
Yann Le Cun

Adaptive Systems Research Dept

AT&T Bell Laboratories

Holmdel, NJ

USA

EFFICIENT LEARNING AND

SECOND−ORDER METHODS

EFFICIENT LEARNING AND

SECOND−ORDER METHODS

OVERVIEW

1 − Plain Backprop: how to make it work
 − Basic concepts, terminology and notation
 − Intuitive analysis and practical tricks

2− The convergence of gradient descent
 − A little theory
 − Quadratic forms, Hessians, and Eigenvalues
 − maximum learning rate, minimum learning time
 − How GD works in simple cases
 − a single 2−input neuron
 − stochastic vs batch update
 − Transformation laws
 − shifting, scaling, and rotating the input
 − the non−invariance of GD
 − The minimal multilayer network

3 − Second order methods
 − Newton’s algorithm, and why it does not work.
 − parameter space transformations
 − computing the second derivative information
 − diagonal terms, quasi−linear hessians, partial hessians
 − analysis of multilayer net Hessians
 − Classical optimization methods
 − Conjugate Gradient methods
 − Quasi Newton methods: BFGS et al.
 − Levenberg−Marquardt methods

4 − Applying second order methods to multilayer nets
 − (non)applicability of 2nd order techniques to backprop
 − Mini batch methods
 − An on−line diagonal Levenberg−Marquardt method
 − computing the maximum learning rate
 and the principal eigenvalues

PLAIN BACKPROP:

HOW TO MAKE IT WORK

1

BASIC CONCEPTS, TERMINOLOGY,
NOTATIONS

Average Error: 1
p

Ε = Σ Εκ

COST FUNCTION

LEARNING
MACHINE

Parameters

X0, X1,Xp

Output

E0, E1,....Ep

Error

Desired
Output

D0, D1,...Dp

Y0, Y1,...Yp

Input

ω

GRADIENT DESCENT LEARNING

Average Error:

ω(τ+1) = ω(τ) − η ∂ Ε
∂ ω

1
pΕ(ω) = ∑Εκ(ω)

Gradient Descent:

COST FUNCTION

LEARNING
MACHINE

Parameters

X0, X1,Xp

Output

E0, E1,....Ep

Error

Desired
Output

D0, D1,...Dp

Y0, Y1,...Yp

Input

ω

ω0

ω1

COST FUNCTION

Output

E0, E1,....Ep

Error

Desired
Output

D0, D1,...Dp

Y0, Y1,...Yp

X0, X1,XpInput

Parameters

ω

Β

Ρ

Α

COMPUTING THE GRADIENT
WITH BACKPROPAGATION

Ο = Α(Ι1, Ι2)

δΙ1 = δΟ∂ Α
∂ Ι1 δΙ2 = δΟ∂ Α

∂ Ι2

− The learning machine is composed of modules (e.g. layers)
− Each module can do two things:
 1− compute its outputs from its inputs (FPROP)

 2− compute gradient vectors at its inputs from
 gradient vectors at its outputs (BPROP)

Α

Ο, δΟ

Ι1, δΙ1

Ι2, δΙ2

AN INTERESTING SPECIAL CASE:
MULTILAYER NETWORKS

X0, X1,Xp

Output

Desired
Output

D0, D1,...Dp

Y0, Y1,...Yp

Input

 || D − Y || 2
2
1

WX

F()

WX

F()

Mean Square Error

Parameters
(weights +
 biases)

ω

Weight matrix

E0, E1,....Ep

Sigmoids + Biases

Weight matrices:
Ο = ω ΙFPROP

BPROP δΙ = ω′ δΟ ; δω = δΟ′ Ι

Sigmoids + Bias:
FPROP

BPROP

Ο = ƒ(Ι+Β)

δΙ = ƒ′(Ι+Β) δΟ ; δΒ = δΙ

FULL GRADIENT

STOCHASTIC GRADIENT

Repeat {
 for all examples in training set {
 forward prop // compute output
 backward prop // compute gradients
 update parameters }}

Repeat {
 for all examples in training set {
 forward prop // compute output
 backward prop // compute gradients
 accumulate gradient }
 update parameters }

The parameters are updated after each
presentation of an example

The gradients are accumulated over the
whole training set before a parameter
update is performed

STOCHASTIC UPDATE
BATCH UPDATE

ω(τ+1) = ω(τ) − η

∂ Ε
∂ ω

∂ Ετ
∂ ω

ω(ρ+1) = ω(ρ) − η

A FEW PRACTICAL TRICKS

BackProp is a simple algorithm, but convergence
can take ages if it is not used properly.

The error surface of a multilayer network is non
quadratic and non−convex, and has often
many dimensions.
THERE IS NO MIRACLE TECHNIQUE for finding
the minimum. Heuristics (tricks) must be used.

Depending on the details of the implementation,
the convergence time can vary by orders
of magnitude, especially on small problems.

On large, real−world problems, the convergence
time is usually much better than one would expect
from extrapolating the results on small problems.

Here is a list of some common traps, and some
ideas about how to avoid them.

The theoretical justifications for many of these tricks
will be given later in the talk.

STOCHASTIC vs BATCH UPDATE

Imagine you are given a training set with 1000
examples.
Imagine this training set is in fact composed
of 10 copies of a set of 100 patterns

small batches can be used without penalty, provided
the patterns in a minibatch are not too similar.

In real life, repetitions rarely occur, but very often
the training examples are highly redundant
(many patterns are similar to one another), which
has the same effect.

Batch will be AT LEAST 10 times slower than Stochastic

In practice speed differences of orders of magnitude
between Batch and Stochastic are not uncommon

Stochastic update is usually MUCH faster than
Batch update. Especially on large, redundant
data sets.
Here is why:

BATCH: the computation for one update
 will be 10 times larger then necessary.

