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Abstract

One long-term goal of machine learning research is to preduethods that
are applicable to highly complex tasks, such as perceptisioq, audition), rea-
soning, intelligent control, and other artificially intiglent behaviors. We argue
that in order to progress toward this goal, the Machine Lisgrcommunity must
endeavor to discover algorithms that can learn highly cemfinctions, with min-
imal need for prior knowledge, and with minimal human inemtion. We present
mathematical and empirical evidence suggesting that mapylar approaches
to non-parametric learning, particularly kernel methoass fundamentally lim-
ited in their ability to learn complex high-dimensional @itions. Our analysis
focuses on two problems. First, kernel machines srallow architecturesin
which one large layer o§imple template matcheis followed by a single layer
of trainable coefficients. We argue that shallow architextican be very ineffi-
cient in terms of required number of computational elemani$ examples. Sec-
ond, we analyze a limitation of kernel machines with a loehlel, linked to the
curse of dimensionality, that applies to supervised, uestged (manifold learn-
ing) and semi-supervised kernel machines. Using empirgsilts on invariant
image recognition tasks, kernel methods are compareddeiip architecturesn
which lower-level features or concepts are progressivelylzined into more ab-
stract and higher-level representations. We argue that deghitectures have the
potential to generalize in non-local ways, i.e., beyond gdiate neighbors, and
that this is crucial in order to make progress on the kind ohplex tasks required
for artificial intelligence.



1 Introduction

Statistical machine learning research has yielded a ritbfsglgorithmic and mathe-
matical tools over the last decades, and has given rise tond@&uof commercial and
scientific applications. However, some of the initial goaflshis field of research re-
main elusive. A long-term goal of machine learning reseascto produce methods
that will enable artificially intelligent agents capablele&rning complex behaviors
with minimal human intervention and prior knowledge. Exadespof such complex
behaviors are found in visual perception, auditory peficeptand natural language
processing.

The main objective of this chapter is to discuss fundamdmualations of cer-
tain classes of learning algorithms, and point towards @ggites that overcome these
limitations. These limitations arise from two aspects @& algorithmsshallow ar-
chitecture andlocal estimators

We would like our learning algorithms to be efficient in threspects:

1. computational: number of computations during training during recognition,

2. statistical: number of examples required for good gdiratéon, especially la-
beled data, and

3. human involvement: amount of human labor necessary lir thie algorithm
to a task, i.e., specify the prior knowledge built into thedabbefore training.
(explicitly, or implicitly through engineering designstiia human-in-the-loop).

The last quarter century has given us flexible non-paramketairning algorithms that
can learn any continuous input-output mappingyvidedenough computing resources
and training data. A crucial question is how efficient are sarhthe popular learn-
ing methods when they are applied to complex perceptuasiasich a visual pattern
recognition with complicated intra-class variability. &lchapter mostly focuses on
computational and statistical efficiency.

Among flexible learning algorithms, we establish a disimttbetweenshallow
architectures anddeep architectures Shallow architectures are best exemplified by
modern kernel machines [Scholkopf et al., 1999], such g8 Vector Machines
(SVMs) [Boser et al., 1992, Cortes and Vapnik, 1995]. Theysist of one layer of
fixed kernel functions, whose role is to match the incomintjgua with templates ex-
tracted from a training set, followed by a linear combinataf the matching scores.
Since the templates are extracted from the training setfitstdayer of a kernel ma-
chine can be seen as being trained in a somewhat trivial @engigpd way. The only
components subject to supervised training are the coeftief the linear combina-
tion. !

Deep architectures are perhaps best exemplified by myklaeural networks
with several hidden layers. In general terms, deep ardhites are composed of mul-
tiple layers of parameterized non-linear modules. Therpatars of every module are

1In SVMs only a subset of the examples are selected as terithtesupport vectors), but this is equiv-
alent to choosing which coefficients of the second layer arezero.



subject to learning. Deep architectures rarely appearénntlachine learning litera-
ture; the vast majority of neural network research has fedus shallow architectures
with a single hidden layer, because of the difficulty of tmgnetworks with more
than 2 or 3 layers [Tesauro, 1992]. Notable exceptions delwork on convolutional
networks [LeCun et al., 1989, LeCun et al., 1998], and reesrk on Deep Belief
Networks [Hinton et al., 2006].

While shallow architectures have advantages, such as gglildy to use convex
loss functions, we show that they also have limitations @etficiencyof the represen-
tation of certain types of function families. Although a nioen of theorems show that
certain shallow architectures (Gaussian kernel machihdsggdden layer neural nets,
etc) can approximate any function with arbitrary precisitirey make no statements
as to the efficiency of the representation. Conversely, @gelpitectures can, in prin-
ciple, represent certain families of functions more effitig (and with better scaling
properties) than shallow ones, but the associated lossifunscare almost always non
convex.

The chapter starts with a short discussion about task-fp&ersus more general
types of learning algorithms. Although the human brain isietimes cited as an ex-
istence proof of a general-purpose learning algorithm eapgnces can be deceiving:
the so-called no-free-lunch theorems [Wolpert, 1996], all as Vapnik’'s necessary
and sufficient conditions for consistency [see Vapnik, ]98arly show that there
is no such thing as a completely general learning algoritAthpractical learning al-
gorithms are associated with some sort of explicit or imipficior that favors some
functions over others.

Since a quest for a completely general learning method isngaloto failure, one
is reduced to searching for learning models that are weteduior a particular type
of tasks. For us, high on the list of useful tasks are thosertwst animals can per-
form effortlessly, such as perception and control, as weliagks that higher animals
and humans can do such as long-term prediction, reasoniagnipg, and language
understanding. In short, our aim is to look for learning noeth that bring us closer
to an artificially intelligent agent. What matters the masthis endeavor is howf-
ficientlyour model can capture and represent the required knowletlge efficiency
is measured along three main dimensions: the amount ofricadata required (espe-
cially labeled data), the amount of computing resourcesired to reach a given level
of performance, and most importantly, the amount of huméortefequired to spec-
ify the prior knowledge built into the model before trainifgxplicitly, or implicitly)
This chapter discusses the scaling properties of variarsileg models, in particular
kernel machines, with respect to those three dimensionpaiticular the first two.
Kernel machines araon-parametric learning modelsvhich make apparently weak
assumptions on the form of the functigii) to be learned. By non-parametric meth-
ods we mean methods whose capacity is allowed to increagelfg.hyper-parameter
selection) when more data are available. This includesidalsk-nearest-neighbor al-
gorithms, modern kernel machines, mixture models, andalewwtworks (where the
number of hidden units can be selected using the data). @umants are centered
around two limitations of kernel machines: the first limitat applies more generally
to shallow architectures, which include neural networkswai single hidden layer. In
Section 3 we consider different types of function classes, architectures, including



different sub-types of shallow architectures. We consttiertrade-off between the
depth of the architecture and its breadth (number of elesnergach layer), thus clar-
ifying the representational limitation of shallow arcluteres. The second limitation
is more specific and concerns kernel machines wilihcal kernel This limitation is
studied first informally in Section 3.3 by thought experirteeim the use of template
matching for visual perception. Section 4 then focussesnfmmally on local esti-
mators, i.e., in which the predictiof{z) at pointz is dominated by the near neighbors
of z taken from the training set. This includes kernel machinestich the kernel is
local, like the Gaussian kernel. These algorithms rely arggkpressed as a distance
or similarity function between pairs of examples, and enpass classical statistical
algorithms as well as modern kernel machines. This lingtats pervasive, not only
in classification, regression, and density estimation atsd in manifold learning and
semi-supervised learning, where many modern methods halrelscality property,
and are often explicitly based on the graph of near neighbbing visual pattern
recognition as an example, we illustrate how the shallowneadf kernel machines
leads to fundamentally inefficient representations.

