This paper focuses
more on feature extraction than on sophisticated classifica-
tion methods, so we first used a very simple decision rule
based on the number of C2 cells that fired with each test
image, on which a threshold is applied. Such a mechanism
could be easily implemented in the brain. The threshold was
set at the equilibrium point (i.e., when the false positive rate
equals the missed rate). In Table 1 we report good
classification results with this ‘‘simple-count’’ scheme in
terms of area under the receiver operator characteristic
(ROC) and the performance rate at equilibrium point.
We also evaluated a more complicated classification

scheme. C2 cells’ thresholds were supposed to be infinite,
and we measured the final potentials they reached after
having integrated the whole spike train generated by the
image. This final potential can be seen as the number of early
spikes in common between a current input and a stored
prototype (this contrasts with HMAX and extensions [6,7,26],
where a Euclidian distance or a normalized dot product is
used to measure the difference between a stored prototype

Figure 1. Overview of the Five-Layer Feedforward Spiking Neural Network

As in HMAX [7], we alternate simple cells that gain selectivity through a sum operation, and complex cells that gain shift and scale invariance through a
max operation (which simply consists of propagating the first received spike). Cells are organized in retinotopic maps until the S2 layer (inclusive). S1
cells detect edges. C1 maps subsample S1 maps by taking the maximum response over a square neighborhood. S2 cells are selective to intermediate-
complexity visual features, defined as a combination of oriented edges (here we symbolically represented an eye detector and a mouth detector). There
is one S1–C1–S2 pathway for each processing scale (not represented). Then C2 cells take the maximum response of S2 cells over all positions and scales
and are thus shift- and scale-invariant. Finally, a classification is done based on the C2 cells’ responses (here we symbolically represented a face/nonface
classifier). In the brain, equivalents of S1 cells may be in V1, S2 cells in V1–V2, S2 cells in V4–PIT, C2 cells in AIT, and the final classifier in PFC. This paper
focuses on the learning of C1 to S2 synaptic connections through STDP.
doi:10.1371/journal.pcbi.0030031.g001
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and a current input). Note that this potential is contrast
invariant: a change in contrast will shift all the latencies but
will preserve the spike order. The final potentials reached
with the training examples were used to train a radial basis
function (RBF) classifier (see Methods). We chose this
classifier because linear combination of Gaussian-tuned units
is hypothesized to be a key mechanism for generalization in
the visual system [27]. We then evaluated the RBF on the
testing sets. As can be seen in Table 1, performance with this
‘‘potential þ RBF’’ scheme was better.

Using only ten STDP-learnt features, we reached on those
two classes a performance that is comparable to that of Serre,
Wolf, and Poggio’s model, which itself is close to the best
state-of-the-art computer vision systems [6]. However, their
system is more generic. Classes with more intraclass varia-
bility (for example, animals) appear to pose a problem with
our approach because a lot of training examples (say a few
tens) of a given feature type are needed for the STDP process
to learn it properly.

Our approach leads to the extraction of a small set (here
ten) of highly informative class-specific features. This is in
contrast with Serre et al.’s approach where many more

(usually about a thousand) features are used. Their sets are
more generic and are suitable for many different classes [6].
They rely on the final classifier to ‘‘select’’ diagnostic features
and appropriately weight them for a given classification task.
Here, STDP will naturally focus on what is common to the
positive training set, that is, target object features. The
background is generally not learned (at least not in priority),
since backgrounds are almost always too different from one
image to another for the STDP process to converge. Thus, we
directly extract diagnostic features, and we can obtain
reasonably good classification results using only a threshold
on the number of detected features. Furthermore, as STDP
performs vector quantization from multiple examples as
opposed to ‘‘one-shot learning,’’ it will not learn the noise,
nor anything too specific to a given example, with the result
that it will tend to learn archetypical features.
Another key point is the natural trend of the algorithm to

learn salient regions, simply because they correspond to the
earliest spikes, with the result that neurons whose receptive
fields cover salient regions are likely to reach their threshold
(and trigger the STDP rule) before neurons ‘‘looking’’ at
other regions. This contrasts with more classical competitive

Figure 2. Sample Pictures from the Caltech Datasets

The top row shows examples of faces (all unsegmented), the middle row shows examples of motorbikes (some are segmented, others are not), and the
bottom row shows examples of distractors.
doi:10.1371/journal.pcbi.0030031.g002

