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Abstract. We present the mathematical basis of a new approach to the analysis of temporal
coding. The foundation of the approach is the construction of several families of novel distances
(metrics) between neuronal impulse trains. In contrast to most previous approaches to the
analysis of temporal coding, the present approach does not attempt to embed impulse trains in a
vector space, and does not assume a Euclidean notion of distance. Rather, the proposed metrics
formalize physiologically based hypotheses for those aspects of the firing pattern that might be
stimulus dependent, and make essential use of the point-process nature of neural discharges.
We show that these families of metrics endow the space of impulse trains with related but
inequivalent topological structures. We demonstrate how these metrics can be used to determine
whether a set of observed responses has a stimulus-dependent temporal structure without a
vector-space embedding. We show how multidimensional scaling can be used to assess the
similarity of these metrics to Euclidean distances. For two of these families of metrics (one
based on spike times and one based on spike intervals), we present highly efficient computational
algorithms for calculating the distances. We illustrate these ideas by application to artificial data
sets and to recordings from auditory and visual cortex.

1. Introduction

Recent neurophysiological studies in vision [12, 25, 30, 33, 35, 46], audition [1, 13,
28], and olfaction [22, 40] have provided convincing evidence that sensory information
is represented by the temporal structure of a neural discharge, as well as by the number
of spikes in the response. Although a neuronal discharge is fundamentally a point process,
many approaches to the analysis of temporal structure rely on binning the spike trains and
on adopting methods appropriate for multivariate data [10] or continuous signals. There are
two potential drawbacks to such approaches [46]. One problem is that an adequate time
resolution over a reasonable analysis interval requires an embedding in a high-dimensional
vector space which is only sparsely sampled by the data set. More fundamentally, this
approach is less than optimal because the vector-space approach (i) treats all coordinates on
an equal footing, and thus ignores the sequential nature of time; and (ii) assumes that the
space of spike trains has a Euclidean geometry. One might argue that an assumption of an
underlying Euclidean geometry is justified in instances in which there is an approximately
Euclidean ‘perceptual space’ (e.g. representations of colour) but it is difficult to justify this
assumption when the geometry of the perceptual space is unknown (e.g. a representation of
‘objects’).
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Methods which do not require vector-space embeddings have been used to examine
temporal coding, but currently available methods have other drawbacks. A neural network
scheme [19, 28] for the classification of spike discharges can surmount the temporal-
resolution problem. However, inferences concerning the nature of the temporal code are
not straightforward, since they require an understanding of both the manner in which spike
trains are represented [19] and the parameters of the neural network. Other approaches
deal explicitly with spike trains as point processes, but these methods focus on correlations
among discharges [31, 32], the pattern of interspike intervals [34], or the identification of
similar segments of spike discharges [3], rather than on a global analysis of how the pattern
of the discharge depends on the stimulus.

We recently [46] used a novel approach to investigate temporal coding in the primate
visual cortex. One major distinction between the present approach and many previous
approaches is that it provides a global analysis of how the discharge pattern depends on
the stimulus, without the need for an embedding in a vector space, or an assumption of a
Euclidean (or near-Euclidean) geometry for the set of spike trains. The philosophy behind
this approach is to exploit what is known about the biological significance of the temporal
pattern of nerve impulses to construct a specifically appropriate mathematical structure,
rather than to adapt general-purpose methods of signal processing. The purpose of this
paper is to describe the mathematical basis of this approach in detail.

2. Results

2.1. Overview

For the reasons described in the introduction, we construct a method to analyse the temporal
structure of spike trains based only on the bare essentials: an abstract set of points (the
spike trains) and a self-consistent definition of distances between pairs of these points. In
formal mathematical terms, we consider the spike trains and the notion of distance to define
a metric space [11], a topological structure substantially more general than a vector space
with a Euclidean distance. The extent to which our construct indeed corresponds to a
Euclidean distance in a vector space will be determined empirically, rather than assumed.

We shall consider several families of metrics. Each metric determines a candidate
geometry for the space of spike trains. Stimulus-dependent clustering will be assessed
relative to each candidate geometry, without recourse to further mathematical structure.

The metrics we consider are based on intuitions concerning possible biological
underpinnings of temporal coding. The first family of metrics, denoted byDspike[q],
emphasizes the significance of the absolute timing of individual impulses. The rationale
for this family of metrics is that, under some circumstances, a cortical neuron may behave
like a coincidence detector [2, 27, 41, 42], but the effective resolution of this coincidence
detector is uncertain. Within the resolution of this coincidence detector, the effect of a spike
train on other cortical neurons will depend on the absolute timing of its impulses, rather
than on the number of spikes within a given interval.

A second family of metrics, denoted byDinterval[q], emphasizes the duration of interspike
intervals. The rationale in this case is that the effect of an action potential can depend
critically on the length of the time since earlier action potentials [39]. Possible biological
substrates for this dependence include the NMDA receptor and Ca2+ channels whose
behaviour is sensitive to the pattern of interspike intervals [6, 21, 36]. While it is trivially
true that the absolute spike times determine the interspike intervals (andvice-versa, with the
notion that the first ‘interspike interval’ is the interval between the onset of data collection
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and the first spike), it is not true that the distance between two spike trains, in the sense of
Dspike, determines the distance between the trains in the sense ofDinterval.

Finally, we shall consider a third family of metrics,Dmotif, which is motivated by the
notion that a ‘motif’, or a temporal pattern of a subset of spikes [3], may be of physiological
significance. This family of metrics is a natural formal extension ofDspike andDinterval.
However, implementation of our analysis forDmotif is hindered by the lack of availability
of efficient algorithms.

Within each of these families, the specific metrics which we shall consider (Dspike[q],
Dinterval[q], andDmotif[q]) depend on a parameterq, which expresses the sensitivity of the
metric to temporal pattern. The parameterq has units of (s−1) and represents the relative cost
to ‘move’ a spike (forDspike[q]), to change the duration of an interval (forDinterval[q]), or to
translate a motif (forDmotif[q]), compared with the cost of inserting or deleting a spike. For
q = 0, each of these metrics reduces to a distance based solely on counting spikes. Thus,
temporal coding will manifest itself as more reliable clustering for some values ofq > 0
than for q = 0. For sufficiently large values ofq, we anticipate a decrease in systematic
clustering, since the infinitesimally precise timing of impulses or intervals cannot possibly
carry biological information. Thus, our method provides two characterizations of temporal
coding: the amount of systematic clustering seen withq > 0 will indicate the extent to
which absolute spike times (Dspike[q]), spike intervals (Dinterval[q]), or subsets of spikes
(Dmotif[q]) depend on the stimulus, and the value ofq for which the clustering is greatest.
The latter characterization will indicate the temporal resolution of the coding.

2.2. Mathematical framework and definition of metrics

A metric space [11] is a set of points (here, spike trains, to be denoted bySa, Sb, . . . )
together with a metricD, which is a mapping from pairs of spike trains to the real numbers.
In order forD to be a metric, it must (i) always be positive except for the trivial case
D(S, S) = 0, (ii) be a symmetric function [D(Sa, Sb) = D(Sb, Sa)], and (iii) satisfy the
triangle inequality

D(Sa, Sc) 6 D(Sa, Sb)+D(Sb, Sc). (1)

With these conditions satisfied, the functionD can be thought of as specifying a distance.
A spike trainS is a sequence of timest1, t2, . . . , tk, with 0 6 t1 < t2 < . . . < tk, and

will be denoted byS = {t1, t2, . . . , tk}. We shall define a metricD(Sa, Sb) as the minimum
‘cost’ required to transform the spike trainSa into the spike trainSb via a path of elementary
steps. The cost assigned to a path of steps is the sum of the costs assigned to each of the
elementary steps. Formally,

D(Sa, Sb) = glbS0,S1,...,Sr

∑
K(Sj , Sj−1) (2)

whereS0 = Sa, Sr = Sb, andK(Sj , Sj−1) is equal to the cost of an elementary step from
Sj to Sj−1. K(Sj , Sj−1) is required to be non-negative and symmetric.S1, S2, . . . , Sr−1

represent intermediate spike trains along the path fromSa (= S0) to Sb (= Sr ). There is no
need to specify that there is a path whichachievesthe minimum total cost, and thus we use
the notation ‘glb’ (= greatest lower bound) rather than ‘min’ in equation (2).

Generally, functions of the form specified by (2) will satisfy the above three conditions
(i)–(iii), and thus qualify as metrics. The symmetry ofD is inherited from the postulated
symmetry of the cost functionK. The triangle inequality (1) is automatically satisfied,
because one path fromSa to Sc is the cost-minimizing path fromSa to Sb, followed by
the cost-minimizing path fromSb to Sc. However, depending on the choice of the cost
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functionK, there may be distinct spike trainsSa andSb for whichD(Sa, Sb) = 0, and thus
condition (i) would not be satisfied. This may be remedied [11] by considering the space
of ‘equivalence classes of spike trains’, where the equivalence class which includesS is the
set of spike trains whose distance fromS is zero. The function defined by (2) now becomes
a valid metric on equivalence classes of spike trains. The space of equivalence classes of
spike trains is always a metric space, and a specification of the allowed elementary steps
and their associated costs always provides a metric.

The nature of the metric defined by (2) is determined by the allowed elementary steps
and the costs that are assigned to them. For all the metrics we consider here, the allowed
elementary steps will always include adding a single spike or deleting a single spike. These
steps will be assigned a cost of 1. This serves to ensure that there exists at least one path
between any two spike trains. However, a metric which has only these allowed steps will
see all spikes as equally different from each other, unless they occur at precisely the same
time. To use the distances defined by (2) to express more biologically plausible notions of
distance, additional kinds of elementary steps must be introduced.

2.2.1. A metric based on spike times.We first create a family of metrics whose distances
reflect similar times of occurrence of impulses. This family, which we denote byDspike[q],
has one kind of step in addition to spike insertion and deletion. This second kind of step is
based on concatenation of a continuum of infinitesimal steps, each of which shifts a single
spike in time by an infinitesimal amount dt . The cost associated with this infinitesimal step
is asserted to beqdt , whereq is a parameter with units s−1. Combining a continuum of
these steps (each operating on the same spike) leads to a shift of a spike by an amount1t ,
with the associated costq|1t |.

One extreme instance of this metric occurs if the cost per secondq is set to zero. In
this case, elementary steps which shift the position in time of a spike are free, and costs are
associated only with adding or deleting spikes. It follows that the distance between these
two spike trains inDspike[q] is the difference in the number of spikes, which we denote by
the ‘spike count’ metricDcount.

