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Abstract. The paper addresses the question whether it is possible
for a machine to learn to distinguish and recognise famous musi-
cians (concert pianists), based on their style of playing. We extract
a number of low-level features related to expressive timing and dy-
namics from the original audio CD recordings by famous pianists,
and apply various machine learning algorithms to the task of learning
classifiers based on these features. Experiments show that the com-
puter can learn to identify the performer in a new recording with a
probability significantly higher than chance, despite the fact that the
features only capture a very limited amount of information about a
performance. An analysis of the learned classifiers reveals a number
of performance features that seem particularly relevant to style dif-
ferentiation, and an application of the classifiers to music of a very
different style shows that the machine seems to have captured truly
fundamental aspects of artistic style. One limitation of the current
approach is that sequential information is totally ignored, and we
briefly report on ongoing work that tries to address this problem via
an interesting conversion of music performances to strings.

1 INTRODUCTION

The work presented here is part of a large investigation into the use
of computational methods for studying basic principles of expressive
music performance [References]. One of the questions we study is
whether and to what extent aspects of individual artistic style can be
quantified. And one of the possible approaches to this question is to
investigate whether machines can learn to distinguish and recognise
different performers based on their style of playing.

Recent research has shown that this seems indeed possible, to a
certain extent [6]. However, those studies were limited in many re-
spects, particularly with regard to the data (only 2 pieces) and the
musicians involved (piano teachers and students of a Music Univer-
sity). Thus we tried to generalise this research towards the analysis
of famous world-class pianists, and to work with larger collections
of recordings. The present paper describes our latest results along
these lines. Six different learning algorithms are applied to the task
of identifying the performer in a set audio recordings, by famous pi-
anists, of several Mozart piano sonatas. It will be shown that in a
pair-wise discrimination setting, surprisingly good results can be ob-
tained, especially given the very limited information contained in the
available measurement data. We will also show that the results partly
carry over to music of a very different style, and will identify a few
performance features that seem particularly relevant to style differ-
entiation.

The paper is organised as follows: after a short introduction to
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the notion of expressive music performance (Section 2), Section 3
describes the experimental methodology, including the data, the per-
formance features extracted from the recordings, and the machine
learning algorithms tested. Section 4 presents the main experimental
results. An interesting current research direction is briefly indicated
in Section 5, followed by some conclusions in Section 6.

2 EXPRESSIVE MUSIC PERFORMANCE

Expressive music performance is the art of shaping a musical piece
by continuously varying important parameters like tempo, dynamics,
etc., particularly in classical music. Human musicians do not play a
piece of music mechanically, with constant tempo or loudness, ex-
actly as written in the printed music score. Rather, they speed up at
some places, slow down at others, stress certain notes or passages
by various means, and so on. The most important parameter dimen-
sions available to a performer (a pianist, for example) are timing and
continuous tempo changes, dynamics (loudness variations), and ar-
ticulation (the way successive notes are connected). Most of this is
not specified in the written score, but at the same time it is abso-
lutely essential for the music to be effective and engaging. The ex-
pressive nuances added by an artist are what makes a piece of music
come alive, and what distinguishes great artists from each other. Ed-
ucated audiences of classical music adore certain artists because of
their particular style or ‘sound’, though they cannot always explic-
itly say what it really is that makes that style. One of the goals of the
research presented here is to use AI techniques to get a better under-
standing of what factors really contribute to personal artistic style,
and to what extent they can be quantified.

3 DATA AND METHODOLOGY

For the experiments, commercial recordings by six concert pianists
of piano sonatas by W.A. Mozart were collected, and a sizeable num-
ber of pieces were selected for performance measuring and analysis.
The pieces, pianists, and recordings are listed in Tables 1 and 2.