Table 1. Classification Results

Model STDP Features (Simple Count) STDP Features (Potential þ RBF) Hebbian Features Serre, Wolf, and Poggio

Equilibrium Point ROC Equilibrium Point ROC Equilibrium Point ROC Equilibrium Point ROC

Faces 96.5 99.1 99.1 100.0 96.9 99.7 98.2 99.8

Motorbikes 95.4 98.4 97.8 99.7 96.5 99.3 98 99.8

doi:10.1371/journal.pcbi.0030031.t001
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learning approaches, where input normalization helps differ-
ent input patterns to be equally effective in the learning
process [28]. Note that ‘‘salient’’ means within our network
‘‘with well-defined contrasted edges,’’ but saliency is a more
generic concept of local differences, for example, in intensity,
color, or orientations as in the model of Itti, Koch, and
Niebur [29]. We could use other types of S1 cells to detect
other types of saliency, and, provided we apply the same
intensity–latency conversion, STDP would still focus on the
most salient regions. Saliency is known to drive attention (see

[30] for a review). Our model predicts that it also drives the
learning. Future experimental work will test this prediction.
Of course, in real life we are unlikely to see many examples

of a given category in a row. That is why we performed a
second simulation, where 20 C2 cells were presented with the
face, motorbike, and background training pictures in random
order, and the STDP rule was applied. Figure 5 shows all the
reconstructions for this mixed simulation after 20,000
presentations. We see that the 20 cells self-organized, some
of them having developed selectivity to face features, and
others to motorbike features. Interestingly, during the

Figure 3. Evolution of Reconstructions for Face Features

At the top is the number of postsynaptic spikes emitted. Starting from random preferred stimuli, cells detect statistical regularities among the input
visual spike trains after a few hundred discharges and progressively develop selectivity to those patterns. A few hundred more discharges are needed to
reach a stable state. Furthermore, the population of cells self-organizes, with each cell effectively trying to learn a distinct pattern so as to cover the
whole variability of the inputs.
doi:10.1371/journal.pcbi.0030031.g003
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learning process the cells rapidly showed a preference for one
category. After a certain degree of selectivity had been
reached, the face-feature learning was not influenced by the
presentation of motorbikes (and vice versa), simply because
face cells will not fire (and trigger the STDP rule) on
motorbikes. Again we tested the quality of these features
with a (multiclass) classification task, using an RBF network
and a ‘‘one-versus-all’’ approach (see Methods). As before, we
tested two implementations: one based on ‘‘binary detections
þ RBF’’ and one based on ‘‘potential þ RBF’’. Note that a
simple detection count cannot work here, as we need at least
some supervised learning to know which feature (or feature
combination) is diagnostic (or antidiagnostic) of which class.

Table 2 shows the confusion matrices obtained on the testing
sets for both implementations, leading, respectively, to 95.0%
and 97.7% of correct classifications on average. It is worth
mentioning that the ‘‘potential þ RBF’’ system perfectly
discriminated between faces and motorbikes—although both
were presented in the unsupervised STDP-based learning
phase.
A third type of simulation was run to illustrate the STDP

learning process. For these simulations, only three C2 cells
and four processing scales (71%, 50%, 35%, and 25%) were
used. We let at most one cell fire at each processing scale. The
rest of the parameters were strictly identical to the other
simulations (see Methods). Videos S1–S3 illustrate the STDP

Figure 4. Evolution of Reconstructions for Motorbike Features

doi:10.1371/journal.pcbi.0030031.g004
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learning process with, respectively, faces, motorbikes, and a
mix of faces, motorbikes, and background pictures. It can be
seen that after convergence the STDP feature showed a good
tradeoff between selectivity (very few false alarms) and
invariance (most of the targets were recognized).

An interesting control is to compare the STDP learning
rule with a more standard hebbian rule in this precise
framework. For this purpose, we converted the spike trains
coming from C1 cells into a vector of (real-valued) C1
activities XC1, supposed to correspond to firing rates (see
Methods). Each S2 cell was no longer modeled at the
integrate-and-fire level but was supposed to respond with a
(static) firing rate YS2 given by the normalized dot product:

YS2 ¼
WS2 � XC1

jXC1j2
ð1Þ

where WS2 is the synaptic weight vector of the S2 cell (see
Methods).