Finally, deep architectures are proposed as a way to esoapettie fundamental
limitations above. Section 5 concentrates on the advastage disadvantages of deep
architectures, which involve multiple levels of trainal®dules between input and
output. They can retain the desired flexibility in the leatfienctions, and increase the
efficiency of the model along all three dimensions of amofditraining data, amount of
computational resources, and amount of human prior hadégo Although a num-
ber of learning algorithms for deep architectures have legilable for some time,
training such architectures is still largely perceived afiicult challenge. We discuss
recent approaches to training such deep networks thatfadesvs new breakthroughs
in this direction.

The trade-off between convexity and non-convexity has, nip tecently, favored
research into learning algorithms with convex optimizatwoblems. We have found
that non-convex optimization is sometimes more efficieat tonvex optimization.
Non-convex loss functions may be an unavoidable propertgarfiing complex func-
tions from weak prior knowledge.

2 Learning Models Towards Al

The No-Free-Lunchtheorem for learning algorithms [Wolpert, 1996] statest tha
completely general-purpose learning algorithm can existhe sense that for every
learning model there is a data distribution on which it wélté poorly (on both training
and test, in the case of finite VC dimension). Every learnirggleimustcontain im-
plicit or explicit restrictions on the class of functionstht can learn. Among the set
of all possible functions, we are particularly interestedisubset that contains all the
tasks involved in intelligent behavior. Examples of suctkgainclude visual percep-
tion, auditory perception, planning, control, etc. Thed®ts not just include specific
visual perception tasks (e.g human face detection), busehef all the tasks that an
intelligent agent should be able to learn. In the followiwg, will call this set of func-
tionsthe Al-set Because we want to achieve Al, we prioritize those taskisdtain



the Al-set.

Although we may like to think that the human brain is somevgeateral-purpose,
it is extremely restricted in its ability to learn high-dim&onal functions. The brains
of humans and higher animals, with their learning abiliteen potentially implement
the Al-set, and constitute a working proof of the feasipilif Al. We advance that
the Al-set is a tiny subset of the set of all possible funatjdut the specification of
this tiny subset may be easier than it appears. To illusthasepoint, we will use the
example first proposed by [LeCun and Denker, 1992]. The octiorebetween the
retina and the visual areas in the brain gets wired up reltiate in embryogenesis.
If one makes the apparently reasonable assumption thavsdilge permutations of
the millions of fibers in the optic nerve are equiprobabler¢his not enough bits in
the genome to encode the correct wiring, and no lifetime lemgugh to learn it. The
flat prior assumption must be rejected: some wiring must bgkdr to specify (or
more likely) than others. In what seems like an incrediblgtifoate coincidence, a
particularly good (if not “correct”) wiring pattern happero be one that preserves
topology. Coincidentally, this wiring pattern happens ®\ery simple to describe
in almost any language (for example, the biochemical lagguesed by biology can
easily specify topology-preserving wiring patterns tighiconcentration gradients of
nerve growth factors). How can we be so fortunate that theecoprior be so simple to
describe, yet so informative? LeCun and Denker [1992] poiritthat the brain exists
in the very same physical world for which it needs to builceimal models. Hence the
specification of good priors for modeling the world happebéosimple in that world
(the dimensionality and topology of the world is common teh)oBecause of this, we
are allowed to hope that the Al-set, while a tiny subset opalisible functions, may
be specified with a relatively small amount of information.

In practice, prior knowledge can be embedded in a learningahby specifying
three essential components:

1. The representation of the data: pre-processing, featuractions, etc.

2. Thearchitectureof the machine: the family of functions that the machine can
implement and its parameterization.

3. Theloss function and regularizehow different functions in the family are rated,
given a set of training samples, and which functions aregpredl in the absence
of training samples (prior or regularizer).

Inspired by [Hinton, To appear. 2007], we classify machearhing research strate-
gies in the pursuit of Al into three categories. Onel&eatism “Since no good pa-

rameterization of the Al-set is currently available, leffsecify a much smaller set for
each specific task through careful hand-design of the pregssing, the architecture,
and the regularizer”. If task-specific designs must be @elisy hand for each new
task, achieving Al will require an overwhelming amount ofninan effort. Neverthe-

less, this constitutes the most popular approach for apglgiachine learning to new
problems: design a clever pre-processing (or data reptatsem scheme), so that a
standard learning model (such as an SVM) will be able to Igartask. A somewhat
similar approach is to specify the task-specific prior krexge in the structure of a



graphical modelby explicitly representing important intermediate feawmand con-
cepts through latent variables whose functional dependenmbserved variables is
hard-wired. Much of the research in graphical models [Joyd®98] (especially of
the parametric type) follows this approach. Both of thesgr@aches, the kernel ap-
proach with human-designed kernels or features, and thehgra models approach
with human-designed dependency structure and semantesesy attractive in the
short term because they often yield quick results in makiogess on a specific task,
taking advantage of human ingenuity and implicit or expkciowledge about the task,
and requiring small amounts of labeled data.

The second strategy deniat “Even with a generic kernel such as the Gaussian
kernel, kernel machines can approximate any function, @gdlarization (with the
bounds) guarantee generalization. Why would we need amnyttlise?” This belief
contradicts the no free lunch theorem. Although kernel nrehcan represent any
labeling of a particular training set, they caifficiently represena very small and
very specific subset of functions, which the following sexs of this chapter will at-
tempt to characterize. Whether this small subset coversge lpart of the Al-set is
very dubious, as we will show. In general, what we think of aseyic learning al-
gorithms can only work well with certain type of data repmsgions and not so well
with others. They can in fact represent certain types of tions efficiently, and not
others. While the clever preprocessing/generic learniggrahm approach may be
useful for solving specific problems, it brings about litdeogress on the road to Al.
How can we hope to solve the wide variety of tasks requirecctoexe Al with this
labor-intensive approach? More importantly, how can we éepe to integrate each
of these separately-built, separately-trained, spe&dlimodules into a coherent ar-
tificially intelligent system? Even if we could build thoseodules, we would need
another learning paradigm to be able to integrate them ictmh&rent system.

The third strategy isptimism “let’s look for learning models that can be applied to
the largest possible subset of the Al-set, while requirhmggmallest possible amount
of additional hand-specified knowledge for each specifik teithin the Al-set”. The
question becomes: is there a parameterization of the Athsg¢ican be efficiently im-
plemented with computer technology?

Consider for example the problem of object recognition impater vision: we
could be interested in building recognizers for at leasessvthousand categories of
objects. Should we have specialized algorithms for eachi@ly, in natural language
processing, the focus of much current research is on devagdpropriate features for
specific tasks such as recognizing or parsing text of a pdatidype (such as spam
emalil, job ads, financial news, etc). Are we going to have tahit labor-intensive
work for all the possible types of text? our system will notusey smart if we have
to manually engineer new patches each time new a type of tedw types of object
category must be processed. If there exist more generglegarlearning models, at
least general enough to handle most of the tasks that anandlBumans can handle,
then searching for them may save us a considerable amouati@fin the long run.

