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Abstract

This article presents a new rule discovery algorithm named PLCG that can find simple, robust
partial rule models (sets of classification rules) in complex data where it is difficult or impossible
to find models that completely account for all the phenomena of interest. Technically speaking,
PLCG is an ensemble learning method that learns multiple models via some standard rule learning
algorithm, and then combines these into one final rule set via clustering, generalization, and heuristic
rule selection. The algorithm was developed in the context of an interdisciplinary research project
that aims at discovering fundamental principles of expressive music performance from large amounts
of complex real-world data (specifically, measurements of actual performances by concert pianists).
It will be shown that PLCG succeeds in finding some surprisingly simple and robust performance
principles, some of which represent truly novel and musically meaningful discoveries. A set of more
systematic experiments shows that PLCG usually discovers significantly simpler theories than more
direct approaches to rule learning (including the state-of-the-art learning algorithm RIPPER), while
striking a compromise between coverage and precision. The experiments also show how easy it is to
use PLCG as a meta-learning strategy to explore different parts of the space of rule models.
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1. Introduction

In application-oriented sciences like data mining and machine learning, it is often the
case that challenges posed by some concrete practical application problem lead to the
development of new, often general solutions with new properties. The work to be described
in the present article is a prime example of that. What will be presented here is a new
rule learning algorithm that can discover extremely simple partial rule models from large
amounts of complex, real-world data. The motivating application problem, in this case,
comes from the (unusual?) domain of music.
The contribution of this article is two-fold: on the one hand, a new, general-purpose rule

discovery algorithm is presented and systematically compared to alternative rule learning
methods. The distinctive features of the new algorithm are that it is a meta-algorithm
that can be ‘wrapped around’ any given rule learning algorithm, and that it provides an
elegant way to explore the trade-off between the generality (coverage), the precision, and
the complexity of the theories (rule sets) looked for.
On the other hand, this article provides proof that automated discovery techniques can

also fruitfully be applied to ‘soft’ sciences like music, and can in fact make significant new
discoveries. So far, AI methods, particularly inductive learning, have been used as tools
for scientific discovery predominantly in the natural sciences (e.g., [13,15,16,21,23–25]).
There has been far less work in the so-called humanities of softer sciences, which at first
sight would seem to defy attempts at machine-based discovery because of a lack of strict
laws that can be discovered. The present article attempts to show that AI can be just as
successful in such areas, even in ‘artistic’ domains like music.
The context for this work is a long-term inter-disciplinary research project situated

at the intersection of the scientific disciplines of Artificial Intelligence and Musicology
[29,31].1 The goal is to use AI methods to study the complex phenomenon of expressive
music performance. We want to understand what great musicians do when they interpret
and play a piece of music, and to what extent an artist’s musical choices are constrained
or ‘explained’ by (a) the structure of the music, (b) common performance practices,
and (c) cognitive aspects of music perception and comprehension. Formulating formal,
quantitative models of expressive performance is one of the big open research problems in
contemporary empirical musicology. Our project develops a new direction in this field: we
use inductive learning algorithms to discover general and valid expression principles from
(large amounts of) real performance data.
The main purpose of this research is knowledge discovery. We search for simple,

general, interpretable models of aspects of expressive music performance (such as tempo
and expressive timing, dynamics, articulation). To that end, we have compiled what is most
probably the largest set of performance data (precise measurements of timing, dynamics,
etc. of real musical performances) ever collected in empirical performance research.
Specifically, we are analyzing large sets of recordings by highly skilled concert pianists,
with the goal of discovering explainable patterns in the way the music is played. The results
described here represent a first small, but significant, step towards this goal.

1 See also the project web page at http://www.oefai.at/music/.
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In Section 2, we first explain some basic concepts of our application domain, and
then report on some problems encountered when standard machine learning algorithms
were applied in a straightforward way. These experiences prompted us to develop the
new rule algorithm PLCG, which is described in Section 3. The main purpose of PLCG
is to find simple, robust partial theories (sets of classification rules that explain at least
a part of the data) in complex data sets. PLCG achieves this by learning multiple
theories via some standard rule learning algorithm, and then combining these theories
into one final rule set via clustering, generalization, and heuristic rule selection. Section 4
demonstrates the potential of the approach by describing some extremely simple and
general performance rule sets discovered by PLCG—some of the learned rules represent
truly novel and musically meaningful discoveries. Section 5 then presents several more
systematic experiments that compare PLCG to more ‘direct’ rule learning methods. The
results indicate that PLCG finds more compact theories than state-of-the-art rule learners,
while striking a compromise between generality and precision. They also demonstrate how
easy it is to use PLCG as a meta-learning strategy to explore different parts of the space of
possible theories.

2. The goal: Discovering fundamental principles of musical expression

2.1. The target: Expressive music performance

Expressive music performance is the art of shaping a musical piece by continuously
varying important parameters like tempo, dynamics, etc. Human musicians do not play a
piece of music mechanically, with constant tempo or loudness. Rather, they speed up at
some places, slow down at others, stress certain notes or passages by various means, and
so on. The expressive nuances added by an artist are what makes a piece of music come
alive (and what makes some performers famous). The most important dimensions available
to a performer (a pianist, in particular) are tempo, dynamics (loudness variations), and
articulation (the way successive notes are connected).
Expressive variation is more than just a ‘distortion’ of the original (notated) piece

of music. In fact, the opposite is the case: the notated music score is but a small part
of the actual music. Not every intended nuance can be captured in a limited formalism
such as common music notation, and the composers were and are well aware of this. The
performing artist is an indispensable part of the system, and expressive music performance
plays a central role in our musical culture. That is what makes it a central object of study
in the field of musicology.
Our approach to studying this complex phenomenon is to collect large corpora of

performance data (i.e., exact measurements of onset and offset times and loudness of each
note as played in a performance), and to apply inductive learning algorithms to find models
that compactly characterize various classes of situations that are treated in a similar way by
the performer (such as ‘situations where the performer slows down’ vs. ‘situations where
s/he speeds up’). At the moment, we limit ourselves to classical piano music.
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2.2. Data and target concepts