The S2 cells still competed with each other, but the k-
winner-take-all mechanisms now selected the cells with the
highest firing rates (instead of the first one to fire). Only the
cells whose firing rates reached a certain threshold were
considered in the competition (see Methods). The winners
now triggered the following modified hebbian rule (instead of
STDP):

dWS2 ¼ a � YS2 � ðXC1 �WS2Þ; ð2Þ

where a decay term has been added to keep the weight vector
bounded (however, the rule is still local, unlike an explicit
weight normalization). Note that this precaution was not
needed in the STDP case because competition between
synapse naturally bounds the weight vector [4]. The rest of
the network is strictly identical to the STDP case.
Figure 6 shows the reconstruction of the preferred stimuli

for the ten C2 cells after 10,000 presentations for the face
stimuli (Figure 6, top) and the motorbikes stimuli (Figure 6,
top). Again we can usually recognize the face and motorbike
parts to which the cells became selective (even though the
reconstructions look fuzzier than in the STDP case because
the final weights are more graded). We also tested the ability
of these hebbian-obtained features to support face/nonface
and motorbike/nonmotorbike classification once fed into an
RBF, and the results are shown in Table 1 (last column). We
also evaluated the hebbian features with the multiclass setup.
Twenty cells were presented with the same mix of face,
motorbike, and background pictures as before. Figure 7
shows the final reconstructions after 20,000 presentations,
and Table 2 shows the confusion matrix (last columns).
The main conclusion is that the modified hebbian rule is

also able to extract pertinent features for classification
(although performance on these tests appears to be slightly

Figure 5. Final Reconstructions for the 20 Features in the Mixed Case

The 20 cells self-organized, some having developed selectivity to face
features, and some to motorbike features.
doi:10.1371/journal.pcbi.0030031.g005

Figure 6. Hebbian Learning

(Top) Final reconstructions for the ten face features.
(Bottom) The ten motorbike features.
doi:10.1371/journal.pcbi.0030031.g006

Table 2. Confusion Matrices

Predicted with: STDP Features (Binary Detections) STDP Features (Potential) Hebbian Features

Face Motorbike Background Face Motorbike Background Face Motorbike Background

Actual Face 97.2 0.5 2.3 98.2 0 1.8 97.7 0 2.3

Actual Motorbike 0 95.3 4.8 0 97.5 2.5 0.3 96.3 3.5

Actual Background 3.1 4.4 92.4 0.4 2.2 97.3 4.9 3.6 91.6

doi:10.1371/journal.pcbi.0030031.t002
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worse). This is not very surprising as STDP can be seen as a
hebbian rule transposed in the temporal domain, but it was
worth checking. Where STDP would detect (and create
selectivity to) sets of units that are consistently among the
first one to fire, the hebbian rule detects (and creates
selectivity to) sets of units that consistently have the highest
firing rates. However, we believe the temporal framework is a
better description of what really happens at the neuronal
level, at least in ultrarapid categorization tasks. Furthermore,
STDP also explains how the system becomes faster and faster
with training, since the neurons learn to decode the first
information available at their afferents’ level (see also
Discussion).

Discussion

While the ability of hierarchical feedforward networks to
support classification is now reasonably well established (e.g.,
[6–8,10]), how intermediate-complexity features can be
learned remains an open problem, especially with cluttered
images. In the original HMAX model, S2 features were not
learned but were manually hardwired [7]. Later versions used
huge sets of random crops (say 1,000) taken from natural
images and used these crops to ‘‘imprint’’ S2 cells [6]. This
approach works well but is costly since redundancy is very
high between features, and many features are irrelevant for
most (if not all) of the tasks. To select only pertinent features
for a given task, Ullman proposed an interesting criterion
based on mutual information [8], leaving the question of
possible neural implementation open. LeCun showed how
visual features in a convolutional network could be learned in
a supervised manner using back-propagation [10], without
claiming this algorithm was biologically plausible. Although
we may occasionally use supervised learning to create a set of
features suitable for a particular recognition task, it seems
unrealistic that we need to do that each time we learn a new
class. Here we took another approach: one layer with

unsupervised competitive learning is used as input for a
second layer with supervised learning. Note that this kind of
hybrid scheme has been found to learn much faster than a
two-layer backpropagation network [28].
Our approach is a bottom-up one: instead of intuiting good

image-processing schemes and discussing their eventual
neural correlates, we took known biological phenomena that
occur at the neuronal level, namely integrate-and-fire and
STDP, and observed where they could lead at a more
integrated level. The role of the simulations with natural
images is thus to provide a ‘‘plausibility proof’’ that such
mechanisms could be implemented in the brain.
However, we have made four main simplifications. The first

