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Abstract. We present the mathematical basis of a new approach to the analysis of temporal
coding. The foundation of the approach is the construction of several families of novel distances
(metrics) between neuronal impulse trains. In contrast to most previous approaches to the
analysis of temporal coding, the present approach does not attempt to embed impulse trains in a
vector space, and does not assume a Euclidean notion of distance. Rather, the proposed metrics
formalize physiologically based hypotheses for those aspects of the firing pattern that might be
stimulus dependent, and make essential use of the point-process nature of neural discharges.
We show that these families of metrics endow the space of impulse trains with related but
inequivalent topological structures. We demonstrate how these metrics can be used to determine
whether a set of observed responses has a stimulus-dependent temporal structure without a
vector-space embedding. We show how multidimensional scaling can be used to assess the
similarity of these metrics to Euclidean distances. For two of these families of metrics (one
based on spike times and one based on spike intervals), we present highly efficient computational
algorithms for calculating the distances. We illustrate these ideas by application to artificial data
sets and to recordings from auditory and visual cortex.

1. Introduction

Recent neurophysiological studies in vision [12, 25, 30, 33, 35, 46], audition [1, 13,
28], and olfaction [22, 40] have provided convincing evidence that sensory information
is represented by the temporal structure of a neural discharge, as well as by the number
of spikes in the response. Although a neuronal discharge is fundamentally a point process,
many approaches to the analysis of temporal structure rely on binning the spike trains and
on adopting methods appropriate for multivariate data [10] or continuous signals. There are
two potential drawbacks to such approaches [46]. One problem is that an adequate time
resolution over a reasonable analysis interval requires an embedding in a high-dimensional
vector space which is only sparsely sampled by the data set. More fundamentally, this
approach is less than optimal because the vector-space approach (i) treats all coordinates on
an equal footing, and thus ignores the sequential nature of time; and (ii) assumes that the
space of spike trains has a Euclidean geometry. One might argue that an assumption of an
underlying Euclidean geometry is justified in instances in which there is an approximately
Euclidean ‘perceptual space’ (e.g. representations of colour) but it is difficult to justify this
assumption when the geometry of the perceptual space is unknown (e.g. a representation of
‘objects’).
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Methods which do not require vector-space embeddings have been used to examine
temporal coding, but currently available methods have other drawbacks. A neural network
scheme [19, 28] for the classification of spike discharges can surmount the temporal-
resolution problem. However, inferences concerning the nature of the temporal code are
not straightforward, since they require an understanding of both the manner in which spike
trains are represented [19] and the parameters of the neural network. Other approaches
deal explicitly with spike trains as point processes, but these methods focus on correlations
among discharges [31, 32], the pattern of interspike intervals [34], or the identification of
similar segments of spike discharges [3], rather than on a global analysis of how the pattern
of the discharge depends on the stimulus.

We recently [46] used a novel approach to investigate temporal coding in the primate
visual cortex. One major distinction between the present approach and many previous
approaches is that it provides a global analysis of how the discharge pattern depends on
the stimulus, without the need for an embedding in a vector space, or an assumption of a
Euclidean (or near-Euclidean) geometry for the set of spike trains. The philosophy behind
this approach is to exploit what is known about the biological significance of the temporal
pattern of nerve impulses to construct a specifically appropriate mathematical structure,
rather than to adapt general-purpose methods of signal processing. The purpose of this
paper is to describe the mathematical basis of this approach in detail.

2. Results

2.1. Overview

For the reasons described in the introduction, we construct a method to analyse the temporal
structure of spike trains based only on the bare essentials: an abstract set of points (the
spike trains) and a self-consistent definition of distances between pairs of these points. In
formal mathematical terms, we consider the spike trains and the notion of distance to define
a metric space [11], a topological structure substantially more general than a vector space
with a Euclidean distance. The extent to which our construct indeed corresponds to a
Euclidean distance in a vector space will be determined empirically, rather than assumed.

We shall consider several families of metrics. Each metric determines a candidate
geometry for the space of spike trains. Stimulus-dependent clustering will be assessed
relative to each candidate geometry, without recourse to further mathematical structure.

The metrics we consider are based on intuitions concerning possible biological
underpinnings of temporal coding. The first family of metrics, denotedD§¥*qq],
emphasizes the significance of the absolute timing of individual impulses. The rationale
for this family of metrics is that, under some circumstances, a cortical neuron may behave
like a coincidence detector [2, 27, 41, 42], but the effective resolution of this coincidence
detector is uncertain. Within the resolution of this coincidence detector, the effect of a spike
train on other cortical neurons will depend on the absolute timing of its impulses, rather
than on the number of spikes within a given interval.

A second family of metrics, denoted y"®"3[4], emphasizes the duration of interspike
intervals. The rationale in this case is that the effect of an action potential can depend
critically on the length of the time since earlier action potentials [39]. Possible biological
substrates for this dependence include the NMDA receptor artd Channels whose
behaviour is sensitive to the pattern of interspike intervals [6, 21, 36]. While it is trivially
true that the absolute spike times determine the interspike intervalvi@mersawith the
notion that the first ‘interspike interval’ is the interval between the onset of data collection
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and the first spike), it is not true that the distance between two spike trains, in the sense of
DsPke determines the distance between the trains in the sens&" 82,

Finally, we shall consider a third family of metric®™f, which is motivated by the
notion that a ‘motif’, or a temporal pattern of a subset of spikes [3], may be of physiological
significance. This family of metrics is a natural formal extensionD§Pe and pinteval
However, implementation of our analysis f&*™t" is hindered by the lack of availability
of efficient algorithms.

Within each of these families, the specific metrics which we shall consid&{¢],
p"evag] and D™[4]) depend on a parametgtr which expresses the sensitivity of the
metric to temporal pattern. The paramejédras units of (st) and represents the relative cost
to ‘move’ a spike (forDP*94]), to change the duration of an interval (f¥"¢"V2[4]), or to
translate a motif (fo™"[4]), compared with the cost of inserting or deleting a spike. For
g = 0, each of these metrics reduces to a distance based solely on counting spikes. Thus,
temporal coding will manifest itself as more reliable clustering for some values>ef0
than forg = 0. For sufficiently large values af, we anticipate a decrease in systematic
clustering, since the infinitesimally precise timing of impulses or intervals cannot possibly
carry biological information. Thus, our method provides two characterizations of temporal
coding: the amount of systematic clustering seen itk O will indicate the extent to
which absolute spike timesDEP*4]), spike intervals P™™a[4]), or subsets of spikes
(D™ 4]) depend on the stimulus, and the valuegofor which the clustering is greatest.
The latter characterization will indicate the temporal resolution of the coding.

2.2. Mathematical framework and definition of metrics

A metric space [11] is a set of points (here, spike trains, to be denote§j by, ...)
together with a metrid, which is a mapping from pairs of spike trains to the real numbers.
In order for D to be a metric, it must (i) always be positive except for the trivial case
D(S,S) = 0, (ii) be a symmetric functionIp(S,, Sp) = D(Ss, S,)], and (iii) satisfy the
triangle inequality

D(Sav S(,) < D(Suv Sb) + D(Sbv SL) (1)

With these conditions satisfied, the functiGhcan be thought of as specifying a distance.
A spike train S is a sequence of times, 1, ..., 4, With0< 1 < < ... <, and
will be denoted byS = {r1, 1o, .. ., #}. We shall define a metri®(S,, S;) as the minimum
‘cost’ required to transform the spike tra$ into the spike trairs, via a path of elementary
steps. The cost assigned to a path of steps is the sum of the costs assigned to each of the
elementary steps. Formally,

D(S.. Sp) =glbg 5, 5 > K(S;. Sj-1) )
whereSg = S,, S, = S, and K (S;, S;—1) is equal to the cost of an elementary step from
S; to S;_1. K(S;, S;—1) is required to be non-negative and symmetrig, S, ..., S,_1

represent intermediate spike trains along the path ffpre= So) to S, (= S,). There is no
need to specify that there is a path whathieveghe minimum total cost, and thus we use
the notation ‘glb’ (= greatest lower bound) rather than ‘min’ in equation (2).

Generally, functions of the form specified by (2) will satisfy the above three conditions
()—(iii), and thus qualify as metrics. The symmetry bfis inherited from the postulated
symmetry of the cost functiolk. The triangle inequality (1) is automatically satisfied,
because one path from), to S. is the cost-minimizing path frons, to S, followed by
the cost-minimizing path frons, to S.. However, depending on the choice of the cost
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function K, there may be distinct spike traiss and S, for which D(S,, S;) = 0, and thus
condition (i) would not be satisfied. This may be remedied [11] by considering the space
of ‘equivalence classes of spike trains’, where the equivalence class which indlislédse

set of spike trains whose distance fréhis zero. The function defined by (2) now becomes

a valid metric on equivalence classes of spike trains. The space of equivalence classes of
spike trains is always a metric space, and a specification of the allowed elementary steps
and their associated costs always provides a metric.

The nature of the metric defined by (2) is determined by the allowed elementary steps
and the costs that are assigned to them. For all the metrics we consider here, the allowed
elementary steps will always include adding a single spike or deleting a single spike. These
steps will be assigned a cost of 1. This serves to ensure that there exists at least one path
between any two spike trains. However, a metric which has only these allowed steps will
see all spikes as equally different from each other, unless they occur at precisely the same
time. To use the distances defined by (2) to express more biologically plausible notions of
distance, additional kinds of elementary steps must be introduced.

2.2.1. A metric based on spike timedlVe first create a family of metrics whose distances
reflect similar times of occurrence of impulses. This family, which we denot®¥¥9 4],
has one kind of step in addition to spike insertion and deletion. This second kind of step is
based on concatenation of a continuum of infinitesimal steps, each of which shifts a single
spike in time by an infinitesimal amount.dThe cost associated with this infinitesimal step
is asserted to beds, whereg is a parameter with units"8. Combining a continuum of
these steps (each operating on the same spike) leads to a shift of a spike by an Amount
with the associated cogti Az]|.