The data used in our experimental investigations is by far the largest corpus of precisely
measured and documented performances ever studied in musical performance research.We
currently work with recordings of 18 complete Mozart piano sonatas (some six hours of
music, more than 150,000 notes) by two different concert pianists, as well as performances
of selected Chopin pieces by 22 different pianists. The pieces were played on a Bösendorfer
SE290 computer-monitored grand piano. The Bösendorfer SE290 is a full concert grand
piano with a special mechanism that measures and records every key and pedal movement
with high precision. These measurements, together with the notated score in machine-
readable form, provide us with all the information needed to compute expressive variations
(e.g., tempo fluctuations). Collecting and preparing this data set was a formidable project
in itself and in fact forced us to develop a range of novel intelligent music processing
algorithms [1,2,6,7].
The data set that will serve as a basis for rule discovery in the particular experiments

to be described here (i.e., the training data) consists of recordings of 13 complete piano
sonatas by W.A. Mozart (K.279–284, 330–333, 457, 475, and 533), performed by the
Viennese concert pianist Roland Batik. The resulting dataset consists of more than 106,000
performed notes and represents some four hours of music.
The experiments described here were performed on the melodies (usually the soprano

parts) only, which gives an effective training set of 41,116 notes. Each note is described by
29 attributes (10 numeric, 19 discrete) that represent both intrinsic properties (such as scale
degree, duration, metrical position) and some aspects of the local context (e.g., melodic
properties like the size and direction of the intervals between the note and its predecessor
and successor notes, and rhythmic properties like the durations of surrounding notes etc.,
and some abstractions thereof).
Our goal at this stage of the project is to discover explanatory (partial) models of

categorical performer actions such as speeding up vs. slowing down, at a very local,
note-to-note level. In terms of performance parameters, we are looking at (local) tempo
or timing, dynamics, and articulation. We defined the following discrete target classes:

(1) in the tempo dimension, a note N is assigned to class ritardando if the local tempo
at that point is significantly (>2%) slower than the tempo at the previous note; the
opposite class accelerando contains all cases of local speeding up;

(2) in dynamics, a note N is considered an example of class crescendo if it was played
louder than its predecessor, and also louder than the average level of the piece; class
diminuendo (growing softer) is defined analogously;

(3) in articulation, three classes were defined: staccato if a note was sounded for less than
80% of its nominal duration, legato if the proportion is greater than 1.0 (i.e., the note
overlaps the following one), and portato otherwise; we will only try to learn rules for
the classes staccato and legato.

A performed note is considered a counter-example to a given class if it belongs to one of
the competing classes. (Note that due to some details of our class definitions, there will
be some notes that are neither examples nor counter-examples of some concept.) The total
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Table 1
Numbers of training examples of various categories

Timing Dynamics Articulation

longer shorter louder softer staccato legato portato
slow 2/2 790 786 677 580 1,374 473 625
slow 3/4 1,209 1,169 1,081 942 1,371 1,326 1,177
slow 4/4 903 916 836 708 961 1,212 821
slow 3/8 157 153 151 100 150 216 125
slow 6/8 598 667 523 469 1,037 458 530
fast 2/2 1,945 1,925 1,662 1,447 3,227 1,305 1,394
fast 2/4 2,148 2,206 1,851 1,376 4,270 887 1,345
fast 3/4 2,048 1,972 1,838 1,467 3,611 1,387 1,289
fast 4/4 2,107 2,078 1,781 1,413 3,486 1,338 1,537
fast 3/8 738 711 623 435 1,387 337 343
fast 6/8 767 724 606 492 1,258 317 542

slow 3,657 3,691 3,268 2,799 4,893 3,685 3,278
fast 9,753 9,616 8,361 6,630 17,239 5,571 6,450
total 13,410 13,307 11,629 9,429 22,132 9,256 9,728

numbers of training examples (notes pertaining to each category) that result from this are
summarized in Table 1, separately for different global tempi and time signatures of the
corresponding sonata sections; this particular partitioning of the data will play a role in the
following.

2.3. Previous results and problems

Musically speaking, this local, note-to-note definition of the target concepts and the
low-level representation of the training examples (only single notes with very limited
information about their context) is clearly unsatisfactory. We cannot expect an artist’s
expressive actions to be explainable by reference to such low-level features of the music
only. More abstract structural aspects of the music, like phrase structure and harmonic
structure, definitely play an important role and should be added to the representation of the
data. Unfortunately, these aspects of the music are difficult to capture in a formal system,
and we currently have no algorithms that could reliably compute them from the information
given in the score—and given the sheer amount of data we are working with, performing a
‘manual’ structural analysis of the pieces is infeasible. Consequently, we cannot expect to
find even close to perfect models of expressive performance at this level of representation.
Nevertheless, in a first suite of experiments [28], we succeeded in showing that even at

this low level, there is structure in the data; learning algorithms like C4.5 [20] were able to
find rule sets that predict the performer’s choices with better than chance probability.
However, the improvement over the baseline accuracy was generally rather small