STOCHASTIC: the redundancy in the training set will
 be taken advantage of. One epoch on the large
 set will be like 10 epochs on the smaller set.

STOCHASTIC vs BATCH UPDATE
(continued)

STOCHASTIC:

BATCH:

ADVANTAGES:
 − guaranteed convergence to a local minimum under
 simple conditions.
 − lots of tricks and second order methods to accelerate it
 − easy convergence proofs

DISADVANTAGES:
 − painfully slow on large problems

Despite the long list of disadvantages for STOCHASTIC,
that is what most people use (and rightfully so, at least
on large problems).

ADVANTAGES:
 − much faster convergence on large redundant datasets
 − stochastic trajectory allows escaping from local minima

DISADVANTAGES:
 − keeps bouncing around unless the learning rate
 is reduced
 − theoretical conditions for convergence are not as clear
 as for batch
 − convergence proofs are probabilistic
 − most nice acceleration tricks or second−order methods
 do not work with stochastic gradient
 − it is harder to parallelize than batch

SHUFFLING THE EXAMPLES

RULE: at any time, chose the training example
 with the maximum information content.

For example:
 − the one with the largest error
 − the one that is maximally different
 from its predecessors

A MORE REFINED TRICK:

use an "emphasizing" scheme:
show difficult patterns more often than easy patterns

[whether a pattern is easy of hard can be determined
 with the error it produced during the previous iterations]

A SIMPLE TRICK:

 (applicable to stochastic gradient on classification tasks)

Shuffle the training set so that successive examples
never (or rarely) belong to the same class.

Problem with emphasizing techniques:

 − they perturb the distribution of inputs

 − the presence of outliers or of mislabeled
 examples can be catastrophic.

THE SIGMOID

Symetric sigmoids (like tanh) often yield faster
convergence than the standard logistic function.

MORE GENERALLY: the mean of each input to
 a neuron should be small compared to its
 standard deviation [more on this later]

 Symetric sigmoids are more likely to produce
"small mean" signals than are positive sigmoids.

Sigmoids (and their derivatives) can be efficiently
computed as ratios of polynomials

Problems with symetric sigmoids:

− The error surface is VERY FLAT around the origin.
 (the origin is a saddle point which is attractive
 in almost all directions)
− Avoid small weights

2
3

The one I use: a rational approximation to

 f(x) = 1.7159 tanh(x)

1

1

The precise choice of the sigmoid is almost irrevelant,
but some choices are more convenient than others

Properties:
 − f(1) =1, f(−1)=−1
 − 2nd derivative is maximum at x=1
 − the effective gain is close to 1

THE SIGMOID (continued)

It is sometimes helpful to add a small linear term
to avoid flat spots, e.g.

 f(x) = tanh(x) + ax

NORMALIZING THE INPUTS

Each input input variable should be sifted so
that its mean (averaged over the training set)
is close to 0 (or is small compared to its
standard deviation).

Here is why:

Consider the extreme case where the input variables
are always positive.

The weights of neuron in the first hidden layer can
only increase together or decrease together
(for a given input pattern the gradients all have
the same sign).

This means that if the weight vector has to change
its direction, it will have to do it by zigzaging
(read: SLOW).

Shifts of the input variables to a neuron introduce
a preferred direction for weight changes, which
slows down the learning.

This is also why we prefer symetric sigmoids:
what is true for input units is also true for other
units in the network.

covariance:
1
Ρ ∑ χ 2

κ κ

The speed at which the output of a
particular weight varies with gradient descent
is proportional to the COVARIANCE of its input.
[more on this later]

To equalize the learning speeds of input weights,
the input variables should be scaled to have
approximately equal covariances.

To equalize the learning speeds of these weights
with that of the weights in the next layers,
this covariance should be comparable to the expected
covariances of the hidden units states
(around 1 with the type of sigmoid proposed earlier).

An exception to this rule is when some inputs are
known to be of lesser significance than others.
Scaling them down makes them less "visible"
to the learning process.

NORMALIZING THE INPUTS
(continued)

NORMALIZING THE INPUTS
(continued)

Input variables should be UNCORRELATED
if possible

Correlations between input variables also
introduce "preferred directions for weight changes"

Sometimes the input have a particular meaning
that would be destroyed by the KL−expansion
(e.g.: if the input variables are the pixels of an image
 and the network uses local connections)

Original data points

Mean Cancelation

KL−expansion

Covariance
equalization

Decorrelation can be performed by a Principal
Component Analysis (Karhunen−Loeve expansion).

Avoid saturating the output units. Choose
target values within the range of the sigmoid

In classification applications, the desired
outputs are often binary.

Common sense would suggest to set the target
values on the asymptotes of the sigmoid.

However this has several adverse effects:

Saturating the units erases the differences between
typical and non−typical examples.

Setting the target values at the point of maximum
second derivative on the sigmoid (−1 and +1 for the
sigmoid proposed earlier) is the best way to take
advantage of the non linearity without saturating the units

CHOOSING THE TARGET VALUES

1 − this tends to drive the output weights to infinity
 (and to saturate the hidden units as well).
 When a training example happens not to saturate
 the outputs (say an outlier), it will produce
 ENORMOUS gradients (due to the large weights).

2 − outputs will tend to be binary EVEN WHEN THEY
 ARE WRONG. This means that a mistake will
 be difficult to correct, and that the output levels
 cannot be used as reliable confidence factors.

INITIALIZING THE WEIGHTS

Initialize the weights so that the expected
standard deviation of the weighted sums
is at the transition between the linear part
and the saturated part of the sigmoid function

Large initial weights saturate the units, leading to
small gradients and slow learning.
Small weights correspond to a very flat area of
the error surface (especially with symetric sigmoids)

Assuming the sigmoid proposed earlier is used,
the expected standard deviation of the inputs to
a unit is around 1, and the desired standard deviation
of its weighted sum is also around 1.

