KERNEL MATCHING PURSUIT

Pascal Vincent

[vincentp@iro.umontreal.ca)

in collaboration with

Yoshua Bengio

Department of Computer Science and Operations Research

Université de Montréal

Matching Pursuit

Matching Pursuit was introduced in the signal-processing com-
munity as an algorithm “that decomposes any signal into a linear

expansion of waveforms that are selected from a redundant dic-
tionary of functions.” (Mallat and Zhang, 1993)

Given a dictionary D = {g-,v € I'} of functions in a Hilbert
space ‘H and a target function f € H we are interested in expan-
sions of the form

fn = Zakg% (1)
k=1

where the o and g,, € D are chosen to minimize the squared
norm of the residue ||R,||* = ||f — fal]*.

However finding the optimal solution for a given n is in general
NP-complete. So we proceed in a suboptimal, greedy construc-
tive fashion.

Simple Matching Pursuit

The algorithm proceeds in an iterative fashion, starting at stage
0 with fo =0

Then, given the expansion at a stage n— 1 we find the expansion

at stage n:
Jn=Jfn-1+ An G-y,

by searching for g, among the functions in the dictionary and
for o, € R that minimize the squared norm of the residue || f —

fall? = | Ball® = [Rn-1 — angy, II

n—1

(Gyor o) = argmin || () owgy,) +og — | (2)
(ge€D,a€R) 1

7

fn—l

The g, that minimizes this expression is the one that maximizes
‘ <Gvyp Bn-1> <Gyp , Bn—1>
19 | 19, 112

| and the corresponding «, is o, =

Orthogonal Matching Pursuit

In the simple version of the algorithm, not only is the set of
basis functions g,, , obtained at every step n suboptimal, but
so are also their a7 ,, coefficients. This can be corrected in a
step called back-projection and the resulting algorithm is known
as Orthogonal Matching Pursuit (OMP) (Pati, Rezaiifar and
Krishnaprasad, 1993; Davis, Mallat and Zhang, 1994):

After choosing g,, as previously (equation 2), we compute the
optimal set of coefficients:

i), = argmin (Y argy,) — fI (3)
(al..nERn) k=1

This back-projection step has a geometrical interpretation:

Let B,, the sub-space of H spanned by the basis (g,,--- ,9~,)
and let B# = H — B,, be its orthogonal complement. Let Pp_
and Pp. denote the projection operators on these subspaces.

Then, any g € H can be decomposed as g = Pp, g+ Pp.g

Orthogonal Matching Pursuit

Ideally, we want the residue R,, to be as small as possible, so
given the basis at step n, we want fn = Pp, f and R,, = Pp. f.

This is what (3) insures.

Whenever we append the next a,,g,, found by (2) to the expan-

sion, we actually add its two components:
Pp1 ang,y, contributes to reducing the norm of the residue.
Pg, ,ayg,, which increases the norm of the residue.

But as the latter part belongs to Pg_ , it can be compensated

1

for by adjusting the previous coefficients of the expansion.

(Davis, Mallat and Zhang, 1994) suggest maintaining an addi-
tional orthogonal basis of the B,, space to facilitate the back-
projection.

Optimally Orthogonal Matching Pursuit

The orthogonal version just described computes at every step
the optimal expansion for the chosen basis (g+,,...,9-,). Yet
the choice of g, is made regardless of the later possibility to
update the coefficients, and is thus sub-optimal.

In the case where ‘H has a finite dimension we suggest a further
improvement that allows us to find the optimal

n—1
(gr,0017) = argmin (|3 awgy) +ang = fIF ()
(9€D,a1.,€R") 14

The trick is to maintain, at every step, for every vector g of the
dictionary, a decomposition into components Pp, g and Pg.g,
where Pp. g is expressed in the original coordinate system ot H,
but Pp_ g is expressed in the coordinate system of B,, (i.e. as a
linear combination of the basis vectors (g~,, ... ,9~,))-

We also maintain this representation for the target:

Optimally Orthogonal Matching Pursuit

f=Ps.f+Psf
N—— ,
f’I’L R’I’L

Now, when we search the next vector n + 1 to append to the
basis and its a,, 11 coefficient, we consider only the components
in B (as only they can reduce the current residue R,,).

We then cancel the negative effect of adding the B, part of
Qn41G~,,. Dy subtracting P, o119+, ., from the basis, (which
is easy, since we kept g,, ., expressed in this basis’ coordinates).

We then update the representations of the dictionary vectors in
a similar way, to fit the new basis (requires a single pass through

the dictionary, just like the search).

Note that it may be usetul to add a penalty on large a,, 11 when
choosing the best vector, or we might be picking up noise that

happens to be strongly collinear with the current residue.