From the audio recordings, rough measurements characterising the
performances were obtained. More precisely, changes of tempo and
general loudness were measured at the level of the beats, by deter-
mining and marking the precise onset time of each beat, e.g., each
8th note position in a piece written in 6/8 time. (Even with the help
of an intelligent interactive beat tracking system [2], this was an ex-
tremely laborious process.) From the varying time intervals between
successive beats, the beat-level tempo changes can be derived. Over-
all loudness of the performance at these time points was extracted
from the audio signal and is taken as a very crude representation of
the dynamics applied by the pianists. No more detailed information
(e.g., about articulation, individual voices, or timing details below
the level of the beat) is available.



Table 1. Movements of Mozart piano sonatas selected for analysis.

ID Sonata Movement Key Time sig.
kv279 1 K.279 1st mvt. C major 4/4
kv279 2 K.279 2nd mvt. C major 3/4
kv279 3 K.279 3rd mvt. C major 2/4
kv280 1 K.280 1st mvt. F major 3/4
kv280 2 K.280 2nd mvt. F major 6/8
kv280 3 K.280 3rd mvt. F major 3/8
kv281 1 K.281 1st mvt. Bb major 2/4
kv282 1 K.282 1st mvt. Eb major 4/4
kv282 2 K.282 2nd mvt. Eb major 3/4
kv282 3 K.282 3rd mvt. Eb major 2/4
kv330 3 K.330 3rd mvt. C major 2/4
kv332 2 K.332 2nd mvt. F major 4/4

Table 2. Pianists and recordings.

ID Name Recording
DB Daniel Barenboim EMI Classics CDZ 7 67295 2, 1984
RB Roland Batik Gramola 98701-705, 1990
GG Glenn Gould Sony Classical SM4K 52627, 1967
MP Maria João Pires DGG 431 761-2, 1991
AS András Schiff ADD (Decca) 443 720-2, 1980
MU Mitsuko Uchida Philips Classics 464 856-2, 1987

These sequences of measurements can be represented as two sets
of performance curves — one representing variations in beat-level
tempo over time, the other beat-level loudness changes — or in an
integrated two-dimensional way, as trajectories over time in a 2D
tempo-loudness space [4]. A graphical animation tool called the Per-
formance Worm [3] displays such performance trajectories in syn-
chrony with the music. A part of a performance as visualised by the
Worm is shown in Figure 1. Note that the display is interpolated
and smoothed. For the machine learning experiments reported be-
low, only the actually measured points were used; no interpolation or
smoothing was performed.

Thus, the raw data for our experiments is tempo and overall loud-
ness values measured at specific time points in a performance (either
every beat according to the time signature or, where beat tracking
was performed at lower levels, at subdivisions of the beat). For each
measured time point, the following is stored: ��� (absolute time in sec-
onds), � � (calculated local tempo in beats per minute (bpm)), and � �
(loudness level measured in the psycho-acoustic unit sone).

The raw data so obtained had to be refined in order to be homo-
geneous and usable in the learning process. In particular, most of
the pianists repeated some sections, while others did not (e.g., Glenn
Gould). We decided to discard all the non-common repeats, so that
the learners would work with comparable data for all the performers.

3.1 Instances and features

Each measured time point, along with its context, is used as a train-
ing example for the learning algorithms. In other words, an example
or instance for the learners is a subsegment of a tempo-loudness tra-
jectory (see Fig. 1), centered around a specific time point. Altogether,
this procedure results in some 23,000 instances for all the six pianists.

The instances are represented by a set of features that are extracted
from the raw trajectories. The features are calculated over a window� � of two bars (the context size), centered on the time point of the
instance. Of course, at the beginning and at the end, some of the
features were calculated over a window narrower than two bars. The

Figure 1. Snapshot of the Performance Worm at work: First four bars of
Daniel Barenboim’s performance of Mozart’s F major sonata K.332, 2nd

movement. Horizontal axis: tempo in beats per minute (bpm); vertical axis:
loudness in sone. Movement to the upper right indicates a speeding up

(accelerando) and loudness increase (crescendo) etc. etc. The darkest point
represents the current instant, while instants further in the past appear fainter.

sliding window method produces some redundancy in the data, since
the windows are overlapping; this should be an advantage in learning.