Assuming the inputs are independent, the expected
standard deviation of the weighted sum is

σ = (∑ ω) = φ ϖ
i

2
i

½ ½

where is the number of input to the unit, and
 is the standard deviation of its incoming weights.

φ
ϖ

ϖ = φ -½

σTo ensure that is close to 1, the weights to a unit
can be drawn from a distribution with standard deviation

CHOOSING LEARNING RATES

Equalize the learning speeds.

η
Each weight (or parameter) should have its own
learning rate.
Some weights may require a small learning rate
to avoid divergence, while others may require
a large learning rate to converge at reasonable
speed.

Because of possible correlations between input
variables, the learning rate of a unit should be
inversely proportional to the square root of the
number of inputs to the unit.

If shared weights are used (as in TDNNs and
convolutional networks), the learning rate of
a weight should be inversely proportional to the
square root of the number of connection sharing
that weight.

Learning rates in the lower layers should generally
be larger than that in the higher layers.

The rationale for many of these rules of thumb
will become clearer later.
Several techniques are available to reduce
"learning rate fiddling".

NEURONS AND WEIGHTS

Although most systems use neurons based
on dot products and sigmoids, many other types
of units (or layers) can be used.

A particularly interesting example is when the dot
product of the input by the weight vector is replaced
by a Euclidean distance, and the sigmoid by an
exponential (Gaussian units of RBF).

These units can replace (or coexist with) standard
units, and they can be trained with gradient descent:

ω

Β
2

exp

||ω−Ι||

Ι

FPROP

BPROP

Ο = (Ι+Β)exp

δΙ = Ο δΟ ; δΒ = δΙ
weight vector:
FPROP

BPROP

Ο = (ω−Ι)′(ω−Ι)

δΙ = 2 δΟ′(Ι−ω) ;
δω = −δΙ

exponential + Bias:

PROS and CONS
 − Locality: each unit is only affected by a small part of
 the input space. This can be good (for learning
 speed) and bad (a lot of RBF are needed to cover
 high dimensional spaces)
 − gradient descent learning may fail if the RBFs are not
 properly initialized (using clustering techniques e.g.
 K−means). There are LOTS of local minima.
 − RBFs are more apropriate in higher layers, and
 sigmoids in lower layers (higher dimension).

MORE STANDARD TRICKS

− Momentum
 − Increases speed in batch mode.
 seems marginally useful but not indispensable
 in stochastic mode.

− Adaptive learning rates:
 − a separate learning rate for each weight is
 increased if the gradient is steady,
 decreased if the gradient changes sign often
 [Jacobs 88]. This only works with BATCH.

 − a global learning rate is adjusted using
 line searches. Again, this only works for BATCH.

2

THE CONVERGENCE OF

GRADIENT DESCENT

A LITTLE THEORY

weight vector learning rate

gradient of
objective function

Ε(ω)

ω

Ε(ω)

ω

opt opt

∂Ε
∂ωω ← ω − η

Ε(ω)

ω

optη < η

Ε(ω)

ω

η = ηopt

η > η η > 2 η

Gradient Descent in one dimension

OPTIMAL LEARNING RATE IN 1D

Ε(ω)

ω

η = ηopt

ω

∂Ε
∂ω

∆ω

∂Ε
∂ω

Assuming E
is quadratic:

∂ Ε
∂ω

2

2
∂Ε
∂ω

∆ω =

2
∂ Ε

2∂ω
=

−1

optη

∂Ε
∂ω∆ω = η

Weight change:

Optimal
Learning
Rate

Maximum
Learning
Rate optη= 2 ηmax

CONVERGENCE OF GRADIENT DESCENT

Local quadratic approximation of the cost function
around a minimum:

Hessianminimum

Ε(ω) ≈ Ε(ϖ) + 1/2(ω−ϖ)′ Η(ϖ) (ω−ϖ)

ϖ0

ϖ1

Hessian
eigenvectors

Η =ij
 ∂ Ε
∂ω ∂ω

2

i j

HESSIAN
Second derivative matrix

Gradient Descent weight update:

∂Ε
∂ω

ω = ω −ηκκ+1 = ω −η Η(ω) (ω −ϖ)κ κ κ

(ω −ϖ) = (Ι − ηΗ(ω))(ω −ϖ) κ+1

κ κ

The Hessian is a symetric NxN matrix

Convergence <===>
if the prefactor of the
right handside shrinks
any vector

Ε(ω) ≈ Ε(ϖ) + 1/2[(ω−ϖ)′Θ′] [ΘΗ(ϖ) Θ′] [Θ(ω−ϖ)]

CONVERGENCE OF GRADIENT DESCENT
(continued)

ν0

ν1 Ε(ν) ≈ Ε(0) + 1/2 ν′Λ ν

Let be the rotation matrix that make H diagonal:Θ

Now denote: ν = Θ (ω − ϖ)

The eigenvectors
of a diagonal matrix
are the coordinate
axes

κ+1 κν = (Ι − η Λ) ν

Θ Η Θ′ = Λ ; Θ′Θ=Ι

Gradient Descent in N dimensions can be
viewed as N independent unidimensional
Gradient Descents along the eigenvectors
of the Hessian.

Gradient update in
 the transformed space:

 Convergence is obtained for η < 2/ λ max
where is the largest eigenvalue
of the Hessian

maxλ

CONVERGENCE SPEED
OF GRADIENT DESCENT

The maximum learning rate to ensure
convergence is

maxmaxη = 2/ λ

The one that yields the fastest convergence
in the direction of highest curvature is

maxoptη = 1/ λ

With this choice, the convergence time will
be determined by the directions of SMALL
eigenvalues (they will be the slowest to
converge).