As discussed in the next section, a mathematically conmémiay to characterize
the kind of complex task needed for Al is that they involvertéag highly non-linear
functions with many variations (i.e., whose derivative mgp@s direction often). This
is problematic in conjunction with a prior that smooth fupas are more likely, i.e.,



having few or small variations. We mednto be smooth when the value ¢fx) and
of its derivativef’(z) are close to the values ¢fxz + A) and f/(z + A) respectively
whenz andx + A are close as defined by a kernel or a distance. This chaptanads
several arguments that the smoothness prior alone is iogurfito learn highly-varying
functions. This is intimately related to the curse of dimenality, but as we find
throughout our investigation, it is not the number of diniens so much as the amount
of variation that matters. A one-dimensional function ebbk difficult to learn, and
many high-dimensional functions can be approximated wasdlugh with a smooth
function, so that non-parametric methods relying only om $imooth prior can still
give good results.

We callstrong priorsa type of prior knowledge that gives high probability (or low
complexity) to a very small set of functions (generally tethto a small set of tasks),
andbroad priorsa type of prior knowledge that give moderately high prokgbtb
a wider set of relevant functions (which may cover a largesstilof tasks within the
Al-set). Strong priors are task-specific, while broad iare more related to the
general structure of our world. We could prematurely conjexthat if a function
has many local variations (hence is not very smooth), thénribt learnable unless
strong prior knowledge is at hand. Fortunately, this is moet First, there is no
reason to believe that smoothness priors should have aasgéatius over other types
of priors. Using smoothness priors when we know that thetfons we want to learn
are non-smooth would seem counter-productive. Other bpoils are possible. A
simple way to define a prior is to define a language (e.g., arproging language)
with which we express functions, and favor functions thateha low Kolmogorov
complexity in that language, i.e. functions whose prograsshiort. Consider using the
C programming language (along with standard libraries¢bate with it) to define our
prior, and learning functions such aéx) = sin(x) (with = a real value) ogy(z) =
parity(z) (with x a binary vector of fixed dimension). These would be relayiezsy
to learn with a small number of samples because their degurijs extremely short in
C and they are very probable under the corresponding préspite the fact that they
are highly non-smooth. We do not advocate the explicit uséthogorov complexity
in a conventional programming language to design new lagraligorithms, but we use
this example to illustrate that it is possible to learn appély complex functions (in
the sense they vary a lot) using broad priors, by using a noatlearning algorithm,
corresponding to priors other than the smoothness prids fhiought example and the
study of toy problems like the parity problem in the rest & tthapter also shows that
the main challenge is to design learning algorithms thatiscover representations of
the data that compactly describe regularities inTihis is in contrast with the approach
of enumerating the variations present in the training daia, hoping to rely on local
smoothness to correctly fill in the space between the trgisamples.

As we mentioned earlier, there may exist broad priors, wé@nsingly simple de-
scription, that greatly reduce the space of accessibleifumsin appropriate ways. In
visual systems, an example of such a broad prior, which giied by Nature’s bias to-
wards retinotopic mappings, is the kind of connectivitydiseconvolutional networks
for visual pattern recognition [LeCun et al., 1989, LeCurakt 1998]. This will be
examined in detail in section 6. Another example of broadrprvhich we discuss in
section 5, is that the functions to be learned should be szjirie as multiple levels of



composition of simpler functions, whedifferent levels of functions can be viewed as
different levels of abstractiorFunctions at lower levels of abstraction should be found
useful for capturing some simpler aspects of the data Higion, so that it is possi-
ble to first learn the simpler functions and then compose tteelearn more abstract
concepts. Animals and humans do learn in this way, with smpbncepts earlier in
life, and higher-level abstractions later, expressed imseof the previously learned
concepts. Not all functions can be decomposed in this waylomans appear to have
such a constraint. If such a hierarchy did not exist, humaosldvbe able to learn
new concepts in any order. Hence we can hope that this typeafrpay be useful to
help cover the Al-set, but yet specific enough to exclude st majority of useless
functions.

It is a thesis of the present work that learning algorithret thuild such deeply
layered architectures offer a promising avenue for scativaghine learning towards
Al. Another related thesis is that one should not considerlénge variety of tasks
separately, but as different aspects of a more general gmuobthat of learning the
basic structure of the world, as seen say through the eyesamsdf a growing animal
or a young child. This is an instance of multi-task learnirigeve it is clear that the
different tasks share a strong commonality. This allowsoulsdpe that after training
such a system on a large variety of tasks in the Al-set, thieesysnay generalize to
a new task from only a few labeled examples. We hypothesetentiany tasks in the
Al-set may be built around commaeapresentationswhich can be understood as a set
of interrelated concepts.

If our goal is to build a learning machine for the Al-set, oasearch should con-
centrate on devising learning models with the followingteas:

e A highly flexible way to specify prior knowledge, hence a kgag algorithm
that can function with a large repertoire of architectures.

e A learning algorithm that can deal with deep architectuiresyhich a decision
involves the manipulation of many intermediate concepid,raultiple levels of
non-linear steps.

e A learning algorithm that can handle large families of fuoes, parameterized
with millions of individual parameters.

e A learning algorithm that can be trained efficiently evenewtthe number of
training examples becomes very large. This excludes legmigorithms requir-
ing to store and iterate multiple times over the whole tragnset, or for which
the amount of computations per example increases as mongpéas are seen.
This strongly suggest the use of on-line learning.

e A learning algorithm that can discover concepts that carhbeesl easily among
multiple tasks and multiple modalities (multi-task leaug), and that can take
advantage of large amounts of unlabeled data (semi-sigeeiiéarning).



3 Learning Architectures, Shallow and Deep

3.1 Architecture Types

In this section, we define the notions of shallow and deepit@atures. An informal
discussion of their relative advantages and disadvantageesented using examples.
A more formal discussion of the limitations of shallow ateletures with local smooth-
ness (which includes most modern kernel methods) is givémeimext section.

Following the tradition of the classic boderceptrongMinsky and Papert, 1969],
it is instructive to categorize different types of learniaghitectures and to analyze
their limitations and advantages. To fix ideas, considestimple case of classification
in which a discrete label is produced by the learning machiref (z, w), wherex is
the input pattern, and a parameter which indexes the family of functighshat can
be implemented by the architectufe= { (-, w), w € W}.

A A A

Weighted Weighted Weighted
Sum Sum Sum
Fixed Basis Template imple Trainable
Functions Matchers Basis Functions

A A A

Figure 1: Different types of shallow architectures. (a) @yja fixed preprocessing and
linear predictor; (b) Type-2: template matchers and lingadictor (kernel machine);
(c) Type-3: simple trainable basis functions and lineadmt®r (neural net with one
hidden layer, RBF network).

Traditional Perceptrons, like many currently popular féag models, areshal-
low architectures Different types of shallow architectures are represeirtdijure 1.
Type-1 architectures have fixed preprocessing in the fisgtrige.g., Perceptrons).
Type-2 architectures have template matchers in the firgrlég.g., kernel machines).
Type-3 architectures have simple trainable basis funstiothe first layer (e.g., neural
net with one hidden layer, RBF network). All three have adineansformation in the
second layer.