(though statistically significant), which indicates that there are severe limits as to howmuch
of a performer’s behaviour can be explained at the note level. Moreover, the learned models
were extremely complex. For instance, a decision tree discriminating between accelerando
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(speeding up) and ritardando (slowing down) with 58.09% accuracy had 3037 leaves (after
pruning)! That is clearly not desirable if our goal is knowledge discovery.
Now apart from the musical limitations mentioned above, the problem can also be

attributed in part to an inappropriate bias of the learning algorithm employed. Decision
tree learners attempt to build a global discriminative model that fully distinguishes between
the members of the various classes and that makes predictions everywhere in the instance
space. What seems more sensible in our application domain is to search for partialmodels
that only explain what can be explained, and simply ignore those parts of the instance
space where no compact characterization of the target classes seems possible. Moreover,
given the nature of our data and target phenomena, we cannot expect very high levels
of discriminative accuracy—we cannot assume the artist to be perfectly consistent and
predictable.
In the following, we describe a rule learning algorithm named PLCG that was developed

for this purpose. It will be shown that PLCG can find very simple partial models that
still characterize a number of interesting subclasses of expressive performance behaviour.
(Indeed, we will show that 4 simple rules are sufficient to predict 22.89% of the instances
of local ritardando in our large data set, which contrasts nicely with the decision tree with
3037 leaves mentioned above.)

3. PLCG: Discovering simple partial models

3.1. The PLCG meta-algorithm

Given the goal of learning partial models, an obvious choice is to apply rule learning
algorithms of the set covering variety (also known as separate-and-conquer learners [10]),
such as FOIL [19] or RIPPER [4] (see Fig. 1 for a sketch of the basic structure). These
algorithms learn theories one rule at a time, in each rule refinement step selecting a
literal that maximizes some measure of discrimination (e.g., information gain). A rule is
specialized until a given stopping criterion (typically based on the rule’s purity or precision)
is satisfied, and the overall learning process stops when no more rules can be found that
satisfy this purity criterion (or, more generally, when some user-defined stopping criterion
is satisfied). The stopping criteria are thus the natural entry point for the user to influence
the generality and precision of the induced rules. In the context of our problem, we would
require rather low levels of precision in the RULESTOPCRITERION (see Fig. 1). The degree
of coverage of the resulting rules would then follow automatically, dictated by the data.
After some experimentation, we have chosen to pursue a more complex approach.

The basic idea is to learn several models in parallel (from subsets of the data), search
for groups of similar rules in these models, generalize these into summarizing rules (of
varying degrees of generality), and then select those generalizations for the final model
that optimize some (possibly global) user-defined criterion (which will typically be a
trade-off function between coverage and precision). This strategy gives us more direct
control over the overall coverage and precision of the induced models, and at the same
time helps ameliorate one of the major problems of the greedy literal selection strategy of
the underlying rule learner: the danger of selecting sub-optimal conditions due to the local
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procedure RL(E)

Theory := {};
while not THEORYSTOPCRITERION(Theory,E)do

Rule := FINDBESTRULE(E);
E := E \COVERS(Rule,E);
Theory := Theory ∪ Rule;

return(Theory);

procedure FINDBESTRULE(E)

Rule := {};
repeat

Rule := Rule ∪ FINDBESTCONDITION(E);
E := COVERS(Rule,E);

until RULESTOPCRITERION(Rule,E);
return(Rule);

Fig. 1. RL: A standard sequential covering algorithm for rule learning. FINDBESTCONDITION finds the most
discriminating condition according to some heuristic criterion (e.g., FOIL’s information gain criterion).

maximization of a given discrimination measure. In this sense, our approach— let us call it
the PLCG (Partition+Learn+Cluster+Generalize) strategy—is inspired by the success
of ensemble methods in machine learning (see [5] for a good overview). The corresponding
algorithm is given in more detail in Fig. 2. The advantages or properties of this algorithm
will be analyzed in more detail in Section 5.

3.2. An instantiation of PLCG

PLCG is really a meta-algorithm. It needs to be instantiated with three concrete
algorithms (see Fig. 2): a rule learning algorithm L, a hierarchical clustering algorithmH ,
and a rule selection criterion or strategy S. For the following experiments, PLCG will be
instantiated as follows:
For rule learning, PLCG uses the simple, straightforward sequential covering algorithm

RL sketched in Fig. 1, with the standard information gain heuristic as used in FOIL [19]
and the following stopping criteria:

(1) RULESTOPCRITERION(r,E)= true if purity P(r,E) = p/(p + n) !MPRL,
(2) THEORYSTOPCRITERION(Theory,E) = true if no more rule r can be found with

purity P(r,E) = p/(p + n) !MPRL and positive coverage p !MCRL,

where p and n are the numbers of positive and negative examples, respectively, covered by
a rule r on a set of examples E, and the required minimum purity MPRL and minimum
coverage MCRL are user-specified parameters.2 Obviously, high values of MPRL will

2 The subscript RL serves to distinguish these parameters from the purity and coverage parameters MPPLCG
and MCPLCG used by PLCG’s rule selection algorithm (see below).
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Given:

• a set of training instances D

• a target concept (class) c

• a rule learning algorithm L

• a hierarchical clustering algorithm H

• a rule selection criterion S

Algorithm:

(1) Separate (randomly or according to a particular scheme) the training
examples D into n subsets Di , i = 1, . . . , n, s.t.

⋃
Di = D;

(2) Learn partial rule models Ri = {rij } for class c from each of these subsets
Di separately, using the learning algorithm L.

(3) Merge the rule sets Ri into one large set R: R = ⋃
Ri .

(4) Use the clustering algorithm H to cluster the rules in R into a tree of
clusters Ci , i = 1, . . . , k, of similar rules;

(5) For each cluster Ci , compute the least general generalization of all the
rules in Ci : r̂i = lgg({rij | rij ∈ Ci}). The resulting tree T of rules r̂i
represents generalizations of various degrees of the original rules.

(6) From this generalization tree T , select those rules r̂i that optimize the
given selection criterion S.