To gain some insight intoDspike[q] for q > 0, consider two spike trains{a} and {b},
each of which consists of only a single spike. There are two paths to consider in applying
equation (2). The path which consists of moving the solitary spike has a cost ofq|a − b|.
The path which consists of deleting the spike fromSa and then inserting a spike to form
Sb, has cost 2. It is cheaper to delete the spike and reinsert it than it is to move it, provided
that |a− b| > 2/q. Thus, in the limit of very largeq, the distance between two spike trains
Sa = {a1, a2, . . . , am} andSb = {b1, b2, . . . , bn} is m + n − 2c, wherec is the number of
spike times inSa ∩ Sb. In essence,Dcount = Dspike[0] ignores the time of occurrence of
the spikes, whileDspike[∞] considers any difference in time of occurrence to constitute a
‘different’ spike. For the metricDspike[q], displacing a spike by a distance 1/q is equal
in cost to deleting it altogether, and displacing a spike by a smaller distance results in a
spike train which is similar, but not identical. That is, 1/q is a measure of the temporal
resolution of the metric. Equivalently, one can considerq to be a measure of the precision
of the temporal coding.

2.2.2. A metric based on interspike intervals.We now consider a second family of
metrics,Dinterval[q], which depends on interspike intervals in much the same way that
Dspike[q] depends on spike times. ForDinterval[q], the second kind of elementary step is
a concatenation of a continuum of infinitesimal steps, each of which consists of changing



Metric-space analysis of spike trains 131

the lengthof an interspike intervalby an infinitesimal amount dt . This step has costqdt .
A change in the length of an interspike interval necessarily changes the time of occurrence
of all subsequent spikes. This is in contrast to the elementary step ofDspike[q], in which
only one spike time is changed, but two intervals are modified (the intervals immediately
preceding and following the shifted spike).

In the two limiting cases ofq = 0 andq = ∞, the metricDinterval[q] is essentially the
same as the metricDspike[q], because both depend only on the number of spikes. However,
for intermediate values ofq, the two metrics can have quite different behaviour. This
is becauseDinterval[q] is sensitive to the pattern of interspike intervals, whileDspike[q] is
sensitive to absolute spike times. Consequently,Dinterval[q] can distinguish firing patterns
which Dspike[q] cannot. For example (as we shall see below),Dinterval[q] can distinguish
a pattern of intervals with a chaotic nonlinear recursion [34] from a renewal process with
equal interval statistics;Dspike[q] cannot make this distinction.

A technical detail, which concerns the initial and final intervals, arises in implementing
the metricDinterval[q]. A spike trainS = {t1, t2, . . . , tk} on a segment [0, T ] defines the
k − 1 interior intervalst2− t1, . . . , tk − tk−1 unambiguously.

However, the initial and final intervals are of uncertain length: the initial interval is
of length at leastt1, but may be longer (since the spike immediately preceding the spike
at t1 was not recorded). Similarly, the final interval is of length at leastT − tk, but may
be longer. There are several ways of proceeding to define a well defined metric, each of
which could be considered to be a variant ofDinterval[q]. For example, the initial and final
indeterminate intervals may be simply ignored, creating a metric which we designate as
Dinterval:ign[q]. Alternatively, one may place an auxiliary leading spike in both trains at time
0 and a second auxiliary trailing spike in both trains at timeT , creating a metric which
we designate asDinterval:fix[q]. A third alternative is that the times of the auxiliary leading
spikes inserted into the two trains can be allowed to vary independently (in the interval
[−∞, 0] for the leading spike and in the interval [T ,∞] for the trailing spike), to minimize
the distance of equation (2), thereby creating a metric which we designate asDinterval:min[q].
In general, these variations have only a minimal effect on the analysis of temporal structure,
as would be expected since they are essentially end effects. In the calculations presented
in this paper, we usedDinterval:fix[q] (an auxiliary spike inserted at time 0 and timeT ) and
Dinterval:min[q] (auxiliary leading and trailing spikes were inserted in both trains at positions
which minimized the distance of equation (2)).

2.2.3. A metric based on subsets of spikes.The third family of metrics,Dmotif[q] is
motivated by the notion that a ‘motif’, or temporal pattern of a subset of spikes [3], may be
of physiological significance. This metric is constructed as a generalization ofDspike[q]. As
in Dspike[q], the first kind of step consists of adding a single spike, or deleting a single spike,
and has cost 1. The second kind of step is again based on concatenation of a continuum of
infinitesimal steps, but the infinitesimal steps allow joint shifting of any number of spikes,
all in the same direction, by the same amount dt . That is, the cost of a step from a spike train
S = {t1, t2, . . . , tk} to a spike trainS ′ = {t ′1, t ′2, . . . , t ′k}, where eacht ′j is eithertj or tj +1t ,
has the costq|1t |. This metric is more closely related toDinterval[q] than toDspike[q], in
that an elementary step which shifts a contiguous subset ofN spike times changes only
two intervals (the end intervals) and would thus have cost 2q|1t | in Dinterval[q], but would
have costNq|1t | in Dspike[q]. However, the metricDmotif[q] is distinct fromDinterval[2q],
in thatDmotif[q] allows shifts ofnon-contiguousspikes with no penalty.
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2.2.4. Some generalizations.The families of metricsDspike[q], Dinterval[q], andDmotif[q]
can be generalized by modifying the cost assigned to finite translations1t from the simple
q(1t) = q|1t | to more general functionsQ(1t), provided only thatQ(1t1 + 1t2) 6
Q(1t1)+Q(1t2) (this is necessary to ensure satisfaction of the triangle inequality (1)). For
example,Q(1t) = 1− exp{−q|1t |} is a natural choice to express a metric based on the
idea that the efficacy of two spikes in driving a coincidence detector declines exponentially
with their time separation [27], with rate constantq. Furthermore, additional metrics can
be generated by combining the two or more of the steps allowed inDspike, Dinterval, and
Dmotif, each with their associated cost functions, to create metrics such asD[qspike, qinterval]
andD[qspike, qinterval, qmotif].

These ideas can also be generalized to simultaneous recordings from multiple single
neurons. We can regard a set of such recordings as a single spike train, in which each spike
has an identified neuron of origin. This setting requires a new kind of elementary step which
corresponds to relabelling the neuron of origin. In principle, the cost for this relabelling,
C(i, j) could depend on the neurons of origini andj in an arbitrary fashion. In practice,
this is likely to generate an explosion of parameters; in practice, it is likely to be sufficient
simply to setC(i, j) = C. Values ofC that are small in comparison to 1 correspond to
metrics which are sensitive primarily to the population firing pattern (independent of neuron
of origin), while values ofC that are large in comparison to 1 correspond to metrics that
are sensitive to the individual firing pattern of each neuron.

2.3. Topological relationships among the metrics

Let us now consider the extent to which the three families of metrics,Dspike[q], Dinterval[q],
andDmotif[q], represent intrinsically different notions of distance. (In this discussion, we
have chosen to implementDinterval[q] as the variantDinterval:fix[q], because it simplifies
the analysis). That is, we ask whether closeness in the sense of one metric necessarily
implies closeness in the sense of another metric. This is essentially the topological notion
of ‘refinement’: a metricDa is said to refine a metricDb if, for every ε > 0, there exists
δ > 0 such that

if Da(S, S
′) < δ thenDb(S, S

′) < ε. (3)

That is, closeness in the sense ofDa implies closeness in the sense ofDb, In other
words, if metricDa refines metricDb, thenDa must be sensitive to all the details of
temporal pattern that influenceDb, provided that the spike trains that are not very different.
Moreover, if Da refinesDb and alsoDb refinesDa, then the metrics are topologically
equivalent (i.e. they define metric spaces that are topologically equivalent). Conversely, if
Da refinesDb butDb does not refineDa, it is always possible to find two sequences of spike
trainsS1, S2, S3, . . . andS ′1, S

′
2, S
′
3, . . . for which the metricsDb(Sj , S

′
j ) approach zero, but

the metricsDa(Sj , S
′
j ) do not. The notions of refinement and equivalence are intrinsically

topological in that they are independent not only of the overall magnitude ofDa or Db but
also of transformationsDi → fi(Di) which preserve the triangle inequality [1].

For cost-based metrics, restriction of the allowed elementary steps necessarily results
in a refinement of the metric. This is because placement of restrictions on (or elimination
of) allowed elementary steps can never result in a smaller distance, so it suffices to take
δ = ε in equation (3). For example,D[qspike, qinterval] refinesD[qspike, qinterval, qmotif], and
D[qinterval] refinesD[qspike, qinterval].

By a similar logic, an increase in the costs of elementary steps must also result in
a refinement of the metric. Thus, forqb < qa, Dspike[qa] is a refinement ofDspike[qb],
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Dinterval[qa] is a refinement ofDinterval[qb], Dmotif[qa] is a refinement ofDmotif[qb], and all
these metrics are refinements ofDcount. This corresponds to the intuitive notion that larger
values of the cost lead to greater sensitivity to the details of the temporal pattern of the
spike train.

What is somewhat unexpected is thatDspike[qa] and Dspike[qb] are topologically
equivalent (and similarly forDinterval and Dmotif), for any qa and qb that are non-zero.
To prove this, we need to show that (3) can be satisfied for sufficiently smallε andqb > qa.
The argument that we give forDspike[qa] extends readily toDinterval andDmotif. It suffices
to considerδ < min(εqa/qb, 1). For δ < 1, two spike trainsS and S ′ whose distance
Dspike[qa](S, S ′) is less thanδ must be related by a minimal path which consists only of
spike moves, since a total cost of< 1 excludes the possibility that any elementary step
involves the insertion or deletion of spikes. The total distance of the spike moves must
be less thanδ/qa, which is less thanε/qb (because of the choice ofδ). Thus, the same
path, viewed inDspike[qb], has a cost which is no greater thanε. Thus, from a topological
viewpoint, the metrics of the familyDspike[q] are equivalent. A similar conclusion holds
within the family of metricsDinterval[q] and within the familyDmotif[q] (providedq > 0).

However, these families of metrics are not equivalent to each other. Rather, the metrics
Dspike[q] are all refinements of the metricsDinterval[q], and the metricsDinterval[q] are all
refinements of the metricsDmotif[q], although the converse statements are not true. To see
that the spike time metrics are refinements of the spike interval metrics, it suffices to show
that someDspike[qa] is a refinement ofsomeDinterval[qb], because of the equivalence within
each family. It is convenient to considerDspike[q] andDinterval[q]. These metrics are related
because any translation of a spike by an amount1t can always be viewed as a change in the
length of the preceding interval by1t and a change in the length of the following interval
by −1t . Translation of a spike by1t has a costq1t in Dspike[q], but the cost of the pair
of changes in interval lengths inDinterval[q] is 2q1t . This means that a path of elementary
steps inDspike[q] can be used to generate a path of elementary steps inDinterval[q], with at
most double the cost. Thus, it suffices to takeδ = ε/2 in equation (3). Furthermore, to see
thatDinterval[q] is a refinement ofDmotif[q], one merely needs to observe that changing the
length of an interval is equivalent to moving a motif consisting of all spikes which follow
this interval. That is,Dmotif[q] 6 Dinterval[q], and one may takeδ = ε in (3).

