Music and Machine Learning (IFT6080 Winter 08) Prof. Douglas Eck, Université de Montréal

These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop

# Linear Basis Function Models

• Linear regression extended to consider fixed basis functions:

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$$

where  $\mathbf{w} = (w + 0, ..., w_{M-1})^{\mathrm{T}}$  and  $\boldsymbol{\phi} = (\phi_0, ..., \phi_{M-1})^{\mathrm{T}}$ 

• Possible basis functions include polynomials, Fourier, wavelet, ...



## Maximum likelihood and least squares

• Presume target t is generated via deterministic function plus gaussian noise  $\epsilon$  having precision  $\beta$ 

 $t = y(\mathbf{x}, \mathbf{w}) + \epsilon$ 

$$p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1})$$

- With Gaussian conditional distribution conditional mean is:  $\mathbb{E}[t|\mathbf{x}] = \int tp(t|\mathbf{x}) dt = y(\mathbf{x}, \mathbf{w})$
- With a set of input points  $\mathbf{X} = {\mathbf{x}_1, ..., \mathbf{x}_N}$  independently drawn:

$$p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n | \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1})$$

# Maximum likelihood and least squares

• Log likelihood:

$$\ln p(\mathbf{t}|\mathbf{w},\beta) = \sum_{n=1}^{N} \ln \mathcal{N}(t_n|\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n),\beta^{-1})$$
$$= \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi) - \beta E_D(\mathbf{w})$$

where 
$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) \right\}^2$$

• Gradient:

$$\nabla \ln p(\mathbf{t}|\mathbf{w},\beta) = \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\} \boldsymbol{\phi}(\mathbf{x}_n)^{\mathrm{T}}$$

### Maximum likelihood and least squares

Set gradient to 0:

$$0 = \sum_{n=1}^{N} t_n \boldsymbol{\phi}(\mathbf{x}_n)^{\mathrm{T}} - \mathbf{w}^{\mathrm{T}} \left( \sum_{n=1}^{N} \boldsymbol{\phi}(\mathbf{x}_n) \boldsymbol{\phi}(\mathbf{x}_n)^{\mathrm{T}} \right)$$

- Solve for our weights yields normal equations for least squares:  $\mathbf{w}_{\rm ML} = \left( \mathbf{\Phi}^{\rm T} \mathbf{\Phi} \right)^{-1} \mathbf{\Phi}^{\rm T} \mathbf{t}$
- where  $\Phi$  is the design matrix

$$\boldsymbol{\Phi} = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_{M-1}(\mathbf{x}_N) \end{pmatrix}$$

• and where  $\Phi^{\dagger} = (\Phi^{\mathrm{T}} \Phi^{-1}) \Phi^{\mathrm{T}}$  is the pseudo-inverse of  $\Phi$ 

# Geometry of least squares



- Least-squares regression is obtained by finding the orthogonal projection of the data vector t onto the subspace spanned by the basis functions.
- Intuition: Sum of squares error is 1/2 squared Euclidean distance between y and t. Thus least-squares solution would move t as close as possible to y in the subspace S.

# Online learning

• For large datasets may need to learn sequentially on sequences of smaller datasets, summing error

$$E = \sum_{n} E_{n}$$

• Sequential gradient descent (also called stochastic gradient descent:

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_n$$

where  $\tau$  is the iteration number and  $\eta$  is the learning rate

• For sum-of-squares we get Least Mean Squares (LMS):

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} + \eta (t_n - \mathbf{w}^{(\tau)T} \boldsymbol{\phi}_n) \boldsymbol{\phi}_n$$

• Learning rate must be chosen carefully



- Regularize magnitude of weights:  $\frac{1}{2} \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) \right\}^2 + \frac{\lambda}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$
- Gradient with respect to 0 yields extension of least squares:  $\mathbf{w} = (\lambda \mathbf{I} + \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{t} \qquad \mathbf{w}_{\mathrm{ML}} = (\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{t}$
- More general regularizer; when q=1 we have "lasso" regularizer which selects for sparse models:

$$\frac{1}{2} \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) \right\}^2 + \frac{\lambda}{2} \sum_{j=1}^{M} |w_j|^q$$