Fig. 2. The PLCG (Partition + Learn+Cluster+Generalize) rule learning strategy.

produce more precise theories with possibly lower coverage, and loweringMPRL will lead
to more general theories that also cover a larger number of negative examples.
For rule clustering, we use a standard bottom-up hierarchical agglomerative clustering

algorithm [12] that produces a binary cluster tree, with the individual rules forming the
leaves of the tree, and the root containing all the rules (Fig. 3). The measure of distance
δ between two rules is simply the number of generalization operations needed to compute
the least general generalization (lgg) of the two rules. Given our standard proposititional
representation of instances and rules (see Section 4 below for an example), the definition
of the lgg is quite straightforward: essentially, a discrete attribute with two different values
in the two rules generalizes to the empty condition (true), while conditions involving
numeric attributes (these are of the form ai " x or ai > x) generalize to the most specific
inequality expression that covers both of the original intervals.
The distance between clusters is then computed as the shortest distance from any

member of one cluster to any member of the other cluster—that is, we perform what is
known as single-link clustering [14].
As for the rule selection criterion (step 6 of the PLCG algorithm), we currently use

another greedy set-covering algorithm that starts with the empty rule set and always adds
the rule that has maximum purity on the as yet uncovered instances (Fig. 4). Actually,
instead of purity, we use the Laplace estimate L = (p + 1)/(p + n + 2), which is
related to purity, but penalizes rules with a low coverage on the positive examples. Again,
the selection is terminated when no rule with purity (Laplace) greater than some user-
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function CLUSTER(E)
Clusters := {{ei} | ei ∈ E};
while |Clusters| > 1 do

(ci , cj ) := MOSTSIMILARCLUSTERPAIR(Clusters);
Clusters := (Clusters\{ci , cj }) ∪{{ci, cj }};

return(Clusters);

functionMOSTSIMILARCLUSTERPAIR(Cs)
return (ci , cj ) s.t. ci, cj ∈ Cs, i #= j and
DISTANCE(ci, cj )= min{DISTANCE(ck, cl) | ck, cl ∈ Cs, k #= l};

function DISTANCE(Cluster1, Cluster2)=
min{δ(oi , oj ) | oi ∈ Cluster1, oj ∈ Cluster2};

Fig. 3. A standard bottom-up agglomerative (single-link) clustering algorithm; see the main text for a definition
of the distance δ between two objects/rules.

procedure RULESEL(R,E)
FinalTheory := {};
while not FINALTHEORYSTOPCRITERION(FinalTheory,R,E)do

Rule := FINDBESTRULE(R,E);
Covered := COVERS(Rule,E);
R := R \ {Rule};
E := E \Covered;
FinalTheory := FinalTheory ∪ {Rule};

return(FinalTheory);

function FINDBESTRULE(R,E)= argmaxr∈R LAPLACE(r,E);

function LAPLACE(r,E)= (p + 1)/(p + n + 2),
where p (n) = number of positive (negative) examples ∈ E

covered by rule r ;

function FINALTHEORYSTOPCRITERION(R,E)=
there is no r ∈ R with purity P(r,E) = p/(p + n) !MPPLCG
and positive coverage p !MCPLCG

Fig. 4. The heuristic procedure employed by PLCG to select the rules for the final theory; MPPLCG andMCPLCG
are user-defined parameters.

defined MPPLCG and coverage greater than some minimum coverage MCPLCG can be
found.
This is just one of many possible rule selection strategies. Many others are conceivable

that could use different criteria for trading coverage against precision, or that might aim
at optimizing other aspects of the evolving rule set (e.g., minimum overlap or a minimum
number of contradictions between rules).
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4. Musical discoveries made by PLCG

Let us first look at some of PLCG’s discoveries from a musical perspective. Section 5
below we will then take a more systematic experimental look at PLCG’s behaviour relative
to more ‘direct’ rule learning.

4.1. Performance principles discovered

When run on the complete Mozart performance data set (41,116 notes) for each of
the six target concepts defined above,3 PLCG (with parameter settings MPPLCG = .7,
MCPLCG = .02,MPRL = .9,MCRL = .01) selected a final set of 17 performance rules (from
a total of 383 specialized rules)—6 rules for tempo changes, 6 rules for local dynamics, and
5 rules for articulation. (Two rules were selected manually for musical interest, although
they did not quite reach the required coverage and precision, respectively.) Some of these
rules turn out to be discoveries of significant musicological interest. We lack the space to
list all of them here (see [32]). Let us illustrate the types of patterns found by looking at
just one of the learned rules:

RULE TL2:
abstract_duration_context = equal-longer
& metr_strength " 1
⇒ ritardando

“Given two notes of equal duration followed by a longer note, lengthen the note (i.e.,
play it more slowly) that precedes the final, longer one, if this note is in a metrically
weak position (‘metrical strength’ " 1).”

This is an extremely simple principle that turns out to be surprisingly general and
precise: rule TL2 correctly predicts 1,894 cases of local note lengthening, which is 14.12%
of all the instances of significant lengthening observed in the training data. The number of
incorrect predictions is 588 (2.86% of all the counterexamples). Together with a second,
similar rule relating to the same type of phenomenon, TL2 covers 2,964 of the positive
examples of note lengthening in our performance data set, which is more than one fifth
(22.11%)! It is highly remarkable that one simple principle like this is sufficient to predict
such a large proportion of observed note lengthenings in a complex corpus such as Mozart
sonatas. This is a truly novel (and surprising) discovery; none of the existing theories of
expressive performance were aware of this simple pattern.

3 In this experiment, the data were not split into subsets randomly; rather, 10 subsets were created according
to global tempo (fast or slow) and time signature (3/4, 4/4, etc.) of the sonata sections the notes belonged to. We
chose these two dimensions for splitting because it is known (and has been shown experimentally [28]) that global
tempo and time signature strongly affect expressive performance patterns. As a result, we can expect models that
tightly fit (overfit?) these data partitions to be quite different, and diversity should be beneficial to an ensemble
method like PLCG.