One extreme instance of this metric occurs if the cost per segosdset to zero. In
this case, elementary steps which shift the position in time of a spike are free, and costs are
associated only with adding or deleting spikes. It follows that the distance between these
two spike trains inDSPk94] is the difference in the number of spikes, which we denote by
the ‘spike count’ metricDcoU"t

To gain some insight intdsP*q4] for ¢ > 0, consider two spike traing:} and {b},
each of which consists of only a single spike. There are two paths to consider in applying
equation (2). The path which consists of moving the solitary spike has a co$t of b|.
The path which consists of deleting the spike fréinand then inserting a spike to form
Sy, has cost 2. It is cheaper to delete the spike and reinsert it than it is to move it, provided
that|a — b| > 2/¢q. Thus, in the limit of very large, the distance between two spike trains
S, ={ay,as,...,a,} and S, = {b1, by, ...,b,} is m +n — 2c, wherec is the number of
spike times inS, N S,. In essencepcoun = psPikgQ] ignores the time of occurrence of
the spikes, whileDsPk9o0] considers any difference in time of occurrence to constitute a
‘different’ spike. For the metricDsPk94], displacing a spike by a distancgqlis equal
in cost to deleting it altogether, and displacing a spike by a smaller distance results in a
spike train which is similar, but not identical. That is/qlis a measure of the temporal
resolution of the metric. Equivalently, one can consigéo be a measure of the precision
of the temporal coding.

2.2.2. A metric based on interspike intervaldVe now consider a second family of
metrics, D"®Va[4], which depends on interspike intervals in much the same way that
DPk94] depends on spike times. F@™eva[4], the second kind of elementary step is

a concatenation of a continuum of infinitesimal steps, each of which consists of changing
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the lengthof an interspike intervaby an infinitesimal amountrd This step has costd:.

A change in the length of an interspike interval necessarily changes the time of occurrence
of all subsequent spikes. This is in contrast to the elementary sté&F*f[¢], in which

only one spike time is changed, but two intervals are modified (the intervals immediately
preceding and following the shifted spike).

In the two limiting cases of = 0 andg = oo, the metricD™e"3[4] is essentially the
same as the metriDsP*q4], because both depend only on the number of spikes. However,
for intermediate values of, the two metrics can have quite different behaviour. This
is becauseD™e"3[4] is sensitive to the pattern of interspike intervals, whidé®q[4] is
sensitive to absolute spike times. Consequeril{®“a[4] can distinguish firing patterns
which DSPkq4] cannot. For example (as we shall see belo@f'®"2[4] can distinguish
a pattern of intervals with a chaotic nonlinear recursion [34] from a renewal process with
equal interval statisticsDsP*4] cannot make this distinction.

A technical detail, which concerns the initial and final intervals, arises in implementing
the metricD™e™a[4]. A spike train S = {r1, s, ..., 7} on a segment [O] defines the
k — 1 interior intervalst, — 11, ..., t; — f;_1 unambiguously.

However, the initial and final intervals are of uncertain length: the initial interval is
of length at least;, but may be longer (since the spike immediately preceding the spike
at 11 was not recorded). Similarly, the final interval is of length at I€Bst 7, but may
be longer. There are several ways of proceeding to define a well defined metric, each of
which could be considered to be a variant/@fe™a[4]. For example, the initial and final
indeterminate intervals may be simply ignored, creating a metric which we designate as
pnenvation 41 - Alternatively, one may place an auxiliary leading spike in both trains at time
0 and a second auxiliary trailing spike in both trains at tifecreating a metric which
we designate a®"evaiX[4]. A third alternative is that the times of the auxiliary leading
spikes inserted into the two trains can be allowed to vary independently (in the interval
[—o0, 0] for the leading spike and in the intervdl [oc] for the trailing spike), to minimize
the distance of equation (2), thereby creating a metric which we designat8'&§ ™y].

In general, these variations have only a minimal effect on the analysis of temporal structure,
as would be expected since they are essentially end effects. In the calculations presented
in this paper, we use®™eVa™X[4] (an auxiliary spike inserted at time 0 and tiri¢ and
pintevalmint .1 (quxiliary leading and trailing spikes were inserted in both trains at positions
which minimized the distance of equation (2)).

2.2.3. A metric based on subsets of spikeEhe third family of metrics, D™ [4] is
motivated by the notion that a ‘motif’, or temporal pattern of a subset of spikes [3], may be
of physiological significance. This metric is constructed as a generalizatiDiPfg]. As

in DP9 4], the first kind of step consists of adding a single spike, or deleting a single spike,
and has cost 1. The second kind of step is again based on concatenation of a continuum of
infinitesimal steps, but the infinitesimal steps allow joint shifting of any number of spikes,
all in the same direction, by the same amountThat is, the cost of a step from a spike train

S ={t1 t2,..., 1} to a spike trainS’ = {77, 15, ..., ;}, where each is eithert; or 1; + At,

has the cost|At|. This metric is more closely related ©™¢"a[4] than to D**q4], in

that an elementary step which shifts a contiguous subseéf spike times changes only
two intervals (the end intervals) and would thus have cqs$n2| in D'™eVa[4], but would

have costNg|At| in DSPk94]. However, the metridd™°t[4] is distinct from D™eVa[24],

in that D™4] allows shifts ofnon-contiguousspikes with no penalty.
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2.2.4. Some generalizationsThe families of metricsDsPkq4], D"eVa[4], and D™ 4]

can be generalized by modifying the cost assigned to finite translatiofiom the simple
q(Atr) = g|At] to more general function® (Ar), provided only thatQ(Arn + Aty) <
0(Ath)+ Q(At,) (this is necessary to ensure satisfaction of the triangle inequality (1)). For
example,Q(Ar) = 1 — exp{—qg|At|} is a natural choice to express a metric based on the
idea that the efficacy of two spikes in driving a coincidence detector declines exponentially
with their time separation [27], with rate constant Furthermore, additional metrics can

be generated by combining the two or more of the steps allowed#®, pneva and
D™t “each with their associated cost functions, to create metrics subtig@@sike, Ginterval

and D[Qspike’ Gintervah gmotif]-

These ideas can also be generalized to simultaneous recordings from multiple single
neurons. We can regard a set of such recordings as a single spike train, in which each spike
has an identified neuron of origin. This setting requires a new kind of elementary step which
corresponds to relabelling the neuron of origin. In principle, the cost for this relabelling,
C(i, j) could depend on the neurons of origirand j in an arbitrary fashion. In practice,
this is likely to generate an explosion of parameters; in practice, it is likely to be sufficient
simply to setC(i, j) = C. Values ofC that are small in comparison to 1 correspond to
metrics which are sensitive primarily to the population firing pattern (independent of neuron
of origin), while values ofC that are large in comparison to 1 correspond to metrics that
are sensitive to the individual firing pattern of each neuron.

2.3. Topological relationships among the metrics

Let us now consider the extent to which the three families of metfié&kqq], D"MeVa[4],

and D™[4], represent intrinsically different notions of distance. (In this discussion, we
have chosen to implemem™eVa[4] as the variantD™eVa™[4] because it simplifies

the analysis). That is, we ask whether closeness in the sense of one metric necessarily
implies closeness in the sense of another metric. This is essentially the topological notion
of ‘refinement’: a metricD, is said to refine a metri®, if, for every ¢ > 0, there exists

8 > 0 such that

if D,(S,S) <& thenDy(S, ) < e. 3)

That is, closeness in the sense Bf implies closeness in the sense Bf, In other
words, if metric D, refines metricD,, then D, must be sensitive to all the details of
temporal pattern that influende,,, provided that the spike trains that are not very different
Moreover, if D, refines D, and alsoD, refinesD,, then the metrics are topologically
equivalent (i.e. they define metric spaces that are topologically equivalent). Conversely, if
D, refinesD, but D, does not refind,, it is always possible to find two sequences of spike
trains Sy, o, Ss, ... and Sy, S5, S5, . .. for which the metricsD, (S;, S]f) approach zero, but
the metricsD, (S;, SJ’.) do not. The notions of refinement and equivalence are intrinsically
topological in that they are independent not only of the overall magnitude, air D, but
also of transformation®; — f;(D;) which preserve the triangle inequality [1].

For cost-based metrics, restriction of the allowed elementary steps necessarily results
in a refinement of the metric. This is because placement of restrictions on (or elimination
of) allowed elementary steps can never result in a smaller distance, so it suffices to take
8 = ¢ in equation (3). For exampld)[QSpika Gintervall reﬁnesD[Qspikes Ginterval gmotif], and
D[C]intervaL] refineSD[QSpika Qinterval]-

By a similar logic, an increase in the costs of elementary steps must also result in
a refinement of the metric. Thus, fgt, < q., D*9q,] is a refinement ofDPkqy,],
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pnevalg 1is a refinement ofd™eVa[4,], D™ [4,] is a refinement ofD™1t[4,], and all
these metrics are refinements Bf°™ This corresponds to the intuitive notion that larger
values of the cost lead to greater sensitivity to the details of the temporal pattern of the
spike train.

What is somewhat unexpected is thafPkqq,] and D 9gq,] are topologically
equivalent (and similarly forp"eva and p™metih) for any ¢, and g, that are non-zero.
To prove this, we need to show that (3) can be satisfied for sufficiently sraallg, > g,.
The argument that we give fdpsPk9q,] extends readily taD™eVa and p™eif, |t suffices
to considers < min(eq./q»,1). Foré < 1, two spike trainsS and S’ whose distance
Dk 4,1(S, §") is less thars must be related by a minimal path which consists only of
spike moves, since a total cost ef 1 excludes the possibility that any elementary step
involves the insertion or deletion of spikes. The total distance of the spike moves must
be less thar$/q,, which is less tharz/q;, (because of the choice @f. Thus, the same
path, viewed inD**qg,], has a cost which is no greater thanThus, from a topological
viewpoint, the metrics of the familypsP*q4] are equivalent. A similar conclusion holds
within the family of metricsD™™™va[4] and within the familyD™%[4] (providedg > 0).

However, these families of metrics are not equivalent to each other. Rather, the metrics
DPkq4] are all refinements of the metrid®@e™a[4], and the metricsD'™"a[4] are all
refinements of the metricB™"[4], although the converse statements are not true. To see
that the spike time metrics are refinements of the spike interval metrics, it suffices to show
thatsomeD***q4,] is a refinement osomeD"ev[4,], because of the equivalence within
each family. It is convenient to consid®®Pkq4] and D™"a[4]. These metrics are related
because any translation of a spike by an amauntan always be viewed as a change in the
length of the preceding interval bt and a change in the length of the following interval
by —At. Translation of a spike by\r has a cosy At in DSPk94], but the cost of the pair
of changes in interval lengths iBMeva[4] is 2¢g Ar. This means that a path of elementary
steps inDPkg4] can be used to generate a path of elementary stepd"i#v2[¢], with at
most double the cost. Thus, it suffices to take ¢/2 in equation (3). Furthermore, to see
that D™e"Va[4] is a refinement o™ [4], one merely needs to observe that changing the
length of an interval is equivalent to moving a motif consisting of all spikes which follow
this interval. That is,D™[¢] < D"®Va[4], and one may také = ¢ in (3).