To show that the spike interval metrics arenot refinements of the spike time metrics, we
display sequences of spike trainsS1, S2, S3, . . . andS ′1, S

′
2, S
′
3, . . . for which the distances

Dinterval[q](Sj , S ′j ) approach zero, but the distancesDspike[q](Sj , S ′j ) do not. Let the spike
trainsSj consist of impulses at times 0, 1, 2, . . . , j − 1, j and the spike trainsS ′j consist of
impulses at times 0, 1+ 1/j, 2+ 1/j, . . . , (j − 1)+ 1/j, j + 1/j . Except for the first spike,
trains differ by a displacement of 1/j . Thus,Dinterval[q](Sj , S ′j ) = q/j , with the minimal
cost achieved by changing the length of the first interval. However,Dspike[q](Sj , S ′j ) = q,
sinceeachof the lastj spikes must be moved by an amount 1/j . Thus, asj increases,
the distancesDinterval[q](Sj , S ′j ) approach 0, but the distancesDspike[q](Sj , S ′j ) do not.
Similarly, to show that spike motif metrics are not refinements of spike interval distances,
we display sequences of spike trainsS1, S2, S3, . . . andS ′1, S

′
2, S
′
3, . . . for which the distances

Dmotif[q](Sj , S ′j ) approach zero, but the distancesDinterval[q](Sj , S ′j ) do not. Here, we
let the spike trainsSj consist of impulses at times 0, 1, 2, . . . ,2j − 1, 2j and the spike
trains S ′j consist of impulses at times 0, 1 + 1/j, 2, 3 + 1/j, 4, . . . , (2j − 1) + 1/j, 2j .
Dmotif[q](Sj , S ′j ) = q/j , which is achieved by a single step consisting of shifting all the
spikes at the odd-numbered times by an amount 1/j . However,Dinterval[q](Sj , S ′j ) = 2q,
since a total of 2j intervals must each be altered by an amount 1/j .
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Despite the successive-refinement relationship ofDcount, Dmotif, Dinterval, andDspike, one
cannot conclude that all cost-based metrics are related in a nested fashion. For example,
among the variants ofDinterval, one may show thatDinterval:min is topologically equivalent to
Dinterval:ign, and both are refined byDinterval:fix, while onlyDinterval:fix refinesDmotif. This is
because among the three variants ofDinterval, only Dinterval:fix is sensitive to the time of the
first and last spikes, and this sensitivity is needed to controlDmotif. As an extreme example,
consider the metricsDinterval:p, variants ofDinterval:fix in which the elementary steps include
insertion and deletion of a spike, as well as shifting a contiguous group of spikes, but
only if the number of shifted spikes is a power of the primep. These metrics are highly
unphysiological, but serve to demonstrate that it is possible to construct an infinite number
of metrics, each of which is a refinement ofDinterval:fix (and hence refined byDspike), but
none of which is a refinement of any other. Similarly, the metricsDmotif:p, which allow
shifting of non-contiguous subsets of spikes provided that the number of such shifted spikes
is a power of the primep, represent an infinite number of metrics, each of which is a
refinement ofDmotif (and refined byDspike), but none of which is a refinement of any other.
These relationships are illustrated in figure 1.

In sum, the notions of topological equivalence and refinement help one to appreciate
the relationships among the metrics, considered as abstract entities. Within a class, the
metrics all determine the same topological space, but different classes of metrics determine
distinct topological spaces. However, as we shall see below, the topological relationships do
not predict which metrics lead to stronger stimulus-dependent clustering. A refinement of a
given metric need not lead to stronger stimulus-dependent clustering, because the refinement
may be sensitive to aspects of temporal structure that are not used by the nervous system.
In addition, clustering depends not only on the topology of the metric, but also on the
relative sizes of distances between specific spike trains. Thus, we shall see that although
the metricsDspike[q] are all topologically equivalent, stimulus-dependent clustering will
depend strongly onq.

Figure 1. Topological relationships among several families of distances. An arrow leading from
one family to another family means that the higher family is a topological refinement of the
lower family. The distances are defined in the text.
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2.4. Efficient algorithms for the calculation of distances

2.4.1. Distances based on spike intervals.There are simple and efficient algorithms that
construct the minimal path(s) required by the definition of equation (2) and thereby calculate
the distances specified byDspike[q] and Dinterval[q]. These algorithms are related to the
elegant algorithms introduced by Sellers [37] for calculating the distance between two
genetic sequences (i.e. a sequence of nucleic acid codons). ForDinterval[q], the Sellers
algorithm applies directly: the spike train, considered as a sequence of interspike intervals,
corresponds to a sequence of nucleotides in a DNA segment.

To compute the distanceG(E,F) between two spike trains whose interspike intervals are
(e1, e2, . . . , em) and (f1, f2, . . . , fn), we proceed inductively as follows. DefineG0,0 = 0,
andGi,j = 0 for eitheri or j less than 0. Then, fori or j greater than 0, calculateGi,j as
the following minimum:

Gi,j = min
{
Gi−1,j + 1,Gi,j−1+ 1,Gi−1,j−1+M(ei, fj )

}
(4)

whereM(ei, fj ) is the cost of changing the intervalei to the intervalfj , namelyq|ei − fj |.
Sellers [37] has shown that with this recursion rule, the distance between two subsequences
(e1, e2, . . . , ei) and (f1, f2, . . . , fj ) is given byGi,j . In particular, the desired distance
G(E,F) is given byGm,n. Furthermore, the minimal path or paths fromE to F are readily
constructed from the options chosen at each stage of the recursion (4). The first choice
corresponds to insertion of a nucleotide in sequenceE, the second choice corresponds to
insertion of a nucleotide in sequenceF , and the third choice corresponds to changing a
nucleotide. In our application, the elements (interspike intervals) form a continuum; the
Sellers algorithm is concerned with sequences composed of a finite number of kinds of
objects (e.g. nucleotides). However, this is not crucial to the algorithm, which requires
only that the rule that assigns costs to changes from one sequence element into another, the
functionM(ei, fj ), should satisfy the triangle inequality.

2.4.2. Distances based on spike times.The inductive idea behind the Sellers algorithm
can also be used to calculateDspike[q], provided that the quantities(e1, e2, . . . , ei) and
(f1, f2, . . . , fj ) are considered to be spiketimes(rather than spike intervals), and the term
M(ei, fj ) is q|ei − fj |, the cost of shifting a spike from timeei to time fj . Despite the
similarity of the algorithms forDspike[q] andDinterval[q] , it is somewhat awkward to prove
the validity of the algorithm forDspike[q] from the original Sellers argument [37]. It seems
natural to discretize time, and then consider each spike train to be a sequence of 0s and
1s, with 0s at times without spikes, and 1s at times with spikes. But, with this formalism,
a shift in time of a spike corresponds to a transposition of sequence elements, an action
which is not within the realm of possibilities considered in [37].

Nevertheless, an analogous recursive algorithm is valid [46], and we sketch the argument
here. Assume that we have identified a path of minimum costSa = S0, S1, . . . , Sr−1, Sr = Sb
between two spike trainsSa andSb. The sequence of elementary steps can be represented
diagrammatically by tracing the ‘life history’ of each spike, as shown in figure 2. The
assumption that this path is minimal places severe constraints on this diagram. The life
history of each spike may consist of motion in at most one direction. Moreover, one need
not consider diagrams in which a spike moves from its position inSa to an intermediate
position, and then moves again to a final position inSb. These constraints force one of the
following three alternatives: (i) the last spike of spike trainSa is a spike to be deleted; or (ii)
the last spike of spike trainSb is a spike which is inserted; or (iii) the last spikes of both trains
are connected by a shift. The validity of the recursion (4) follows directly. The similarity of
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Figure 2. A minimal-cost path of elementary steps
associated withDspike[q] connecting two spike trains
Sa andSb. Reproduced from [46].

Figure 3. Examples for which a simple recursive
algorithm would fail to calculate the minimal path for
distancesD[qspike, qinterval].

the algorithms forDspike andDinterval suggests that they share a common fundamental basis
in the theory of dynamic programming algorithms [38], which encompasses the validation
of the algorithm forDinterval [37] and the validation of the algorithm forDspike (figure 2).

2.4.3. Extensions. The algorithms forDspike and Dinterval may be readily extended to
metrics in which the cost of shifting a spike (or stretching an interval) by an amount1t

is a concave-downward function ofq1t , such as exp{−q|1t |}. They also extend to the
calculation of distances between spike trains recorded from multiple distinguished neurons,
provided only that at each stage of the recursion, one adds options for relabelling the neuron
of origin of the spike under consideration.

However, it is not as straightforward to extend this framework to calculate distances
such asD[qspike, qinterval], which include both elementary steps that move individual spikes,
and elementary steps which change the length of interspike intervals. Two kinds of problem
that can arise are illustrated in figure 3. In both cases, the path of minimal total cost between
spike trainSa and spike trainSb is achieved by a change in the length of the initial interval
(the step fromSa to S) followed by a change in the position of the spike marked∗ (the step
from S to Sb). In figure 3(A), this results in a ‘life history’ for the spike marked∗ which
includes a move to an intermediate position via a change in interval length, followed by a
move to its final position via a shift in absolute time. In contrast to the situations considered
by equation (4) or illustrated in figure 2, neither the intervals nor the spike positions in the
intermediate spike trainS correspond to those in either of the spike trainsSa or Sb. A
more extreme version of this difficulty is illustrated in figure 3(B). Here, provided that the
number of spikes in each of the clustersM, m1, andm2 is sufficiently large, the path of
minimal total cost between spike trainSa and spike trainSb includes a shift in the position
of the spike marked∗ away from, and then back to, its initial position. This violates
the constraint that the ‘life history’ of each spike’s movements is unidirectional. Neither
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situation (figure 3(A–B)) would have been considered by the recursive algorithm above,
which only considers life histories which are non-stop and unidirectional. Of course, this
does not mean thatD[qspike, qinterval] is not a metric; it merely means that the recursive
algorithm might fail to find a minimal-cost path.

2.5. Calculation of stimulus-dependent clustering

The procedures described above for calculation of distance can be applied to any pair of
neural responses. However, the extent these distances have any relevance to neural coding
is unclear. This motivates the next step in our analysis, in which we formulate a procedure
to determine the extent to which the distances between individual responses (in the senses
determined by the metricsDspike[q], Dinterval[q], . . . ) depend in a systematic manner on
the stimuli. This approach is intended to be applied to experimental data sets that contain
multiple responses to each of several stimuli, without any further assumptions [46]. If a
particular metric is sensitive to temporal structure which neurons use for sensory signalling,
then responses to repeated presentations of the same (or similar) stimuli should be close,
while responses to presentations of distinct stimuli should be further apart. That is, in the
geometry determined by the candidate metric, there should be systematic stimulus-dependent
clustering.