The convergence time is proportional to:

min

 1
η λ >

min
 λ
2λ

max

where is the smallest "non−negligible"
eigenvalue

λmin

The convergence time is proportional to
the ratio of the largest eigenvalue to smallest
"non−negligible" eigenvalue of the Hessian

CONVERGENCE OF GRADIENT DESCENT
A SIMPLE EXAMPLE

A single 2−input
linear neuron:

ω0 ω1

ω2

χ0 χ1

Υ

 Η = ∑ χ χ′ pp p
 1
 P

The Hessian of a single linear neuron is
the covariance matrix of the inputs

Ε(ω) = ∑ || p pp
|| 2(ω) pp

2
p = ∑ || 1

 2P
 1
 2Pd−y ω′χ || d−

 Ε(ω) = [∑ − 2 (∑ χ)′ω + ω′ (∑χ χ′) ω]pp p
d2 d

p p p
 1
 2P p

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Dataset #1

Examples of each class are drawn from
a Gaussian distribution centered at
(−0.4, −0.8), and (0.4, 0.8).

Eigenvalues of covariance matrix: 0.83 and 0.036

Batch gradient descent

Weight space

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Log MSE (dB)

0 1 2 3 4 5 6 7 8 9 10

−20

−15

−10

−5

0

data set: set−1 (100 examples, 2 gaussians)
network: 1 linear unit, 2 inputs, 1 output.
 2 weights, 1 bias.

Learning
rate:

η = 1.5

Maximum
admissible
Learning
rate:

Hessian
largest
eigenvalue:

λ = 0.84
max

η = 2.38max

epochs

Batch gradient descent

Weight space

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Log MSE (dB)

0 1 2 3 4 5 6 7 8 9 10

−20

−15

−10

−5

0

data set: set−1 (100 examples, 2 gaussians)
network: 1 linear unit, 2 inputs, 1 output.
 2 weights, 1 bias.

Learning
rate:

Maximum
admissible
Learning
rate:

Hessian
largest
eigenvalue:

λ = 0.84
max

η = 2.38max

epochs

η = 2.5

Stochastic gradient descent

data set: set−1 (100 examples, 2 gaussians)
network: 1 linear unit, 2 inputs, 1 output.
 2 weights, 1 bias.

Learning
rate:

Hessian
largest
eigenvalue:

λ = 0.84
max

η = 2.38max

Maximum
admissible
Learning
rate
(for batch):

η = 0.2

Weight space

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Log MSE (dB)

0 1 2 3 4 5 6 7 8 9 10

−20

−15

−10

−5

0

epochs

batch

(equivalent
 to a batch
learning rate
of 20)

CONVERGENCE OF GRADIENT DESCENT:
MINIMAL MULTILAYER NETWORK

1 input
1 hidden unit
1 output

2 weights
2 biases

ω0

ω1
ω2

Υ

ω3

χ

TRAINING SET: 20 examples.

Class1:
 10 examples drawn from a Gaussian distribution
 with mean −1, and standard deviation 0.4

Class2:
 10 examples drawn from a Gaussian distribution
 with mean +1, and standard deviation 0.4

Sigmoid: 1.71 tanh(2/3 x)

Targets: −1 for class 1, +1 for class 2

Log MSE (dB)

0 1 2 3 4 5 6 7 8 9 10

−20

−15

−10

−5

0

Weight space

−2 −1.6 −1.2 −0.8 −0.4 0 0.4 0.8 1.2 1.6 2 2.4

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Learning
rate:

epochs

Stochastic gradient: 1−1−1 network

data set: 20 examples, 2 1D−gaussians)
network: 1 input, 1 hidden, 1output
 2 weights 2biases

η = 0.4

>
>

>
 fi

le
na

m
e

INPUT TRANSFORMATIONS
ERROR SURFACE TRANSFORMATIONS

A shift (non zero mean) in the input variables
creates a VERY LARGE eigenvalue which
leads to eccentric paraboloids, and to slow
convergence

Subtract the means from the input variables

Normalize the variances of the input variables

Decorrelate the input variables

Correlations between input variables lead
to eccentric paraboloid with ROTATED axes

widely spread variances for the input variables
lead to widely spread Hessian eigenvalues

The gradient is NOT the best descent
direction
Use a spearate learning rate for each weight.
No use spending time and effort to
compute an accurate gradient estimate

For a single linear neuron, If the input variables have
zero means, the eigenvectors of the Hessian are the
principal axes of the cloud of training vectors

3

SECOND ORDER METHODS

NEWTON ALGORITHM

Newton Algorithm in one dimension

Ε(ω)

ω

ω

∂Ε
∂ω

∆ω

∂Ε
∂ω

Assuming E
is quadratic:

∂ Ε
∂ω

2

2
∂Ε
∂ω

∆ω =

Optimal weight change:

2
∂ Ε

2∂ω

−1
∂Ε
∂ω∆ω =

2
∂ Ε

2∂ω

−1
∂Ε
∂ω∆ω = η 0<η<1

If E is not
perfectly :
quadratic

Hessian

NEWTON ALGORITHM

Local quadratic approximation of the cost function
around the current point:

Ε(ω + ∆ω) ≈ Ε(ω) + ∇Ε(ω) ∆ω +1/2 ∆ω′Η(ω) ∆ω

gradientweight change

Solve: ∇Ε(ω) + Η(ω) ∆ω = 0 for ∆ω

∆ω = Η(ω) ∇Ε(ω)−1

IDEA: find the weight change that minimizes the above.
 (i.e.: find the weight change for which the gradient is 0)

ω

½ ½Η(ω)= Θ′Λ Λ Θ

NEWTON ALGORITHM AND
PARAMETER SPACE TRANSFORMS

Η (ω)= ΘΛ Λ Θ′-½ -½-1

ω -½Λ Θ′

-½ΘΛ

U

Network

input

output

ω Network
ω

input

output

Θ-½ΛU

Newton Algorithm hereis like Gradient Descent
 there

Diagonalized Hessian

NEWTON ALGORITHM

− it converges in 1 iteration if the error is quadratic

− unlike Gradient Descent, it is invariant with respect
 to linear transformations of the input vectors,
 i.e. the convergence time is not affected by
 shifts, scaling and rotations of the input vectors.