To show that the spike interval metrics arat refinements of the spike time metrics, we
display sequences of spike traifig, Sz, S3, ... and S, S5, Sz, ... for which the distances
D"eVvag](S;, S7) approach zero, but the distancBs**9g](S;, S;) do not. Let the spike
trains S; consist of impulses at times 0,2, ..., j — 1, j and the spike trains’ consist of
impulses at times, A+ 1/7,2+1/j,...,(j — 1) +1/j, j +1/j. Except for the first spike,
trains differ by a displacement of/i. Thus, D™*"2[4](S;, S}) = ¢/j, with the minimal
cost achieved by changing the length of the first interval. Howe&)é'f“,ke[q](sj, S) =gq,
sinceeachof the lastj spikes must be moved by an amouny.l Thus, as;j increases,
the distancesD™™"?[¢](S;, S;) approach O, but the distances***9g](s;, S;) do not.
Similarly, to show that spike motif metrics are not refinements of spike interval distances,
we display sequences of spike trafis S», Sz, ... andsS;, S5, Sg, . .. for which the distances
D™"[4](S;, S;) approach zero, but the distanc&™"[4](s;, S/) do not. Here, we
let the spike trainsS; consist of impulses at times, 0,2, ...,2;j — 1,2; and the spike
trains S} consist of impulses at times, 0+ 1/j,2,3 + 1/j,4,...,(2j — 1) + 1/}, 2j.
D™41(S;, S)) = q/j, which is achieved by a single step consisting of shifting all the
spikes at the odd-numbered times by an amoytit However, D'™"?[4](s;, §}) = 24,
since a total of 2 intervals must each be altered by an amoufjit 1
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Despite the successive-refinement relationship®t™, pmetf - pinteval gnd pspike one
cannot conclude that all cost-based metrics are related in a nested fashion. For example,
among the variants ab™®"a one may show thap™eVa'minis topologically equivalent to
pinenvakign and both are refined bpevafix while only DMeVakfix refines DMt This is
because among the three variantsidfeV@, only pintevaiiix js sensitive to the time of the
first and last spikes, and this sensitivity is needed to comfl'". As an extreme example,
consider the metric®"eVa? variants of D'MeVakx in which the elementary steps include
insertion and deletion of a spike, as well as shifting a contiguous group of spikes, but
only if the number of shifted spikes is a power of the prime These metrics are highly
unphysiological, but serve to demonstrate that it is possible to construct an infinite number
of metrics, each of which is a refinement bf"eva-fix (and hence refined bypsP*®), but
none of which is a refinement of any other. Similarly, the metdi®'"», which allow
shifting of non-contiguous subsets of spikes provided that the number of such shifted spikes
is a power of the primep, represent an infinite humber of metrics, each of which is a
refinement of D™ (and refined byD3P*®), but none of which is a refinement of any other.
These relationships are illustrated in figure 1.

In sum, the notions of topological equivalence and refinement help one to appreciate
the relationships among the metrics, considered as abstract entities. Within a class, the
metrics all determine the same topological space, but different classes of metrics determine
distinct topological spaces. However, as we shall see below, the topological relationships do
not predict which metrics lead to stronger stimulus-dependent clustering. A refinement of a
given metric need not lead to stronger stimulus-dependent clustering, because the refinement
may be sensitive to aspects of temporal structure that are not used by the nervous system.
In addition, clustering depends not only on the topology of the metric, but also on the
relative sizes of distances between specific spike trains. Thus, we shall see that although
the metrics DSPk94] are all topologically equivalent, stimulus-dependent clustering will
depend strongly og.

D spike
D witerval 2 D mterval 3 D nterval 5 cee

D terval. fix

D nterval 1in D nterval min
D motif 2 D motif 3 D motif 5 ces

—

D monf

!

D count

Figure 1. Topological relationships among several families of distances. An arrow leading from
one family to another family means that the higher family is a topological refinement of the
lower family. The distances are defined in the text.
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2.4. Efficient algorithms for the calculation of distances

2.4.1. Distances based on spike interval3here are simple and efficient algorithms that
construct the minimal path(s) required by the definition of equation (2) and thereby calculate
the distances specified bpPkq4] and D"V3[4]. These algorithms are related to the
elegant algorithms introduced by Sellers [37] for calculating the distance between two
genetic sequences (i.e. a sequence of nucleic acid codons).D'®#3[4], the Sellers
algorithm applies directly: the spike train, considered as a sequence of interspike intervals,
corresponds to a sequence of nucleotides in a DNA segment.

To compute the distand@(E, F) between two spike trains whose interspike intervals are
(e1, €2, ...,ey,) and (fi, fo2, ..., fu), we proceed inductively as follows. Defingy o = 0,
andG; ; = 0O for eitheri or j less than 0. Then, faror j greater than O, calculatg; ; as
the following minimum:

Gi; =min{Gi_1;+ LG -1+ 1 Gi_1j-1+ M(e, f)} 4)

whereM (e;, f;) is the cost of changing the interval to the intervalf;, namelygle; — f;l.

Sellers [37] has shown that with this recursion rule, the distance between two subsequences
(e1, €2, ...,€) and (f1, f>,..., f;) is given by G; ;. In particular, the desired distance
G(E, F) is given byG,, ,. Furthermore, the minimal path or paths frdinto F are readily
constructed from the options chosen at each stage of the recursion (4). The first choice
corresponds to insertion of a nucleotide in sequeBA¢cehe second choice corresponds to
insertion of a nucleotide in sequenég and the third choice corresponds to changing a
nucleotide. In our application, the elements (interspike intervals) form a continuum; the
Sellers algorithm is concerned with sequences composed of a finite humber of kinds of
objects (e.g. nucleotides). However, this is not crucial to the algorithm, which requires
only that the rule that assigns costs to changes from one sequence element into another, the
function M (e;, f;), should satisfy the triangle inequality.

2.4.2. Distances based on spike time$he inductive idea behind the Sellers algorithm

can also be used to calcula®®®*q4], provided that the quantitieéey, e, ..., e;) and

(f1, f2, ..., f;) are considered to be spiltenes(rather than spike intervals), and the term
M(e;, fj) is gle; — fj], the cost of shifting a spike from timg to time f;. Despite the
similarity of the algorithms fo>sPkq4] and D™eVa[4] | it is somewhat awkward to prove

the validity of the algorithm fomsPk94] from the original Sellers argument [37]. It seems
natural to discretize time, and then consider each spike train to be a sequence of Os and
1s, with Os at times without spikes, and 1s at times with spikes. But, with this formalism,

a shift in time of a spike corresponds to a transposition of sequence elements, an action
which is not within the realm of possibilities considered in [37].

Nevertheless, an analogous recursive algorithm is valid [46], and we sketch the argument
here. Assume that we have identified a path of minimum §ost So, S1,...,S5,-1, S, = S},
between two spike train§, and S,. The sequence of elementary steps can be represented
diagrammatically by tracing the ‘life history’ of each spike, as shown in figure 2. The
assumption that this path is minimal places severe constraints on this diagram. The life
history of each spike may consist of motion in at most one direction. Moreover, one need
not consider diagrams in which a spike moves from its positiof,iro an intermediate
position, and then moves again to a final positior§jn These constraints force one of the
following three alternatives: (i) the last spike of spike trajnis a spike to be deleted; or (i)
the last spike of spike traify, is a spike which is inserted; or (iii) the last spikes of both trains
are connected by a shift. The validity of the recursion (4) follows directly. The similarity of
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Figure 2. A minimal-cost path of elementary stepsFigure 3. Examples for which a simple recursive
associated withDSPkq4] connecting two spike trains algorithm would fail to calculate the minimal path for
S, and S,. Reproduced from [46]. distancesD[gspike ginterval-

the algorithms forDsPke and pMenval syggests that they share a common fundamental basis
in the theory of dynamic programming algorithms [38], which encompasses the validation
of the algorithm forD™e™a [37] and the validation of the algorithm fapsPie (figure 2).

2.4.3. Extensions. The algorithms forDsPke and D'"eva may be readily extended to
metrics in which the cost of shifting a spike (or stretching an interval) by an amtiunt

is a concave-downward function gfAr, such as exfp-q|Atr|}. They also extend to the
calculation of distances between spike trains recorded from multiple distinguished neurons,
provided only that at each stage of the recursion, one adds options for relabelling the neuron
of origin of the spike under consideration.

However, it is not as straightforward to extend this framework to calculate distances
such asD[gspike gintervall: Which include both elementary steps that move individual spikes,
and elementary steps which change the length of interspike intervals. Two kinds of problem
that can arise are illustrated in figure 3. In both cases, the path of minimal total cost between
spike trainS, and spike trainS, is achieved by a change in the length of the initial interval
(the step froms, to S) followed by a change in the position of the spike markegthe step
from S to S,). In figure 3(A), this results in a ‘life history’ for the spike markedwhich
includes a move to an intermediate position via a change in interval length, followed by a
move to its final position via a shift in absolute time. In contrast to the situations considered
by equation (4) or illustrated in figure 2, neither the intervals nor the spike positions in the
intermediate spike trair$ correspond to those in either of the spike traffysor S,. A
more extreme version of this difficulty is illustrated in figure 3(B). Here, provided that the
number of spikes in each of the cluste¥g mq, andm, is sufficiently large, the path of
minimal total cost between spike traliy and spike trainS, includes a shift in the position
of the spike marked< away from, and then back to, its initial position. This violates
the constraint that the ‘life history’ of each spike’s movements is unidirectional. Neither



Metric-space analysis of spike trains 137

situation (figure 3(A-B)) would have been considered by the recursive algorithm above,
which only considers life histories which are non-stop and unidirectional. Of course, this
does not mean thab[gspike, gintervall iS NOt @ metric; it merely means that the recursive
algorithm might fail to find a minimal-cost path.

2.5. Calculation of stimulus-dependent clustering

The procedures described above for calculation of distance can be applied to any pair of
neural responses. However, the extent these distances have any relevance to neural coding
is unclear. This motivates the next step in our analysis, in which we formulate a procedure
to determine the extent to which the distances between individual responses (in the senses
determined by the metric®sPkqq], D™eVa[4], ...) depend in a systematic manner on

the stimuli. This approach is intended to be applied to experimental data sets that contain
multiple responses to each of several stimuli, without any further assumptions [46]. If a
particular metric is sensitive to temporal structure which neurons use for sensory signalling,
then responses to repeated presentations of the same (or similar) stimuli should be close,
while responses to presentations of distinct stimuli should be further apart. That is, in the
geometry determined by the candidate metric, there should be systematic stimulus-dependent
clustering.