Since we do not assume that the individual responses correspond to ‘points’ in a vector
space, we cannot use principal component analysis or other vector-space-based clustering
approaches [8, 25, 26]. Furthermore, even if we were able to embed the responses into
a vector space, we have no guarantee that the responses to each stimulus class would
lie in a blob-like ‘cloud’; they could, conceivably, have more complex geometry, such as
concentric circles. For these reasons, we seek a clustering method that makes use of nothing
more than the pairwise distances themselves, so that the identification of stimulus-dependent
clustering makes a statement about the metric used to define the distances, rather than about
the clustering method itself [19, 28].

More formally, we begin with a total ofNtot spike trains, each of which is elicited
in response to a member of one of the stimulus classess1, s2, . . . , sC . We should like to
use the distances between theseNtot responses to classify them intoC response classes
r1, r2, . . . , rC . This classification will be summarized by a matrixN(sα, rβ), whose entries
denote the number of times that a stimulussα elicits a response in classrβ .

We proceed as follows. Initially, setN(sα, rβ) to zero. Considering each spike trainS
in turn, temporarily excludeS from the set ofNtot observations. For each stimulus classsγ
we calculated(S, sγ ), an average distance fromS to the spike trains elicited by stimuli of
classsγ , as follows:

d(S, sγ ) =
[〈(
D[q](S, S ′)

)z〉
S ′ elicited by sγ

]1/z
. (5)

This average distance is also calculated for the stimulus classsα which containsS,
but sinceS is temporarily excluded from the set of observations, the termD[q](S, S) is
excluded from (5). We then classify the spike trainS into the response classrβ for which
d(S, sβ) is the minimum of all the averaged distancesd(S, sγ ), and incrementN(sα, rβ) by
1. In the case thatk of the distancesd(S, sβ), d(S, sβ ′), . . . share the minimum, each of the
N(sα, rβ), N(sα, rβ ′), . . . is incremented by 1/k.

Note that to determine the average distance between a spike trainS and the set of
responses elicited bysγ we have averaged the individual distances after transforming by
a power law (the exponentz in equation (5)). A large negative value for the exponentz

would bias the average to the shortest distance betweenS and any response elicited bysγ ,
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and thus would classify the spike trainS into the class in which there is the closest match.
Conversely, a large positive value ofz would classify the spike trainS into the class in
which the distance to the furthest outlier is minimized. Not surprisingly, positive values of
z often lead to significantly lower estimates of the transmitted information, because of the
emphasis on distances from the outliers.

N(sα, rβ) is the number of times that a stimulus from classα is classified as belonging
to classβ. If this classification were perfect, thenN(sα, rβ) would be diagonal. If this
classification were random, then the on- and off-diagonal elements ofN(sα, rβ) would be
comparable. We use an information-theoretic measure, the transmitted information [4], to
quantify the extent to which this classification is non-random. For stimuli that are drawn
from discrete classess1, s2, . . ., and spike train responses that have been grouped into
discrete classesr1, r2, . . ., the transmitted informationH is given by

H = 1

Ntot

∑
α,β

N(sα, rβ)

[
log2N(sα, rβ)

− log2

∑
a

N(sa, rβ)− log2

∑
b

N(sα, rb)+ log2Ntot

]
. (6)

For C equally probable stimulus classes, random classification corresponds toN(sα, rβ) =
Ntot/C

2 and yieldsH = 0. Perfect classification (which corresponds toN(sα, rβ) = Ntot/C

whenα = β, and 0 otherwise) yields a maximal value of the transmitted informationH ,
namely log2C. In principle, this maximum might also be achieved by a matrixN(sα, rβ)

for which N(sα, rβ) = Ntot/C when α = P(β) (for P a non-trivial permutation). This
corresponds to a situation in which clustering is perfect, but the classification algorithm
mislabels the response classes. This is very unlikely to arise, given the structure of our
classification scheme, since every response would have to be closer to responses to stimuli
from other classes, than to responses from its own class.

It is worth emphasizing that in using an information-theoretic measure of clustering,
we do not mean to imply that the quantityH represents the information available to the
nervous system, or that the analytical stages we describe here have any correspondence to
neural processing of information. Rather, this choice is simply intended to be a measure of
clustering, which does not make assumptions about parametric relationships, if any, among
the stimulus classes.

2.5.1. Biases due to small sample size.If the number of presentations of each stimulus
class is small, then the value ofH estimated by equation (6) will be spuriously high,
simply because of chance proximities between the few examples of observed responses.
Even if there is a large number of stimulus presentations, one anticipates an upward bias
of the estimate ofH . For example, in the case ofC equally probable stimulus classes, any
deviation ofN(sα, rβ) from the expected value ofNtot/C

2 will result in a positive value
of the estimated transmitted informationH . This problem represents a general difficulty in
the estimation of transmitted information from limited samples [7].

Recently, Treves and Panzeri [44] have derived an analytic approximation to this
bias: asymptotically, the bias (for a fixed number of stimulus and response bins) is
inversely proportional to the number of samples and is independent of stimulus and response
probabilities. The derivation of this asymptotic behaviour assumes that there is a binning
process which treats all responses in an independent manner. The present approach explicitly
avoids such a binning process, so there is no guarantee that a similar correction is applicable.
For this reason, we choose a computational approach to estimate this bias [9, 29]: we use
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equation (6) to recalculate the transmitted informationH following random reassignments
of the observed responsesS to the stimulus classes. Values of the unresampledH which
lie in the upper tail of this distribution are thus unlikely to represent a chance grouping of
responses. Furthermore, the average value of many such calculations, which we denote by
H0, is an estimate of the upward bias in the estimate ofH .

2.6. Examples: simple simulations

We now present some examples in which we apply the above procedures to some simple
numerical simulations. These numerical simulations are not intended to be realistic, but
rather to illustrate some of the behaviours described above.

2.6.1. Rate discrimination: regular and irregular trains.The first example (figure 4)
concerns stimuli which elicit different mean rates of firing. We considered five stimulus
classes, each of which elicited firing at different average rates (R = 2, 4, 6, 8, and 10
impulses per second). Twenty examples of 1 s responses to each stimulus were simulated,
and the transmitted information was calculated from theseNtot = 100 spike trains according
to (6). These calculations were repeated for 40 independent synthetic data sets, to determine
the reliability (±2 s.e.m.) of these estimates of transmitted informationH . For each of
these 40 data sets, two resamplings by relabelling, as described above, were performed to
estimate the contributionH0 due to chance clustering. These calculations were performed
for values ofq spaced by factors of 2, and for four values of the clustering exponentz:
−8, −2, 2, and 8. We focus on the behaviour ofDspike; the behaviour ofDinterval was very
similar (data not shown).

In figure 4(A–D), the spikes were distributed in a Poisson fashion (CV= 1.0) for each
of the five firing ratesR. In this case, the precise time of occurrence of each spike carries
no information. Indeed, more clustering (higherH ) is seen forDcount (Dspike[0]) than for
Dspike[q], for q > 0. For low values ofq, the decrease inH for q > 0 is relatively minor
(from about 0.7 to 0.5 for negativez, and essentially no decrease for positivez). In this
range (q < 16),Dspike[q] is influenced by a mixture of spike counts and spike times. For
sufficiently high values ofq, H falls to chance levels. In this range (q > 32), the cost of
moving a spike is sufficiently high that nearly all minimal paths correspond to deletion of
all spikes followed by reinsertion at other times. Consequently, the defining feature of each
stimulus class (i.e. a similar number of spikes) is ignored, and responses within the same
stimulus class, especially at high firing rates, are seen (byDspike[q]) as very different.

Figure 4(E–H) shows a similar calculation, but with a spike-generating process that is
more regular (CV= 0.125). To simulate responses to a class characterized by a steady
mean rateR, we selected everykth spike from an underlying Poisson process with ratekR.
(The first spike is chosen at random from the initialk spikes of this underlying process).
In this ‘iterated Poisson’ process, the interspike intervals were distributed according to a
gamma distribution of orderk:

p(t) = 1

0(k)
Rktk−1e−Rt (7)

wherep(t) is the frequency of interspike intervals of lengtht . In the simulations shown
here, we chosek = 64, and thus the interspike intervals have a coefficient of variation (CV)
of 0.125 (= 1/

√
k). Because the spike trains are regular, there is less variability in the

number of spikes in each sample. Consequently, the spike count metricDcount leads to a
greater degree of clustering than in the Poisson case (figure 4(A–D)), and calculated values
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Figure 4. Simulation of rate discrimination. Information-theoretic measure of clusteringH

derived fromDspike[q] (solid lines) and estimates of chance informationH0 derived from
resampled data sets (broken lines, open symbols), as a function of cost per second (q) and
clustering exponent (z). Calculations are based on simulated responses to five stimulus classes,
which elicited steady firing with mean rates of 2, 4, 6, 8, and 10 impulses per second. Panels A–
D: Poisson process (CV= 1.0); clustering exponentz = −8,−2, 2, and 8. Panels E–H: iterated
Poisson process (CV= 0.125); clustering exponentz = −8, -2, 2, and 8. Error bars represent
±2 s.e.m. The maximum possible value ofH (arrow labelled ‘ideal’) is log2(5) ≈ 2.32.

of H are approximately 2.0, close to the maximum achievable value of log2(5) ≈ 2.32.
Nevertheless, for small values ofq and negative values ofz (figure 4(E–F)), there is a
further increase inH . This increase reflects the fact that within a class, responses will be
similar not only in the number of spikes: additionally, responses whose first spikes occur at
similar times will have subsequent spikes that occur at similar times. That is, the optimal
match between a response to a given stimulus and other responses in the same class will
be stronger if spike times, and not just spike counts, are considered. However, there is
an optimal choice forq, beyond which further increases lead to decreasing values ofH .
This is because a costq corresponds to the notion that the timing of a spike matters up to
an amount 1/q. Choosingq too high for the typical precision of the spike times causes
the distance measure to be influenced by details that are irrelevant to the response classes.
Consequently, for highq, the apparent clustering decreases.

Note that for positivez (figure 4(G–H)), there is no increase inH for any value ofq.
This is because the clustering based on the average distance as defined by equation (5) now
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Figure 4. (Continued)

assigns each response to the class with the ‘least bad’ match, rather than the ‘best good’
match. Sensitivity to spike times improves the quality of the best match, but worsens the
quality of the worst match.

We also point out that, despite the fairly large dependences ofH on q and z seen in
figure 4, there is relatively little dependence ofH0, the estimate of chance information.
That is, the increase in temporal resolution associated with highq is not associated with
large upward biases in estimates of information, as would have been the case if increased
temporal resolution were to require increasingly sparse sampling of a space of progressively
higher dimension.