BUT:

− it requires computing, storing and inverting the
 NxN Hessian (or solving an NxN linear system).
 The complexity is O(N^3), which is impractical
 with more than a few variables)

− there is ABSOLUTELY NO GUARANTEE
 of convergence when the error is non−quadratic

− in fact, it diverges if the Hessian has some null
 or negative eigenvalues (the error surface is
 flat or curved downward in some directions).
 The Hessian MUST be Positive Definite.
 (this is obviously not the case in multilayer nets)

The Newton Algorithm in its original form
is unusable for Neural Net learning.

but its basic idea is useful for understanding
more sophisticated algorithms

COMPUTING THE HESSIAN
INFORMATION IN
MULTILAYER NETWORKS

There are many techniques to compute the full
Hessian, or parts of it, or approximations to it,
in multilayer networks.

We will review the following simple methods:

− finite difference

− square Jacobian approximation
 (for the Gauss−Newton and
 Levenberg−Marquardt algorithms)

− computing the diagonal term (or block
 diagonal terms) by backpropagation

− computing the product of the Hessian by a
 vector without computing the Hessian

There exist more complex techniques to compute
semi−analytically the full Hessian
[Bishop 92, Buntine&Weigend 93, others.....]
but they are REALLY complicated, and require
many forwardprop/backprop passes.

FINITE DIFFERENCE

(Line k of H) =

∂ (∇Ε(ω))
 ∂ωκ

Finite difference approximation:

The k−th line of the Hessian is the derivative of
the GRADIENT with respect to the k−th parameter

RECIPE for computing the k−th line of the Hessian

1− compute total gradient (multiple fprop/bprop)
2− add Delta to k−th parameter
3− compute total gradient
4− subtract result of line 1 from line 3,
 divide by Delta.

due to numerical errors, the resulting Hessian may
not be perfectly symetric. It should be symetrized.

(Line k of H) =

κ
δ

∇Ε(ω+δ φ) − ∇Ε(ω)

κφ = (0,0,0,.....,1,...,0)

SQUARE JACOBIAN APPROXIMATION
FOR GAUSS−NEWTON AND
LEVENBERG−MARQUARDT ALGOS.

∂Ν(ω,χ)
 ∂ω

pDp
p
∑ (− Ν(ω,χ))′ ∂Ε(ω)

 ∂ω = −

Gradient:

D D pp pp
p

Ε(ω) = 1/2∑ (− Ν(ω,χ))′ (− Ν(ω,χ))
Assume the cost function is the Mean Square Error:

p

∂Ν(ω,χ)
 ∂ω

pΗ(ω) = ∑ ∂Ν(ω,χ)
 ∂ω

p ′
+

Dp
p
∑ (− Ν(ω,χ))′ p∂ Ν(ω,χ)

 ∂ω ∂ω′
2

Hessian:

Simplified Hessian (square of the Jacobian):

ω

χ

Ν(ω,χ)

D

Ε

p

∂Ν(ω,χ)
 ∂ω

pΗ(ω) = ∑ ∂Ν(ω,χ)
 ∂ω

p ′
Jacobian: NxO matrix
(O: number of outputs)

RECIPE for computing the k−th column of the Jacobian:
for all training patterns {
 forward prop
 set gradients of output units to 0;
 set gradient of k−th output unit to 1;
 back propagate; accumulate gradient;
}

− the resulting approximate Hessian is positive semi−definite
− dropping the second term is equivalent to assuming that
 the network is a linear function of the parameters

ignore this!

BACKPROPAGATING SECOND DERIVATIVES

ω

Υ

χ

Β(ω,χ)

Assuming we know ∂ Ε
∂Υ

2

2

what are
2

2
∂ Ε
∂ω

2

2
∂ Ε
∂χ

A multilayer system composed of
functional blocs. Consider one of
the blocs with I inputs, O outputs,
and N parameters

(OxO matrix)

(NxN matrix) and (IxI matrix)

2

2
= ∂ Ε

∂Υ
2

2
∂Υ
∂ω

′ ∂Υ
∂ω

+ ∂Ε
∂Υ

2

2
∂ Υ
∂ω

∂ Ε
∂ω

OxONxO OxNNxN 1xO OxNxN

Chain rule for
2nd derivatives:

The above can be used to compute a
bloc diagonal subset of the Hessian

If we are only interested in the diagonal terms, it reduces to:

qIf the term in the red square is dropped, the resulting
Hessian estimate will be positive semi−definite

(and same with instead of)χ ω=
2

2
∂ Ε
∂ω

ii

∂ Ε
∂Υ

2

2
∂Υ
∂ω

kk

kk

ii
∑
k

2

BACKPROPAGATING THE DIAGONAL
HESSIAN IN NEURAL NETS

ω
Υ

χ

ωχ

ƒ()

Ζ

Weighted sums

= ∂ Ε
∂Υ

2

2∑
k

2

2
∂ Ε
∂χ

i

2ω
ki

k

(with the square Jacobian approximation)

RBFs

Sigmoids (and other scalar functions)

∂ Ε
∂Ζ

2

2
=

2

2
∂ Ε
∂Υ (ƒ′(Υ))2

k k
k

ω

Υ

χ

||ω−χ||2

= ∂ Ε
∂Υ

2

2 i
χ 2∂ Ε

∂ω
ki

2

2
k

=∂ Ε
∂ω

ki

2

2
∂ Ε
∂Υ

2

2 i

2

k
ki(χ −ω)