3.1.1 Shallow Architecture Type 1

Fixed pre-processing plus linear predictor, figure 1(&he simplest shallow archi-
tecture is composed of a fixed preprocessing layer (somstoalied features or ba-
sis functions), followed by a linear predictor. The type ioelar predictor used, and
the way it is trained is unspecified (maximum-margin, lagistgression, Perceptron,



squared error regression....). The fantilyis linearly parameterized in the parameter
vector: f(x) = Zle w;¢;(x). This type of architecture is widely used in practi-
cal applications. Since the pre-processing is fixed (andi{taafted), it is necessarily
task-specific in practice. It is possible to imagine a shatligpe-1 machine that would
parameterize the complete Al-set. For example, we coulgingsa machine in which
each feature is a member of the Al-set, hence each partimganber of the Al-set
can be represented with a weight vector containing all zezrsept for a single 1 at
the right place. While there probably exist more compactswviaylinearly parame-
terize the entire Al-set, the number of necessary featumgdisurely be prohibitive.
More importantly, we do not know explicitly the functionsthbie Al-set, so this is not
practical.

3.1.2 Shallow Architecture Type 2

Template matchers plus linear predictor, figure 1(Next on the scale of adaptability
is the traditional kernel machine architecture. The prepssing is a vector of values
resulting from the application of a kernel functidti(z, z;) to each training sample
fl@) = b+ X" a;K(x,z;), wheren is the number of training samples, the pa-
rameterw contains all they; and the bia$. In effect, the first layer can be seen as
a series of template matchers in which the templates aredhméng samples. Type-2
architectures can be seen as special forms of Type-1 actiniés in which the features
are data-dependent, which is to s&yx) = K (x, z;). Thisis a simple form of unsu-
pervised learning, for the first layer. Through the fam&amel trick(see [Scholkopf
etal., 1999]), Type-2 architectures can be seen as a compgaif representing Type-
1 architectures, including some that may be too large to betjgal. If the kernel
function satisfies the Mercer condition it can be expressezhdnner product between
feature vectordsy(z, z;) =< ¢(x), ¢(x;) >, giving us a linear relation between the
parameter vectors in both formulations:for Type-1 architectures iy, c;p(z;). A
very attractive feature of such architectures is that feesel common loss functions
(e.g., squared error, margin loss) training them involvesravex optimization program.
While these properties are largely perceived as the magdimtéernel methods, they
should not distract us from the fact that the first layer of anké machine is often
just a series of template matchers. In most kernel machtheskernel is used as a
kind of template matchers, but other choices are possiblEndJtask-specific prior
knowledge, one can design a kernel that incorporates thealustractions for the task.
This comes at the cost of lower efficiency in terms of humamiaWhen a kernel
acts like a template matcher, we callatal: K(x,z;) discriminates between values
of z that are near; and those that are not. Some of the mathematical resultssin th
chapter focus on the Gaussian kernel, where nearness ponasto small Euclidean
distance. One could say that one of the main issues with keraehine with local
kernels is that they anétle more than template matcherk is possible to use kernels
that are non-local yet not task-specific, such as the linearéds and polynomial ker-
nels. However, most practitioners have been preferinglikkernels or local kernels.
Linear kernels are type-1 shallow architectures, withrtiebivious limitations. Local
kernels have been popular because they make intuitive $g¢mseasier to insert prior
knowledge), while polynomial kernels tend to generalizeyy@oorly when extrapo-
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lating (e.g., grossly overshooting). The smoothness pniplicit in local kernels is
quite reasonable for a lot of the applications that have lweeisidered, whereas the
prior implied by polynomial kernels is less clear. Learnthg kernel would move us
to Type-3 shallow architectures or deep architecturesriestbelow.

3.1.3 Shallow Architecture Type 3

Simple trainable basis functions plus linear predictorufig 1(c) In Type-3 shallow
architectures, the first layer consists of simple basistfons that ar@rainable through
supervised learningThis can improve the efficiency of the function represeatatoy
tuning the basis functions to a task. Simple trainable bfasistions include linear
combinations followed by point-wise non-linearities anduSsian radial-basis func-
tions (RBF). Traditional neural networks with one hiddepelga and RBF networks
belong to that category. Kernel machines in which the kefunaition is learned (and
simple) also belong to the shallow Type-3 category. Manystiag algorithms belong
to this class as well. Unlike with Types 1 and 2, the output i®a-linear function
of the parameters to be learned. Hence the loss functionisnizied by learning are
likely to be non-convex in the parameters. The definition yb&-3 architectures is
somewhat fuzzy, since it relies on the ill-defined conceptsohple” parameterized
basis function.

We should immediately emphasize that the boundary betweevdrious cate-
gories is somewhat fuzzy. For example, training the hiddger of a one-hidden-layer
neural net (a type-3 shallow architecture) is a non-conveklgm, but one could imag-
ine constructing a hidden layer so large that all possibdelén unit functions would
be present from the start. Only the output layer would nedgktrained. More specif-
ically, when the number of hidden units becomes very largd,an L2 regularizer is
used on the output weights, such a neural net becomes a keaigbine, whose kernel
has a simple form that can be computed analytically [Bengad.e2006b]. If we use
the margin loss this becomes an SVM with a particular kerddthough convexity
is only achieved in the mathematical limit of an infinite nuenlof hidden units, we
conjecture that optimization of single-hidden-layer redunetworks becomes easier as
the number of hidden units becomes larger. If single-hididger neural nets have any
advantage over SVMs, it is that they can, in principle, ashisimilar performance
with a smaller first layer (since the parameters of the firgetacan be optimized for
the task).

Note also that our mathematical results on local kernel nm&share limited in
scope, and most are derived for specific kernels such as thestaa kernel, or for
local kernels (in the sense &f (u, v) being near zero whefu — v|| becomes large).
However, the arguments presented below concerning théosmedss of kernel ma-
chines are more general.

3.1.4 Deep Architectures

Deep architectures ammmpositions of many layers of adaptive non-linear comptsme
in other words, they are cascades of parameterized noarlimedules that contain
trainable parameters at all levels. Deep architecturesvate representation of wide
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families of functions in a more compact form than shallowhitectures, because they
can trade space for time (or breadth for depth) while makiregtime-space product
smaller, as discussed below. The outputs of the intermetiigers are akin to interme-
diate results on the way to computing the final output. Featproduced by the lower
layers represent lower-level abstractions, that are coatbio form high-level features
at the next layer, representing higher-level abstractions

3.2 The Depth-Breadth Tradeoff

Any specific function can be implemented by a suitably desigshallow architec-
ture or by a deep architecture. Similarly, when parameitggia family of functions,
we have the choice between shallow or deep architectures.iriportant questions
are: 1. how large is the corresponding architecture (witlv hwany parameters, how
much computation to produce the output); 2. how much maraledrlis involved in
specializing the architecture to the task.

Using a number of examples, we shall demonstrate that debjiestures are often
more efficient (in terms of number of computational compds@md parameters) for
representing common functions. Formal analyses of the atatipnal complexity of
shallow circuits can be found in Hastad [1987] or AllendE896]. They point in the
same direction: shallow circuits are much less expreshiae tleep ones.