For each instance of the original raw data, the following fea-
tures are computed both for tempo and loudness: the average value
within the window ��� � �
	 , the standard deviation ��� � �	 , and the
range ��� � �	�������� � � �	������
� � � �
	 . For each of these features,
the corresponding normalised ones are also calculated by division
by the mean. The normalised features are indicated with lower-case
letters of the tempo/loudness subscripts. For example, if ��� � � � 	 is
the tempo standard deviation, then �"!#� � �
	$� � � � � �	�% � � � � �	 is
the corresponding normalised version. Additional features represent
correlations: &�' � � � �	 is the correlation between time and tempo,
&�')(*� � �
	 is the correlation between time and loudness, and & � (*� � �
	
is the correlation between tempo and loudness. Directness of move-
ment is a feature that captures aspects of the curvature of a trajectory
segment: it measures the ratio between the length of a direct move-
ment between the end points of a segment and the length of the ac-
tual trajectory between the same points in a two-dimensional space.
The ‘directness’ is computed in the time-tempo space ( +,' � � � �
	 ),
in the time-loudness space ( +�'-(.� � �
	 ) and in the tempo-loudness
space ( + � (*� � �
	 ). Finally, some derivatives are computed for tempo
and loudness: the maximum of the absolute value of the derivative
( /102� � �	 ), the average of the absolute derivative ( ��03� � �
	 ), and the
normalised versions too.

Caution has to be taken with some of the extracted performance
information. In particular, the features derived from loudness have to
be filtered in some way, because they can trivially reveal some of the
performers. For example, Gould’s recordings are older (1967) than
the others (1980-1991), resulting in a significantly lower recording
level. That would permit the learners to detect this famous performer
simply by absolute loudness difference or by differences in the dy-
namics range. That is why normalization, especially of the loudness
features, is important, and why not all of the above features were then
actually used in the learning experiments. Table 3 summarises all the
features and indicates which ones must not be used in learning.
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Table 3. Complete set of attributes and derived features extracted from the data for each instance. �
�

feature not used by the learner in order not to trivially
reveal some of the performers on the basis of the CD recording level.

Operation Tempo Loudness Others

None � � � �� –
Average, St. Dev., Range �.� � � � 	 , � � � � � 	 , � � � � � 	 � ( � � � 	 � , � ( � � � 	 � , � ( � � � 	 � –

Normalization � � � � �	 , � !#� � �
	 , � ! � � �
	 � � � � �	 , ���� � �	 , ���� � �
	 –
Correlation, Directness &�' � � � �	 , +�' � � � �	 &�')(*� � �
	 , + ')(*� � �
	 & � (*� � �
	 , + � (*� � �	

Derivative /10 � , ��0 � , / 0 ! , ��0 ! /10 �( , ��0 �( , /10�� , ��0�� –

3.2 The learning algorithms

For the experiments, we selected a representative set of standard ma-
chine learning algorithms with different model classes and biases.
All of these are available in the Waikato Environment for Knowledge
Analysis (WEKA) [8].

The following learners were selected: NaiveBayes, a simple prob-
abilistic classifier based on Bayes’ theorem of conditional proba-
bility; IBk, which implements a straightforward nearest-neighbour
classifier (with the number of neighbours � �
	 , in our case); Classi-
fication Via Regression, a simple ‘meta-learner’ that induces linear
discriminant functions for the individual classes and combines these
into a classifier via voting; Logistic Regression, where the (linear)
basis functions are combined and converted into a classifier through
a logistic function; J48, a state-of-the-art decision tree learner; and
JRIP, an efficient rule learning algorithm. Table 4 summarises the al-
gorithms in terms of the precise call (including parameters) by which
they are called in WEKA.

Table 4. Learning algorithms used for pair-wise discrimination.