This simulation shows that for response classes which differ in overall firing rate (and
are, thus, readily discriminable by a simple rate code), metrics which are sensitive to
temporal pattern allow enhanced discrimination. This modest enhancement is restricted to
regular spike trains (figure 4(E–H)) and values ofq which are not so large as to regard
even minor shifts of spike times as ‘different’. For irregular trains, and for high values of
q, attention to temporal structure reduces discrimination, as would be expected since the
temporal structure is irrelevant to the response classes.

2.6.2. Temporal phase discrimination.The next three examples present situations in which
Dspike andDinterval have contrasting behaviour. Figure 5 shows a simulation of temporal
phase discrimination. There were four stimulus classes, each with 20 simulated responses of



142 J D Victor and K P Purpura

Figure 5. Simulation of temporal phase discrimination. Information-theoretic measure
of clusteringH derived fromDspike[q] (filled circles), Dinterval:fix[q] (filled squares), and
Dinterval:min[q] (filled triangles), as a function of cost per second (q) and clustering exponent
(z). Estimates of chance informationH0 derived from resampled data sets (broken lines, open
symbols). Calculations are based on simulated responses to four stimulus classes, which elicited
sinusoidally modulated firing at each of four phases. Panels A–D: Poisson process (CV= 1.0);
clustering exponentz = −8,−2, 2, and 8. Panels E–H: iterated Poisson process (CV= 0.125);
clustering exponentz = −8, −2, 2, and 8. Error bars represent±2 s.e.m. The maximum
possible value ofH (arrow labelled ‘ideal’) is log2(4) = 2.

1 s duration. In figure 5(A–D), we used a time-dependent Poisson process to generate spike
trains. The instantaneous firing densityR(t) was given byR0[1+m cos(2πf t +φ)], where
the mean firing rateR0 was 20 impulses per second, the modulation frequencyf was 4 Hz,
and the modulation depthm was 0.5. The stimulus classes differed in their modulation
phaseφ, which was chosen from the set{0, π/2, π,3π/2}. Thus, responses to different
stimulus classes were anticipated to differ in the arrangement of spike times, and not in
the average total number of spikes (or in the distribution of the number of spikes). The
information-theoretic index of clusteringH , and the clusteringH0 due to chance alone, were
calculated from 40 independent simulations, as in figure 4. As can be seen in figure 5(A–D),
clustering was at chance level forDcount. In contrast,Dspike[q] revealed highly significant
clustering. The peak ofH at q = 32 corresponds to 1/8 of a cycle (half the phase increment
which separates the stimulus classes). For substantially smaller values ofq, clustering is
diminished because the distinction between the classes is diminished; for substantially larger
values ofq, clustering is diminished because the distance is influenced by jitters in the spike
times which are irrelevant to the response classes. This behaviour was seen for all values
of the clustering exponentz.

Jonathan D Victor
Figure 5 is incorrect.  The correct information, as calculated via the spike metrics, should be approximately twice as high for the parameters given in the text.  These curves were inadvertently calculated with phases of {0, pi, 0, pi}, i.e., with only two distinct kinds of spike trains.  Error identified by David Goldberg, May 2004.
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Figure 5. (Continued)

Figure 5(A–D) also shows the degree of clustering revealed byDinterval:fix[q] and
Dinterval:min[q]. These metrics, which are sensitive to the sequence of interspike intervals
but not to the absolute time of occurrence of spikes, reveal almost no clustering beyond
chance. The two metrics differ only in how they treat the first and last interspike intervals
(i.e. the time between the start of the response and the first spike, and the time between the
last spike and the end of the response period):Dinterval:fix[q] regards these intervals as fixed,
while Dinterval:min[q] adjusts them to minimize the distance. As such,Dinterval:fix[q] would
be expected to retain a slight sensitivity to temporal phase, because it retains the first and
last intervals. However, this only results in a minimal (< 0.05) increase inH .

In figure 5(E–H), the same instantaneous firing densitiesR(t) = R0[1+m cos(2πf t+φ)]
were used to drive an iterated Poisson process of orderk = 64. The resulting spike trains
are much more regular (eightfold decrease in the coefficient of variation of the interspike
interval), and clustering is much stronger. Furthermore, the range of values ofq for which
Dspike shows significant clustering is substantially extended. The range of effective values
of q extends further downwards because shifts in time of multiple adjacent spikes are
correlated. The range of effective values ofq extends further upwards (approximately by a
factor of eight) because of the proportionate decrease in the coefficient of variation and the
corresponding shortening of the timescale at which precise timing becomes meaningless.
Somewhat surprisingly,Dinterval:fix[q] and Dinterval:min[q] also reveal significant clustering
for these spike trains. This is an indirect consequence of the regularity of the interspike
intervals. One candidate path of elementary steps between responses from different stimulus
classes will consist of deleting some interspike intervals from the beginning of one response,
deleting some interspike intervals from the end of the other response, and stretching the
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Figure 6. Simulation of temporal frequency discrimination. Information-theoretic measure
of clustering H derived from Dspike[q] (filled circles), Dinterval:fix[q] (filled squares) and
Dinterval:min[q] (filled triangles), as a function of cost per second (q) and clustering exponent
(z). Estimates of chance informationH0 derived from resampled data sets (broken lines, open
symbols). Calculations are based on simulated responses to four stimulus classes, which elicited
steady firing and sinusoidally modulated firing at each of three frequencies (but random phases).
Panels A–D: Poisson process (CV= 1.0); clustering exponentz = −8,−2, 2, and 8. Panels E–
H: iterated Poisson process (CV= 0.125); clustering exponentz = −8,−2, 2, and 8. Error bars
represent±2 s.e.m. The maximum possible value ofH (arrow labelled ‘ideal’) is log2(4) = 2.
The value ofH that corresponds to perfect discrimination of responses to modulated and
unmodulated stimuli (but confusion among the three modulated stimuli) is labelled ‘detection of
modulation’, and is given by(1/4) log2(4)+ (3/4) log2(4/3) ≈ 0.81.

intervening intervals to achieve a match. This kind of path will reveal phase-dependent
clustering. However, whether this path is optimal (and hence, whether its total cost
determines the distance) depends on the tightness of the match between interspike intervals,
and thus, on regularity of the spike trains.Dinterval:fix[q] has an advantage overDinterval:min[q]
because the end effect discussed above provides independent absolute phase information,
but this advantage is slight. All these findings are largely independent of the choice of the
clustering exponentz.
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Figure 6. (Continued)

In sum, this simulation shows thatDspike, but notDcount or Dinterval, can discriminate
among irregular spike trains which vary in temporal phase (figure 5(A–D)). For regular
spike trains with instantaneous firing frequencies, bothDinterval andDspike can perform the
discrimination (figure 5(E–H)).

2.6.3. Temporal frequency discrimination.In this simulation (figure 6), there were four
stimulus classes, each with 20 simulated responses of 1 s duration, and an instantaneous
firing densityR(t) was given byR0[1 + m cos(2πf t + φ)], with a mean firing rateR0 of
20 impulses per second. For three of the classes, the modulation depthm was 0.5, and
the phaseφ was chosen at random in each trial. These classes were characterized by the
modulation frequencyf , which was chosen from the set{3, 4, 5}. The fourth class was
unmodulated (m = 0, f and φ irrelevant). Thus, responses to different stimulus classes
were anticipated to differ primarily in the arrangement of interspike intervals (because they
differed in modulation frequency), but not in absolute spike times (since the initial phaseφ

was chosen at random). The information-theoretic index of clusteringH , and the clustering
H0 due to chance alone, were calculated as in figures 4 and 5. For spike times generated
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by a time-dependent Poisson process (figure 6(A–D)), there is essentially no stimulus-
dependent clustering for any of the metrics considered. This is because the irregularities
of the interspike interval distributions due to the random times of occurrence of the spikes
dominate the systematic temporal modulation. However, for spike times generated by
the more regular iterated Poisson process (figure 6(E–H)), substantial stimulus-dependent
clustering is seen. We first considerDinterval:fix[q] andDinterval:min[q]. There are two regimes.
For 0< q 6 8, clustering is substantially greater than chance, but not sufficiently great to
reliably distinguish the four classes from one another. In this range, the degree of clustering
depends strongly on the clustering exponentz (increasing asz decreases), indicating that
it reflects the presence of a few good matches rather than the absence of bad matches.
For larger values ofq, the degree of clustering approaches the maximal possible value
of log2(4) = 2. The height and position of this peak (but not its breadth) are relatively
independent ofz. Dinterval:min[q] has a slight advantage overDinterval:fix[q], corresponding
to the fact that it ignores the initial and final interspike intervals, which are irrelevant
to the distinction between the classes. Note that although these stimulus classes were
constructed to be distinguished on the basis of spike intervals, rather than spike times,
Dspike[q] nevertheless reveals significant clustering. This is analogous to the behaviour of
Dinterval:fix[q] andDinterval:min[q] in phase discrimination (figure 5(E–H)). However, clustering
in the sense ofDspike[q] is sensitive toz because good matches at one relative phase will
necessarily imply bad matches at other relative phases. Thus, average distances (as defined
by equation (5)) that are weighted heavily by the best match (i.e.z < 0) will tend to reveal
the greatest degree of clustering.

2.6.4. Identification of deterministic chaos.In the next simulation (figure 7), the two
response classes are distinguished by the presence or absence of deterministic chaos (loosely
inspired by observations of low-dimensional chaos in the olfactory system [40]). In both
stimulus classes, responses consisted of impulse trains in which the interspike intervals were
uniformly distributed between 0 and 2/R0, with the mean rateR0, set at 10 impulses per
second. For spike trains in the first class, these interspike intervals were placed in random
order. For spike trains in the second class, the first interspike interval is chosen at random,
but subsequent interspike intervalsIn+1 are determined from the preceding intervalIn by
the Baker transformation,

In+1 =
{

2In In 6 1/R0

2((2/R0)− In) In > 1/R0.
(8)

For each calculation ofH , 100 1 s examples of each response were generated.H and
H0, and their s.e.m.’s, were estimated as in the previous simulations from 20 independent
simulations. These spike trains had identical distributions of interspike intervals, identical
mean rates (R0 = 10 impulses per second), flat post-stimulus time histograms, and no
pairwise correlations between intervals at second order. Thus, in contrast to the previous
simulations (figures 4–6), traditional approaches such as Fourier analysis, as well as some
more recently proposed ideas [13, 26] would not have been able to distinguish these response
classes.