Let us first consider the task of adding ti&bit binary numbers. The most natural
circuit involves adding the bits pair by pair and propagatime carry. The carry prop-
agation take®) (V) steps, and als@ (V) hardware resources. Hence the most natural
architecture for binary addition is a deep one, WifV') layers and)(N) elements.
A shallow architecture can implement any boolean formularessed in disjunctive
normal form (DNF), by computing the minterms (AND functigns the first layer,
and the subsequent OR function using a linear classifieréshiold gate) with a low
threshold. Unfortunately, even for simple boolean operetisuch as binary addition
and multiplication, the number of terms can be extremelyddup toO(2V) for N-bit
inputs in the worst case). The computer industry has in fagbted a considerable
amount of effort to optimize the implementation of expotarioolean functions, but
the largest it can put on a single chip has only about 32 ingat(b 4-Gbhit RAM
chip, as of 2006). This is why practical digital circuitsge for adding or multiplying
two numbers are built with multiple layers of logic gateseiti2-layer implementation
(akin to a lookup table) would be prohibitively expensivee3Utgoff and Stracuzzi,
2002] for a previous discussion of this question in the cxtrdélearning architectures.

Another interesting example is the boolean parity functidre N-bit boolean
parity function can be implemented in at least five ways:

(1) with N daisy-chained XOR gates (a-layer architecture or a recurrent circuit
with one XOR gate and/ time steps);

(2) with N —1 XOR gates arranged in a treel{&, N layer architecture), for a total
of O(N log N) components;

(3) a DNF formula withO(2") minterms (two layers).
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Architecture 1 has high depth and low breadth (small amofiobmputing elements),
architecture 2 is a good tradeoff between depth and breadith architecture 3 has
high breadth and low depth. If one allows the use of multuinpinary threshold
gates (linear classifiers) in addition to traditional logigtes, two more architectures
are possible [Minsky and Papert, 1969]:

(4) a 3-layer architecture constructed as follows. Thel@gtr hasV binary thresh-
old gates (linear classifiers) in which uritidds the input bits and subtraéis
hence computing the predicate = (SUM_OF_BITS > ). The second layer
contains(N — 1)/2 AND gates that computér; AN D(NOT X,1)) for all ¢
that are odd. The last layer is a simple OR gate.

(5) a 2-layer architecture in which the first layer is ideatito that of the 3-layer ar-
chitecture above, and the second layer is a linear threglattgl(linear classifier)
where the weight for input; is equal to(—2)".

The fourth architecture requires a dynamic range (accyranythe weight linear in

N, while the last one requires a dynamic range exponenti& inA proof that N-

bit parity requiresO(2") gates to be represented by a depth-2 boolean circuit (with
AND, NOT and OR gates) can be found in Ajtai [1983]. In theorifsection 4.1.1)
we state a similar result for learning architectures: anoegmtial number of terms is
required with a Gaussian kernel machine in order to reptebenparity function. In
many instances, space (or breadth) can be traded for tintefith) with considerable
advantage.

These negative results may seem reminiscent of the classitts in Minsky and
Papert’s book Perceptrons [Minsky and Papert, 1969]. Ttosksl come as no surprise:
shallow architectures (particularly of type 1 and 2) fatbiMinsky and Papert’s general
definition of a Perceptron and are subject to many of its itions.

Another interesting example in which adding layers is befis the fast Fourier
transform algorithm (FFT). Since the discrete Fourier$fanm is a linear operation, it
can be performed by a matrix multiplication wiffi> complex multiplications, which
can all be performed in parallel, followed ky(N?) additions to collect the sums.
However the FFT algorithm can reduce the total cos%mzﬁlog2 N, multiplications,
with the tradeoff of requiringog, N sequential steps involving multiplications each.
This example shows that, even with linear functions, addéygrs allows us to take
advantage of the intrinsic regularities in the task.

Because each variable can be either absent, present, dedéga minterm, there
are M = 3V different possible minterms when the circuit h&sinputs. The set of
all possible DNF formulae witlt minterms andV inputs has’' (M, k) elements (the
number of combinations of elements from\/). Clearly that set (which is associated
with the set of functions representable witiminterms) grows very fast with. Going
from k£ — 1 to £ minterms increases the number of combinations by a fddtbr k) / k.
Whenk is not close to)M, the size of the set of DNF formulae is exponential in the
number of inputsV. These arguments would suggest that only an exponentially (
N) small fraction of all boolean functions require a less tieaponential number of
minterms.
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We claim that most functions that can be represented cotydactieep architec-
tures cannot be represented by a compact shallow archiéedimagine representing
the logical operations ovek layers of a logical circuit into a DNF formula. The op-
erations performed by the gates on each of the layers any likeget combined into
a number of minterms that could be exponential in the origmanber of layers. To
see this, consider A layer logical circuit where every odd layer has AND gateslifwi
the option of negating arguments) and every even layer haga®es. Every AND-OR
consecutive layers corresponds to a sum of products in e@latithmetic. The whole
circuit is the composition of /2 such sums of products, and it is thus a diseyoriza-
tion of a formula. In general, when a factored representatiorseded into a single
sum of products, one gets a number of terms that can be expanianthe number
of levels. A similar phenomenon explains why most compactOdrmulae require
an exponential number of terms when written as a Conjuctivemél Form (CNF)
formula. A survey of more general results in computatiomehplexity of boolean cir-
cuits can be found in Allender [1996]. For example, HastB@8[7] show that for all
k, there are depth + 1 circuits of linear size that require exponential size todate
with depthk circuits. This implies thamost functions representable compactly with
a deep architecture would require a very large number of congmts if represented
with a shallow oneHence restricting ourselves to shallow architecturesubynliimits
the spectrum of functions that can be represented compaadyearned efficiently (at
least in a statistical sense). In particular, highly-vialegunctions (in the sense of hav-
ing high frequencies in their Fourier spectrum) are diffi¢alrepresent with a circuit
of depth 2 [Linial et al., 1993]. The results that we presergection 4 yield a similar
conclusion: representing highly-variable functions watisaussian kernel machine is
very inefficient.

3.3 The Limits of Matching Global Templates

Before diving into the formal analysis of local models, wengare the kernel machines
(Type-2 architectures) with deep architectures using g@tasa One of the fundamental
problems in pattern recognition is how to handle intra-sheariability. Taking the ex-
ample of letter recognition, we can picture the set of allghssible images of the letter
'E’ on a 20 x 20 pixel grid as a set of continuous manifolds in the pixel sp@cg., a
manifold for lower case and one for cursive). The E’s on a riwdghican be continu-
ously morphed into each other by following a path on the nwdifThe dimensionality
of the manifold at one location corresponds to the numbendépendent distortions
that can can be applied to an image while preserving its oage§or handwritten let-
ter categories, the manifold has a high dimension: lettensbe distorted using affine
transforms (6 parameters), distorted using an elastictstefermation (high dimen-
sion), or modified so as to cover the range of possible writiytes, shapes, and stroke
widths. Even for simple character images, the manifold iy ven-linear, with high
curvature. To convince ourselves of that, consider theslbéthe letter 'W’. Any pixel

in the lower half of the image will go from white to black and iéagain four times as
the W is shifted horizontally within the image frame fromtl&f right. This is the sign
of a highly non-linear surface. Moreover, manifolds for@ticharacter categories are
closely intertwined. Consider the shape of a capital U an®at the same location.
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They have many pixels in common, many more pixels in fact thih a shifted ver-
sion of the same U. Hence the distance between the U and OattEnig smaller than
the distance between two U’s shifted by a few pixels. Anothsight about the high
curvature of these manifolds can be obtained from the examglgure 4: the tangent
vector of the horizontal translation manifold changes phiyuas we translate the im-
age only one pixel to the right, indicating high curvatures discussed in section 4.2,
many kernel algorithms make an implicit assumption of allpamooth function (e.g.,
locally linear in the case of SVMs)round each training example . Hence a high cur-
vature implies the necessity of a large number of trainingneples in order to cover
all the desired twists and turns with locally constant orlbclinear pieces.