one was to propagate input stimuli one by one. This may
correspond to what happens when an image is flashed in an
ultrarapid categorization paradigm [1], but normal visual
perception is an ongoing process. However, every 200 ms or
300 ms we typically perform a saccade. The processing of
each of these discrete ‘‘chunks’’ seems to be optimized for
rapid execution [31], and we suggest that much can be done
with the feedforward propagation of a single spike wave.
Furthermore, even when fixating, our eyes are continuously
making microsaccades that could again result in repetitive
waves of activation. This idea is in accordance with electro-
physiological recordings showing that V1 neuron activity is
correlated with microsaccades [32]. Here we assumed the
successive waves did not interfere, which does not seem too
unreasonable given that the neuronal time constants (in-
tegration, leak, STDP window) are in the range of a few tens
of milliseconds whereas the interval between saccades and
microsaccades is substantially longer. It is also possible that
extraretinal signals suppress interference by shutting down
any remaining activity before propagating the next wave.
Note that this simplification allows us to use nonleaky
integrate-and-fire neurons and an infinite STDP time
window. More generally, as proposed by Hopfield [33], waves
could be generated by population oscillations that would fire
one cell at a time in advance of the maximum of the
oscillation, which increases with the inputs the cell received.
This idea is in accordance with recordings in area 17 of cat
visual cortex showing that suboptimal cells reveal a systematic
phase lag relative to optimally stimulated cells [34].
The second simplification we have made is to use only five

layers (including the classification layer), whereas processing
in the ventral stream involves many more layers (probably
about ten), and complexity increases more slowly than
suggested here. However, STDP as a way to combine simple
features into more complex representations, based on
statistical regularities among earliest spike patterns, seems
to be a very efficient learning rule and could be involved at all
stages.
The third main simplification we have made consists of

using restricted receptive fields and weight sharing, as do
most of the bio-inspired hierarchical networks [6–10] (net-
works using these techniques are called convolutional net-
works). We built shift and scale invariance by structure (and
not by training) by duplicating S1, C1, and S2 cells at all
positions and scales. This is a way to reduce the number of
free parameters (and therefore the VC dimension [35]) of
the network by incorporating prior information into the
network design: responses should be scale- and shift-
invariant. This greatly reduces the number of training

Figure 7. Hebbian Learning: Final Reconstructions for the 20 Features in

the Mixed Case

As with STDP-based learning, the 20 cells self-organized, some having
developed selectivity to face features, and some to motorbike features.
doi:10.1371/journal.pcbi.0030031.g007
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examples needed. Note that this technique of weight sharing
could be applied to other transformations than shifting and
scaling, for instance, rotation and symmetry. However, it is
difficult to believe that the brain could really use weight
sharing since, as noted by Földiák [36], updating the weights
of all the simple units connected to the same complex unit
is a nonlocal operation. Instead, he suggested that at least
the low-level features could be learned locally and inde-
pendently. Subsequently, cells with similar preferred stim-
ulus may connect adaptively to the same complex cell,
possibly by detecting correlation across time thanks to a
trace rule [36]. Wallis, Rolls, and Milward successfully
implemented this sort of mechanism in a multilayered
hierarchical network called Vis-Net [37,38]; however, per-
formance after learning objects from unsegmented natural
images was poor [39]. Future work will evaluate the use of
local learning and adaptative complex pooling in our
network, instead of exact weight sharing. Learning will be
much slower but should lead to similar STDP features. Note
that it seems that monkeys can recognize high-level objects
at scales and positions that have not been experienced
previously [2,40]. It could be that in the brain local learning
and adaptative complex pooling are used up to a certain
level of complexity, but not for high-level objects. These
high-level objects could be represented with a combination
of simpler features that would already be shift- and scale-
invariant. As a result, there would be less need for spatially
specific representations for high-level objects.

The last main simplification we have made is to ignore both
feedback loops and top-down influences. While normal,
everyday vision extensively uses feedback loops, the temporal
constraints almost certainly rule them out in an ultrarapid
categorization task [41]. The same cannot be said about the
top-down signals, which do not depend directly on inputs.
For example, there is experimental evidence that the
selectivity to the ‘‘relevant’’ features for a given recognition
task can be enhanced in IT [42] and in V4 [43], possibly thanks
to a top-down signal coming from the prefrontal cortex,
thought to be involved in the categorization process. These
effects, for example, modeled by Szabo et al. [44], are not
taken into account here.