As can be seen in figure 7, substantial clustering beyond that expected from chance alone
is seen for all three metrics considered. The advantage ofDinterval:min[q] andDinterval:fix[q]
overDspike[q] makes sense, because of the interval-based nature of the temporal structure.
Interestingly (figure 7(A–B)), in contrast to the previous simulations, some estimates of
H continue to rise for high values ofq. This is because successive iterations of the
transformation (equation (8)) are sensitive to indefinitely small changes in interspike interval
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Figure 7. Simulation of discrimination of random and chaotic firing patterns. Information-
theoretic measure of clusteringH derived fromDspike[q] (filled circles),Dinterval:fix[q] (filled
squares) andDinterval:min[q] (filled triangles), as a function of cost per second (q) and clustering
exponent (z). Estimates of chance informationH0 derived from resampled data sets (broken
lines, open symbols). Calculations are based on simulated responses to two stimulus classes,
one of which contained uniformly distributed interspike intervals in random order, and the other
of which contained the same distribution of interspike intervals, but was governed by a chaotic
recursion rule (equation (8)). Panels A–D: clustering exponentz = −8,−2, 2, and 8. Error bars
represent±2 s.e.m. The maximum possible value ofH (arrow labelled ‘ideal’) is log2(2) = 1.

lengths, as is characteristic of chaotic processes in general. Thus, sensitivity to tiny changes
in interval length improves the quality of mutual matches among samples of the chaotic
process. This behaviour is not seen forDspike[q] (which is only indirectly sensitive to
interval length), nor for positive values ofz (where clustering is weighted by the absence
of mismatches, rather than by the closeness of the best match).

2.7. The geometries induced by a family of metrics

We now return to a simple rate-discrimination simulation to illustrate how changes in the
metric induce changes in the nature of clustering. We consider two stimulus classes, which
elicit responses of mean rates 6 and 7 impulses per second respectively and have interspike
intervals determined by an iterated Poisson process of orderk = 64. For this simulation, 40
example spike trains for each class were simulated, and the information-theoretic measure
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Figure 8. Information-theoretic measure of
clusteringH derived fromDspike[q] (filled circles,
solid lines) and estimates of chance information
H0 derived from resampled data sets (open circles,
broken lines), as a function of cost per second (q), for
simulated responses to two stimulus classes, which
elicited steady firing with mean rates of 6 and 7
impulses per second. Iterated Poisson process (CV=
0.125); clustering exponentz = −2. Error bars
represent±2 s.e.m. The maximum possible value
of H (arrow labelled ‘ideal’) is log2(2) = 1.

of clustering,H , was calculated forDspike[q] for a range of values ofq and a clustering
exponentz = −2. The dependence ofH on q (figure 8) was similar to that seen in
figure 4(E–H): a modest increase in clustering forq > 0, followed by an abrupt fall-off for
values ofq sufficiently high as to force sensitivity to irrelevant detail in the spike trains.
However, despite the modest change inH , there is a qualitative change in the nature of
the clustering for low values ofq (e.g. q = 1), and values ofq near the peak inH (e.g.
q = 16). To see this, we use multidimensional scaling [16, 20] to embed the spike trains
into a Euclidean space. This procedure assigns coordinaten-tuples to each spike train,
so that the standard Euclidean distances between thesen-tuples are as close as possible
to the distances yielded by a given metric, in this caseDspike[q]. Successive coordinates
correspond to eigenvectors of a symmetric matrixMjk, scaled by the square roots of the
corresponding eigenvalues. The entries of the matrixMjk are given by

Mjk = −1

2

(
D2
jk − 〈D2

jr〉r − 〈D2
rk〉r + 〈D2

rs〉rs
)

(9)

whereDjk indicates the distance between spike trainj and spike traink, 〈 〉r indicates an
average over all spike trainsr, 〈 〉s indicates an average over all spike trainss, and 〈 〉rs
indicates an average over all pairs of spike trainsr and s. Note that this embedding does
not guarantee that all points in the Euclidean space correspond to spike trains, but merely
that the distances of spike trains, in the sense ofDspike[q], are well approximated by the
Euclidean distances between theirn-tuples. In additional, the matrix of equation (9) may
have negative eigenvalues, corresponding to a hyperbolic geometry in the embedding space.
Nevertheless, the embedding provides a visual way of understanding the geometry induced
by the metricsDspike[q].

The multidimensional scaling procedure was applied to each response class (40 samples)
in isolation, as well as to the combined data set of 80 samples. Figure 9(A) shows the results
for q = 1. Consider first the multidimensional scaling of the ‘6 impulses per second’ class
in isolation (left inset). Forq = 1, Dspike[q] is primarily determined by the number of
spikes. Most spike trains in the ‘6 impulses per second’ class have six spikes, but some
have five spikes, and some have seven spikes. Hence, the spike trains form three clouds,
arrayed approximately in a line, one corresponding to each spike count. Spike trains with
the same number of spikes are close to each other but not identical. This is reflected
in the dispersion of the points within each cloud and the requirement for more than one
dimension to account fully for the distances determined byDspike. A similar picture is
seen for the multidimensional scaling of the ‘7 impulses per second’ class in isolation (right
inset). Combined multidimensional scaling (main scattergram) of the two classes yields four
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clouds, corresponding to the four possible spike counts of 5, 6, 7, and 8 impulses. Only
the ‘6 impulses per second’ class contributes to the cluster corresponding to five impulses
(the three leftmost clusters), and only the ‘7 impulses per second’ class contributes to the
cluster corresponding to eight impulses (the three rightmost clusters), and both stimulus
classes contribute to the clusters with six and seven impulses. This overlap corresponds
to the imperfect discrimination of these two classes by clustering based onDspike[1]. The
scatter along the second dimension does not help to disambiguate these responses.

Figure 9(B) shows the corresponding picture forq = 16. Dspike[16] is sensitive to times
of the order of 0.1 s, and on this scale, both spike trains are quite regular (mean intervals
of 0.166 and 0.143 s, with CV of 0.125). The locus corresponding to the ‘6 impulses per
second’ class in isolation (left inset) now forms an approximate circle. This corresponds to
the fact that forDspike[16], the distance between two fairly regular spike trains is primarily
determined by their relative phase. Multidimensional scaling of the ‘7 impulses per second’
class in isolation gives a similar picture (right inset). Note that there are no points at the
centre of either ring: such points would correspond to spike trains which are not only
equidistant from all the spike trains, but also close to all of them; such spike trains (in
the context ofDspike[16]) do not exist. Multidimensional scaling of the combined classes
requires four dimensions: the first four eigenvalues of the matrix of equation (9) are 0.347,
0.284, 0.240, and 0.208. In the two-dimensional projection illustrated (main scattergram),
the points corresponding to the two stimulus classes appear to form interpenetrating clouds.
Examination of the higher-dimensional representation reveals that these clouds correspond,
approximately, to two mutually orthogonal circles, one corresponding to each class. That
is, within each class, the spike train’s locus is approximately circular, and all points in one
class are, approximately, at the same distance from all points in the other class. In contrast
to the situation forq = 1, multiple dimensions contribute to separation of the response
classes. Furthermore, the geometrical centre of the two response classes is similar (near
the origin) and, hence, a clustering scheme which assumed that the responses lay in convex
clouds would have failed.

Yet a third kind of behaviour is seen forDspike[256]. This distance is sensitive to times of
the order of 0.01 s. On this timescale, both classes of spike trains are irregular. Consequently
(figure 9(C)), no discernible geometrical structure is apparent in the multidimensional scaling
of the spike trains in isolation (left and right insets): they form what appears to be a random
cloud. Multidimensional scaling of the combined classes again forms a random cloud
(main scattergram), either when inspected in the projection illustrated, or in projections
along higher-order eigenvectors. This corresponds to the fact that this metric is sensitive to
differences between individual responses (idiosyncratic timing of spikes) which are unrelated
to differences between the stimulus classes.

These three regimes are summarized by the analysis of figure 10. We introduce
a dimension indexE, which describes the effective dimension of an embedding. The
dimension indexE is defined by

E = (
∑
λi)

2∑
λ2
i

(10)

whereλi are the eigenvalues of the matrix of equation (9).
Note that for an embedding in which each ofn dimensions contributed equally

(λi = 1/n), this index would have the valuen. Forq in the range 4–32, the dimension index
for the embedding of each class in isolation is approximately 2 (light and dark symbols),
and the dimension index for the combined classes is approximately 4 (solid line without
symbols). This corresponds to a circular locus for each of the classes in isolation, and
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Figure 9. Multidimensional scaling of simulated responses to two stimulus classes, which
elicited steady firing with mean rates of 6 and 7 impulses per second (figure 8).q = 1 (A),
q = 16 (B), andq = 256 (C). For each value ofq, the responses to the two stimulus classes
are subjected to multidimensional scaling independently (insets) and jointly (main scattergram).

bi-orthogonal circles for the embedding of the combined classes (figure 9(B)). For lower
values ofq, the effective dimension decreases towards 1, and the dimension index for the
embedding of the combined classes is no larger than that of the classes in isolation. That
is, the higher dimensions do not contribute to stimulus-dependent clustering. For values of
q > 32, the dimension index rises rapidly, but, as we have seen in figure 9(C), this increase
in dimension does not produce any discernible structure. It should be noted that one can
always achieve an embedding ofn points in a space of dimensionn− 1 (39 and 79 in the
present case), and thus (forq > 128) it is likely that our estimates of dimension in figure 10
are lower bounds, limited by the number of spike trains we chose to generate.

However, it is not the case that a progressive increase in embedding dimension
necessarily implies a decrease in clustering. Indeed, the opposite situation is seen for
the discrimination of deterministic chaos and randomly sequenced interspike intervals.
Figure 11 shows the dependence of the dimension indexE (equation (10)) onq for
embeddings of the chaotic spike trains in isolation, the random spike trains in isolation,
and the two classes combined. For all three families of metrics (figure 11(A):Dspike;
figure 11(B):Dinterval:fix; figure 11(C):Dinterval:min), the set of chaotic spike trains is associated
with a lower embedding dimension than the random trains, and this dimension increases
monotonically withq. In contrast to the simple geometrical situation of the regular spike
trains (figure 9(C)), the rise in dimension is not associated with a decrease in clustering;
rather, as we have seen in figure 7, clustering continues to rise with increasingq. It is also
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Figure 9. (Continued)
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Figure 10. Dimension index (equation (10)) for the
embeddings of figure 9. Filled symbols: responses
to the stimulus which elicited a mean of 6 impulses
per second analysed alone; open symbols: responses
to the stimulus which elicited a mean of 7 impulses
per sec analysed alone; thick line without symbols: all
responses analysed together.

worth noting that the high embedding dimension is not associated with an increase in the
chance clustering (dashed lines in figure 7). This suggests that our purely metrical approach
to clustering has successfully circumvented the problem of attempting to perform clustering
in a sparsely populated high-dimensional vector space, which would be anticipated to lead
to progressively higher estimates of chance clustering with increasing dimensionality.