G. Widmer / Artificial Intelligence 146 (2003) 129–148 139

A number of other interesting rules were discovered, such as two pairs of timing and
articulation rules that concisely characterize the pianist’s consistent treatment of certain
types of melodic leaps. One pair of rules is particularly noteworthy in that it points to
a rhythmic distinction (between 2:1 and 3:1 duration ratios) that seems to be strongly
perceptually relevant: one of the rules predicts a ‘softening’ of rhythmic contrasts in
duration ratios of 2:1, the other a ‘sharpening’ in 3:1 duration ratios, which seems to
indicate that performers indeed use this strategy to aid the listener in distinguishing these
two types of rhythms [22]. More details on this as well as the other discovered rules and
their relation to theories of expressive performance in the musicological literature can be
found in [32].

4.2. Fit and generality of discovered principles

As our primary goal is knowledge discovery, we are first of all interested in how
much of the given (training) data is explained by the learned model—in other words, how
well the induced models capture the pianist’s performance style. Thus, contrary to more
‘standard’ machine learning applications, the degree of fit on the training set is relevant.
(Of course, we will also be looking at generalization accuracy on unseen data—see below.)
As a quantification of fit, we measure the coverage (i.e., the number of positive examples
correctly predicted) and the precision (the proportion of predictions that are correct) of the
rule sets on the training data, separately for each prediction category. Table 2 gives the
results.
A detailed discussion of the results and their musical interpretation is beyond the scope

of this article. Generally, it turns out that certain sub-classes of note lengthening (local
ritardando), staccato, and to a lesser extent the local dynamics variations (crescendo and
diminuendo) are surprisingly predictable, and with extremely few (and simple) rules. On
the other hand, categories like accelerando and legato seem more difficult to predict—at
least at the level of individual notes. Uncovering the reasons for this will require more
specialized investigations.
To give the reader an impression of just how effective a few simple rules can be in

predicting a pianist’s behaviour in certain cases, Fig. 5 compares the tempo variations
predicted by our rules to the pianist’s actual timing in a performance of the well-known
Mozart Sonata K.331 in A major (first movement, first section). In fact, it is just two

Table 2
Fit of rule sets on training data (13 Mozart sonatas); True Positives (TP) = correct predictions; False
Positives (FP) = incorrect predictions (relative to total number of positive and negative instances,
respectively); π = precision = TP/(TP+ FP)

Category #rules True Positives False Positives π

ritardando 4 3069/13410 (22.89%) 1234/20551 (6.00%) .713
accelerando 2 397/13307 (2.98%) 179/20550 (0.87%) .689
crescendo 3 1318/11629 (11.33%) 591/18260 (3.24%) .690
diminuendo 3 625/9429 (6.63%) 230/20113 (1.14%) .731
staccato 4 6916/22132 (31.25%) 1089/18984 (5.74%) .864
legato 1 687/9256 (7.42%) 592/31860 (1.86%) .537
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Fig. 5. Mozart Sonata K.331, 1st movement, 1st part, as played by pianist and learner. The curve plots the relative
tempo at each note—notes above the 1.0 line are shortened relative to the tempo of the piece, notes below 1.0
are lengthened. A perfectly regular performance with no timing deviations would correspond to a straight line at
y = 1.0.

simple rules (one for note lengthening (ritardando), one for shortening (accelerando)) that
produce the system’s timing curve.4
The next question concerns the generality of the discovered rules. How well do they

transfer to other pieces and other performers? To assess the degree of performer-specificity
of the rules, they were tested on performances of the same pieces, but by a different
artist. The test pieces in this case were the Mozart sonatas K.282, K283 (complete) and
K.279, K.280, K.281, K.284, and K.333 (second movements), performed by the renowned
conductor and pianist Philippe Entremont, again on a Bösendorfer SE290. The results are
given in Table 3.
Comparing this to Table 2, we find no significant degradation in coverage and precision

(except in category diminuendo). On the contrary, for some categories (ritardando,
crescendo, staccato) the coverage is higher than on the original training set. The
discriminative power of the rules —the precision—remains roughly at the same level. This
(surprising?) result testifies to the generality of the discovered principles; PLCG seems to
have successfully avoided overfitting the training data.
Another experiment tested the generality of the discovered rules with respect to musical

style. They were applied to pieces of a very different style (Romantic pianomusic), namely,
the Etude Op.10, No.3 in E major (first 20 bars) and the Ballade Op.38, F major (first 45
bars) by Frédéric Chopin, and the results were compared to performances of these pieces
by 22 Viennese pianists. The melodies of these 44 performances amount to 6,088 notes.
Table 4 gives the results.
This result is even more surprising. Diminuendo and legato turn out to be basically

unpredictable, and the rules for crescendo are rather imprecise. But the results for the
other classes are extremely good, better in fact than on the original (Mozart) data which

4 To be more precise: the rules predict whether a note should be lengthened or shortened; the precise numeric
amount of lengthening/shortening is predicted by a k-nearest-neighbor algorithm (with k = 3) that uses only
instances for prediction that are covered by the matching rule, as proposed in [26] and [27].
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Table 3
Prediction results on test data (Mozart performances by P. Entremont)

Category #rules True Positives False Positives π

ritardando 4 596/2036 (29.27%) 242/3175 (7.62%) .711
accelerando 2 90/2193 (4.10%) 45/3013 (1.49%) .667
crescendo 3 210/1601 (13.12%) 87/3055 (2.85%) .707
diminuendo 3 53/1598 (3.32%) 45/2725 (1.65%) .541
staccato 4 861/2192 (39.28%) 228/3996 (5.71%) .791
legato 1 131/2827 (4.63%) 57/3361 (1.70%) .697