Despite these four simplifications, we think our model
captures two key mechanisms used by the visual system for
rapid object recognition. The first one is the importance of
the first spikes for rapidly encoding the most important
information about a visual stimulus. Given the number of
stages involved in high-level recognition and the short
latencies of selective responses recorded in monkeys’ IT [2],
the time window available for each neuron to perform its
computation is probably about 10–20 ms [45] and will rarely
contain more than one or two spikes. The only thing that
matters for a neuron is whether an afferent fires early
enough so that the presynaptic spike falls in the critical time
window, while later spikes cannot be used for ultrarapid
categorization. At this point (but only at this point), we have
to consider two hypotheses: either presynaptic spike times
are completely stochastic (for example, drawn from a
Poisson distribution), or they are somewhat reliable. The
first hypothesis causes problems since the first presynaptic
spikes (again the only ones taken into account) will
correspond to a subset of the afferents that is essentially
random, and will not contain much information about their

real activities [46]. A solution to this problem is to use
populations of redundant neurons (with similar selectivity)
to ensure the first presynaptic spikes do correspond on
average to the most active populations of afferents. In this
work we took the second hypothesis, assuming the time to
first spike of the afferents (or, to be precise, their firing
order) was reliable and did reflect a level of activity. This
second hypothesis receives experimental support. For exam-
ple, recent recordings in monkeys show that IT neurons’
responses in terms of spike count close to stimulus onset (100–
150 ms time bin) seem to be too reliable to be fit by a typical
Poisson firing rate model [47]. Another recent electro-
physiological study in monkeys showed that IT cell’s latencies
do contain information about the nature of a visual stimulus
[48]. There is also experimental evidence for precise spike
time responses in V1 and in many other neuronal systems
(see [49] for a review).
Very interestingly, STDP provides an efficient way to

develop selectivity to first spike patterns, as shown in this
work. After convergence, the potential reached by an STDP
neuron is linked to the number of early spikes in common
between the current input and a stored prototype. This ‘‘early
spike’’ versus ‘‘later spike’’ neural code (while the spike order
within each bin does not matter) has not only been proven
robust enough to perform object recognition in natural
images but is fast to read out: an accurate response can be
produced when only the earliest afferents have fired. The use
of such a mechanism at each stage of the ventral stream could
account for the phenomenal processing speed achieved by
the visual system.

Materials and Methods

Here is a detailed description of the network, the STDP model, and
the classification methods.

S1 cells. S1 cells detect edges by performing a convolution on the
input images. We are using 5 3 5 convolution kernels, which roughly
correspond to Gabor filters with wavelength of 5 (i.e., the kernel
contains one period), effective width 2, and four preferred
orientations: p/8, p/4 þ p/8, p/2 þ p/8, and 3p/4 þ p/8 (p/8 is there
to avoid focusing on horizontal and vertical edges, which are seldom
diagnostic). We apply those filters to five scaled versions of the
original image: 100%, 71%, 50%, 35%, and 25%. There are thus 4 3
5 ¼ 20 S1 maps. S1 cells emit spikes with a latency that is inversely
proportional to the absolute value of the convolution (the response
is thus invariant to an image negative operation). We also limit
activity at this stage: at a given processing scale and location, only
the spike corresponding to the best matching orientation is
propagated.

C1 cells. C1 cells propagate the first spike emitted by S1 cells in a 7
3 7 square of a given S1 map (which corresponds to one preferred
orientation and one processing scale). Two adjacent C1 cells in a C1
map correspond to two 73 7 squares of S1 cells shifted by six S1 cells
(and thus overlap of one S1 row). C1 maps thus subsample S1 maps.
To be precise, neglecting the side effects, there are 6 3 6 ¼ 36 times
fewer C1 cells than S1 cells. As proposed by Riesenhuber and Poggio
[7], this maximum operation is a biologically plausible way to gain
local shift invariance. From an image processing point of view, it is a
way to perform subsampling within retinotopic maps without
flattening high spatial frequency peaks (as would be the case with
local averaging).