=
2

2
∂ Ε
∂χ

i

∑
k

= ∂ Ε
∂Υ

2

2 i

2

k
ki(χ −ω)

[LeCun 87, Becker&LeCun 88, LeCun 89]

the "OBD" network pruning techniques uses
this procedure [LeCun,Denker&Solla 90]

(the 2nd derivatives with
 respect to the weights
should be averaged over
the training set)

SAME COST AS REGULAR BACKPROP

COMPUTING THE PRODUCT OF THE
HESSIAN BY A VECTOR

ω

χ

Ν(ω,χ)

D

Ε

(without computing the Hessian itself)

1
α

∂Ε
∂ω (ω) −∂Ε

∂ω)(ω+αΨΗΨ≈

Finite difference:

RECIPE for computing the product
of a vector by the Hessian:

1− compute gradient
2− add to the parameter vector
3− compute gradient with perturbed
 parameters
4− subtract result of 1 from 3,
 divide by

Ψ

αΨ

α

This method can be used to compute the principal
eigenvector and eigenvalue of H by the power method.

By iterating Ψ ← ΗΨ / ||Ψ|| Y

||Ψ||
 will converge to the principal eigenvector of H
and to the corresponding eigenvalue
[LeCun, Simard&Pearlmutter 93]

A more accurate method which does not use finite
differences (and has the same complexity) has
recently been proposed [Pearlmutter 93]

−What does the Hessian of a multilayer network
 look like?
− How does it change with the architecture and
 the details of the implementation?

− Typically, the distribution of eigenvalues of a
 multilayer network looks like this:

These large ones are the killers

a few small eigenvalues, a large
number of medium ones,
and a small number of very
large ones

They come from:
− non−zero mean inputs or neuron states
− wide variations second derivatives from
 layer to layer
− correlations between state variables

for more details see [LeCun, Simard&Pearlmutter 93]
[LeCun, Kanter&Solla 91]

ANALYSIS OF THE HESSIAN
IN MULTILAYER NETWORKS

EIGENVALUE SPECTRUM

Network: 256−128−64−10 with local connections and
 shared weights (around 750 parameters)
Data set: 320 handwritten digits

0 100 200 300 400 500 600 700 800
−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Eigenvalue order

10
Lo

g

 E
ig

en
va

lu
e

the ratio between the 1st and
the 11th eigenvalues is 8

0 2 4 6 8 10 12 14 16
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Eigenvalue magnitude

N
u
m
b
e
r

o
f

E
i
g
e
n
v
a
l
u
e
s

Big killers

HISTOGRAM

MULTILAYER NETWORKS HESSIAN

The second derivative is often smaller in
lower layers. The first layer weights learn
very slowly, while the last layer weights
change very quickly.

This can be compensated for using the
diagonal 2nd derivatives (more on this later)

CLASSICAL 2ND ORDER
OPTIMIZATION METHODS

− Conjugate Gradient methods
 − O(N) methods
 − do not use the Hessian directly
 − attempts to find descent directions that
 minimally disturb the result of the previous
 iterations
 − uses line search. Works only in BATCH.

− Gauss−Newton and Levenberg−Marquardt
 methods
 − use the square Jacobian approximation
 − works only for mean−square error
 − mainly designed for BATCH
 − O(N^3)

− Quasi−Newton methods (BFGS)
 − iteratively computes an estimate of the
 inverse Hessian.
 − requires a line search. Works only in BATCH.
 − O(N^2)

[Dennis&Schnabel 83], [Fletcher 87],
[Press et al. 88] [Battiti 92]

CONJUGATE GRADIENT
[Hestenes&Stiefel 52], [Fletcher&Reeves 64]
[Polak 71] (see [Fletcher 87])

Pick a descent direction (say the gradient),
find the minimum along that direction (line search).
Now, find a direction along which the gradient
does not change its direction, but merely its length
(conjugate direction). Moving along that direction
will not spoil the result of the previous iteration

MAIN IDEA: to find a descent direction which does
 not spoil the result of the previous iterations

first descent
direction gradients

conjugate
direction

There are two slightly different formulae:
Fletcher−Reeves & Polak−Ribiere

CONJUGATE GRADIENT

Conjugate directions are like ORTHOGONAL directions
in the space where the Hessian is the identity matrix

p and q are conjugate <===> p’Hq = 0

descent direction at iteration k

ρ = −∇Ε(ω) + β ρκ κ κ κ−1

ρ κ−1

ρ κ

κω

β =κ
∇Ε(ω)′ ∇Ε(ω)
∇Ε(ω)′ ∇Ε(ω)

κκ
κ−1κ−1

 (Fletcher−Reeves)

(∇Ε(ω)−∇Ε(ω))′ ∇Ε(ω)
 ∇Ε(ω)′ ∇Ε(ω)β =κ κ−1κ−1

κ κ−1 κ (Polak−Ribiere)

κρ :

− A good line search must be done along
 each descent direction (works only in batch)

− Convergence in N iterations is guaranteed for
 a quadratic function with N variables

CONJUGATE GRADIENT

− Conjugate gradient is simple and effective.
 the Polak−Ribiere formula seems to be more
 robust for non−quadratic functions.

− The conjugate gradient formulae can be viewed
 as "smart ways" to choose the momentum.

− Conjugate gradient has been used with success
 in the context of multilayer network training
 [Kramer&Sangiovani−Vincentelli 88,
 Barnard&Cole 88, Bengio&Moore 89,
 Møller 92, Hinton’s group in Toronto.....]

− It seems particularly apropriate for moderate
 size problems with relatively low redundancy
 in the data.
 Typical applications include function approximation,
 robotic control, times−series prediction, and other
 real−valued problems (especially if a high accuracy
 solution is sought).
 On large classification problems, stochastic
 backprop is faster.