ID WEKA name
01 bayes.NaiveBayes -K
02 lazy.IBk -K 5 -W 0
03 meta.ClassificationViaRegression -W LinearRegression
04 functions.Logistic -P 1.0E-13 -R 1.0E-8 -M 200
05 trees.j48.J48 -M 2 -C 0.25
06 rules.JRip

3.3 Training and Testing Methodology

For the experiments to be reported here, the original � -class problem
was converted to � � � ��� 	�%� two-class discrimination problems, one
for each possible pair of pianists. That gives more insight into the
discriminability of various pianists, and is easier for a classifier than
� -class identification. For each pianist pair A-B, the performances by
the two pianists of the selected training pieces were used for learning,
and the task was then to identify the correct pianist in a new test
piece, where only recordings by A and B were used for testing.

Recognition accuracy was tested via cross-validation at the level
of sonata movements. Each of the algorithms was trained on all of
the sonata movements except one; the learned classifiers were then
tested on recordings of the remaining movement. This process was
repeated in a circular fashion, so that each piece served as test piece
exactly once for each classifier.

Note that, as explained above, the actual training examples are
not entire pieces, but individual time points in pieces, characterised
by a set of features. The learned classifiers apply to such individual
instances, not to entire pieces. To make a classifier predict the pianist
for a complete piece, it was applied to all instances making up the

piece, and the class (pianist) predicted most often was then chosen as
the final prediction for the piece.

4 RESULTS

4.1 Recognition in Mozart Performances

The results of the cross-validation experiments are summarised in
Table 5, which lists the numbers and percentages of correct predic-
tions achieved by the individual classifiers on each pair of perform-
ers. For each pianist pair, the classifiers were tested on 24 recordings
(12 pieces, played by each of the two pianists). Thus, the maximum
possible number of correct predictions is 24, and the baseline accu-
racy — the success rate corresponding to pure guessing — is 12, or
50%. A reasonable learner should at least obtain a recognition accu-
racy above the baseline.

Looking at the table in terms of learning algorithms first, we note
that while all learners obtain recognition rates significantly higher
than the baseline, some learners may be better suited to this task than
others; the overall prediction accuracies vary between 60 and 70%
(Table 5, last row). A closer look shows that not all classifiers per-
form well or poorly on the same learning problem (pianist pair). That
indicates that it may be fruitful to join classifiers into ensembles [1]
which combine the expertise of a diverse set of classifiers by voting
on the class of a new test case.

More interesting is a look at the results in terms of individual pi-
anist pairs. The next-to-rightmost column in Table 5 lists the average
recognition accuracy, over all classifiers, for each pair. The figures
range from a rather low 53.5% for the pair Pires-Uchida (MP-MU)
to quite good 75% for the pair Barenboim-Batik (DB-RB). These
results may not look very exciting — they are far from a perfect
recognition rate of 100% — but they are significantly better than the
baseline in every case (except MP-MU). That indicates that our per-
formance features do contain information that is relevant to the iden-
tification of artists. Also, the figures are averages over all classifiers,
not all of which are very effective. If we focus only on the best of the
6 classifiers — classifier 04 (last column in Table 5) —, the results
are much better, with recognition rates ranging from 54.2 % (still
MP-MU) to 83.3% (MP-RB), which we consider quite impressive.

The average recognition rate over all experiments where a given
pianist was involved gives a rough measure of the ‘distinguishabil-
ity’ of that pianist. Computing this over all classifiers we get the fol-
lowing ranking: Batik (68.2%), Barenboim (65.8%), Schiff (65.1%),
Gould (64.3%), Pires (64.0%), and Uchida (60.0%). Our best clas-
sifier, 04, yields similar results, but with higher recognition rates:
here, the ordering is Batik (75.0%), Gould (72.5%), Schiff (69.2%),
Barenboim (68.3%), Pires (67.5%), and Uchida (65.8%). Classifier
04 ranks Glenn Gould more highly in the list of recognisable pi-
anists, something one might have expected from the start, given his
reputation as an enfant terrible (also in musical terms). Even more
distinguishable seems to be Roland Batik (a local Viennese pianist).
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Table 5. Pair-wise recognition results: classification accuracy in terms of correctly classified pieces. The maximum possible number of correct predictions in
each pianist pair is 24 (12 pieces � 2 pianists); the baseline accuracy is 50%. Rightmost column: accuracy (percentage) achieved by classifier 04.