Geometrical interpretation

1

Summary of Matching Pursuit

The three versions of matching pursuit differ only in the way the
next function to append to the basis is chosen and the « coefficients

are updated at each step n:

Simple version: We find the optimal g, 6 to append to the
basis and its optimal «,,, while keeping all other coefficients fixed

(equation 2).

Orthogonal version: We find the optimal g, while keeping

all coefficients fixed (equation 2). Then we find the optimal set

of coefficients agq_l_)n for the new basis (equation 3).

Optimally orthogonal version: We find at the same time the

(1)

optimal g, and the optimal set of coefficients a; ;, (equation 4).

Kernel Matching Pursuit: Motivations

Renewed interest in kernel-based methods due to Support Vector
Machines (SVMs) (Boser, Guyon and Vapnik, 1992)

There is a link between number of support vectors and general-

ization = how to control it directly?

A solution expressed as a function of some distance to a few
particularly relevant support points from the training set makes
sense, regardless of any “Kernel-trick” inducing a mapping into

an artificial higher-dimensional feature-space.

Search for a more flexible framework to investigate influence of

kernel shapes and other loss functions.

Further exploring the links between SVMs, boosting techniques,

and sparse approximation.

Matching pursuits with kernel-based dictionary

Kernel Matching Pursuit (KMP) is simply the idea of apply-
ing the Matching Pursuit family of algorithms to problems in
Machine-Learning (currently classification), using as the dictio-
nary, kernels centered on the training data points {z1,... , % }:

gi(x) = K(x; ;)

During training, both dictionary elements and target f are seen
as m dimensional vectors, as we only consider their value at the
m training points. Targets (y1,...,ym) = (f(z1),..., f(zm))
are typically given values +1 and —1 for binary classification

problems.

Similarities and differences with SV Ms

The resulting functional form is very similar to the one obtained
with SVMs:

Zaz € x% f(l’) = b+ Z%%K(x;x%)

\ - 7 - 7
~~ ~~

Kernel Matching Pursutt Support Vector Machines

The bias term b of the SVM expansion can actually be obtained
by simply appending the constant function to the dictionary.

Capacity-control is achieved by directly specitying the number
n of support points, as opposed to box-constraint C' in SVMs

What is being optimized, however, is not the same as for SVMs

but typically the mean squared error, and in a greedy fashion.

Experimental comparison with SV Ms

A first series of experiment was done with the Delve system?® on
the binary classification problem using the mushroom data set. We
compared the preformance of SVMs and KMP (based on Optimally
Orthogonal Matching Pursuit) with a Gaussian Kernel.

For each training, we first chose an appropriate setting of hyper
parameters® based on K-fold cross-validation. We then retrained
with this setting on the whole training-set, and applied the obtained

function to the independent test-set.

a Data for FEvaluating Learning in Valid Experiments developped at the Uni-

versity of Toronto
Ps of the gaussian among {.5,1,2,3,4} and C for SVM-

s among {.1,1,2,3,4,5,6,10,100} and the number of support

points for K.M.P. as a percentage of the training-set size among
{10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% }

Experimental comparison with SV Ms

The table below compares the classification error rate and the num-
ber of support vectors found by both algorithms for varying sizes of

the training set @

size of | KMP | SVM | significance | KMP | SVM

train | error | error (t-test) Hs.v. | #s.v.
64 6.28% | 4.54% 0.24 17 63

128 | 2.51% | 2.61% 0.82 28 105
256 | 1.09% | 1.14% 0.81 41 244
512 | 0.20% | 0.30% 0.35 70 443
1024 | 0.05% | 0.07% 0.39 127 483

afor each size, the delve system did its estimations based on 8 disjoint training
sets of the given size and 8 disjoint test sets of size 503, except for 1024, in which
case it used 4 disjoint training sets of size 1024 and 4 test sets of size 1007

Experimental comparison with SV Ms

We did some further experiments, using the UCI Machine Learning

Databases Breast Cancer and Letters, also with a Gaussian Kernel.

Hyper-parameters were chosen in a similar way as previously, using

K-fold cross validation, and we used the resampled t-test (Nadeau

and Bengio, 2000) to compare performance.

data set # KMP | SVM | significance | KMP | SVM
train | error | error (p-value) #s.v. | #s.v.

breast-cancer | 500 | 2.00% | 2.70% 0.10 4 121
letters C vs. G | 605 | 0.75% | 0.58% 0.32 242 317

As previously, the performance of both algorithms are comparable,

but KMP uses far fewer support vectors.

Dictionary gives additional flexibility

This approach appears to be extremely flexible, as it allows to put

any kind of functions in the dictionary. For instance:

Absolutely no restriction on the shape of the kernel (can be

asymmetrical, position dependent, ...)