We also use a local lateral inhibition mechanism at this stage: when
a C1 cell emits a spike, it increases the latency of its neighbors within
an 11311 square in the map with the same preferred orientation and
the same scale. The percentage of latency increase decreases linearly
with the distance from the spike, from 15% to 5%. As a result, if a
region is clearly dominated by one orientation, cells will inhibit each
other and the spike train will be globally late and thus unlikely to be
‘‘selected’’ by STDP.
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S2 cells. S2 cells correspond to intermediate-complexity visual
features. Here we used ten prototype S2 cell types, and 20 in the
mixed simulation. Each prototype cell is duplicated in five maps
(weight sharing), each map corresponding to one processing scale.
Within those maps, the S2 cells can integrate spikes only from the
four C1 maps of the corresponding processing scale. The receptive
field size is 16316 C1 cells (neglecting the side effects; this leads to 96
3 96 S1 cells, and the corresponding receptive field size in the
original image is [96 / processing scale]2). C1–S2 synaptic connections
are set by STDP.

Note that we did not use a leakage term. In the brain, by
progressively resetting membrane potentials toward their resting
levels, leakiness will decrease the interference between two successive
spike waves. In our model we process spike waves one by one and
reset all the potentials before each propagation, and so leaks are not
needed.

Finally, activity is limited at this stage: a k-winner-take-all strategy
ensures at most two cells that can fire for each processing scale. This
mechanism, only used in the learning phase, helps the cells to learn
patterns with different real sizes. Without it, there is a natural bias
toward ‘‘small’’ patterns (i.e., large scales), simply because corre-
sponding maps are larger, and so likeliness of firing with random
weights at the beginning of the STDP process is higher.

C2 cells. Those cells take for each prototype the maximum
response (i.e., first spike) of corresponding S2 cells over all positions
and processing scales, leading to ten shift- and scale-invariant cells
(20 in the mixed case).

STDP model. We used a simplified STDP rule:

fDwij ¼ aþ:wij :ð1� wijÞ if tj � ti � 0
Dwij ¼ a�:wij :ð1� wijÞ if tj � ti . 0 ð3Þ

where i and j refer, respectively, to the post- and presynaptic neurons,
ti and tj are the corresponding spike times, Dwij is the synaptic weight
modification, and aþ and a� are two parameters specifying the
amount of change. Note that the weight change does not depend on
the exact ti � tj value, but only on its sign. We also used an infinite
time window. These simplifications are equivalent to assuming that
the intensity–latency conversion of S1 cells compresses the whole
spike wave in a relatively short time interval (say, 20–30 ms), so that
all presynaptic spikes necessarily fall close to the postsynaptic spike
time, and the change decrease becomes negligible. In the brain, this
change decrease and the limited time window are crucial: they
prevent different spike waves coming from different stimuli from
interfering in the learning process. In our model, we propagate
stimuli one by one, so these mechanisms are not needed. Note that
with this simplified STDP rule only the order of the spikes matters, not
their precise timings. As a result, the intensity–latency conversion
function of S1 cells has no impact, and any monotonously decreasing
function gives the same results.

The multiplicative term wij � (1�wij) ensures the weight remains in
the range [0,1] (excitatory synapses) and implements a soft bound
effect: when the weight approaches a bound, weight changes tend
toward zero.

We also applied long-term depression to synapses through which
no presynaptic spike arrived, exactly as if a presynaptic spike had
arrived after the postsynaptic one. This is useful to eliminate the
noise due to original random weights on synapses through which
presynaptic spikes never arrive.

As the STDP learning progresses, we increase aþ and ja�j To
be precise, we start with aþ ¼ 2�6 and multiply the value by 2 every
400 postsynaptic spikes, until a maximum value of 2�2. a� is adjusted
so as to keep a fixed aþ/a� ratio (�4/3). This allows us to accelerate
convergence when the preferred stimulus is somewhat ‘‘locked,’’
whereas directly using high learning rates with the random initial
weights leads to erratic results.

We used a threshold of 64 (¼ 1/4 3 16 3 16). Initial weights are
randomly generated, with mean 0.8 and standard deviation 0.05.

Classification setup. We used an RBF network. In the brain, this
classification step may be done in the PFC using the outputs of IT. Let
X be the vector of C2 responses (containing either binary detections
with the first implementation or final potentials with the second one).
This kind of classifier computes an expression of the form:

f ðXÞ ¼
XN

i¼1
ci � e�

ðX�Xi Þ2

2r2 ð4Þ

and then classifies based on whether or not f(X) reaches a threshold.
Supervised learning at this stage involves adjusting the synaptic

weights c so as to minimize a (regularized) error on the training set
[27]. The Xi correspond to C2 responses for some training examples
(1/4 of the training set randomly selected). The full training set was
used to learn the ci. We used r ¼ 2 and k ¼ 10�12 (regularization
parameter).