Classifiers
Pair 01 02 03 04 05 06 Ave. Ave. [%] Classifier 04 [%]

AS - DB 16 14 15 16 16 15 15.3 63.9 66.7
AS - GG 14 16 17 17 14 13 15.2 63.2 70.8
AS - MP 15 17 18 16 17 16 16.5 68.8 66.7
AS - MU 14 14 15 16 11 13 13.8 57.6 66.7
AS - RB 15 17 17 17 19 19 17.3 72.2 70.8
DB - GG 16 15 17 18 14 13 15.5 64.6 75.0
DB - MP 16 16 16 15 15 15 15.5 64.6 62.5
DB - MU 15 16 15 15 14 13 14.7 61.1 62.5
DB - RB 17 19 19 19 17 17 18.0 75.0 79.2
GG - MP 15 17 16 17 14 15 15.7 65.3 70.8
GG - MU 16 17 16 18 13 14 15.7 65.3 75.0
GG - RB 12 15 17 17 14 16 15.2 63.2 70.8
MP - MU 12 15 13 13 13 11 12.8 53.5 54.2
MP - RB 14 16 20 20 13 15 16.3 68.1 83.3
MU - RB 14 17 16 17 14 12 15.0 62.5 70.8
Average 14.7 16.1 16.5 16.7 14.5 14.5 – – –

Average [%] 61.4 66.9 68.6 69.7 60.6 60.3 – – –

Listening to his performances with well-trained ears, we find that
his Mozart indeed sounds quite different compared to the more fa-
mous artists (though he is a highly skilled pianist). The least easily
distinguishable pianists seem to be Pires and (particularly) Uchida.
Indeed, our learners achieve the lowest recognition rates when trying
to distinguish the two directly (see row MP-MU in Table 5).

4.2 ‘Closed-world’ Classification

The evaluation presented above is suboptimal, from the classifiers’
point of view, because they were not able to use all the information
they have available. Remember that classification of a piece is done
by classifying all the instances (time points) that make up the piece,
and finally predicting the class that is predicted more often for the
instances. The ratio of votes for class A vs. votes for class B, over
all instances, would actually give the classifier a notion of relative
confidence in its prediction. One situation where they could exploit
this information is what me might call ‘closed-world classification’.

Assume the classifier is always given a pair of recordings and is
told that one is by pianist A and the other by pianist B. In such a sit-
uation the classifier could do the following: collect the class predic-
tions over the instances of both pieces, check for which piece the ra-
tio of class A predictions vs. class B predictions is more unbalanced,
i.e., for which piece it feels more confident in predicting, make the
coresponding prediction for that piece, and automatically assign the
opposite class to the other piece. As a consequence, the learner will
either get both predictions right, or both wrong.

Table 6 shows the result of this prediction procedure for our best
classifier from above (04). The results are dramatically better, with
the classifier achieving perfect identification rates for more than half
of the pianist pairs. The average number of correct predictions per
pair is 22.67 or 94.4%. Whether this kind of pairwise classification
is a realistic application scenario is a matter of debate, but at least
the result clearly shows that the classifier manages to capture some
important structure in the data.

4.3 Relevant Features

An inspection of the learned models as well as more extensive exper-
iments with automatic feature selection methods reveals those fea-
tures that contribute most strongly to correct prediction and may thus

Table 6. Results of ‘closed-world’ classification (classifier 04). Perfect
results are printed in bold.