2.8. Comparison with a benchmark set of simulated data

The final simulation utilizes a benchmark data set, developed by Golombet al [14] to
compare a variety of methods of determining the information content of spike trains.
These simulations [15] generate responses of idealized lateral geniculate magnocellular and
parvocellular neurons to spatial patterns consisting of Walsh functions. The responses to
each Walsh pattern are derived from a time-dependent Poisson process, whose envelope
is determined by convolving the Walsh pattern with modelled spatiotemporal filtering
properties of lateral geniculate neurons. For the simulations of figure 12(A–B), data sets
are constructed from 64 responses (250 ms in duration) to each of the 32 patterns, and the
above procedures are used to calculate information-theoretic measures of clustering,H , for
Dspike[q] andDinterval:min[q]. H0 is determined by repeating this calculation for five random
reassignments of the responses to stimuli. This procedure is repeated for 16 independent
data sets of 64 responses per pattern.

As can be seen in figure 12(A–B), the estimate of chance clustering,H0, is substantially
larger than in the simulations discussed previously, as one would expect from the fact that
there is a relatively small ratio of samples to classes [7, 44]. For the modelled magnocellular
neuron (figure 12(A)), clustering is maximal forDspike[q] with qmax = 32. The increase
in H for Dspike[32] compared toDcount = Dspike[0] exceeds the corresponding change in
H0. That is, the measure of clustering corrected for the bias due to small sample size,
H −H0, is largest forDspike[32]. For q < 128, clustering forDspike exceeds clustering for
Dinterval:min, whether or not the correction termH0 is subtracted. Thus, for the magnocellular
neuron of this simulation, the timing of impulses (to within a precision of approximately
1/qmax = 30 ms) conveys significant stimulus-dependent information. For the modelled
parvocellular neuron (figure 12(B)), the situation is quite different. There is only a modest
increase inH for q > 0, and this increase is less than the increase inH0. That is,H −H0

is largest forDcount; there is no evidence for improvement in clustering either forDspike or
for Dinterval:min.

Figure 12(C–D) shows how this analysis depends on the number of samples per stimulus
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Figure 11. Dimension index (equation (10)) for embedding sets
of spike trains whose interspike intervals are determined by a
chaotic process (equation (8)) (open symbols), a random process
(closed symbols), and the two classes combined (thick line
without symbols). Panel A:Dspike[q]. Panel B:Dinterval:fix[q].
Panel C:Dinterval:min[q]. As in figure 7, each class had 100 spike
trains.

class. As the number of samples increases,H andH0 decrease. For each metric considered,
these decreases are approximately parallel, and consequently, the corrected estimator of
clustering,H − H0, changes by a relatively small amount. (Nevertheless, it is notable
that this drift is upwards, which suggests that subtraction ofH0 may be an excessively
conservative correction.) For the modelled magnocellular neuron (figure 12(C)),H − H0

is largest forDspike provided that there are at least 32 samples per stimulus class. For the
modelled parvocellular neuron (figure 12(D)),H − H0. is largest forDcount for all values
of the number of samples per stimulus class.

It is interesting to compare our empirical estimates ofH0. with the analytic result
of Treves and Panzeri [44]. Consistent with this result, there is an approximate inverse
proportionality betweenH0 (dashed lines in figure 12(C–D)) and the number of samples per
stimulus class. However, this proportionality constant is dependent on the metric and also
(dashed lines in figure 12(A–B)) on the value ofq. This appears to be at variance with the
analytic result [44], which states that, asymptotically, this proportionality constant depends
only on the size of the stimulus and response classes, and the number of samples. However,
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Figure 12. Clustering of simulated [15] responses of model lateral geniculate neurons to Walsh
function patterns. Panels A and B: information-theoretic measure of clusteringH derived from
Dspike[q] (filled circles) andDinterval:min[q] (filled triangles), as a function of cost per second
(q). Clustering exponentz = 2. Estimates of chance informationH0 derived from resampled
data sets (broken lines, open symbols). Calculations are based on 64 simulated responses to
each of 32 Walsh patterns. Error bars represent±2 s.e.m. Panels C and D: Dependence ofH

(solid lines, small filled symbols),H0 (broken lines, small open symbols) andH − H0 (solid
lines, large filled symbols) on the number of responses per stimulus class.Dcount (asterisks),
Dspike[q] (circles), andDinterval:min[q] (triangles). ForDspike[q] andDinterval:min[q], q is chosen
to yield the maximum value ofH . The maximum possible value ofH is log2(32) = 5.

there is no contradiction: Treves and Panzeri’s derivation [44] requires that the assignments
of samples to response categories be made independently. Independence is violated by the
clustering scheme we used, and the consequent dependence of the proportionality constant
on the metric that we observe emphasizes the necessity of the assumption of independence
for the analytic result [44].

The estimates ofH andH −H0 in figure 12(C–D) may be compared directly with the
calculations of Golombet al [14] for these simulated data sets, based on a binning approach
and on neural network classifiers [19]. For the magnocellular neuron, our estimate ofH−H0

for Dcount (0.19 for 128 samples per class) approximated the estimates obtained by Golomb
et al [14] ( ≈0.24 for 128 samples per class for binning or for network classifiers) for the
‘number of spikes’ code. We found an increase inH −H0 to 0.34 forDspike, while Golomb
et al [14] found an increase (to≈0.5 for the binning method,≈0.4 for the neural network
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classifier method) for multidimensional codes based on three principal components. For the
parvocellular neuron, our estimate ofH − H0 for Dcount (0.81 for 128 samples per class)
approximated the estimates obtained by Golombet al [14] (≈0.85 for 128 samples per
class for binning or neural network classifiers) for the ‘number of spikes’ code. We found
no increase inH −H0 for Dspike or Dinterval:min; Golombet al [14] found a slight increase
(≈0.95 for binning or neural network classifiers) for multidimensional codes based on three
principal components.

2.9. Some neurophysiological examples

In figure 13, we re-analyse data recently published by Middlebrookset al [28] as evidence
for temporal encoding of the azimuth of an auditory stimulus. The spike trains were recorded
from a single neuron in cat anterior ectosylvian cortex following noise bursts of 100 ms
duration which were presented in 20◦ steps of azimuth in the horizontal plane. For the
analysis presented here, the 10 responses to each of these 18 locations were rebinned into
sets of 30 responses corresponding to 60◦ sectors. Figure 13(A) shows the information-
theoretic measure of clustering,H , for Dspike andDinterval:min, together with values ofH0 as
calculated from 10 random permutations of the data. There is a clear rise inH for q > 0,
both forDspike andDinterval:min. The increase forDinterval:min seems somewhat greater than
for Dspike, but there is a similar difference in the correction termH0. Additionally, there
is a sharp peak inDspike[q] near q = 256, which is not associated with an increase in
the correction termH0. This indicates that spike times, up to a precision of 1/q ≈ 4 ms,
cluster in a stimulus-dependent fashion. (Note that the±2 s.e.m. lines in figure 13(A) are
confidence limits for the mean ofH0, and thus are only appropriate for comparison among
different resampled estimates. To estimate the probability that the unresampled value ofH

could have come from this population, a±2 standard-deviation criterion (
√

10≈ 3.2 s.e.m.)
should be used; by this measure,H is significant for all values ofq.)

In figure 13(C–D), we present the results of multidimensional scaling of these responses,
with the distance function provided byDspike[256]. Figure 13(C) shows the loci which
correspond to individual responses, as projected into the plane of the first two eigenvalues.
There is certainly substantial overlap of the clouds corresponding to each azimuth range,
but nevertheless, a trend towards segregation of responses from each sector is apparent.
This trend is made much more vivid in figure 13(D), which shows only the geometrical
centre of each cloud. The dimension indexE (equation (10)) of this embedding is 2.8, and
the first 10 eigenvalues are shown in figure 13(B). The first four eigenvalues are positive,
but projections of the loci of the spike trains on the third and fourth axes do not reveal
additional geometrical structure.

In figure 14, we analyse a data set obtained in our study [46] of temporal coding in
macaque visual cortex. The data consist of activity recorded in primary visual cortex in
an awake animal performing a fixation task. Stimuli consisted of transient presentation of
gratings of five spatial frequencies (1, 3, 5, 11, and 21 cycles/deg), aligned in each of eight
orientations (0–157.5◦ in 22.5◦ steps), at a contrast of 1.0. (Here, contrast is defined as
[(Lmax−Lmin)/(Lmax+Lmin)], whereLmax andLmin are the maximum and minimum of the
stimulus luminance.) For each of these 5× 8 = 40 stimuli, 16 responses of 256 ms were
collected and analysed. As can be seen in figure 14(A), there is temporal coding both in the
sense ofDspike[q] andDinterval:min[q], as shown by the rise inH for q > 0. However, there
is a fall-off inH by q ≈ 50, indicating a much looser jitter of 1/q ≈ 20 ms for the temporal
structure in this neuron’s encoding in comparison with the auditory neuron of figure 13.
Multidimensional scaling of the responses according to the metricDspike[32] requires at least
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Figure 13. Analysis of temporal coding of azimuth in cat anterior ectosylvian cortex (data
of Middlebrookset al [28]). Thirty responses to each of six ranges of azimuth are analysed.
Panel A: information- theoretic measure of clustering,H (solid lines) forDspike[q] (filled circles)
andDinterval:min[q] (filled triangles), and estimates of chance informationH0 (broken lines, open
symbols, error bars represent mean±2 s.e.m.) derived from 10 resampled data sets. Panel B:
eigenvalues of the matrix of equation (9) forDspike[256]. Panel C: multidimensional scaling for
Dspike[256], with each spike train’s locus projected onto the plane of the first two eigenvectors
of the matrix of (9). Each point corresponds to an individual response, and the points are colour
coded to indicate the azimuth of the stimulus that elicited the corresponding response. Panel D:
the centres of each of the response clouds in Panel C.

three dimensions to reveal the geometrical structure of the response loci (figure 14(C–E)).
For each of the four lowest spatial frequencies, the responses to different orientations form
a loop, and these loops are largely non-overlapping when examined in three dimensions.
For example, the orbits for spatial frequencies 3 and 4 overlap in dimensions 1 and 2,
but are well separated in dimension 3. Conversely, the orbit for spatial frequency 1 nearly
collapses in dimensions 1 and 3, but is clearly delineated along dimension 2. The dimension
indexE (equation (10)) of this embedding is 1.8, and the first 10 eigenvalues are shown in
figure 14(B). Projections along combinations of the third and fourth axes provide additional
separation of the orbits, but do not reveal qualitatively new structure.