Table 4
Prediction results on test data (Chopin performances by 22 pianists)

Category #rules True Positives False Positives π

ritardando 4 1752/2537 (69.06%) 327/2988 (10.94%) .843
accelerando 2 1472/2767 (53.20%) 110/2746 (4.01%) .930
crescendo 3 601/2392 (25.13%) 285/2578 (11.06%) .678
diminuendo 3 0/2249 (0.00%) 0/2784 (0.00%) –
staccato 4 950/2932 (32.40%) 166/2802 (5.92%) .851
legato 1 17/2011 (0.85%) 27/3723 (0.73%) .386

the rules had been learned from! The high coverage values, especially of the tempo rules,
are remarkable. Remember also that the data represent a mixture of 22 different pianists.
When looking at how well the rules fit individual pianists, we find that some of them
are predicted extremely well (e.g., pianist #15: ritardando: TP= 89/122 (72.95%), FP=
4/129 (3.10%), π = .957; accelerando: TP = 71/120 (59.17%), FP = 3/132 (2.27%),
π = .959). We are currently preparing recordings of a larger variety of Chopin pieces,
which will permit more extensive investigations into the rules’ general validity.

5. Systematic experimental evaluation

The above results show that PLCG can discover general and robust rules in complex
data. In this section we take a more systematic look at the general properties of PLCG and
its behaviour relative to more ‘direct’ approaches to rule learning.

5.1. PLCG vs. simple rule learning

The first experiment concerns a systematic comparison between PLCG and its
underlying rule learner RL. Does PLCG’s ensemble learning strategy produce any
advantage over the more direct application of RL on the training data? The experimental
setup was as follows: PLCG, with parameter settingsMPRL = .9 andMCRL = .01 for base-
level rule learning, and MPPLCG = .7 and MCPLCG = .04 for heuristic rule selection, was
compared to two versions of the base-level learner RL: RL0.9 learns rules directly from the
data with a required purity level of RPRL = 0.9 (i.e., RL0.9 is exactly the same algorithm
as the one used within PLCG’s inner loop); RL0.7 uses the more relaxed minimum purity
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Table 5
PLCG vs. simple RL: summary of 60 cross-validation results; NR= total number of rules (summed
over all 60 data sets× 5 folds) and average number of rules per learning run (NR/60/5); TP= true
positives; π = precision

Coverage (TP%) π No. of rules lits/rule
RL0.9 12731/62017 (20.53%) .854 2475 (8.25) 5.27
RL0.7 28358/62017 (45.73%) .708 4094 (13.65) 4.76
PLCG0.7/0.9 18767/62017 (30.26%) .741 1707 (5.69) 3.69

threshold RPRL = 0.7, which corresponds to the precision level used by PLCG in its rule
selection phase. The purpose of the experiment was to study whether PLCG’s multiple
rule learning + generalization + selection approach yields any advantage over learning
rules directly from the data with the corresponding parameter settings.
60 different experimental data sets were produced by partitioning our 41,116 performed

and classified notes according to the general tempo (slow vs. fast) and the time signature
(3/4, 4/4, etc.) of the Mozart sonata segments they belong to. This resulted in 10 training
sets each for the 6 target concepts accelerando, ritardando, crescendo, diminuendo,
staccato, and legato.
On each of these 60 data sets, the three learning algorithms were compared via a 5-

fold (paired) cross-validation. Within each CV run, RL0.9 and RL0.7 were applied to the
combined data from the four training folds, while PLCG used the four folds to learn four
separate rule sets (via RL0.9) that were then combined, generalized, and selected from. We
lack the space to present the full results table with 60 × 18 entries here. Table 5 gives a
summary of the results.
The results clearly reflect the expected trade-off: learning with a tighter precision

threshold for individual rules (RL0.9) yields theories with higher precision, but lower
coverage than learning with a lower required precision (RL0.7). PLCG, with its mixture
of precision thresholds (high in the individual rule learning runs, lower in the rule selection
phase) figures somewhere in between: its coverage is higher than RL0.9’s and lower than
RL0.7’s. Conversely, it reaches a precision lower than RL0.9’s and higher than RL0.7’s.
The interesting result is that PLCG achieves this with significantly simpler theories than

either of the two base-level learners, RL0.9 and RL0.7. Both the number of rules and their
individual complexity (average number of conditions per rule—see last column in Table 5)
are significantly lower. PLCG covers more instances than RL0.9 with fewer (more general)
rules, while still retaining a higher precision than RL0.7, which used the same precision
thresholdMPRL in its search for rules. That is indeed the desired kind of behaviour for our
application, where the goal is to discover simple, general, robust (partial) theories that can
be presented to and discussed with musicologists.

5.2. PLCG vs./around RIPPER

The above results are interesting, but one might object that the rule learner RL to which
PLCG was compared is really too simple and cannot compete with state-of-the-art rule
learning algorithms. In particular, RL’s pruning strategy as embodied in its simple stopping