Since we do not assume that the individual responses correspond to ‘points’ in a vector
space, we cannot use principal component analysis or other vector-space-based clustering
approaches [8, 25, 26]. Furthermore, even if we were able to embed the responses into
a vector space, we have no guarantee that the responses to each stimulus class would
lie in a blob-like ‘cloud’; they could, conceivably, have more complex geometry, such as
concentric circles. For these reasons, we seek a clustering method that makes use of nothing
more than the pairwise distances themselves, so that the identification of stimulus-dependent
clustering makes a statement about the metric used to define the distances, rather than about
the clustering method itself [19, 28].

More formally, we begin with a total oV spike trains, each of which is elicited
in response to a member of one of the stimulus clasges, ..., sc. We should like to
use the distances between thegg: responses to classify them intd response classes
ri, r2, ..., rc. This classification will be summarized by a matiii(s,, rg), whose entries
denote the number of times that a stimulyselicits a response in clasg.

We proceed as follows. Initially, sé¥(s., ) to zero. Considering each spike train
in turn, temporarily excludeS from the set ofNi; observations. For each stimulus clags
we calculated (S, s,), an average distance fromto the spike trains elicited by stimuli of
classs,, as follows:

1/z
d(S,sy) = [((D[Q](Sv ) )y eicted byxy] / : ®)

This average distance is also calculated for the stimulus eslasshich containss,
but sinceS is temporarily excluded from the set of observations, the t&fn](S, S) is
excluded from (5). We then classify the spike trdirinto the response clasgg for which
d(S, sg) is the minimum of all the averaged distane&s, s, ), and incremeniV (s, rg) by
1. In the case thakt of the distanced (S, sg), d(S, sg), ... share the minimum, each of the
N(sq. 1), N(sq,7p), ... IS incremented by /k.

Note that to determine the average distance between a spikeStraimd the set of
responses elicited by, we have averaged the individual distances after transforming by
a power law (the exponentin equation (5)). A large negative value for the exponent
would bias the average to the shortest distance betWesmmd any response elicited by,
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and thus would classify the spike trathinto the class in which there is the closest match.
Conversely, a large positive value pfwould classify the spike trail$ into the class in
which the distance to the furthest outlier is minimized. Not surprisingly, positive values of
z often lead to significantly lower estimates of the transmitted information, because of the
emphasis on distances from the outliers.

N (sq. rg) is the number of times that a stimulus from class classified as belonging
to classg. If this classification were perfect, theM(s,, rz) would be diagonal. If this
classification were random, then the on- and off-diagonal elements(of, rz) would be
comparable. We use an information-theoretic measure, the transmitted information [4], to
guantify the extent to which this classification is non-random. For stimuli that are drawn

from discrete classes,, s, ..., and spike train responses that have been grouped into
discrete classes, ry, . . ., the transmitted informatio# is given by
1
H= — N(sa,r)l:lo N (Sq,7g)
Niot ; #)|10% 4
—log, > " N(sa.7p) —l0g, " N(sa. 1) + l0G, Ntot] (6)
a b

For C equally probable stimulus classes, random classification correspod&d{org) =

Nt/ C? and yieldsH = 0. Perfect classification (which corresponds\es,, rg) = Niot/C

whena = 8, and 0 otherwise) yields a maximal value of the transmitted information
namely log C. In principle, this maximum might also be achieved by a maies,, r5)

for which N(sy, ) = Niot/C Whena = P(B8) (for P a non-trivial permutation). This
corresponds to a situation in which clustering is perfect, but the classification algorithm
mislabels the response classes. This is very unlikely to arise, given the structure of our
classification scheme, since every response would have to be closer to responses to stimuli
from other classes, than to responses from its own class.

It is worth emphasizing that in using an information-theoretic measure of clustering,
we do not mean to imply that the quantify represents the information available to the
nervous system, or that the analytical stages we describe here have any correspondence to
neural processing of information. Rather, this choice is simply intended to be a measure of
clustering, which does not make assumptions about parametric relationships, if any, among
the stimulus classes.

2.5.1. Biases due to small sample siz#.the number of presentations of each stimulus
class is small, then the value @&f estimated by equation (6) will be spuriously high,
simply because of chance proximities between the few examples of observed responses.
Even if there is a large number of stimulus presentations, one anticipates an upward bias
of the estimate off. For example, in the case 6f equally probable stimulus classes, any
deviation of N(se, rg) from the expected value QVior/ C? will result in a positive value

of the estimated transmitted informati@h. This problem represents a general difficulty in

the estimation of transmitted information from limited samples [7].

Recently, Treves and Panzeri [44] have derived an analytic approximation to this
bias: asymptotically, the bias (for a fixed number of stimulus and response bins) is
inversely proportional to the number of samples and is independent of stimulus and response
probabilities. The derivation of this asymptotic behaviour assumes that there is a binning
process which treats all responses in an independent manner. The present approach explicitly
avoids such a binning process, so there is ho guarantee that a similar correction is applicable.
For this reason, we choose a computational approach to estimate this bias [9, 29]: we use
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equation (6) to recalculate the transmitted informatiérfollowing random reassignments

of the observed responsésto the stimulus classes. Values of the unresampfedhich

lie in the upper tail of this distribution are thus unlikely to represent a chance grouping of
responses. Furthermore, the average value of many such calculations, which we denote by
Hy, is an estimate of the upward bias in the estimaté/of

2.6. Examples: simple simulations

We now present some examples in which we apply the above procedures to some simple
numerical simulations. These numerical simulations are not intended to be realistic, but
rather to illustrate some of the behaviours described above.

2.6.1. Rate discrimination: regular and irregular trainsThe first example (figure 4)
concerns stimuli which elicit different mean rates of firing. We considered five stimulus
classes, each of which elicited firing at different average rakes=(2, 4, 6, 8, and 10
impulses per second). Twenty exampldésla responses to each stimulus were simulated,
and the transmitted information was calculated from thége= 100 spike trains according

to (6). These calculations were repeated for 40 independent synthetic data sets, to determine
the reliability (£2 s.e.m.) of these estimates of transmitted informatibn For each of

these 40 data sets, two resamplings by relabelling, as described above, were performed to
estimate the contributioiy due to chance clustering. These calculations were performed
for values ofg spaced by factors of 2, and for four values of the clustering exponent

—8, —2, 2, and 8. We focus on the behaviour e, the behaviour ofb™"e™va was very

similar (data not shown).

In figure 4(A-D), the spikes were distributed in a Poisson fashion £C)/0) for each
of the five firing ratesk. In this case, the precise time of occurrence of each spike carries
no information. Indeed, more clustering (high&) is seen forDcu"t (DsPkQ]) than for
DSPk4], for ¢ > 0. For low values of;, the decrease il for ¢ > 0 is relatively minor
(from about 0.7 to 0.5 for negativg and essentially no decrease for positije In this
range § < 16), D**q4] is influenced by a mixture of spike counts and spike times. For
sufficiently high values of;, H falls to chance levels. In this range & 32), the cost of
moving a spike is sufficiently high that nearly all minimal paths correspond to deletion of
all spikes followed by reinsertion at other times. Consequently, the defining feature of each
stimulus class (i.e. a similar number of spikes) is ignored, and responses within the same
stimulus class, especially at high firing rates, are seen¥#¥q4]) as very different.

Figure 4(E—H) shows a similar calculation, but with a spike-generating process that is
more regular (CV= 0.125). To simulate responses to a class characterized by a steady
mean rateR, we selected everith spike from an underlying Poisson process with fake
(The first spike is chosen at random from the inittaspikes of this underlying process).

In this ‘iterated Poisson’ process, the interspike intervals were distributed according to a
gamma distribution of ordek:

1 k ,k—1—Rt
p(t) = F(k)R t*~te )
where p(¢) is the frequency of interspike intervals of length In the simulations shown
here, we chosg = 64, and thus the interspike intervals have a coefficient of variation (CV)
of 0.125 & 1/+/k). Because the spike trains are regular, there is less variability in the
number of spikes in each sample. Consequently, the spike count mi¥fHe! leads to a
greater degree of clustering than in the Poisson case (figure 4(A-D)), and calculated values
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Figure 4. Simulation of rate discrimination. Information-theoretic measure of clusteting
derived from DSPKe4] (solid lines) and estimates of chance informatiahy derived from
resampled data sets (broken lines, open symbols), as a function of cost per sgramd (
clustering exponentzj. Calculations are based on simulated responses to five stimulus classes,
which elicited steady firing with mean rates of 2, 4, 6, 8, and 10 impulses per second. Panels A—
D: Poisson process (C¥ 1.0); clustering exponent = —8, —2, 2, and 8. Panels E-H: iterated
Poisson process (C¥ 0.125); clustering exponent= —8, -2, 2, and 8. Error bars represent

+2 s.e.m. The maximum possible value Bf(arrow labelled ‘ideal’) is log(5) ~ 2.32.

of H are approximately 2.0, close to the maximum achievable value gf3pbge 2.32.
Nevertheless, for small values gf and negative values of (figure 4(E—F)), there is a
further increase irH. This increase reflects the fact that within a class, responses will be
similar not only in the number of spikes: additionally, responses whose first spikes occur at
similar times will have subsequent spikes that occur at similar times. That is, the optimal
match between a response to a given stimulus and other responses in the same class will
be stronger if spike times, and not just spike counts, are considered. However, there is
an optimal choice fog, beyond which further increases lead to decreasing valugs$. of
This is because a cogtcorresponds to the notion that the timing of a spike matters up to
an amount 1g. Choosingg too high for the typical precision of the spike times causes
the distance measure to be influenced by details that are irrelevant to the response classes.
Consequently, for higlg, the apparent clustering decreases.

Note that for positivez (figure 4(G—H)), there is no increase hh for any value ofg.
This is because the clustering based on the average distance as defined by equation (5) now
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Figure 4. (Continued)

assigns each response to the class with the ‘least bad’ match, rather than the ‘best good’
match. Sensitivity to spike times improves the quality of the best match, but worsens the
quality of the worst match.