Pair hits Pair hits Pair hits
AS-DB 22 DB-GG 24 GG-MU 24
AS-GG 20 DB-MP 24 GG-RB 22
AS-MP 24 DB-MU 22 MP-MU 22
AS-MU 18 DB-RB 24 MP-RB 24
AS-RB 22 GG-MP 24 MU-RB 24

point to some important facets of personal performance style. Among
the most informative features seem to be the following: the instan-
taneous tempo at a particular time point ( � � ), the maximum value of
the tempo derivative within a window ( /10 � ), and the correlation
between tempo and loudness ( & � (*� � �
	 ). In the learned models, � �
usually serves as a kind of ‘secondary’ classification criterion that
acts in conjunction with others, helping distinguish the artists based
on what they do at different tempi. The apparent importance of / 0 �
as a disciminator makes intuitive sense; the feature obviously cap-
tures one aspect of a pianist’s “expressivity” in the timing domain,
namely, quick and extreme local tempo changes. & � (.� � �	 , finally,
measures to what extent a pianist synchronises tempo and loudness,
that is, combines loudness increases and decreases (crescendi and
decrescendi) with corresponding changes in tempo (accelerandi and
ritardandi, respectively). This is particularly interesting, because it
corroborates findings from a different study on characteristic differ-
ences between pianists [7].

4.4 Extrapolation: From Mozart to Chopin

An interesting question is how general and robust the induced clas-
sifiers are relative to different styles of music. We happen to also
have measured a few recordings, by two of the pianists considered
above, of pieces by the Romantic composer Frédéric Chopin: the
Nocturnes op.9 No.2 in E

�
major, op.15 No.1 in F major, op.27 No.1

in C � minor, and op.27 No.2 in D
�

major. The two pianists are Daniel
Barenboim (DB) and Maria João Pires (MP). The four pieces were
segmented into sections of different musical character (2 sections for
op.9/2 and three each for op.15/1, op.27/1 and op.27/2). Thus we
have 22 test cases: 11 Chopin pieces played by 2 pianists.

The following experiment was performed: the learners were
trained on all 12 Mozart pieces as performed by DB and MP. The
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induced classifiers were then tested on the Chopin recordings. The
best classifier in this case turned out to be the nearest-neighbour clas-
sifier (02), with a recognition rate of � 	 %   ������� �� , followed by
logistic regression (04, ����% � �	��
�� ��� ) and Naive Bayes and CVR
(01, 03; ��
 %�  � 	��� ��� ). The other two learners failed to learn
anything that seems transferable to Chopin and produced prediction
accuracies around the baseline.

And again, the results improve considerably when we consider a
‘closed-world’ classification scenario (see above): here the recog-
nition rates rise to an astounding ��� %   � 81.1% for classifer 02
(IBk).

Recognition rates of ����� �� or even � ��� ��� are quite remarkable,
given the differences between the training corpus (Mozart) and the
test pieces (Chopin); the Chopin pieces are much more romantic, and
all very slow. Indeed, it would be a very difficult task for a human
listener to do the same: listen to a few Mozart recordings by two
different artists, and then recognise the artists in Chopin recordings
(although the human listener would hear much more detail in the
recording than what is captured in our features).

5 CURRENTLY ONGOING WORK

The representation and learning approach described above is ex-
tremely simplistic in that it completely ignores the sequential na-
ture of music. Each time point in a performance is described and
classified in isolation. The features attached to a time point do cap-
ture some of the local context, but clearly, this is very limited in-
formation, and one would expect a lot of artist-specific information
to reside in the succession of expressive tempo-loudness variations
over time. Taking sequential information into account requires dif-
ferent learning algorithms. We are currently exploring ways of doing
this with learning methods based on string kernels [5]. The basic ap-
proach is a follows: we create so-called performance alphabets (see
Fig. 2) by cutting the performance trajectories into short segments of
a fixed length (e.g., four beats), applying various normalisation oper-
ations on the segments to make them invariant with respect to abso-
lute tempo and loudness, clustering the segments into a fixed number
of categories, and computing a prototype (the centroid) for each clus-
ter. These prototypes then represent prototypical elementary tempo-
loudness shapes that the original trajectories are basically composed
of. In other words, full performance trajectories can be approximated
as sequences of such tempo-loudness patterns; if we associate each
prototype with a letter, a full performance trajectory then is a string.

Clearly, we lose additional information in this process of cluster-
ing and prototype computation, but we gain the ability to consider
sequential information. Very preliminary results obtained on our per-
formance strings with string kernel methods (this is work being car-
ried out by J. Shawe-Taylor and C. Saunders at the University of
Southampton) are quite promising and indicate that sequential infor-
mation may substantially improve the recognition rates achievable.

