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Linear Basis Function Models
• Linear regression extended to consider fixed basis functions:

where 

• Possible basis functions include polynomials, Fourier, wavelet, ...
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y(x,w) =
M−1∑

j=0

wjφj(x) = wTφ(x)

w = (w + 0, ..., wM−1)T and φ = (φ0, ...,φM−1)T

φj(x) = exp
{ (x− µj)2

2s2

}
φj(x) = σ

(x = µj

s

)

where σ(a) =
1

1 + exp(−a)
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Maximum likelihood and least squares
• Presume target t is generated via deterministic function plus 

gaussian noise ε having precision β

• With Gaussian conditional distribution conditional mean is:

• With a set of input points                      independently drawn:
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t = y(x,w) + ε

p(t|x,w,β) = N (t|y(x,w),β−1)

[t|x] =
∫

tp(t|x)dt = y(x,w)

X = {x1, ...,xN}

p(ttt|X,w,β) =
N∏

n=1

N (tn|wTφ(xn),β−1)



Maximum likelihood and least squares
• Log likelihood:

• Gradient:
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ln p(ttt|w,β) =
N∑

n=1

lnN (tn|wTφ(xn),β−1)

=
N

2
lnβ − N

2
ln(2π)− βED(w)

! ln p(ttt|w,β) =
N∑

n=1

{
tn −wTφ(xn)

}
φ(xn)T

where ED(w) =
1
2

N∑

n=1

{
tn −wTφ(xn)

}2



Maximum likelihood and least squares
• Set gradient to 0:

• Solve for our weights yields normal equations for least squares:

• where Φ is the design matrix

• and where                             is the pseudo-inverse of Φ
5

0 =
N∑

n=1

tnφ(xn)T −wT

(
N∑

n=1

φ(xn)φ(xn)T
)

wML =
(
ΦTΦ

)−1ΦTttt

Φ =





φ0(x1) φ1(x1) · · · φM−1(x1)
φ0(x2) φ1(x2) · · · φM−1(x2)

...
...

. . .
...

φ0(xN ) φ1(xN ) · · · φM−1(xN )





Φ† =
(
ΦTΦ−1)ΦT



Geometry of least squares

• Least-squares regression is obtained by finding the 
orthogonal projection of the data vector t onto the subspace 
spanned by the basis functions.

• Intuition: Sum of squares error is 1/2 squared Euclidean 
distance between y and t. Thus least-squares solution would 
move t as close as possible to y in the subspace S.
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Online learning
• For large datasets may need to learn sequentially on 

sequences of smaller datasets, summing error 

• Sequential gradient descent (also called stochastic gradient 
descent:

where τ is the iteration number and η is the learning rate

• For sum-of-squares we get Least Mean Squares (LMS):

• Learning rate must be chosen carefully
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E =
∑

n

En

w(τ+1) = w(τ) − η∇En

w(τ+1) = w(τ) + η(tn −w(τ)Tφn)φn



Regularized least squares

• Regularize magnitude of weights:

• Gradient with respect to 0 yields extension of least squares:
                                         

• More general regularizer; when q=1 we have “lasso” 
regularizer which selects for sparse models:
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q = 0.5 q = 1 q = 2 q = 4

1
2

N∑

n=1

{
tn −wTφ(xn)

}2 +
λ

2
wTw

1
2

N∑

n=1

{
tn −wTφ(xn)

}2 +
λ

2

M∑

j=1

|wj |q

w =
(
λI + ΦTΦ

)−1ΦTttt wML =
(
ΦTΦ

)−1ΦTttt



Visualization of regularized least squares
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Plot of contours of unregularized error function along with 
constraint region on the quadratic regularizer (left, q=2) 
versus lasso regularizer (right, q=1). For lasso, a sparse 

solution is generated with w1=0



Bias-Variance decomposition

• How to best set the λ parameter for regularization?

• Conditional expectation:

• Expected squared loss written with noise as second term:

• We will minimize the first term. But we cannot hope to 
ever know the perfect regression function h(x)

• In a Bayesian model uncertainty is expressed as posterior 
over w

• In frequentist treatment we make a point-estimate of w. 
Assess confidence by making predictions over subsets of 
data and taking mean performance. 
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h(x) = [t|x] =
∫

tp(t|x)dt

[L] =
∫
{y(x)− h(x)}2p(x) dx +

∫
{h(x)− t}2p(x, t) dx dt



Bias-Variance decomposition
• Take integrand of first term using some subset of data D.