This brings us to what we perceive as the main shortcomingmiptate-based
methods: a very large number of templates may be requireddardo cover each
manifold with enough templates to avoid misclassificatidasrthermore, the number
of necessary templates can grow exponentially with thénisitt dimension of a class-
invariant manifold. The only way to circumvent the problerithna Type-2 architec-
ture is to design similarity measures for matching temglgteernel functions) such
that two patterns that are on the same manifold are deemelsirunfortunately,
devising such similarity measures, even for a problem a& lzssdigit recognition,
has proved difficult, despite almost 50 years of active nesed-urthermore, if such a
good task-specific kernel were finally designed, it may bgjptiaable to other classes
of problems.

To further illustrate the situation, consider the probleidetecting and identifying
a simple motif (say, of siz8 = 5 x5 pixels) that can appear atdifferent locationsin a
uniformly white image with/V pixels (say10° pixels). To solve this problem, a simple
kernel-machine architecture would require one templatthefmotif for each possi-
ble location. This require$V.D elementary operations. An architecture that allows
for spatially localfeature detectors would merely requi¥eD elementary operations.
We should emphasize that this spatial locality (featurectets that depend on pixels
within a limited radius in the image plane) is distinct fronetlocality of kernel func-
tions (feature detectors that produce large values onlinfaut vectors that are within
a limited radius in the input vector space). In fact, sphtialcal feature detectors have
non-local response in the space of input vectors, since theput is independent of
the input pixels they are not connected to.

A slightly more complicated example is the task of detectmgl recognizing a
pattern composed of two different motifs. Each motif ocegpi pixels, and can appear
at D different locations independently of each other. A kernaktirine would need a
separate template for each possible occurrence of the tvifsiriee., N. D2 computing
elements. By contrast, a properly designed Type-3 ardhiteevould merely require a
set of local feature detectors for all the positions of th&t finotifs, and a similar set for
the second motif. The total amount of elementary operai®asmere2.S5.D. We do
not know of any kernel that would allow to efficiently handangpositional structures.

An even more dire situation occurs if the background is natoumly white, but
can contain random clutter. A kernel machine would probaiggd many different
templates containing the desired motifs on top of many difiebackgrounds. By con-
trast, the locally-connected deep architecture desciiinéte previous paragraph will
handle this situation just fine. We have verified this type elidvior experimentally
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(see examples in section 6).

These thought experiments illustrate the limitations ahlkémachines due to the
fact that their first layer is restricted to matching the imiog patterns with global tem-
plates. By contrast, the Type-3 architecture that usesatlydbcal feature detectors
handles the position jitter and the clutter easily and effity. Both architectures are
shallow, but while each kernel function is activated in a bsu@a of the input space,
the spatially local feature detectors are activated by @&Klng— S)-dimensional sub-
space of the input space (since they only lookSgtixels). Deep architectures with
spatially-local feature detectors are even more efficiee¢ (Section 6). Hence the lim-
itations of kernel machines are not just due to their shaikess, but also to thiecal
character of their response function (local in input spaws,in the space of image
coordinates).

4 Fundamental Limitation of Local Learning

A large fraction of the recent work in statistical machinarl@ng has focused on
non-parametric learning algorithms which rely solely, kigy or implicitly, on a
smoothness prior A smoothness prior favors functionssuch that whemr ~ 2/,
f(z) = f(«'). Additional prior knowledge is expressed by choosing thecspof the
data and the particular notion of similarity between exatypically expressed as
a kernel function). This class of learning algorithms imt#s most instances of the
kernel machine algorithms [Scholkopf et al., 1999], sustSapport Vector Machines
(SVMs) [Boser et al., 1992, Cortes and Vapnik, 1995] or Geunsgrocesses [Williams
and Rasmussen, 1996], but also unsupervised learningtalgarthat attempt to cap-
ture the manifold structure of the data, such as Locally &irtembedding [Roweis and
Saul, 2000], Isomap [Tenenbaum et al., 2000], kernel PCAj&opf et al., 1998],
Laplacian Eigenmaps [Belkin and Niyogi, 2003], Manifold ating [Brand, 2003],
and spectral clusteringalgorithms (see Weiss [1999] for a review). More recently,
there has also been much interest in non-paramséngi-supervised learning algo-
rithms, such as Zhu et al. [2003], Zhou et al. [2004], Belkin et a0(2], Delalleau
et al. [2005], which also fall in this category, and share ynafeas with manifold
learning algorithms.

Since this is a large class of algorithms and one that coasino attract attention,
it is worthwhile to investigate its limitations. Since tlesiethods share many char-
acteristics with classical non-parametric statisticalrteng algorithms — such as the
k-nearest neighbors and the Parzen windows regression arsitydestimation algo-
rithms [Duda and Hart, 1973] — which have been shown to stiften the so-called
curse of dimensionalityit is logical to investigate the following question: to vilex-
tent do these modern kernel methods suffer from a similaolpra? See [Hardle et al.,
2004] for a recent and easily accessible exposition of thisecaf dimensionality for
classical non-parametric methods.

To explore this question, we focus on algorithms in whichlgened function is
expressed in terms of a linear combination of kernel fumgiapplied on the training
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examples:

fz) = b—|—2aiKD(x,xi) (1)
i=1
where we have included an optional bias térnThe setD = {z,...,z,} contains
training examples; = z; for unsupervised learning;;, = (z;,y;) for supervised

learning. Target valug; can take a special missing value for semi-supervised legrni
Theq;’s are scalars chosen by the learning algorithm ugh@ndK (-, -) is the ker-
nel function, a symmetric function (sometimes expectedetpdsitive semi-definite),
which may be chosen by taking into account all this. A typical kernel function is
the Gaussian kernel,

Ky (u,v) = 67712““71]“2, (2)

with the widtho controlling how local the kernel is. See Bengio et al. [20@4ee that
LLE, Isomap, Laplacian eigenmaps and other spectral mianigarning algorithms
such as spectral clustering can be generalized and writtéreiform of eq. 1 for a test
pointz, but with a different kernel (that is data-dependent, galheperforming a kind

of normalization of a data-independent kernel).

One obtains the consistency of classical non-parametiina®rs by appropriately
varying the hyper-parameter that controls the localityref eéstimator as increases.
Basically, the kernel should be allowed to become more ane hogal, so that statis-
tical bias goes to zero, but the effective number of examiplesved in the estimator
atz (equal tok for the k-nearest neighbor estimator) should increase awreases,
so that statistical variance is also driven to 0. For a wids<lof kernel regression
estimators, the unconditional variance and squared biabeahown to be written as
follows [Hardle et al., 2004]:

Ch
expected error = —— + Cho?,
nod

with C; andC, not depending om nor on the dimensiod. Hence an optimal band-
width is chosen proportional m)szld, and the resulting generalization error (not count-
ing the noise) converges tr*/(+4) which becomes very slow for large Consider
for example the increase in number of examples requiredttthgesame level of error,
in 1 dimension versugd dimensions. Ifn; is the number of examples required to get a
particular level of error, to get the same level of erroelidimensions requires on the
order ofng‘”d)/s examples, i.e., theequired number of examples is exponentiadin
For thek-nearest neighbor classifier, a similar result is obtairgthpp and Venkatesh,
1998]:

o
expected error = F, + Z cjnfj/d
j=2

whereFE, is the asymptotic errot] is the dimension and the number of examples.
Note however that, if the data distribution is concentrairdh lower dimensional
manifold, it is themanifold dimensiorthat matters. For example, when data lies on
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a smooth lower-dimensional manifold, the only dimensidpdhat matters to &:-
nearest neighbor classifier is the dimensionality of the ifolth since it only uses
the Euclidean distances between the near neighbors. Masypervised and semi-
supervised learning algorithms rely on a graph with one rmeteexample, in which
nearby examples are connected with an edge weighted by ttlel&an distance be-
tween them. If data lie on a low-dimensional manifold theodgsic distances in this
graph approach geodesic distances on the manifold [Tenemkéaal., 2000], as the
number of examples increases. However, convergence carpbeentially slower for
higher-dimensional manifolds.