In figure 15, we analyse activity of a complex cell in the supragranular layers of
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Figure 14. Analysis of temporal coding of spatial frequency and orientation in macaque primary
visual cortex. Sixteen responses to each of 40 stimuli (five spatial frequencies, eight orientations)
are analysed. Panel A: information-theoretic measure of clustering,H (solid lines) forDspike[q]
(filled circles) andDinterval:min[q] (filled triangles), and estimates of chance informationH0

(broken lines, open symbols, error bars represent mean±2 s.e.m.) derived from 10 resampled
data sets. Panel B: eigenvalues of the matrix of equation (9) forDspike[32]. Panels C–E:
multidimensional scaling forDspike[32], with each spike train’s locus projected onto the planes
determined by pairs of the first three eigenvectors of the matrix of (9). Each point represents the
mean position of 16 responses. Trajectories are colour coded to correspond to the five spatial
frequencies used in the experiment, and for each spatial frequency, the response at the preferred
orientation is marked with a black symbol. Recording H30011.
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Figure 15. Analysis of temporal coding of contrast and spatial frequency in macaque primary
visual cortex. One hundred and twenty-eight responses to each of 15 stimuli (three spatial
frequencies, five contrasts) are analysed. Panel A: information-theoretic measure of clustering,
H (solid lines) forDspike[q] (filled circles) andDinterval:min[q] (filled triangles), and estimates
of chance informationH0 (broken lines, open symbols, error bars represent mean±2 s.e.m.)
derived from 10 resampled data sets. Panel B: eigenvalues of the matrix of equation (9) for
Dspike[64]. Panels C–E: multidimensional scaling forDspike[64]. Each spike train’s locus is
projected onto the planes determined by pairs of the first three eigenvectors of the matrix of
(9), and the mean position of 128 responses to each stimulus is plotted. Trajectories are colour
coded to correspond to the three spatial frequencies used in the experiment, and for each spatial
frequency, the response at the highest contrast is marked with a black symbol. Recording 19/12.
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Figure 16. Detailed analysis of the data of figure 15 forDinterval:min[64]. Panel A: eigenvalues
of the matrix of equation (9). Panels B–D: multidimensional scaling. Each spike train’s locus
is projected onto the planes determined by pairs of the first three eigenvalues, and the mean
position of 128 responses to each stimulus is plotted. As in figure 15, trajectories are colour
coded to correspond to the three spatial frequencies used in the experiment, and for each spatial
frequency, the response at the highest contrast is marked with a black symbol. Recording 19/12.

primary visual cortex, recorded in an anaesthetized, paralysed macaque. (Physiological
preparation for recordings in the anaesthetized, paralysed macaque are described in [47]).
Stimuli consisted of transient presentation of gratings of three spatial frequencies (0.5, 2,
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and 4 cycles/deg) and five contrasts (0.0625, 0.125, 0.25, 0.5, 1.0), aligned at the optimal
orientation. For each of these 3×5= 15 stimuli, 128 responses of 256 ms were collected and
analysed. Again there is temporal coding both in the sense ofDspike[q] andDinterval:min[q],
as shown by the rise inH for q > 0. As in data of figure 14, multidimensional scaling of
the responses (figure 15(C–E)) forDspike[64] reveals a systematic separation of the loci for
each of the three spatial frequencies and the five contrasts, but three dimensions are needed
to see this separation clearly. Responses to the lowest spatial frequency are well separated
from the responses to the two higher spatial frequencies in the projection on dimensions 1
and 2, while responses to the two higher spatial frequencies are best separated from each
other in the projection on dimensions 1 and 3.

In contrast to the data of figure 14, clustering is greater forDinterval:min[q] than for
Dspike[q] at large values ofq. However, multidimensional scaling (figure 16(B–D)) for
Dinterval:min[64], the same value ofq as in figure 15, does not provide a systematic separation
of the loci for each of the three spatial frequencies. Rather, the loci for all stimuli are nearly
collinear, and the loci for the two higher spatial frequencies overlap in all projections.
This qualitatively simpler structure for the geometry induced byDinterval:min[q] is made
quantitative by the greater dominance of the first eigenvalue (figure 16(A) compared with
figure 15(B)), and the smaller dimension indexE (1.6 forDinterval:min[64], compared with 3.7
for Dspike[64]). That is, even thoughDinterval:min[64] provides a greater degree of clustering
thanDspike[64], Dspike[64] induces a metrical structure which separates the two stimulus
attributes of contrast and spatial frequency, whileDinterval:min[64] does not.

3. Discussion

3.1. Overview

We have presented a new approach to the analysis of the temporal structure of spike trains.
The notion of ‘distance’ between spike trains plays a central role in this approach. Based
solely on the notion of distance, we show how it is possible to assess (via an information-
theoretic measure) the extent to which experimentally measured neural responses cluster in
a systematic fashion. This measure of clustering indicates the extent to which this candidate
distance is sensitive to features of spike trains that convey stimulus-specific information.
By repeating this process for several families of distances, one can learn about the nature
and precision of temporal coding.

The notions of distance make explicit and fundamental use of the point-process nature
of spike trains. The formal structure of this approach is an embedding of spike trains
into a ‘metric space’. Metric spaces have well defined distances but do not require the
assumption of a linear structure (with implications for superposition and scaling) that would
be inherent had we embedded spike trains into a vector space. As recently pointed out
by Hopfield [18], there are good theoretical reasons to question whether such vector-space
assumptions are appropriate. Indeed, the metrics we consider, which follow naturally from
neurobiological heuristics, areinconsistent with a linear structure. While one can use vector-
space embeddings to visualize the metrical relationships between spike trains (figure 9,
figure 14(D–E), figure 15(C–E), figure 16(B–D)), the high dimensionality and presence of
hyperbolic coordinates in these embeddings indicate that the vector-space approximation is
a poor one.

This approach is fundamentally hypothesis-driven and in principle can be applied to any
proposal for temporal coding, provided that it can be formalized in terms of a metric, or a
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family of metrics that depends on a parameter (such as our costq). Comparison of clustering
across distinct families of metrics provides qualitative insight into the nature of coding,
while comparison of clustering within a parametric family provides quantitative insight
(such as the ‘precision’ of coding). We cannot prove that this approach will encompass
any notion of temporal coding (‘encoding’ as defined by Theunissen and Miller [43]), but,
arguably, the notion of a metric is asine qua nonof any rigorous hypothesis for temporal
coding. Certainly, this approach is at least as general as methods that require vector-
space embedding, since any such embedding automatically provides a metric (the Euclidean
distance).

The metrics we have considered induce distinct topologies on the space of spike trains.
Some of the metrics we consider are related by a strict topological hierarchy (figure 1).
Indeed, adding a new kind of step to the definition of a metric always leads to a metric
which is coarser than (i.e. refined by) the original metric. However, as the simulations and
the analyses of experimental data show, topological refinement does not necessarily imply
greater clustering. Moreover, parametric changes in the metric (i.e. variations inq) result
in no change in the induced topology but frequently in a dramatic change in the degree of
clustering.

Bialek’s reconstruction method [5] rests on a search for a functionL(t) that, when
convolved with a spike train, provides an optimal reconstruction of a temporal input. Each
candidate functionL(t) defines a distance (a Euclidean distance of spike trains convolved
with L(t)), and the reconstruction approach can be viewed as a minimization of such a
distance. Except for ‘pathological’ cases, the distances corresponding to each choice for
L(t) have equivalent topologies (which are also equivalent to that induced byDspike). Thus,
in both approaches, the characterization of a temporal code appears to require more than
merely the topology induced by a metric.

3.2. Variety of behaviours revealed by this approach

For the two families of metrics on which we focussed (Dspike andDinterval), our methods
readily reveal a variety of behaviours in simulated data sets. This ranges from no
(figure 4(A–D), figure 6(A–D)) or minimal (figure 4(E–F)) evidence of temporal coding, to
dramatic encoding by spike times and intervals (figure 5(E–H)), to encoding primarily by
spike times and not by intervals (figure 5(A–D)), to encoding primarily by intervals and not
by spike times (figures 6(E–H) and 7). Figure 7 also demonstrates that the present approach,
without further machinery, suffices to identify coding through the genesis of deterministic
chaos. These qualitative behaviours are largely independent of the exponentz used for
clustering.

In all the analyses, the estimate of chance clusteringH0 is relatively insensitive to the
parameter of temporal precision,q. This underscores the point that the temporal resolution of
the analysis is achieved without binning, and hence without an artificial increase in apparent
information despite the increase in embedding dimension at high values ofq (figure 11).
This is of particular practical importance given the millisecond precision [23, 24] that
cortical neurons possess. The present approach provides a practical way of determining
whether spike times, at this level of precision, carry information concerning the stimulus,
and thus of differentiating between intrinsic precision and informative precision. The large
optimal value ofq for auditory data (figure 13) indicates a role for this high degree of
temporal precision in this sensory modality. However, our analysis also indicates that this
is not universal: for neurons in visual cortex, maximal clustering is achieved for values of
q that correspond to temporal precisions of the order of 20 ms (figures 14 and 15) or more
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[46], in agreement with measures of temporal precision achieved through more traditional
analyses of temporal coding [17].

3.3. Comparison with other clustering methods of analysis of temporal coding

Middlebrooks et al [28] used a neural network approach to cluster spike trains and to
demonstrate temporal coding of the azimuth of a sound’s origin in the responses of single
neurons in auditory cortex. Our finding of an increase inH for q > 0 (figure 13(A)) is
in agreement with the authors’ inference [28] of temporal coding, but we believe that our
approach adds to the neural network analysis carried out by the authors in several ways.
The peak inH nearq ≈ 256 provides an estimate of 3–4 ms for the jitter of the temporal
structure. Comparison of the differenceH −H0 for bothDspike[q] andDinterval:min[q] shows
that the pattern of absolute spike times, but not of spike intervals, is systematically dependent
on the stimulus. Finally, multidimensional scaling (figure 13(C–D)) of the neural responses
according to the distancesDspike[q] that are associated with strong clustering provides a
vivid demonstration of the representation of the azimuth of a sound’s origin in the temporal
structure of the neural response.

In comparison with the information analyses of temporal coding considered by Golomb
et al [14], the present approach yields lower values ofH andH −H0 by 0.05–0.1 (up to
20%). Presumably, this is a consequence of two features of our approach.

(i) We used a clustering method which made no assumptions about the shapes of clusters.
This has the advantage of identifying clusters even for spike train loci that are concentric
(figures 6 and 9), but it would likely provide a less-efficient clustering scheme in
situations in which spike train loci conformed to relatively uniform clouds.

(ii) The clustering was based on metricsDspike andDinterval:min, which were chosen to test
specific hypotheses concerning the nature of temporal coding, rather than attempting to
optimize them to separate spike trains which were created from time-dependent Poisson
processes.

Despite these differences, there is a substantial similarity in the biological conclusions
that one would draw from the two calculations: the greater information in the parvocellular
neuron’s responses, and the greater relative importance of temporal coding in the
magnocellular neuron’s responses. This is reassuring for potential users of either approach.
The somewhat smaller value ofH andH − H0 that we obtain is a combination of the
price paid for a more generic clustering algorithm and the deviation of the metricsDspike

andDinterval:min from the geometry that underlies the fundamentally linear simulation. That
is, the difference in apparent clustering is a window on the underlying geometry of the
simulated spike trains themselves. It remains to be seen whether a similar difference is
generally found in the analysis of real neuronal discharges.
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