We also point out that, despite the fairly large dependenced oh ¢ andz seen in
figure 4, there is relatively little dependence 8§, the estimate of chance information.
That is, the increase in temporal resolution associated with fighnot associated with
large upward biases in estimates of information, as would have been the case if increased
temporal resolution were to require increasingly sparse sampling of a space of progressively
higher dimension.

This simulation shows that for response classes which differ in overall firing rate (and
are, thus, readily discriminable by a simple rate code), metrics which are sensitive to
temporal pattern allow enhanced discrimination. This modest enhancement is restricted to
regular spike trains (figure 4(E—H)) and valuesgofvhich are not so large as to regard
even minor shifts of spike times as ‘different’. For irregular trains, and for high values of
g, attention to temporal structure reduces discrimination, as would be expected since the
temporal structure is irrelevant to the response classes.

2.6.2. Temporal phase discriminationThe next three examples present situations in which
DsPke gand penval have contrasting behaviour. Figure 5 shows a simulation of temporal
phase discrimination. There were four stimulus classes, each with 20 simulated responses of
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Figure 5. Simulation of temporal phase discrimination. Information-theoretic measure

of clustering H derived from DSPKe[4] (filled circles), DMevakfix4] (filled squares), and
pinevalminy 1 (filled triangles), as a function of cost per secomd and clustering exponent

(z). Estimates of chance informatiailp derived from resampled data sets (broken lines, open
symbols). Calculations are based on simulated responses to four stimulus classes, which elicited
sinusoidally modulated firing at each of four phases. Panels A—D: Poisson process 10Y,
clustering exponent = —8, —2, 2, and 8. Panels E-H: iterated Poisson process=£@V125);
clustering exponent = —8, —2, 2, and 8. Error bars represei? s.e.m. The maximum
possible value off (arrow labelled ‘ideal’) is log(4) = 2.

1 s duration. In figure 5(A-D), we used a time-dependent Poisson process to generate spike
trains. The instantaneous firing densRyr) was given byRo[1 + m co92x ft + ¢)], where

the mean firing rat®Ry was 20 impulses per second, the modulation frequehaas 4 Hz,

and the modulation deptlx was 0.5. The stimulus classes differed in their modulation
phase¢, which was chosen from the s@, = /2, =, 37 /2}. Thus, responses to different
stimulus classes were anticipated to differ in the arrangement of spike times, and not in
the average total number of spikes (or in the distribution of the number of spikes). The
information-theoretic index of clustering, and the clusteringly due to chance alone, were
calculated from 40 independent simulations, as in figure 4. As can be seen in figure 5(A-D),
clustering was at chance level f@°U" In contrast,DSP*94] revealed highly significant
clustering. The peak aoff atg = 32 corresponds to 1/8 of a cycle (half the phase increment
which separates the stimulus classes). For substantially smaller valyeschistering is
diminished because the distinction between the classes is diminished; for substantially larger
values ofg, clustering is diminished because the distance is influenced by jitters in the spike
times which are irrelevant to the response classes. This behaviour was seen for all values
of the clustering exponent


Jonathan D Victor
Figure 5 is incorrect.  The correct information, as calculated via the spike metrics, should be approximately twice as high for the parameters given in the text.  These curves were inadvertently calculated with phases of {0, pi, 0, pi}, i.e., with only two distinct kinds of spike trains.  Error identified by David Goldberg, May 2004.
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Figure 5. (Continued)

Figure 5(A-D) also shows the degree of clustering revealedDBY™a™4] and
pintevalmint ;1 - These metrics, which are sensitive to the sequence of interspike intervals
but not to the absolute time of occurrence of spikes, reveal almost no clustering beyond
chance. The two metrics differ only in how they treat the first and last interspike intervals
(i.e. the time between the start of the response and the first spike, and the time between the
last spike and the end of the response periad}®va-™X[ 4] regards these intervals as fixed,
while pintevaimin ;1 adjusts them to minimize the distance. As sué®“a 4] would
be expected to retain a slight sensitivity to temporal phase, because it retains the first and
last intervals. However, this only results in a minimal Q.05) increase inH.

In figure 5(E—H), the same instantaneous firing densRi@$ = Ro[1+m co2n ft+¢)]
were used to drive an iterated Poisson process of drde64. The resulting spike trains
are much more regular (eightfold decrease in the coefficient of variation of the interspike
interval), and clustering is much stronger. Furthermore, the range of valugfoofwhich
D% shows significant clustering is substantially extended. The range of effective values
of ¢ extends further downwards because shifts in time of multiple adjacent spikes are
correlated. The range of effective valuesqoéxtends further upwards (approximately by a
factor of eight) because of the proportionate decrease in the coefficient of variation and the
corresponding shortening of the timescale at which precise timing becomes meaningless.
Somewhat surprisinglypevatix ] and pnevaiming] also reveal significant clustering
for these spike trains. This is an indirect consequence of the regularity of the interspike
intervals. One candidate path of elementary steps between responses from different stimulus
classes will consist of deleting some interspike intervals from the beginning of one response,
deleting some interspike intervals from the end of the other response, and stretching the
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Figure 6. Simulation of temporal frequency discrimination.
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Information-theoretic measure

of clustering H derived from DSPke4] (filled circles), D™eNakfiX,] (filled squares) and
pintevalminy 1 (filled triangles), as a function of cost per secomd énd clustering exponent

(z). Estimates of chance informatiaiy derived from resampled data sets (broken lines, open
symbols). Calculations are based on simulated responses to four stimulus classes, which elicited
steady firing and sinusoidally modulated firing at each of three frequencies (but random phases).
Panels A-D: Poisson process (G¥V1.0); clustering exponent = —8, —2, 2, and 8. Panels E—

H: iterated Poisson process (G¥0.125); clustering exponent= —8, —2, 2, and 8. Error bars
representt2 s.e.m. The maximum possible value Bf(arrow labelled ‘ideal’) is log(4) = 2.

The value of H that corresponds to perfect discrimination of responses to modulated and
unmodulated stimuli (but confusion among the three modulated stimuli) is labelled ‘detection of
modulation’, and is given byl/4) log,(4) + (3/4) log,(4/3) ~ 0.81.

intervening intervals to achieve a match. This kind of path will reveal phase-dependent

clustering.

However, whether this path is optimal (and hence, whether its total cost

determines the distance) depends on the tightness of the match between interspike intervals,
and thus, on regularity of the spike trainB"eVai[ 4] has an advantage ovér™ervamin ]

because the end effect discussed above provides independent absolute phase information,
but this advantage is slight. All these findings are largely independent of the choice of the

clustering exponeng.
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Figure 6. (Continued)

In sum, this simulation shows tha@sPke, but not D" or piMeval can discriminate
among irregular spike trains which vary in temporal phase (figure 5(A-D)). For regular
spike trains with instantaneous firing frequencies, bbtheva and DS can perform the
discrimination (figure 5(E—H)).

2.6.3. Temporal frequency discriminationln this simulation (figure 6), there were four
stimulus classes, each with 20 simulated respon$ds soduration, and an instantaneous
firing density R(¢) was given byRg[1 + m coS2r ft + ¢)], with a mean firing rateRy of

20 impulses per second. For three of the classes, the modulation depts 0.5, and

the phasep was chosen at random in each trial. These classes were characterized by the
modulation frequencyf, which was chosen from the s€3, 4,5}. The fourth class was
unmodulated 4 = 0, f and ¢ irrelevant). Thus, responses to different stimulus classes
were anticipated to differ primarily in the arrangement of interspike intervals (because they
differed in modulation frequency), but not in absolute spike times (since the initial ghase
was chosen at random). The information-theoretic index of clustéfingnd the clustering

Hy due to chance alone, were calculated as in figures 4 and 5. For spike times generated
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by a time-dependent Poisson process (figure 6(A-D)), there is essentially no stimulus-
dependent clustering for any of the metrics considered. This is because the irregularities
of the interspike interval distributions due to the random times of occurrence of the spikes
dominate the systematic temporal modulation. However, for spike times generated by
the more regular iterated Poisson process (figure 6(E—H)), substantial stimulus-dependent
clustering is seen. We first considet"®™aiX[ 4] and D™MeVaM 41 There are two regimes.

For 0 < ¢ < 8, clustering is substantially greater than chance, but not sufficiently great to
reliably distinguish the four classes from one another. In this range, the degree of clustering
depends strongly on the clustering exponer{increasing ag decreases), indicating that

it reflects the presence of a few good matches rather than the absence of bad matches.
For larger values of;, the degree of clustering approaches the maximal possible value
of log,(4) = 2. The height and position of this peak (but not its breadth) are relatively
independent of. DMeVami,] has a slight advantage ové™eva-iX[4], corresponding

to the fact that it ignores the initial and final interspike intervals, which are irrelevant
to the distinction between the classes. Note that although these stimulus classes were
constructed to be distinguished on the basis of spike intervals, rather than spike times,
D*P*q4] nevertheless reveals significant clustering. This is analogous to the behaviour of
pinenvalix g1 and pnevaimin ] in phase discrimination (figure 5(E-H)). However, clustering

in the sense oD%Pk9q] is sensitive to; because good matches at one relative phase will
necessarily imply bad matches at other relative phases. Thus, average distances (as defined
by equation (5)) that are weighted heavily by the best matchz(i-e0) will tend to reveal

the greatest degree of clustering.

2.6.4. Identification of deterministic chaosln the next simulation (figure 7), the two
response classes are distinguished by the presence or absence of deterministic chaos (loosely
inspired by observations of low-dimensional chaos in the olfactory system [40]). In both
stimulus classes, responses consisted of impulse trains in which the interspike intervals were
uniformly distributed between 0 and Ry, with the mean rateRy, set at 10 impulses per
second. For spike trains in the first class, these interspike intervals were placed in random
order. For spike trains in the second class, the first interspike interval is chosen at random,
but subsequent interspike intervdls, ; are determined from the preceding intervalby

the Baker transformation,

21}1 In < 1/R0
| 22/Ro) - 1) 1, > 1/Ro.

For each calculation off, 100 1 s examples of each response were generéieand
Hy, and their s.e.m.’s, were estimated as in the previous simulations from 20 independent
simulations. These spike trains had identical distributions of interspike intervals, identical
mean rates o = 10 impulses per second), flat post-stimulus time histograms, and no
pairwise correlations between intervals at second order. Thus, in contrast to the previous
simulations (figures 4-6), traditional approaches such as Fourier analysis, as well as some
more recently proposed ideas [13, 26] would not have been able to distinguish these response
classes.