4.1 Minimum Number of Bases Required

In this section we present results showing the number ofiredbases (hence of train-
ing examples) of a kernel machine with Gaussian kernel maw dinearly with the
number of variations of the target function that must be wegat in order to achieve a
given error level.

4.1.1 Result for Supervised Learning

The following theorem highlights the number of sign chantret a Gaussian kernel
machine can achieve, when it Wadases (i.e.k support vectors, or at leakttraining
examples).

Theorem 1(Theorem 2 of Schmitt [2002])Let f : R — R computed by a Gaussian
kernel machine (eq. 1) with bases (non-zera;’s). Thenf has at mos2k zeros.

We would like to say something about kernel machineRinand we can do this
simply by considering a straight line iR¢ and the number of sign changes that the
solution functionf can achieve along that line.

Corollary 2. Suppose that the learning problem is such that in order toeaveha given
error level for samples from a distributioR with a Gaussian kernel machine (eq. 1),
thenf must change sign at lea®k times along some straight line (i.e., in the case of a
classifier, the decision surface must be crossed at Basimes by that straight line).
Then the kernel machine must have at ldaktaises (non-zera;’s).

A proof can be found in Bengio et al. [20064a].

Example 3. Consider the decision surface shown in figure 2, which is assiidal
function. One may take advantage of the global regularityetrn it with few pa-
rameters (thus requiring few examples), but with an affiralioation of Gaussians,
corollary 2 implies one would need at legsf | = 10 Gaussians. For more complex
tasks in higher dimension, the complexity of the decisiofasa could quickly make
learning impractical when using such a local kernel method.

Of course, one only seeks to approximate the decision sufa@and does not
necessarily need to learn it perfectly: corollary 2 sayshimg about the existence of
an easier-to-learn decision surface approximatshgFor example, For instance, in
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Class -1

decision surface

Class 1

Figure 2: The dotted line crosses the decision surface 18stimne thus needs at least
10 Gaussians to learn it with an affine combination of Gaunssith same width.

the example of figure 2, the dotted line could turn out to be @dgenough estimated
decision surface if most samples were far from the true d@wtisurface, and this line
can be obtained with only two Gaussians.

The above theorem tells us that in order to represent a fumttiat locally varies a
lot, in the sense that its sign along a straight line changes/imes, a Gaussian kernel
machine requires many training examples and many compuotdtlements. Note that
it says nothing about the dimensionality of the input sphaewe might expect to have
to learn functions that vary more when the data is high-disieral. The next theorem
confirms this suspicion in the special case of dHats parity function:

. d .
parity : (by,...,bq) € {0,1}¢ — { 1_|1f 0%]7;\1,\,?;;5 even
Learning this apparently simple function with Gaussiangteed on points if0, 1}¢
is actually difficult, in the sense that it requires a humbeGaussians exponential
in d (for a fixed Gaussian width). Note that our corollary 2 doesagpply to thed-
bits parity function, so it represents another type of lo@lation (not along a line).
However, it is also possible to prove a very strong resulpianity.

d
Theorem 4. Let f(x) = b+ Zle a; K, (x;, x) be an affine combination of Gaussians
with same widthr centered on points; € X,. If f solves the parity problem, then
there are at least? ! non-zero coefficients;.

A proof can be found in Bengio et al. [20064a].
The bound in theorem 4 is tight, since it is possible to sdhesgarity problem with
exactly2?—! Gaussians and a bias, for instance by using a negative higstating a
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positive weight on each example satisfyipgrity(z;) = 1. When trained to learn the
parity function, a SVM may learn a function that looks likestbpposite of the parity
on test points (while still performing optimally on traimjmpoints), but it is an artifact
of the specific geometry of the problem, and only occurs whentiaining set size is
appropriate compared {& ;| = 2¢ (see Bengio et al. [2005] for details). Note that if
the centers of the Gaussians are not restricted anymorepoihts in the training set
(i.e., a Type-3 shallow architecture), it is possible tosedhe parity problem with only
d + 1 Gaussians and no bias [Bengio et al., 2005].

One may argue that parity is a simple discrete toy problenittié interest. But
even if we have to restrict the analysis to discrete samplég,i1 } for mathematical
reasons, the parity function can be extended to a smoothiéuman the[0, 1]¢ hyper-
cube depending only on the continuous stumt- . .. + by. Theorem 4 is thus a basis
to argue that the number of Gaussians needed to learn adarveiih many variations
in a continuous space may scale linearly with the numbereddtvariations, and thus
possibly exponentially in the dimension.

4.1.2 Results for Semi-Supervised Learning

In this section we focus on algorithms of the type describedcent papers [Zhu et al.,
2003, Zhou et al., 2004, Belkin et al., 2004, Delalleau ¢t24105], which are graph-
based, non-parametric, semi-supervised learning algost Note that transductive
SVMs [Joachims, 1999], which are another class of semitsigesl algorithms, are
already subject to the limitations of corollary 2. The grdpsed algorithms we con-
sider here can be seen as minimizing the following cost fancas shown in Delalleau
et al. [2005]: R R R R R
C(Y) = Vi = Vil + uY T LY + pe||Y||? ©)

with Y = (41,...,9») the estimated labels on both labeled and unlabeled data, and
L the (un-normalized) graph Laplacian matrix, derived thylodi = D~1/21W D-1/2

from a kernel functior’s’ between points such that the Gram matfix with W;; =
K(z;,x;), corresponds to the weights of the edges in the graph /aisla diagonal
matrix containing in-degreeD;; = . W;;. Here,Y; = (41,...,4) is the vector

of estimated labels on tHdabeled examples, whose known labels are givernyjby
(y1,-..,u), and one may constralfi = Y; as in Zhu et al. [2003] by letting — 0.

We define a region with constant label as a connected subské graph where all
nodesr; have the same estimated label (sig9f and such that no other node can be
added while keeping these properties.

Minimization of the cost criterion of eq. 3 can also be seenlabel propagation
algorithm, i.e., labels are spread around labeled exanwidsnearness being defined
by the structure of the graph, i.e., by the kernel. An intgitview of label propagation
suggests that a region of the manifold near a labeled (eogitiye) example will be
entirely labeled positively, as the example spreads itsénfte by propagation on the
graph representing the underlying manifold. Thus, the remobregions with constant
label should be on the same order as (or less than) the nurhiteveded examples.
This is easy to see in the case of a sparse Gram miftiXx\Ve define a region with
constant label as a connected subset of the graph whereddbnmg have the same
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estimated label (sign af;), and such that no other node can be added while keeping
these properties. The following proposition then holdstérnthat it is also true, but
trivial, when1V defines a fully connected graph).