G. Widmer / Artificial Intelligence 146 (2003) 129–148 143

criteria RULESTOPCRITERION and THEORYSTOPCRITERION is very weak, which might
account for the large numbers of rules built by RL0.9 and RL0.7.
To verify this, we also ran RIPPER [4], a state-of-the-art rule learning algorithm

with a sophisticated pruning strategy [11], on our 60 data sets. Moreover, as PLCG
is a general meta-algorithm, we can just as well wrap PLCG around RIPPER, i.e., use
RIPPER as PLCG’s base-level learner instead of RL. We did this with two different purity
thresholds for final rule selection:MPPLCG = 0.7 andMPPLCG = 0.65. The corresponding
algorithms are called PLCG-RIP0.7 and PLCG-RIP0.65, respectively. Table 6 summarizes
the results. The figures pertaining to RL and PLCG from Table 5 are repeated here for
comparison.
A comparison of RIPPER’s results with the simpler rule learners RL0.9 and RL0.7

confirms that RIPPER does indeed perform more aggressive pruning: RIPPER’s results are
similar to RL0.7, with an even higher coverage, but much fewer rules (2182 vs. 4094). On
the other hand, RIPPER pays the price of lower precision for its general and simple theories.
PLCG0.9/0.7 compares to RIPPER similarly as it does to RL0.7: it achieves lower

coverage and higher precision, still with fewer rules than RIPPER.
Comparing now the PLCG variants based on RIPPER (PLCG-RIP0.7 and PLCG-

RIP0.65) to ‘their’ base-level learner RIPPER, we see the same effect as we saw in the
PLCG-RL case: the PLCG variants again reduce the coverage of the underlying rule learner
(RIPPER), but they improve precision, and now with really extremely simple theories.
For instance, with MPPLCG = .65, we get a coverage of 32.74% and a precision of .692
with only 642 rules, which is 2.14 rules per run! Moreover, the rules found by PLCG
are generally simpler than RIPPER’s. In machine learning, the simplicity of rule sets
and individual rules is generally associated with the comprehensibility of the induced
models. In a knowledge discovery setting as described in this article, where the results
must be communicated to and discussed with experts of the domain, comprehensibility
and simplicity are important values.
In general, how much precision one is willing to sacrifice for how much coverage and

theory simplicity, and vice versa, will depend on the particular application. The important
advantage of the PLCG approach is that it makes it easy to explore and control this
trade-off via different rule selection strategies. This is demonstrated in the following
section.

Table 6
PLCG vs. RIPPER: summary of 60 cross-validation results. The results for RIPPER were produced with
parameter settings -aUnordered (learn an unordered rule set) and -S1.0 (standard pruning strength); all
other parameters were set to their default values

Coverage (TP%) π No. of rules lits/rule
RL0.9 12731/62017 (20.53%) .854 2475 (8.25) 5.27
RL0.7 28358/62017 (45.73%) .708 4094 (13.65) 4.76
RIPPER 30106/62017 (48.54%) .670 2181 (7.27) 3.67
PLCG0.7/0.9 18767/62017 (30.26%) .741 1707 (5.69) 3.69
PLCG-RIP0.7 14877/62017 (23.99%) .757 484 (1.61) 2.15
PLCG-RIP0.65 20307/62017 (32.74%) .692 642 (2.14) 2.26
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Fig. 6. RIPPER vs. two PLCG-RIP variants (differing in the MPPLCG values) over the range of RIPPER’s pruning
parameter -S: numbers of rules (top), coverage (bottom left), precision (bottom right).

5.3. Wrapping PLCG around RIPPER: A systematic study

RIPPER has a parameter (-S) that directly affects the degree of pruning. We ran a
systematic comparison of PLCG, wrapped around RIPPER, with RIPPER itself, over the full
(sensible) range of this pruning parameter. Fig. 6 plots the results, over the different pruning
levels, for RIPPER and two variants of PLCG-RIP, distinguished by different minimum
purity levels (MPPLCG) used in the final rule selection phase. Again, each point in these
plots is a summary over 60 5-fold cross-validation experiments. The difference in theory
complexity is dramatic, but also the difference in coverage and precision. RIPPER achieves
a significantly higher coverage for all pruning levels, but also a significantly lower level of
precision. In fact, it is remarkable that RIPPER never—for any setting of pruning level—
reaches a precision as high as any of the PLCG runs. PLCG is consistently more precise,
but less general.
Additional insight is provided by Fig. 7, which displays the experimental results in

two spaces: the graph on the left is a so-called recall-precision diagram, which plots the
precision of the different rule sets over their coverage on the positive examples (‘recall’).
What can be clearly seen is that the results of RIPPER and PLCG occupy different regions
in ‘model space’. The PLCG results exhibit the expected trade-off between coverage and
precision: models with higher coverage have lower precision, and vice versa.
The graph in the right half of Fig. 7 is known in machine learning (and other areas) as an

ROC curve. It plots the ratio of true positives (TP) over the ratio of false positives (FP), for
each of the rule sets.5 ROC Analysis [17,18] can be used to study the relative superiority

5 Note that the true positive rate TP= Coverage/100.
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Fig. 7. RIPPER vs. two PLCG-RIP variants in two spaces: precision over recall (left) and ROC space (true positive
rate over false positive rate, right). The individual points correspond to different pruning (-S) parameter settings
for RIPPER; each point is a summary over 60 5-fold cross-validation runs.

of different classifiers under different class distributions or unequal misclassification costs.
Informally, a classifier is better than another if it is to the ‘northwest’ (higher TP, lower
FP, or both). The diagonal y = x corresponds to the strategy of random guessing. The line
connecting the ‘northwestern-most’ classifiers is called the ROC Convex Hull. ROC theory
tells us that a classifier is optimal for some conditions if and only if it lies on the convex
hull (and above the diagonal) [18].
An ROC analysis of the above results essentially shows that in terms of expected

misclassification cost, PLCG-RIP0.65 is suboptimal under all circumstances (all the points
of PLCG-RIP0.65 lie below the ROC convex hull). PLCG-RIP0.7 and RIPPER both have
areas in which they are superior. PLCG-RIP0.7 dominates in the lower left part of the
space, RIPPER’s optimal points are in a space of higher TP (higher coverage) and higher
FP. The minimum slope of the hull for which PLCG-RIP0.7 dominates is 2.24—that means
that if negative examples were 2.24 times as abundant as positive ones, or if the cost of
false positive predictions were at least 2.24 times the cost of false negatives, then PLCG-
RIP0.7 would be the better classifier, otherwise it would be RIPPER. To put it simply, if
false positives bother us a lot (at least 2.24 as much as false negatives), PLCG-RIP0.7 is the
method of choice in this domain, otherwise it is RIPPER.
A quantitative analysis of this type will be useful in applications where misclassification

