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Problem Overview

● User presents classifier with some “seed” 
songs

● The classifier's job is to present the user with 
similar songs



  

Passive vs. Active Learning

● Passive Learning:
– Classifier is trained on large pool of randomly 

selected labeled data without user involvement

● Active Learning:
– Classifier asks user to label only those instances 

that would be most informative (this is called 
“relevance feedback”)

– This approach is more robust to user subjectivity 
and we don't need a massive pre-labeled data set



  

Algorithm Overview



  

Support Vector Machines

● Given:
– Data points

– Class labels

● We want to separate the two classes by a 
hyperplane:

● ...such that the margin between the two classes 
is maximized:



  

Support Vector Machines



  

The Kernel Trick

● For data that is not linearly separable, we can 
map the data to a higher dimensional feature 
space in which it is linearly separable:



  

The Kernel Trick

● The radial basis function (RBF) kernel was 
used:

● D is any distance function



  

Active Learning: Parameter Space

● Earlier we saw this equation defining a 
hyperplane that separates the data points:

● Instead of thinking of X as the data points and 
w as the normal to the hyperplane, we can 
think of X as the normal and w as the data 
points

● This interpretation is called “parameter space”



  

● In parameter space, the set of all possible w 
(referred to as “version space”) are points that 
are bounded by the hyperplanes formed by X

● We want to find the w in version space that 
defines the maximum margin

Active Learning: Parameter Space



  

● Whenever we have a new labeled X, the 
version space shrinks (due to being further 
constrained)

● So the fastest way to shrink the version space 
is by asking the user to label new X values that 
would split the version space in half

Active Learning: Parameter Space



  

Choosing Informative Points

● When asking the user to label points X, we can 
take several approaches to determine which 
points would be most informative:
– Take points closest to the center of the version 

space (i.e. points closest to the decision boundary)

– Use “angle diversity”, which balances closeness to 
decision boundary with coverage of feature space

– Randomly select songs X for user to label



  

Feature Set: MFCCs

● Break signal into overlapping frames of ~25ms 
(short enough to assume the signal is 
stationary)

● Take discrete Fourier transform of each window
● Take log-magnitude of the result
● Warp result to the Mel frequency scale
● Then take the inverse discrete cosine transform
● Mahalanobis distance measure used



  

Feature Set: MFCCs



  

Feature Set: GMMs

1)  Song's MFCCs are fit to a single Gaussian
• Songs are parameterized by mean and covariance

2) Song's MFCCs are fit to a mixture model of 20 
Gaussians

● Kullback-Leibler (KL) divergence used as a 
distance measure



  

Feature Set: Anchor Posteriors

● The entire song set is modeled using a GMM
● The posterior probabilities that the song 

belongs to each of the Gaussians in the GMM 
are calculated:

● Euclidean distance used



  

Feature Set: Fisher Kernel

● The entire song set is modeled using a GMM
● Describes each song by partial derivatives of 

the log-likelihood of the song with respect to 
each Gaussian mean:

● Feature vector of size 650 (50 means x 13 
dimensions)



  

Feature Set: Fisher Kernel

● The Fisher kernel is essentially a gradient 
(partial derivatives with respect to change in the 
means of each Gaussian)

● A more compact feature is the magnitude of the 
gradient, which is only 50 dimensional



  

Feature Set: Summary



  

The Data Set

● 1210 pop songs
● 18 artists
● 90 albums
● Each artist has at least 5 albums (3 for training, 

2 for testing)
● Each album has at least 8 tracks
● We are interested in artist, mood, and style 

classification



  

The Data Set: Mood and Style
● Labels for mood and style obtained from AMG
● “Moods” are adjectives describing the feel of a 

song (e.g. “cerebral”, “hypnotic”, “silly”)
● “Styles” are sub-genre categories (e.g. “pop-

punk”, “prog-rock/art rock”, “speed metal”)



  

The Data Set: Mood and Style

● Only moods and styles that appeared in at least 
50 songs were used:
– 32 styles

– 100 moods

● Assumption: Moods and styles are given by 
AMG only to artists and albums; it is assumed 
that mood and style labels apply to all songs for 
the relevant artist/ablum



  

Experiment #1: Finding
the Optimal Feature Set

● Artist, mood, and style classification accuracy 
measured for each of the six feature sets

● Passive learning used
● “Precision-at-20” evaluation

– For moods and styles, success is measured only on 
top 20 returned songs



  

Experiment #1: Results



  

Experiment #2:
Passive vs. Active Learning

● SVM trained with 50 examples in total
● One trial used passive learning (e.g. 50 

randomly selected labeled songs)
● The remaining trials used active learning, and 

varied the number of examples shown per 
round:

● 2 examples per round (25 rounds)
● 5 examples per round (10 rounds)
● 10 examples per round (5 rounds)
● 20 examples per round (3 rounds)



  

Experiment #2: Results



  

Experiment #2: Results



  

Experiment #2: Results



  

Experiment #2: Results



  

Future Work

● Use larger feedback sets for initial rounds?
● GMM features with KL divergence did poorly ... 

why?
● Performance degradation for GMM with 20 

components did poorly ... why?
● Using relevance feedback in playlist generators 

(skipping a song interpreted as negative 
feedback)



  

Thank You
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