                          which varies with data, thus take its mean

• Add and subtract expected value for the data

• Take expectation with respect to D; final term vanishes

• First term is bias : extent to which average prediction differs from 
desired regression function

• Second term is variance: extent to which individual solutions vary 
around the average.  Thus measures sensitivity to data.
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{y(x,D)− h(x)}2

D
[
{y(x;D)− h(x)}2

]

+2{y(x;D)− D[y(x;D)]}{ D[y(x;D)]− h(x)}
= {y(x;D)− D[y(x;D)]}2 + { D[y(x;D)]− h(x)}2

{y(x;D)− D[y(x;D)] + D[y(x;D)]− h(x)}2

= { D[y(x;D)]− h(x)}2 + D
[
{y(x;D)− D[y(x;D)]}2

]

(bias)2 variance



Bias-Variance decomposition
• expected loss = (bias)2 + variance + noise where: 

• Very flexible models have low bias and high variance

• Relatively rigid models have high bias and low variance

• Optimal model balances the two
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(bias)2 =
∫
{ D[y(x;D)]− h(x)}2p(x) dx

variance =
∫

D
[
{y(x;D)− D[y(x;D)]}2

]
p(x) dx

noise =
∫
{h(x)− t}2p(x, t) dx dt



Bias variance example
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100 datasets each with 25 data points. Fit with 25 Gaussian basis functions. 
Regularization parameter λ is varied.  Top are individual fits. 

Bottom is average fit along with generating sine function in green.

0 1

−1

0

1

0 1

−1

0

1

0 1

−1

0

1

0 1

−1

0

1

0 1

−1

0

1

0 1

−1

0

1



Bias variance example
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Plot of squared bias and variance together with their sum. The minimum is at 
λ=-0.31 which is close to the value yielding minimum test error
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1
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1
N
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{y(xn)− h(xn)}2
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1
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L
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{
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Bayesian Linear Regression
• Bias-variance decomposition requires splitting data. Inefficient.

• Avoids overfitting of maximum likelihood

• Leads to automatic way of determining model complexity

• Now we look quickly at Bayesian approach. Will return to it 
later in semester. 

• Define prior over weights using zero-mean Gaussian prior:

• Log of posterior is sum of log likelihood and log of prior:

with quadratic regularization term             in least squares 
sense
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p(w|α) = N (w|0,α−1I)

ln p(w|ttt) = −β

2

N∑

n=1

{tn −wTφ(xn)}2 − α

2
wTw + const

λ = α/β



Sequential Bayesian Learning
• Consider simple input variable x, single target t and a linear 

model of form

• Just two weights, can plot prior and posteriors

• Generate synthetic data using

• Goal is to recover a = {-0.3, 0.5} from data

•  Basic algorithm:

• observe point (x,t) from dataset 

• calculate likelihood p(t|x,w) based on estimate of noise 
precision β

• multiply likelihood by previous prior over w to yield new 
posterior
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y(x,w) = w0 + w1x

f(xn,a) = −0.3 + 0.5xn + ε



Sequential Bayesian Learning
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Basic algorithm:

• Observe point (x,t) from 
dataset 

• Calculate likelihood p(t|x,w) 
based on estimate of noise 
variance β

• Multiply likelihood by previous 
prior over w to yield new 
posterior

• Observe another point ... 

Samples from posterior are shown 
on right



Predictive distribution
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• We are generally not interested in priors over w but rather 
for predicting new values t from x.

• Evaluate predictive distribution

• This is convolution of conditional distribution of target with 
posterior w. For our problem (2 Gaussians) results in:
  

p(t|ttt,α,β) =
∫

p(t|w,β)p(w|ttt,α,β) dw

p(t|x, ttt,α,β) = N (t|mT
Nφ(x),σ2

N (x))

σ2
N (x) =

1
β

+ φ(x)T SNφ(x)



Predictive distribution
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Predictive distributions for 9 Gaussian basis functions fitting f(x)=sin(2Πx)+ε in green. Red 
curve is mean of predictive distributions. Red shaded regions are 1 std dev. away from mean. 



Predictive distribution
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Plots of the functions y(x,w) using samples from the posterior distributions over w 
corresponding to the previous plots.
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Equivalent kernel
• Posterior means can be interpreted as kernels; sets stage for 

kernel methods including Gaussian processes. 

• Predictive mean can be written as:

• We can also rewrite this as a kernel function:

where the function                                    is known as the 
smoother matrix or equivalent kernel

• Regression functions which predict using linear combinations of 
target values are known as linear smoothers
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y(x,mN ) = mT
Nφ(x) = βφ(x)TSNΦTttt =

N∑

n=1

βφ(x)TSNφ(x)tn

y(x,mN ) =
N∑

n=1

k(x, rbxn)tn

k(x,x′) = βφ(x)TSNφ(x′)



Equivalent kernel

• Above k(x,x’) is plotted as a function of x.  Note that it is 
localized around x. 

• Mean of predictive distribution at x given by y(x,mN) is 
obtained using a weighted combination where points close to 
x are given higher weight.

• Idea of using a localized kernel in place of a set of basis 
functions leads to Gaussian processes (to be covered later).
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Equivalent kernel (left, middle) for Gaussian basis function (right)
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