− The main drawback of CG is that it is a BATCH
 method, partly due to its requirement for an
 accurate line search.
 There have been attempts to solve that problem
 using "mini−batches" [Møller 92].

BFGS and Quasi−Newton methods

ρ = Μ ∇Ε(ω)
ρ ω ← ω − ηρ

There exist several Quasi−Newton methods,
but the most successful is the
Broyden−Fletcher−Goldfarb−Shanno (BFGS)
method.

[Fletcher 87],[Dennis&Schnabel 83],
[Watrous 88],[Battiti 92].

Compared to Newton method, Quasi−Newton
methods only require the first derivative, they
use positive definite approximations to the
inverse Hessian (which means they go downhill),
and they require O(N^2) operations per iteration.

All of the quasi−Newton methods are BATCH methods

Quasi−Newton (or secant) methods attempt to
keep a positive definite estimate of the
INVERSE HESSIAN directly, without requiring
matrix inversion, and by only resorting to the
gradient information.

They work as follows:

1− pick a positive definite matrix M (say M=I)
2− set search direction
3− line search along giving
4− update estimate of inverse Hessian M

BFGS

past parameter vector:
present parameter vector:
past parameter increment:
past gradient:
present gradient:
past gradient increment:
present inverse Hessian:
future inverse Hessian

ω
ω
δ = ω − ω
∇Ε(ω)
∇Ε(ω)
ϕ = ∇Ε(ω)−∇Ε(ω)
Μ
Μ κ

κ−1κ

κ

κ
κ−1

κ−1

κ−1

κ−1

Μ = Μ + (1+ ϕ′Μϕ
 δ′ϕ

δδ′
δ′ϕ

δϕ′Μ+Μϕδ
 δϕ) − ()κ κ−1

ρ = Μ ∇Ε(ω)κκ+1 κ

ω = ω − η ρκκ+1 κ+1 κ+1

update inverse Hessian estimate

compute descent direction

line search

− it is an O(N^2) algorithm BUT
− it requires storing an NxN matrix
− it is a BATCH algorithm (requires a line search)

Only practical for VERY SMALL networks with
non−redundant training sets.

Several variations exist that attempt to reduce the
storage requirements:
− limited storage BFGS [Nocedal 80]
− memoryless BFGS, OSS [Battiti 92]

GAUSS−NEWTON AND
LEVENBERG−MARQUARDT METHODS

These methods only apply to Mean−Square Error
objective functions (non−linear least square).

Gauss−Newton algorithm:

Levenberg−Marquardt algorithm:

ω

χ

Ν(ω,χ)

D

Ε

like Newton but the Hessian is
approximated by the square of the jacobian
(which is always positive semidefinite)

∆ω =
p

∂Ν(ω,χ)
 ∂ω

p∂Ν(ω,χ)
 ∂ω

p ′
∑

−1
∇Ε(ω)

like Gauss−Newton, but has a safeguard parameter to
prevent it from blowing up if some eigenvalues are small

∆ω =
p

∂Ν(ω,χ)
 ∂ω

p∂Ν(ω,χ)
 ∂ω

p ′
∑

−1
∇Ε(ω)+ µ Ι

− Both are O(N^3) algorithms
− they are widely used in statistics for regression
− they are only practical for small numbers of
 parameters.
− they do not require a line search, so in principle
 they can be used in stochastic mode (although
 that has not been tested)

4

APPLYING SECOND ORDER

METHODS TO MULTILAYER NETS

(NON)APPLICABILITY OF
2nd ORDER METHODS TO
NEURAL−NET LEARNING

BAD NEWS:

 − Full Hessian techniques (GN, LM, BFGS) can only
 apply to small networks. But small networks are not
 the ones we need to speed up most.

 − Most 2nd order techniques (CG, BFGS....) require a
 line search, and therefore are not directly usable
 in stochastic mode

 − Many heuristic tricks (adaptive learning rates....)
 also apply to batch only.

On large classification problems, a carfully tuned
stochastic gradient is hard to beat.

On smaller problems requiring accurate real−valued
outputs (function approximation, control...),
conjugate gradient (with Polak−Ribiere) offers the
best combination of speed, reliability and simplicity.

This section is devoted to 2nd order techniques
specifically designed for large neural−net training

MINI BATCH METHODS

Attempts at applying Conjugate Gradient to large
and redundant problems have been made
[Kramer&Sangiovani−Vincentelli 88], [Møller 92]

They use "mini batches": subsets of increasing
sizes are used.

Møller proposes a systematic way of choosing
the size of the mini batch.

He also uses a variant of CG which he calls
"scaled CG". Essentially, the line search is replaced
by a 1D Levenberg−Marquardt−like algorithm.

A STOCHASTIC DIAGONAL
LEVENBERG−MARQUARDT
METHOD

[LeCun 87, Becker&LeCun 88, LeCun 89]

THE MAIN IDEAS:

− use formulae for the backpropagation of
 the diagonal Hessian (shown earlier) to keep
 a running estimate of the second derivative
 of the error with respect to each parameter.

− use these term in a "Levenberg−Marquardt"
 formula to scale each parameter’s learning rate

∂ Ε
∂ω

ki

2

2

Each parameter (weight) has its own
learning rate computed as:kiη kiω

ε is a global "learning rate"

µ

is an estimate of the
diagonal second derivative
with respect to weight (ki)

kiη

kiη = ε
∂ Ε
∂ω

ki

2

2
+ µ

is a "Levenberg−Marquardt"
parameter to prevent
form blowing up if the 2nd
derivative is small

The second derivatives can be computed using

a running average formula over a subset of the training
set prior to training:

A STOCHASTIC DIAGONAL
LEVENBERG−MARQUARDT
METHOD

∂ Ε
∂ω

ki

2

2

∂ Ε
∂ω

ki

2

2
∂ Ε
∂ω

ki

2

2
+ γ ← (1−γ) ∂ Ε

∂ω
ki

2

2
p

new estimate
of 2nd der.

 previous
estimate

small
constant

instantaneous
2nd der. for
pattern p

The instantaneous second derivatives are computed using
the formula in the slide entitled:
"BACKPROPAGATING THE DIAGONAL HESSIAN IN NEURAL NETS"

Since the second derivatives evolve slowly, there is no need
to reestimate them often.
They can be estimated once at the beginning by sweeping
over a few hundred patterns.
Then, they can be reestimated every few epochs.