Dictionary could mix different kernel shapes to choose from at
each point, allowing for instance the algorithm to choose among

several widths of a Gaussian for each support point.

Dictionary could constrain the algorithm to use a different kernel

shape for each class, based on prior-knowledge.

For huge data-sets, a reduced subset can be used as the dictio-

nary to speed up the training.

Dictionary can incorporate non-kernel based functions (we al-
ready mentioned the constant function to recover the bias term,
but this could also be used to incorporate prior knowledge).

Extension to non squared-error loss

The original versions of Matching Pursuit algorithms were de-
signed to optimize a squared error loss but (Friedman, 1999)

offers a way to extend the procedure to arbitrary loss-functions.

Given a loss function L(y;, f,(z;)) that computes the cost of
predicting a value of fn(ajz) when the true target was y;, we can
use an alternative residue R,, rather than the usual R, = f — fj,
when searching for the next dictionary element to append to our

basis at each step.

This alternate target residue can be seen as the gradient from a

gradient descent in function space:

Rn _ {aL(yZJ fn(ajz))} (5)
8fn(33%) 1

and gives the usual residue when L is the squared error loss.

Extension to non squared-error loss

Once the g,, ., is chosen that is most collinear with R,,, the cor-
responding 11 is found by directly minimizing (with conjugate

gradient for instance):

~

Un+1 = a’rgergin Z L(f(ajz)7 fn (wz) T QG 41 (aj?,)) (6>
« i=1

This would be the equivalent of a simple matching pursuit. But
we could also perform an OMP-like “back-projection” by re-

optimizing all aq 4.

Thus margin cost functions (Mason et al., 2000), could be used

instead of squared-error loss, further closing the gap with SVMs

Margin cost functions

Margin m = yf(z) with y € {—1,+1} can be seen as a confidence

measure.

3 N I T T T I |
exp(-m) [AdaBoost]
log(1+exp(-m)) [LogitBoost] --------

-tanh)(m) [Doom Il] -

25 r

1.5

05 r

Margin cost functions

o Squared loss: (f(z) —y)? = (1 —m)?
o Squared loss after tanh: (tanh(f(z))—0.65y)? = (0.65—tanh(m))?

3

T T
squared error as a margin cost funétion
squared error after tanh with 0.65 target -

25

1.5

05

Conclusion

In conclusion the Kernel Matching Pursuit family of algorithms pro-
vide an interesting alternate framework to explore properties of support-
vector and kernel based solutions to machine-learning problems.

The ability to directly specify the number of support points ap-
pears to be a more intuitive capacity-control parameter than the

box-constraint C' of SVM.

It allows to enforce sparsity, and choose a trade-off between

speed and accuracy

Performance appears as good as SVM while often requiring far

fewer support points.

It is a very flexible framework that can be extended in many
ways in a straight-forward manner, opening the way to further

research.

Future work

In the future, we plan to explore the following:
Influence of using different cost functions
Mixing multiple kernel shapes

Ways of reducing the training time (by using a support candidate
subset).

We will also attempt to derive theoretical bounds on the gener-
alization error.

References

Boser, B., Guyon, 1., and Vapnik, V. (1992). An algorithm for optimal margin clas-
sifiers. In Fifth Annual Workshop on Computational Learning Theory, pages
144-152, Pittsburgh.

Davis, G., Mallat, S., and Zhang, Z. (1994). Adaptive time-frequency decompositions.
Optical Engineering, 33(7):2183-2191.

Friedman, J. (1999). Greedy function approximation: a gradient boosting machine.
Technical report, Dept. of Statistics, Stanford University.

Mallat, S. and Zhang, Z. (1993). Matching pursuit with time-frequency dictionaries.
IEEE Trans. Signal Proc., 41(12):3397-3415.

Mason, L., Baxter, J., Bartlett, P., and Frean, M. (2000). Boosting algorithms as gra-
dient descent. In Solla, S. A., Leen, T. K., and Miiller, K.-R., editors, Advances
in. Neural Information Processing Systems 12. The MIT Press. Accepted for
Publication.

Nadeau, C. and Bengio, Y. (2000). Inference for the generalization error. In Solla,
S. A., Leen, T. K., and Milller, K.-R., editors, Advances in Neural Information
Processing Systems 12. The MIT Press. Accepted for Publication.

Pati, Y., Rezaiifar, R., and Krishnaprasad, P. (1993). Orthogonal matching pursuit:
Recursive function approximation with applications to wavelet decomposition.
Proceedings of the 27 th Annual Asilomar Conference on Signals, Systems,
and Computers.