costs can be quantified (and can change), or where unequal class distributions are
a problem. In our musical application, the misclassification costs for false positives
and negatives cannot really be quantified. Intuitively, a reasonable predictive model of
expressive performance should not make too many incorrect predictions, which in our case
leads us to favour the more precise theories learned by PLCG.
Fig. 7 demonstrates how the PLCG meta-strategy can be used to explore different

regions in the space of possible rule models, simply by employing different criteria for
the final selection of rules.6 The basic rule learning+ clustering+ generalization steps in

6 We also experimented with other rule selection criteria, some of which in fact led PLCG to learn rule sets
with higher coverage than RIPPER. These results were omitted from the graphs in order to avoid clutter.
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PLCG need to be performed only once; the different rule selection procedures then simply
operate on the resulting generalization tree.
The point of the above experiments was not to show that either of the two algorithms,

RIPPER or PLCG, is better. It really depends on the application whether one is more
interested in coverage, precision, or the complexity of a set of rules. PLCG is proposed
here as an alternative or, better, as a meta-strategy that can be wrapped around any given
rule discovery algorithm and can be used to explore the space of rule models.

6. Conclusion

To summarize, this article has presented a rule (meta-)learner named PLCG and
its application to a complex musical knowledge discovery problem. PLCG has already
made substantial and surprising discoveries, which were published in the musicological
literature. More systematic experiments have shown that as a general-purpose rule learning
and discovery algorithm, PLCG is broadly competitive with the state-of-the-art rule
learning algorithm RIPPER, generally discovering theories with higher precision, but
lower coverage. But beyond pure accuracy considerations, PLCG possesses a number of
properties that make it an attractive algorithm for many knowledge discovery applications:
(1) PLCG has a strong tendency to find very simple rule models; (2) by using different
rule selection criteria, one can easily explore the trade-off between coverage, precision,
and theory complexity; (3) the algorithm can be made to optimize global criteria other
than coverage and precision, simply by changing the final rule selection procedure; (4) and
as a meta-algorithm it can be used to combine the results of different base-level learning
algorithms with possibly different biases.
In terms of related work, PLCG’s bottom-up generalization of classification rules is

reminiscent of Domingos’ RISE algorithm [8], which performs a bottom-up generalization
into more and more general rules, starting from the individual training instances. What
the two have in common is the idea to learn rules only for those parts of the instance
space where the concepts can be easily characterized. RISE caters for the remaining
space with instance-based learning, while PLCG simply ignores it (because its focus is
on finding comprehensible characterizations of sub-classes of the target). On the other
hand, PLCG makes it easy to explore alternative (and arbitrarily complex) strategies for
rule combination and selection, which is possible because it constructs an explicit tree of
rules of varying generality.
PLCG is also reminiscent of the GROW method proposed in [3], in the context of rule

pruning. In GROW, first a rule set is learned that heavily overfits the data, and this rule
set is then extended with a large number of variants of the original rules obtained by
different degrees of pruning. The rules for the final theory are then selected using a greedy
selection procedure similar to PLCG’s. The purpose of all this in GROW is to determine
the optimal pruning level for the rules. In contrast, PLCG first learns several (possibly
quite different) rule sets, from different subsets of the data, and in addition produces a
generalization tree over these rules (which is somewhat similar to GROW’s extension of
a rule set with differently pruned rule variants). That gives it a richer variety of rules to
choose from, which should make it less sensitive to wrong conditions possibly chosen by
the underlying greedy rule learner.
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In that sense, PLCG belongs to the family of so-called ensemble methods [5], which
learn multiple models from subsets or modified versions of the training data, with one
or several learning algorithms, and combine the resulting classifiers in some way. The
majority of known ensemble methods like bagging, boosting, stacking, etc. only combine
the predictions of the classifiers. There are few algorithms that try to combine the resulting
multiple models into one coherent, comprehensible model. A prime example of this is
CMM [9], a meta-learner that combines multiple models into a single theory by applying
a learning algorithm to (artificially generated) training examples labeled by the n learned
base models. According to the reported experimental results, CMM usually achieves higher
accuracy than the base learner (C4.5RULES), but the models produced by CMM are
typically 2–6 times more complex than the base learner’s. In [9], it is also suggested that the
accuracy/complexity tradeoff could be handled via the meta-learner’s pruning parameters.
Again, we think PLCG’s way of explicitly addressing this tradeoff via a selection procedure
that can select from a set of alternative rules (of various degrees of generality) is preferable.
Ultimately, we see the main asset of PLCG in the fact that as a meta-learning algorithm,

it can be tailored to a wide range of learning and data mining tasks with different
characteristics. For instance, it would be easy to modify PLCG’s bias so that instead of
recall and precision, it attempts to optimize other criteria of interest (e.g., the simplicity
of individual rules, non-redundancy of rule sets, etc.). All one needs to do is change the
heuristic for final rule selection. Any state-of-the-art rule discovery method can be used as
the underlying learner. In fact, we need not limit ourselves to one rule learning algorithm;
PLCG could also easily combine the results of different base-level learners, thus combining
or selecting from different inductive biases.
Regarding our particular application problem—understanding expressive music perfor-

mance—the research presented here is but a first small step in a long-term endeavour.
There are many open questions and challenging problems [30,31] which provide lots of
opportunities for exciting knowledge discovery research.
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