The additional cost over regular backprop is negligible.

Is usually about 3 times faster than carefully tuned
stochastic gradient.

Stochastic Diagonal Levenberg−Marquardt

Weight space

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Log MSE (dB)

0 1 2 3 4 5 6 7 8 9 10

−20

−15

−10

−5

0

data set: set−1 (100 examples, 2 gaussians)
network: 1 linear unit, 2 inputs, 1 output.
 2 weights, 1 bias.

Hessian
largest
eigenvalue:

λ = 0.84
max

η = 2.38max

epochs

Learning
rates:

η0 = 0.12
η1 = 0.03
η2 = 0.02

Maximum
admissible
Learning
rate (batch):

Stochastic Diagonal Levenberg−Marquardt

Weight space

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Log MSE (dB)

0 1 2 3 4 5 6 7 8 9 10

−20

−15

−10

−5

0

data set: set−1 (100 examples, 2 gaussians)
network: 1 linear unit, 2 inputs, 1 output.
 2 weights, 1 bias.

Hessian
largest
eigenvalue:

λ = 0.84
max

η = 2.38max

epochs

Learning
rates:

Maximum
admissible
Learning
rate (batch):

η0 = 0.76
η1 = 0.18
η2 = 0.12

IDEA #1 (the power method):

Ψ ← Η Ψ
||Ψ||

HESSIAN
NEW ESTIMATE
OF EIGENVECTOR

OLD ESTIMATE
OF EIGENVECTOR

ESTIMATE OF
EIGENVALUE

 Ψ1 − Choose a vector at random

2 − iterate:

 Ψ will converge to the principal eigenvector
(or a vector in the principal eigenspace)

||Ψ|| will converge to the corresponding
eigenvalue

without computing the Hessian

COMPUTING THE PRINCIPAL
EIGENVALUE/VECTOR OF THE
HESSIAN

NEW ESTIMATE
OF EIGENVECTOR

OLD ESTIMATE
OF EIGENVECTOR

Η ΨCOMPUTING THE PRODUCT

IDEA #2 (Taylor expansion):

1
αΨ ← ∂Ε

∂ω (ω) −∂Ε
∂ω ||Ψ||

Ψ(ω+α)

GRADIENTPERTURBED
GRADIENT

"SMALL"
CONSTANT

One iteration of this procedure requires
2 forward props and 2 backward props
for each pattern in the training set.

This converges very quickly to a good
estimate of the largest eigenvalue of H

NEW ESTIMATE
OF EIGENVECTOR

OLD ESTIMATE
OF EIGENVECTOR

IDEA #3 (running average):

"SMALL"
CONSTANTS

PERTURBED
GRADIENT FOR
CURRENT PATTERN

GRADIENT FOR
CURRENT
PATTERN

1
α

∂Ε
∂ω (ω) −∂Ε

∂ω ||Ψ||
Ψ(ω+α)Ψ ← (1−γ)Ψ+γ

p p

ON−LINE COMPUTATION OF Ψ

This procedure converges VERY quickly to the largest
eigenvalue of the AVERAGE Hessian.

The properties of the average Hessian determine the
behavior of ON−LINE gradient descent
(stochastic, or per−sample update).

EXPERIMENT: A shared−weight network with 5 layers
of weights, 64638 connections and 1278 free parameters.
Training set: 1000 handwritten digits.

Correct order of magnitude is obtained in less than
100 pattern presentations (10% of training set size)

The fluctuations of the average Hessian over the training
set are small.

RECIPE

1
α

∂Ε
∂ω (ω) −∂Ε

∂ω ||Ψ||
Ψ(ω+α)Ψ ← (1−γ)Ψ+γ

p p

||Ψ||
Ψα

α

||Ψ||
1

1 − Pick initial eigenvector estimate at random

2 − present input pattern, and desired output.
 perform forward prop and backward prop.
 Save gradient vector G(w)

3 − add to current weight vector

4 − perform forward prop and backward prop with
 perturbed weight vector. Save gradient vector G’(w)

5 − compute difference G’(w)−G(w). and divide by
 update running average of eigenvector
 with the result

6 − goto 2 unless a reasonably stable result is obtained

7 − the optimal learning rate is

0 50 100 150 200 250 300 350 400

0

10

20

30

40

50

60

70

80

Number of pattern presentations

ei
g

en
va

lu
e

γ=0.1 γ=0.03

γ=0.01
γ=0.003

0 0.250.50.75 1 1.251.51.75 2 2.252.52.75 3 3.253.53.75 4

0

0.5

1

1.5

2

2.5

LEARNING RATE
PREDICTED OPTIMAL LEARNING RATE

M
E

A
N

 S
Q

U
A

R
E

D
 E

R
R

O
R

1 epoch

2 epochs

3 epochs
4 epochs

5 epochs

Network: 784x30x10 fully connected
Training set: 300 handwritten digits

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3

0

0.5

1

1.5

2

2.5

LEARNING RATE
PREDICTED OPTIMAL LEARNING RATE

M
E

A
N

 S
Q

U
A

R
E

D
 E

R
R

O
R

1 epoch

2 epochs

3 epochs
4 epochs

5 epochs

Network: 1024x1568x392x400x100x10
 with 64638 (local) connections
 and 1278 shared weights
Training set: 1000 handwritten digits