The multiclass case was handled with a ‘‘one-versus-all approach.’’
If n is the number of classes (here, three), n RBF classifiers of the kind
‘‘class I’’ versus ‘‘all other classes’’ are trained. At the time of testing,
each one of the n classifiers emits a (real-valued) prediction that is
linked to the probability of the image belonging to its category. The
assigned category is the one that corresponds to the highest
prediction value.

Hebbian learning. The spike trains coming from C1 cells were
converted into real-valued activities (supposed to correspond to
firing rates) by taking the inverse of the first spikes’ latencies (note
that these activities do not correspond exactly to the convolution
values because of the local lateral inhibition mechanism of layer C1).
The activities (or firing rates) of S2 units were computed as:

YS2 ¼
WS2 � XC1

jXC1j2
ð5Þ

where WS2 is the synaptic weight vector of the S2 cell. Note that the
normalization causes an S2 cell to respond maximally when the input
vector XC1 is collinear to its weight vector WS2 (neural circuits for
such normalization have been proposed in [27]). Hence WS2 (or any
vector collinear to it) is the preferred stimulus of the S2 cell. With
another stimulus XC1 the response is proportional to the cosine
betweenWS2 and XC1. This kind of tuning has been used in extensions
of HMAX [26]. It is similar to the Gaussian tuning of the original
HMAX [7], but it is invariant to the norm of the input (i.e.,
multiplying the input activities by 2 has no effect on the response),
which allows us to remain contrast-invariant (see also [26] for a
comparison between the two kinds of tuning).

Only the cells whose activities were above a threshold were
considered in the competition process. It was found useful to use
individual adaptative thresholds: each time a cell was among the
winners, its threshold was set to 0.91 times its activity (this value was
tuned to get approximately the same number of weight updates as
with STDP). The competition mechanism was exactly the same as
before, except that it selected the most active units and not the first
one to fire. The winners’ weight vectors were updated with the
following modified hebbian rule:

dWS2 ¼ a � YS2 � ðXC1 �WS2Þ ð6Þ

a is the learning rate. It was found useful to start with a small
learning rate (0.002) and to geometrically increase it every ten
iterations. The geometric ratio was set to reach a learning rate of 0.02
after 2,000 iterations, after which the learning rate stayed constant.

Differences from the model of Serre, Wolf, and Poggio. Here we
summarize the differences between our model and their model [6] in
terms of architecture (leaving the questions of learning and temporal
code aside).

We process various scaled versions of the input image (with the
same filter size), instead of using various filter sizes on the original
image: S1 level, only the best matching orientation is propagated; C1
level, we use lateral inhibition (see above); S2 level, the similarity
between a current input and the stored prototype is linked to the
number of early spikes in common between the corresponding spike
trains, while Serre et al. use the Euclidian distance between the
corresponding patches of C1 activities.

We used an RBF network and not a Support Vector Machine.

Supporting Information

Video S1. Face-Feature Learning

Here we presented the face-training examples in random order,
propagated the corresponding spike waves, and applied the STDP
rule. At the top of the screen, the input image is shown, with red,
green, or blue squares indicating the receptive fields of the cells that
fired (if any). At the bottom of the screen, we reconstructed the
preferred stimuli of the three C2 cells. Above each reconstruction,
the number of postsynaptic spikes emitted is shown with the
corresponding color. The red, green, and blue cells develop selectivity
to a view of, respectively, the bust, the head, and the face.

Found at doi:10.1371/journal.pcbi.0030031.sv001 (3.3 MB MOV).
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Video S2. Motorbike-Feature Learning

The red cell becomes selective to the front part of a motorbike, while
the green and blue cells both become selective to the wheels.

Found at doi:10.1371/journal.pcbi.0030031.sv002 (6.8 MB MOV).

Video S3. Mixed Case

The training set consisted of 200 face pictures, 200 motorbike
pictures, and 200 background pictures. Notice that the red cell
becomes selective to faces and the blue cell to heads, while the green
cell illustrates how a given feature (round shape) can be shared by two
categories.

Found at doi:10.1371/journal.pcbi.0030031.sv003 (7.6 MB MOV).
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