### Visualization of regularized least squares



Plot of contours of unregularized error function along with constraint region on the quadratic regularizer (left, q=2) versus lasso regularizer (right, q=1). For lasso, a sparse solution is generated with  $w_1=0$ 

## Bias-Variance decomposition

- How to best set the  $\lambda$  parameter for regularization?
- Conditional expectation:

$$h(\mathbf{x}) = \mathbb{E}[t|\mathbf{x}] = \int tp(t|\mathbf{x}) dt$$

- Expected squared loss written with noise as second term:  $\mathbb{E}[L] = \int \{y(\mathbf{x}) - h(\mathbf{x})\}^2 p(\mathbf{x}) \, \mathrm{d}\mathbf{x} + \int \{h(\mathbf{x}) - t\}^2 p(\mathbf{x}, t) \, \mathrm{d}\mathbf{x} \, \mathrm{d}t$
- We will minimize the first term. But we cannot hope to ever know the perfect regression function h(x)
- In a Bayesian model uncertainty is expressed as posterior over w
- In frequentist treatment we make a point-estimate of w.
  Assess confidence by making predictions over subsets of data and taking mean performance.

### Bias-Variance decomposition

- Take integrand of first term using some subset of data D.  $\{y(\mathbf{x}, D) - h(\mathbf{x})\}^2$  which varies with data, thus take its mean
- Add and subtract expected value for the data

 $\{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] + \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}^{2}$  $= \{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\}^{2} + \{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}^{2}$  $+ 2\{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\}\{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}\}$ 

- Take expectation with respect to *D*; final term vanishes  $\mathbb{E}_{\mathcal{D}}[\{y(\mathbf{x}; \mathcal{D}) - h(\mathbf{x})\}^{2}]$   $= \underbrace{\{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}^{2}}_{(\text{bias})^{2}} + \underbrace{\mathbb{E}_{\mathcal{D}}[\{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\}^{2}]}_{\text{variance}}$
- First term is bias : extent to which average prediction differs from desired regression function
- Second term is variance: extent to which individual solutions vary around the average. Thus measures sensitivity to data.

### Bias-Variance decomposition

• expected loss =  $(bias)^2$  + variance + noise where:

$$(\text{bias})^2 = \int \{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x};\mathcal{D})] - h(\mathbf{x})\}^2 p(\mathbf{x}) \, \mathrm{d}\mathbf{x}$$
  
variance = 
$$\int \mathbb{E}_{\mathcal{D}}[\{y(\mathbf{x};\mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x};\mathcal{D})]\}^2] p(\mathbf{x}) \, \mathrm{d}\mathbf{x}$$
  
noise = 
$$\int \{h(\mathbf{x}) - t\}^2 p(\mathbf{x},\mathbf{t}) \, \mathrm{d}\mathbf{x} \, \mathrm{d}\mathbf{t}$$

- Very flexible models have low bias and high variance
- Relatively rigid models have high bias and low variance
- Optimal model balances the two

### Bias variance example



100 datasets each with 25 data points. Fit with 25 Gaussian basis functions. Regularization parameter  $\lambda$  is varied. Top are individual fits. Bottom is average fit along with generating sine function in green.

#### Bias variance example



Plot of squared bias and variance together with their sum. The minimum is at  $\lambda$ =-0.31 which is close to the value yielding minimum test error

### Bayesian Linear Regression

- Bias-variance decomposition requires splitting data. Inefficient.
- Avoids overfitting of maximum likelihood
- Leads to automatic way of determining model complexity
- Now we look quickly at Bayesian approach. Will return to it later in semester.
- Define prior over weights using zero-mean Gaussian prior:  $p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$
- Log of posterior is sum of log likelihood and log of prior:  $\ln p(\mathbf{w}|\mathbf{t}) = -\frac{\beta}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}_n)\}^2 - \frac{\alpha}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} + \text{const}$

with quadratic regularization term  $\lambda = \alpha/\beta$  in least squares sense