As can be seen in figure 7, substantial clustering beyond that expected from chance alone
is seen for all three metrics considered. The advantagefvamin,] and pintervatfix,]
over DP*94] makes sense, because of the interval-based nature of the temporal structure.
Interestingly (figure 7(A-B)), in contrast to the previous simulations, some estimates of
H continue to rise for high values af. This is because successive iterations of the
transformation (equation (8)) are sensitive to indefinitely small changes in interspike interval

®)

In+1
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Figure 7. Simulation of discrimination of random and chaotic firing patterns. Information-
theoretic measure of clustering derived from DSPke[4] (filled circles), DMeVatfix[,] (filled
squares) and>Mevaimin .1 (filled triangles), as a function of cost per secogil &nd clustering
exponent £). Estimates of chance informatiaoly derived from resampled data sets (broken
lines, open symbols). Calculations are based on simulated responses to two stimulus classes,
one of which contained uniformly distributed interspike intervals in random order, and the other
of which contained the same distribution of interspike intervals, but was governed by a chaotic
recursion rule (equation (8)). Panels A-D: clustering exponeat—8, —2, 2, and 8. Error bars
representt2 s.e.m. The maximum possible value @f(arrow labelled ‘ideal’) is log(2) = 1.

lengths, as is characteristic of chaotic processes in general. Thus, sensitivity to tiny changes
in interval length improves the quality of mutual matches among samples of the chaotic
process. This behaviour is not seen ©fP*q4] (which is only indirectly sensitive to
interval length), nor for positive values af (where clustering is weighted by the absence

of mismatches, rather than by the closeness of the best match).

2.7. The geometries induced by a family of metrics

We now return to a simple rate-discrimination simulation to illustrate how changes in the
metric induce changes in the nature of clustering. We consider two stimulus classes, which
elicit responses of mean rates 6 and 7 impulses per second respectively and have interspike
intervals determined by an iterated Poisson process of érde64. For this simulation, 40
example spike trains for each class were simulated, and the information-theoretic measure
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of clustering, H, was calculated foDsPkq4] for a range of values of and a clustering
exponentz = —2. The dependence dff on ¢ (figure 8) was similar to that seen in
figure 4(E—H): a modest increase in clusteringdos 0, followed by an abrupt fall-off for
values ofg sufficiently high as to force sensitivity to irrelevant detail in the spike trains.
However, despite the modest changeHn there is a qualitative change in the nature of
the clustering for low values of (e.g.¢ = 1), and values of; near the peak i (e.g.

g = 16). To see this, we use multidimensional scaling [16, 20] to embed the spike trains
into a Euclidean space. This procedure assigns coordindtiples to each spike train,
so that the standard Euclidean distances between théggles are as close as possible
to the distances yielded by a given metric, in this cas&%9g]. Successive coordinates
correspond to eigenvectors of a symmetric mafely,, scaled by the square roots of the
corresponding eigenvalues. The entries of the maiifjx are given by

1
Mjx = =2 (Dji = (DJ,)r = (DJ)r + (Df)rs) ©)

where Dj; indicates the distance between spike traiand spike trairk, ( ), indicates an
average over all spike trains ( ), indicates an average over all spike trainsand ( ),
indicates an average over all pairs of spike trairends. Note that this embedding does

not guarantee that all points in the Euclidean space correspond to spike trains, but merely
that the distances of spike trains, in the sens®&f«qq], are well approximated by the
Euclidean distances between theituples. In additional, the matrix of equation (9) may
have negative eigenvalues, corresponding to a hyperbolic geometry in the embedding space.
Nevertheless, the embedding provides a visual way of understanding the geometry induced
by the metricsDSPk4].

The multidimensional scaling procedure was applied to each response class (40 samples)
in isolation, as well as to the combined data set of 80 samples. Figure 9(A) shows the results
for ¢ = 1. Consider first the multidimensional scaling of the ‘6 impulses per second’ class
in isolation (left inset). Foiy = 1, DP*q4] is primarily determined by the number of
spikes. Most spike trains in the ‘6 impulses per second’ class have six spikes, but some
have five spikes, and some have seven spikes. Hence, the spike trains form three clouds,
arrayed approximately in a line, one corresponding to each spike count. Spike trains with
the same number of spikes are close to each other but not identical. This is reflected
in the dispersion of the points within each cloud and the requirement for more than one
dimension to account fully for the distances determined¥y®. A similar picture is
seen for the multidimensional scaling of the ‘7 impulses per second’ class in isolation (right
inset). Combined multidimensional scaling (main scattergram) of the two classes yields four
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clouds, corresponding to the four possible spike counts of 5, 6, 7, and 8 impulses. Only
the ‘6 impulses per second’ class contributes to the cluster corresponding to five impulses
(the three leftmost clusters), and only the 7 impulses per second’ class contributes to the
cluster corresponding to eight impulses (the three rightmost clusters), and both stimulus
classes contribute to the clusters with six and seven impulses. This overlap corresponds
to the imperfect discrimination of these two classes by clustering basgoPdf§[1]. The
scatter along the second dimension does not help to disambiguate these responses.

Figure 9(B) shows the corresponding picturefoe 16. DPkq16] is sensitive to times
of the order of 0.1 s, and on this scale, both spike trains are quite regular (mean intervals
of 0.166 and 0.143 s, with CV of 0.125). The locus corresponding to the ‘6 impulses per
second’ class in isolation (left inset) now forms an approximate circle. This corresponds to
the fact that forDsP*q[16], the distance between two fairly regular spike trains is primarily
determined by their relative phase. Multidimensional scaling of the ‘7 impulses per second’
class in isolation gives a similar picture (right inset). Note that there are no points at the
centre of either ring: such points would correspond to spike trains which are not only
equidistant from all the spike trains, but also close to all of them; such spike trains (in
the context ofDSP*16]) do not exist. Multidimensional scaling of the combined classes
requires four dimensions: the first four eigenvalues of the matrix of equation (9) are 0.347,
0.284, 0.240, and 0.208. In the two-dimensional projection illustrated (main scattergram),
the points corresponding to the two stimulus classes appear to form interpenetrating clouds.
Examination of the higher-dimensional representation reveals that these clouds correspond,
approximately, to two mutually orthogonal circles, one corresponding to each class. That
is, within each class, the spike train’s locus is approximately circular, and all points in one
class are, approximately, at the same distance from all points in the other class. In contrast
to the situation forg = 1, multiple dimensions contribute to separation of the response
classes. Furthermore, the geometrical centre of the two response classes is similar (near
the origin) and, hence, a clustering scheme which assumed that the responses lay in convex
clouds would have failed.

Yet a third kind of behaviour is seen f@**q256]. This distance is sensitive to times of
the order of 0.01 s. On this timescale, both classes of spike trains are irregular. Consequently
(figure 9(C)), no discernible geometrical structure is apparent in the multidimensional scaling
of the spike trains in isolation (left and right insets): they form what appears to be a random
cloud. Multidimensional scaling of the combined classes again forms a random cloud
(main scattergram), either when inspected in the projection illustrated, or in projections
along higher-order eigenvectors. This corresponds to the fact that this metric is sensitive to
differences between individual responses (idiosyncratic timing of spikes) which are unrelated
to differences between the stimulus classes.

These three regimes are summarized by the analysis of figure 10. We introduce
a dimension indexE, which describes the effective dimension of an embedding. The
dimension indext is defined by

)2
E = S (10)

where; are the eigenvalues of the matrix of equation (9).

Note that for an embedding in which each of dimensions contributed equally
(A; = 1/n), this index would have the value Forg in the range 4-32, the dimension index
for the embedding of each class in isolation is approximately 2 (light and dark symbols),
and the dimension index for the combined classes is approximately 4 (solid line without
symbols). This corresponds to a circular locus for each of the classes in isolation, and
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Figure 9. Multidimensional scaling of simulated responses to two stimulus classes, which
elicited steady firing with mean rates of 6 and 7 impulses per second (figure 8).1 (A),

g = 16 (B), andg = 256 (C). For each value af, the responses to the two stimulus classes
are subjected to multidimensional scaling independently (insets) and jointly (main scattergram).

bi-orthogonal circles for the embedding of the combined classes (figure 9(B)). For lower
values ofg, the effective dimension decreases towards 1, and the dimension index for the
embedding of the combined classes is no larger than that of the classes in isolation. That
is, the higher dimensions do not contribute to stimulus-dependent clustering. For values of
g > 32, the dimension index rises rapidly, but, as we have seen in figure 9(C), this increase
in dimension does not produce any discernible structure. It should be noted that one can
always achieve an embedding iofpoints in a space of dimension— 1 (39 and 79 in the
present case), and thus (fpr> 128) it is likely that our estimates of dimension in figure 10

are lower bounds, limited by the number of spike trains we chose to generate.

However, it is not the case that a progressive increase in embedding dimension
necessarily implies a decrease in clustering. Indeed, the opposite situation is seen for
the discrimination of deterministic chaos and randomly sequenced interspike intervals.
Figure 11 shows the dependence of the dimension inflegequation (10)) ong for
embeddings of the chaotic spike trains in isolation, the random spike trains in isolation,
and the two classes combined. For all three families of metrics (figure 1129,
figure 11(B):p"enalfix: figyre 11(C):pMevamin) the set of chaotic spike trains is associated
with a lower embedding dimension than the random trains, and this dimension increases
monotonically withg. In contrast to the simple geometrical situation of the regular spike
trains (figure 9(C)), the rise in dimension is not associated with a decrease in clustering;
rather, as we have seen in figure 7, clustering continues to rise with increasihg also
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worth noting that the high embedding dimension is not associated with an increase in the
chance clustering (dashed lines in figure 7). This suggests that our purely metrical approach
to clustering has successfully circumvented the problem of attempting to perform clustering

in a sparsely populated high-dimensional vector space, which would be anticipated to lead
to progressively higher estimates of chance clustering with increasing dimensionality.

2.8. Comparison with a benchmark set of simulated data

The final simulation utilizes a benchmark data set, developed by Goknab [14] to
compare a variety of methods of determining the information content of spike trains.
These simulations [15] generate responses of idealized lateral geniculate magnocellular and
parvocellular neurons to spatial patterns consisting of Walsh functions. The responses to
each Walsh pattern are derived from a time-dependent Poisson process, whose envelope
is determined by convolving the Walsh pattern with modelled spatiotemporal filtering
properties of lateral geniculate neurons. For the simulations of figure 12(A-B), data sets
are constructed from 64 responses (250 ms in duration) to each of the 32 patterns, and the
above procedures are used to calculate information-theoretic measures of clugferiog,
DSPK 4] and D'MevaMiIT L1 Hy is determined by repeating this calculation for five random
reassignments of the responses to stimuli. This procedure is repeated for 16 independent
data sets of 64 responses per pattern.