6 CONCLUSION

This paper has presented experimental evidence that machines may
be capable of recognising famous artists on the basis of their style,
at least to some extent. The machine learning algorithms achieved
recognition rates significantly above chance level. At first sight, some
of the absolute accuracy figures may look rather poor. However,
our current training data (performance measurements) are extremely
crude and incomplete, comprising only beat-level tempo and beat-
level overall loudness. A lot of information that listeners hear and
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Figure 2. A ‘Mozart performance alphabet’ (cluster prototypes) computed
by segmentation, mean and variance normalization, and clustering, from

Mozart performances by Daniel Barenboim, Roland Batik, Vladimir
Horowitz, Maria João Pires, András Schiff, and Mitsuko Uchida. To indicate
directionality, dots mark the end points of segments. Shaded regions indicate

the variance within a cluster.

that influences their judgement is missing, for example, information
about the relative loudness and timing of the individual voices, about
articulation (legato vs. staccato), etc. — in short, a lot of things that
relate to the specific ‘sound’ of a pianist. This information is very
hard to obtain from audio recordings; in fact, it is almost impossible
to measure in an automated way.

Considering this limitation, the results are actually quite surpris-
ing. We believe it would be hard, if not impossible, for even highly
educated listeners to achieve comparable recognition rates under the
same conditions — though it is difficult to specify exactly how to
produce such ‘comparable conditions’; listeners bring a lot of knowl-
edge and experience to bear (about musical patterns and styles, etc.)
that would have to be eliminated somehow from the experiment.

An analysis of the learned models gives first hints as to which as-
pects of an artist’s performances may contribute to his or her personal
and recognisable style. We are currently conducting a parallel inves-
tigation, using new visualisation techniques combined with statistical
analysis, in order to get more direct insight into what exactly distin-
guishes great artists. We are confident that by continuing this line of
research, we may make progress towards better understanding some
of the ‘mysteries’ that surround the style of great artists.

ACKNOWLEDGEMENTS

This research was and is supported by a generous START research
prize by the Austrian Federal Government (FWF project no. Y99-
INF), an ERASMUS scholarship to the second author, and by the EU
Project SIMAC (6th FP, 507142). The Austrian Research Institute for
Artificial Intelligence acknowledges basic financial support by the
Austrian Federal Ministry for Education, Science, and Culture, and
the Federal Ministry of Transport, Innovation, and Technology.

REFERENCES
[1] T. G. Dietterich, Ensemble Methods in Machine Learning, First Interna-

tional Workshop on Multiple Classifier Systems, Springer Verlag, New
York, 2000.

[2] S. Dixon, ‘Automatic extraction of tempo and beat from expressive per-
formances’, Journal of New Music Research, 30(1), 39–58, (2001).

[3] S. Dixon, W. Goebl, and G. Widmer, The Performance Worm: Real Time
Visualization of Expression Based on Langner’s Tempo-Loudness Ani-
mation, Proceedings of the International Computer Music Conference
(ICMC 2002), Goeteborg, Sweden, 2002.

5



[4] J. Langner and W. Goebl, ‘Visualizing expressive performance in tempo-
loudness space’, Computer Music Journal, 27(4), 69–83, (2003).

[5] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins,
‘Text classification using string kernels’, Journal of Machine Learning
Research, 2, 419–444, (2002).

[6] E. Stamatatos and G. Widmer, Music Performer Recognition Using an
Ensemble of Simple Classifiers, Proceedings of the 15th European Con-
ference on Artificial Intelligence (ECAI’2002), Lyon, France, 2002.

[7] G. Widmer, S. Dixon, W. Goebl, E. Pampalk, and A. Tobudic, ‘In Search
of the Horowitz Factor’, AI Magazine, 24(3), 111–130, (2003).

[8] I. H. Witten and E. Frank, Data Mining, Morgan Kaufmann, San Fran-
cisco, CA, 1999.

6