# Sequential Bayesian Learning

- Consider simple input variable x, single target t and a linear model of form  $y(x, \mathbf{w}) = w_0 + w_1 x$
- Just two weights, can plot prior and posteriors
- Generate synthetic data using  $f(x_n, \mathbf{a}) = -0.3 + 0.5x_n + \epsilon$
- Goal is to recover **a** = {-0.3, 0.5} from data
- Basic algorithm:
  - observe point (*x*,*t*) from dataset
  - calculate likelihood  $p(t|x, \mathbf{w})$  based on estimate of noise precision  $\beta$
  - multiply likelihood by previous prior over w to yield new posterior

### Sequential Bayesian Learning

1

0

-1

1

0

-1

 $w_1$ 

0

-1

-1

-1

 $w_1$ 

-1

 $w_1$ 

#### **Basic algorithm:**

- Observe point (x,t) from dataset
- Calculate likelihood  $p(t|x, \mathbf{w})$ based on estimate of noise variance  $\beta$
- Multiply likelihood by previous prior over **w** to yield new posterior
- Observe another point ...

Samples from posterior are shown on right



x

x

x

1

1

x

1

1

### Predictive distribution

- We are generally not interested in priors over **w** but rather for predicting new values *t* from x.
- Evaluate predictive distribution

$$p(t|\mathbf{t}, \alpha, \beta) = \int p(t|\mathbf{w}, \beta) p(\mathbf{w}|\mathbf{t}, \alpha, \beta) \, \mathrm{d}\mathbf{w}$$

• This is convolution of conditional distribution of target with posterior **w**. For our problem (2 Gaussians) results in:

$$p(t|\mathbf{x}, \mathbf{t}, \alpha, \beta) = \mathcal{N}(t|\mathbf{m}_N^T \boldsymbol{\phi}(\mathbf{x}), \sigma_N^2(\mathbf{x}))$$
$$\sigma_N^2(\mathbf{x}) = \frac{1}{\beta} + \boldsymbol{\phi}(\mathbf{x})^T \mathbf{S}_N \boldsymbol{\phi}(\mathbf{x})$$

### Predictive distribution



Predictive distributions for 9 Gaussian basis functions fitting  $f(x)=sin(2\Pi x)+\varepsilon$  in green. Red curve is mean of predictive distributions. Red shaded regions are 1 std dev. away from mean.

### Predictive distribution



Plots of the functions y(x, w) using samples from the posterior distributions over w corresponding to the previous plots.

### Equivalent kernel

- Posterior means can be interpreted as kernels; sets stage for kernel methods including Gaussian processes.
- Predictive mean can be written as:  $y(\mathbf{x}, \mathbf{m}_N) = \mathbf{m}_N^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}) = \beta \boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}} \mathbf{S}_N \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{t} = \sum_{n=1}^N \beta \boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}} \mathbf{S}_N \boldsymbol{\phi}(\mathbf{x}) t_n$
- We can also rewrite this as a kernel function:  $y(\mathbf{x}, \mathbf{m}_N) = \sum_{n=1}^{N} k(\mathbf{x}, rbx_n)t_n$

where the function  $k(\mathbf{x}, \mathbf{x}') = \beta \phi(\mathbf{x})^{\mathrm{T}} \mathbf{S}_N \phi(\mathbf{x}')$  is known as the smoother matrix or equivalent kernel

• Regression functions which predict using linear combinations of target values are known as *linear smoothers* 

# Equivalent kernel



Equivalent kernel (left, middle) for Gaussian basis function (right)

- Above k(x,x') is plotted as a function of x. Note that it is localized around x.
- Mean of predictive distribution at x given by y(x, m<sub>N</sub>) is obtained using a weighted combination where points close to x are given higher weight.
- Idea of using a localized kernel in place of a set of basis functions leads to *Gaussian processes* (to be covered later).