As can be seen in figure 12(A-B), the estimate of chance clustdftifds substantially
larger than in the simulations discussed previously, as one would expect from the fact that
there is a relatively small ratio of samples to classes [7, 44]. For the modelled magnocellular
neuron (figure 12(A)), clustering is maximal f@sPkq¢] with gmax = 32. The increase
in H for DSPk932] compared toD®U" = DSPKYQ] exceeds the corresponding change in
Hy. That is, the measure of clustering corrected for the bias due to small sample size,
H — Hy, is largest forDSPk932]. Forq < 128, clustering forDsP*® exceeds clustering for
pintevalmin \yhether or not the correction terf is subtracted. Thus, for the magnocellular
neuron of this simulation, the timing of impulses (to within a precision of approximately
1/gmax = 30 ms) conveys significant stimulus-dependent information. For the modelled
parvocellular neuron (figure 12(B)), the situation is quite different. There is only a modest
increase inH for ¢ > 0, and this increase is less than the increasHgnThat is,H — Hy
is largest forD®U™ there is no evidence for improvement in clustering eitherd&¢ e or
for Dimerval:min.

Figure 12(C-D) shows how this analysis depends on the number of samples per stimulus
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class. As the number of samples increagésnd Hy decrease. For each metric considered,
these decreases are approximately parallel, and consequently, the corrected estimator of
clustering, H — Hp, changes by a relatively small amount. (Nevertheless, it is notable
that this drift is upwards, which suggests that subtractiorHgpfmay be an excessively
conservative correction.) For the modelled magnocellular neuron (figure 1HGC)),Hy
is largest forDPke provided that there are at least 32 samples per stimulus class. For the
modelled parvocellular neuron (figure 12(D)J, — Ho. is largest forD®U" for all values
of the number of samples per stimulus class.

It is interesting to compare our empirical estimatesHy. with the analytic result
of Treves and Panzeri [44]. Consistent with this result, there is an approximate inverse
proportionality betweerH, (dashed lines in figure 12(C—D)) and the number of samples per
stimulus class. However, this proportionality constant is dependent on the metric and also
(dashed lines in figure 12(A-B)) on the valueqof This appears to be at variance with the
analytic result [44], which states that, asymptotically, this proportionality constant depends
only on the size of the stimulus and response classes, and the number of samples. However,
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Figure 12. Clustering of simulated [15] responses of model lateral geniculate neurons to Walsh
function patterns. Panels A and B: information-theoretic measure of clustAridgrived from
DsPke 4] (filled circles) and DMevakmin | (filled triangles), as a function of cost per second

(¢)- Clustering exponent = 2. Estimates of chance informatidiy derived from resampled

data sets (broken lines, open symbols). Calculations are based on 64 simulated responses to
each of 32 Walsh patterns. Error bars represedts.e.m. Panels C and D: DependenceHof

(solid lines, small filled symbols)Hy (broken lines, small open symbols) aitl — Hp (solid

lines, large filled symbols) on the number of responses per stimulus cla®$M (asterisks),
DPke 4] (circles), andpintevalmin 1 (triangles). ForDSPke4] and pintevakming, 14 is chosen

to yield the maximum value off. The maximum possible value @ is log,(32) = 5.

there is no contradiction: Treves and Panzeri’s derivation [44] requires that the assignments
of samples to response categories be made independently. Independence is violated by the
clustering scheme we used, and the consequent dependence of the proportionality constant
on the metric that we observe emphasizes the necessity of the assumption of independence
for the analytic result [44].

The estimates o and H — Hy in figure 12(C-D) may be compared directly with the
calculations of Golomlet al [14] for these simulated data sets, based on a binning approach
and on neural network classifiers [19]. For the magnocellular neuron, our estin¥dte &§
for DU (0.19 for 128 samples per class) approximated the estimates obtained by Golomb
et al [14] ( ~0.24 for 128 samples per class for binning or for network classifiers) for the
‘number of spikes’ code. We found an increase4n- Hy to 0.34 for DSPe, while Golomb
et al [14] found an increase (te-0.5 for the binning methods0.4 for the neural network
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classifier method) for multidimensional codes based on three principal components. For the
parvocellular neuron, our estimate &f — Hy for DU (0.81 for 128 samples per class)
approximated the estimates obtained by Golostkal [14] (~0.85 for 128 samples per
class for binning or neural network classifiers) for the ‘number of spikes’ code. We found
no increase inH — Hy for DSPke or pintevalmin. Golombet al [14] found a slight increase
(=0.95 for binning or neural network classifiers) for multidimensional codes based on three
principal components.

2.9. Some neurophysiological examples

In figure 13, we re-analyse data recently published by Middlebretkd [28] as evidence

for temporal encoding of the azimuth of an auditory stimulus. The spike trains were recorded
from a single neuron in cat anterior ectosylvian cortex following noise bursts of 100 ms
duration which were presented in 28teps of azimuth in the horizontal plane. For the
analysis presented here, the 10 responses to each of these 18 locations were rebinned into
sets of 30 responses corresponding t6 66ctors. Figure 13(A) shows the information-
theoretic measure of clustering,, for DSPke and pintevamin tggether with values offy as
calculated from 10 random permutations of the data. There is a clear rigefam g > O,

both for DSPke and pintevalmin - The ncrease foMevaMin seems somewhat greater than
for DSP*® put there is a similar difference in the correction tefy. Additionally, there

is a sharp peak iD*q4] nearq = 256, which is not associated with an increase in
the correction termHy. This indicates that spike times, up to a precision gf & 4 ms,
cluster in a stimulus-dependent fashion. (Note thatsi2es.e.m. lines in figure 13(A) are
confidence limits for the mean dfy, and thus are only appropriate for comparison among
different resampled estimates. To estimate the probability that the unresampled value of
could have come from this population;£2 standard-deviation criterior/L0 ~ 3.2 s.e.m.)
should be used; by this measu#é,is significant for all values of.)

In figure 13(C-D), we present the results of multidimensional scaling of these responses,
with the distance function provided bpsPkq256]. Figure 13(C) shows the loci which
correspond to individual responses, as projected into the plane of the first two eigenvalues.
There is certainly substantial overlap of the clouds corresponding to each azimuth range,
but nevertheless, a trend towards segregation of responses from each sector is apparent.
This trend is made much more vivid in figure 13(D), which shows only the geometrical
centre of each cloud. The dimension indéxequation (10)) of this embedding is 2.8, and
the first 10 eigenvalues are shown in figure 13(B). The first four eigenvalues are positive,
but projections of the loci of the spike trains on the third and fourth axes do not reveal
additional geometrical structure.

In figure 14, we analyse a data set obtained in our study [46] of temporal coding in
macaque visual cortex. The data consist of activity recorded in primary visual cortex in
an awake animal performing a fixation task. Stimuli consisted of transient presentation of
gratings of five spatial frequencies (1, 3, 5, 11, and 21 cycles/deg), aligned in each of eight
orientations (0-15%° in 22.5° steps), at a contrast of 1.0. (Here, contrast is defined as
[(Lmax— Lmin)/(Lmax+ Lmin)], where Lmnax and Ly, are the maximum and minimum of the
stimulus luminance.) For each of thesex® = 40 stimuli, 16 responses of 256 ms were
collected and analysed. As can be seen in figure 14(A), there is temporal coding both in the
sense ofD**q4] and D"eVakMi 41 as shown by the rise i for ¢ > 0. However, there
is a fall-off in H by ¢ ~ 50, indicating a much looser jitter of/¢ ~ 20 ms for the temporal
structure in this neuron’s encoding in comparison with the auditory neuron of figure 13.
Multidimensional scaling of the responses according to the mBffq32] requires at least
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Figure 13. Analysis of temporal coding of azimuth in cat anterior ectosylvian cortex (data
of Middlebrookset al [28]). Thirty responses to each of six ranges of azimuth are analysed.
Panel A: information- theoretic measure of clusterifig(solid lines) forDsPkq 4] (filled circles)

and pintevalmin 1 (filled triangles), and estimates of chance informatié(broken lines, open
symbols, error bars represent meafl s.e.m.) derived from 10 resampled data sets. Panel B:
eigenvalues of the matrix of equation (9) fofP*€[256]. Panel C: multidimensional scaling for
DsPke256], with each spike train’s locus projected onto the plane of the first two eigenvectors
of the matrix of (9). Each point corresponds to an individual response, and the points are colour
coded to indicate the azimuth of the stimulus that elicited the corresponding response. Panel D:
the centres of each of the response clouds in Panel C.

three dimensions to reveal the geometrical structure of the response loci (figure 14(C—E)).
For each of the four lowest spatial frequencies, the responses to different orientations form
a loop, and these loops are largely non-overlapping when examined in three dimensions.
For example, the orbits for spatial frequencies 3 and 4 overlap in dimensions 1 and 2,
but are well separated in dimension 3. Conversely, the orbit for spatial frequency 1 nearly
collapses in dimensions 1 and 3, but is clearly delineated along dimension 2. The dimension
index E (equation (10)) of this embedding is 1.8, and the first 10 eigenvalues are shown in
figure 14(B). Projections along combinations of the third and fourth axes provide additional
separation of the orbits, but do not reveal qualitatively new structure.
In figure 15, we analyse activity of a complex cell in the supragranular layers of
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Figure 14. Analysis of temporal coding of spatial frequency and orientation in macaque primary
visual cortex. Sixteen responses to each of 40 stimuli (five spatial frequencies, eight orientations)
are analysed. Panel A: information-theoretic measure of clustetingolid lines) for DSPke 4]

(filled circles) andDnevakmin,1 (filled triangles), and estimates of chance informatidip
(broken lines, open symbols, error bars represent me2us.e.m.) derived from 10 resampled
data sets. Panel B: eigenvalues of the matrix of equation (9)DfR#32]. Panels C-E:
multidimensional scaling foDSPke32], with each spike train’s locus projected onto the planes
determined by pairs of the first three eigenvectors of the matrix of (9). Each point represents the
mean position of 16 responses. Trajectories are colour coded to correspond to the five spatial
frequencies used in the experiment, and for each spatial frequency, the response at the preferred
orientation is marked with a black symbol. Recording H30011.
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Figure 15. Analysis of temporal coding of contrast and spatial frequency in macaque primary
visual cortex. One hundred and twenty-eight responses to each of 15 stimuli (three spatial
frequencies, five contrasts) are analysed. Panel A: information-theoretic measure of clustering,
H (solid lines) for DSPkq4] (filled circles) andp™evaimin ] (filled triangles), and estimates

of chance informationHy (broken lines, open symbols, error bars represent mears.e.m.)
derived from 10 resampled data sets. Panel B: eigenvalues of the matrix of equation (9) for
DsPke[B4]. Panels C-E: multidimensional scaling foePkeg64]. Each spike train’s locus is
projected onto the planes determined by pairs of the first three eigenvectors of the matrix of
(9), and the mean position of 128 responses to each stimulus is plotted. Trajectories are colour
coded to correspond to the three spatial frequencies used in the experiment, and for each spatial
frequency, the response at the highest contrast is marked with a black symbol. Recording 19/12.
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Figure 16. Detailed analysis of the data of figure 15 fof"evaming4]  pPanel A: eigenvalues

of the matrix of equation (9). Panels B—-D: multidimensional scaling. Each spike train’s locus

is projected onto the planes determined by pairs of the first three eigenvalues, and the mean
position of 128 responses to each stimulus is plotted. As in figure 15, trajectories are colour
coded to correspond to the three spatial frequencies used in the experiment, and for each spatial
frequency, the response at the highest contrast is marked with a black symbol. Recording 19/12.

primary visual cortex, recorded in an anaesthetized, paralysed macaque. (Physiological
preparation for recordings in the anaesthetized, paralysed macaque are described in [47]).
Stimuli consisted of transient presentation of gratings of three spatial frequencies (0.5, 2,
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and 4 cycles/deg) and five contrasts (0.0625, 0.125, 0.25, 0.5, 1.0), aligned at the optimal
orientation. For each of thesex3 = 15 stimuli, 128 responses of 256 ms were collected and
analysed. Again there is temporal coding both in the senges#ffq4] and pinevamin |,

as shown by the rise i&/ for ¢ > 0. As in data of figure 14, multidimensional scaling of

the responses (figure 15(C—E)) fbFPk964] reveals a systematic separation of the loci for
each of the three spatial frequencies and the five contrasts, but three dimensions are needed
to see this separation clearly. Responses to the lowest spatial frequency are well separated
from the responses to the two higher spatial frequencies in the projection on dimensions 1
and 2, while responses to the two higher spatial frequencies are best separated from each
other in the projection on dimensions 1 and 3.

In contrast to the data of figure 14, clustering is greater B8reVamin,] than for
DPk4] at large values of;. However, multidimensional scaling (figure 16(B-D)) for
pintevalmiig A1 the same value af as in figure 15, does not provide a systematic separation
of the loci for each of the three spatial frequencies. Rather, the loci for all stimuli are nearly
collinear, and the loci for the two higher spatial frequencies overlap in all projections.
This qualitatively simpler structure for the geometry induced B{fe™a"min,] is made
guantitative by the greater dominance of the first eigenvalue (figure 16(A) compared with
figure 15(B)), and the smaller dimension indéx1.6 for Di"evaiming4] compared with 3.7
for DSP*64]). That is, even thougi™e™va-minNe4] provides a greater degree of clustering
than DSP*9q64], DP*964] induces a metrical structure which separates the two stimulus
attributes of contrast and spatial frequency, whilg®eva-mng4] does not.

3. Discussion

3.1. Overview

We have presented a new approach to the analysis of the temporal structure of spike trains.
The notion of ‘distance’ between spike trains plays a central role in this approach. Based
solely on the notion of distance, we show how it is possible to assess (via an information-
theoretic measure) the extent to which experimentally measured neural responses cluster in
a systematic fashion. This measure of clustering indicates the extent to which this candidate
distance is sensitive to features of spike trains that convey stimulus-specific information.
By repeating this process for several families of distances, one can learn about the nature
and precision of temporal coding.

The notions of distance make explicit and fundamental use of the point-process nature
of spike trains. The formal structure of this approach is an embedding of spike trains
into a ‘metric space’. Metric spaces have well defined distances but do not require the
assumption of a linear structure (with implications for superposition and scaling) that would
be inherent had we embedded spike trains into a vector space. As recently pointed out
by Hopfield [18], there are good theoretical reasons to question whether such vector-space
assumptions are appropriate. Indeed, the metrics we consider, which follow naturally from
neurobiological heuristics, ameconsistent with a linear structure. While one can use vector-
space embeddings to visualize the metrical relationships between spike trains (figure 9,
figure 14(D-E), figure 15(C-E), figure 16(B—D)), the high dimensionality and presence of
hyperbolic coordinates in these embeddings indicate that the vector-space approximation is
a poor one.

This approach is fundamentally hypothesis-driven and in principle can be applied to any
proposal for temporal coding, provided that it can be formalized in terms of a metric, or a
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family of metrics that depends on a parameter (such as ouggo&tomparison of clustering
across distinct families of metrics provides qualitative insight into the nature of coding,
while comparison of clustering within a parametric family provides quantitative insight
(such as the ‘precision’ of coding). We cannot prove that this approach will encompass
any notion of temporal coding (‘encoding’ as defined by Theunissen and Miller [43]), but,
arguably, the notion of a metric issine qua norof any rigorous hypothesis for temporal
coding. Certainly, this approach is at least as general as methods that require vector-
space embedding, since any such embedding automatically provides a metric (the Euclidean
distance).

The metrics we have considered induce distinct topologies on the space of spike trains.
Some of the metrics we consider are related by a strict topological hierarchy (figure 1).
Indeed, adding a new kind of step to the definition of a metric always leads to a metric
which is coarser than (i.e. refined by) the original metric. However, as the simulations and
the analyses of experimental data show, topological refinement does not necessarily imply
greater clustering. Moreover, parametric changes in the metric (i.e. variatigysr@sult
in no change in the induced topology but frequently in a dramatic change in the degree of
clustering.

Bialek’s reconstruction method [5] rests on a search for a funclign that, when
convolved with a spike train, provides an optimal reconstruction of a temporal input. Each
candidate functiorl(¢) defines a distance (a Euclidean distance of spike trains convolved
with L(z)), and the reconstruction approach can be viewed as a minimization of such a
distance. Except for ‘pathological’ cases, the distances corresponding to each choice for
L(r) have equivalent topologies (which are also equivalent to that induceaf¥f). Thus,
in both approaches, the characterization of a temporal code appears to require more than
merely the topology induced by a metric.

3.2. Variety of behaviours revealed by this approach

For the two families of metrics on which we focussda®t® and D" our methods
readily reveal a variety of behaviours in simulated data sets. This ranges from no
(figure 4(A-D), figure 6(A-D)) or minimal (figure 4(E-F)) evidence of temporal coding, to
dramatic encoding by spike times and intervals (figure 5(E—H)), to encoding primarily by
spike times and not by intervals (figure 5(A-D)), to encoding primarily by intervals and not
by spike times (figures 6(E—H) and 7). Figure 7 also demonstrates that the present approach,
without further machinery, suffices to identify coding through the genesis of deterministic
chaos. These qualitative behaviours are largely independent of the exponeet for
clustering.

In all the analyses, the estimate of chance clusteHgds relatively insensitive to the
parameter of temporal precisiopn, This underscores the point that the temporal resolution of
the analysis is achieved without binning, and hence without an artificial increase in apparent
information despite the increase in embedding dimension at high valugfafure 11).

This is of particular practical importance given the millisecond precision [23, 24] that
cortical neurons possess. The present approach provides a practical way of determining
whether spike times, at this level of precision, carry information concerning the stimulus,
and thus of differentiating between intrinsic precision and informative precision. The large
optimal value ofg for auditory data (figure 13) indicates a role for this high degree of
temporal precision in this sensory modality. However, our analysis also indicates that this
is not universal: for neurons in visual cortex, maximal clustering is achieved for values of
g that correspond to temporal precisions of the order of 20 ms (figures 14 and 15) or more
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[46], in agreement with measures of temporal precision achieved through more traditional
analyses of temporal coding [17].

3.3. Comparison with other clustering methods of analysis of temporal coding

Middlebrookset al [28] used a neural network approach to cluster spike trains and to
demonstrate temporal coding of the azimuth of a sound’s origin in the responses of single
neurons in auditory cortex. Our finding of an increaseHnfor g > 0 (figure 13(A)) is
in agreement with the authors’ inference [28] of temporal coding, but we believe that our
approach adds to the neural network analysis carried out by the authors in several ways.
The peak inH nearg ~ 256 provides an estimate of 3—4 ms for the jitter of the temporal
structure. Comparison of the differengée— Hy for both DSPk94] and D™eVa-min 4] shows
that the pattern of absolute spike times, but not of spike intervals, is systematically dependent
on the stimulus. Finally, multidimensional scaling (figure 13(C-D)) of the neural responses
according to the distance®sP*q4] that are associated with strong clustering provides a
vivid demonstration of the representation of the azimuth of a sound’s origin in the temporal
structure of the neural response.

In comparison with the information analyses of temporal coding considered by Golomb
et al [14], the present approach yields lower valuesitbfand H — Hy by 0.05-0.1 (up to
20%). Presumably, this is a consequence of two features of our approach.

(i) We used a clustering method which made no assumptions about the shapes of clusters.
This has the advantage of identifying clusters even for spike train loci that are concentric
(figures 6 and 9), but it would likely provide a less-efficient clustering scheme in
situations in which spike train loci conformed to relatively uniform clouds.

(ii) The clustering was based on metrifP*e and p"ervamin \which were chosen to test
specific hypotheses concerning the nature of temporal coding, rather than attempting to
optimize them to separate spike trains which were created from time-dependent Poisson
processes.

Despite these differences, there is a substantial similarity in the biological conclusions
that one would draw from the two calculations: the greater information in the parvocellular
neuron’s responses, and the greater relative importance of temporal coding in the
magnocellular neuron’s responses. This is reassuring for potential users of either approach.
The somewhat smaller value é¢f and H — Hy that we obtain is a combination of the
price paid for a more generic clustering algorithm and the deviation of the meéfiR‘§
and DMevamin from the geometry that underlies the fundamentally linear simulation. That
is, the difference in apparent clustering is a window on the underlying geometry of the
simulated spike trains themselves. It remains to be seen whether a similar difference is
generally found in the analysis of real neuronal discharges.
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