Proposition 5. After running a label propagation algorithm minimizing tkest of
eg. 3, the number of regions with constant estimated labesisthan (or equal to) the
number of labeled examples.

A proof can be found in Bengio et al. [2006a]. The consequétteat we will need
at least as many labeled examples as there are variations tidss, as one moves by
small steps in the neighborhood graph from one contiguagismeof same label to an-
other. Again we see the same type of non-parametric leaalgumyithms with a local
kernel, here in the case of semi-supervised learning: we meayg about as many la-
beled examples as there are variations, even though areailigitarge number of these
variations could have been characterized more efficiehtin by their enumeration.

4.2 Smoothness versus Locality: Curse of Dimensionality

Consider a Gaussian SVM and how that estimator changes asdeso, the hyper-
parameter of the Gaussian kernel. For lasgene would expect the estimated function
to be very smooth, whereas for smallone would expect the estimated function to
be very local, in the sense discussed earlier: the near beiglofz have dominating
influence in the shape of the predictonat

The following proposition tells us what happens wieeis large, or when we con-
sider what a ball whose radius is small compared.to

Proposition 6. For the Gaussian kernel classifier, asincreases and becomes large
compared with the diameter of the data, within the smallpsese containing the data

the decision surface becomes lineapif «; = 0 (e.g., for SVMs), or else the normal
vector of the decision surface becomes a linear combinaifotwo sphere surface

normal vectors, with each sphere centered on a weightedageeof the examples of
the corresponding class.

A proof can be found in Bengio et al. [2006a].

Note that with this proposition we see clearly that wlsebecomes large, a kernel
classifier becomes non-local (it approaches a linear €legsi However, this non-
locality is at the price of constraining the decision sueféabe very smooth, making it
difficult to model highly varying decision surfaces. Thigh& essence of the trade-off
between smoothness and locality in many similar non-pati@emaodels (including
the classical ones such as k-nearest-neighbor and Parndows algorithms).

Now consider in what senses a Gaussian kernel machine is(tbagzing about
o small). Consider a test point that is near the decision surface. We claim that
the orientation of the decision surface is dominated by thighborsz; of = in the
training set, making the predicttmcal in its derivative If we consider they; fixed (i.e.,
ignoring their dependence on the trainimgs), then it is obvious that the prediction
f(x) is dominated by the near neighbarsof z, since K (x,z;) — 0 quickly when
||z — x;||/oc becomes large. However, the can be influenced by all the;’s. The
following proposition skirts that issue by looking at thesfiderivative off.
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Figure 3: For local manifold learning algorithms such as L. ld6map and kernel PCA,
the manifold tangent plane atis in the span of the difference vectors between test
pointz and its neighborsg; in the training set. This makes these algorithms sensitive
to the curse of dimensionality, when the manifold is highrdihsional and not very flat.

Proposition 7. For the Gaussian kernel classifier, the normal of the tangdrthe
decision surface at is constrained to approximately lie in the span of the vesctor
(z — x;) with ||z — z;|| not large compared te andx; in the training set.

Sketch of the Proof
The estimator i (z) = >, a; K (x, z;). The normal vector of the tangent plane at
a pointx of the decision surface is

0f(z) = Z aiLi — l)K(x,xl)

Ox o2

Each termis a vector proportional to the difference vegterz. This sum is dominated
by the terms with||z — ;|| not large compared te. We are thus left wnhw
approximately in the span of the difference vecters z; with z; a near ne|ghbor of
x. Theq; being only scalars, they only influence the weight of eaclghm®drz; in
that linear combination. Hence althougtiz) can be influenced by; far from x, the
decision surface nearhas a normal vector that is constrained to approximatelylie
the span of the vectors— xz; with x; nearz. Q.E.D.

The constraint of?— being in the span of the vectois— z; for neighborsz;
of x is not strong if the manifold of interest (e.g., the regiontloé decision surface
with high density) has low dimensionality. Indeed if thatnéinsionality is smaller or
equal to the number of dominating neighbors, then there isamstraint at all. How-
ever, when modeling complex dependencies involving maaotofa of variation, the
region of interest may have very high dimension (e.g., atergihe effect of variations
that have arbitrarily large dimension, such as changesuiter] background , etc. in
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images). For such a complex highly-varying target functivae also need a very local
predictor ¢ small) in order to accurately represent all the desiredatams. With a
smallo, the number of dominating neighbors will be small compacetthe dimension
of the manifold of interest, making this locality in the dexive a strong constraint,
and allowing the following curse of dimensionality argurhen

This notion of locality in the sense of the derivative allavesto define a ball around
each test point;, containing neighbors that have a dominating influence’§#.
Smoothness within that ball constrains the decision sarfade approximately either
linear (case of SVMs) or a particular quadratic form (theisien surface normal vector
is a linear combination of two vectors defined by the centenas$s of examples of each
class). LetNV be the number of such balls necessary to cover the regiaere the
value of the estimator is desired (e.g., near the targesecisurface, in the case of
classification problems). Lét be the smallest number such that one needs at keast
examples in each ball to reach error levelThe number of examples thus required
is kN. To see thatV can be exponential in some dimension, consider the maximum
radiusr of all these balls and the radidgof €. If 2 has intrinsic dimensiod, thenN
could be as large as the number of radiusalls that can tile @-dimensional manifold

of radiusR, which is on the order o(%)d.

In Bengio et al. [2005] we present similar results that agplynsupervised learn-
ing algorithms such as non-parametric manifold learniggathms [Roweis and Saul,
2000, Tenenbaum et al., 2000, Scholkopf et al., 1998, Bedkid Niyogi, 2003]. We
find that when the underlying manifold varies a lot in the seokhaving high curva-
ture in many places, then a large number of examples is redjudote that the tangent
plane of the manifold is defined by the derivatives of the kémmachine functiorf, for
such algorithms. The core result is that the manifold tabhgtamne atz is dominated
by terms associated with the near neighbors of the training set (more precisely it is
constrained to be in the span of the vectors x;, with z; a neighbor ofr). This idea
is illustrated in figure 3. In the case of graph-based madifighrning algorithms such
as LLE and Isomap, the domination of near examples is pefifectthe derivative is
strictly in the span of the difference vectors with the néigis), because the kernel im-
plicit in these algorithms takes value 0 for the non-neigbW@/ith such local manifold
learning algorithms, one needs to cover the manifold withlsenough linear patches
with at least/ + 1 examples per patch (whedés the dimension of the manifold). This
argument was previously introduced in Bengio and Monp€2085] to describe the
limitations of neighborhood-based manifold learning aitgons.

An example that illustrates that many interesting mangalan have high curvature
is that of translation of high-contrast images, shown inrggd. The same argument
applies to the other geometric invariances of images ofaibje

5 Deep Architectures

The analyzes in the previous sections point to the difficoftiearninghighly-varying
functions These are functions with a large numbewafiations(twists and turns) in
the domain of interest, e.g., they would require a large nemald pieces to be well-
represented by a piecewise-linear approximation. Sineenttmber of pieces can be
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tangent imagem
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high—contrast image

gent directions

Figure 4: The manifold of translations of a high-contrasage has high curvature. A
smooth manifold is obtained by considering that an imagesaraple on a discrete
grid of an intensity function over a two-dimensional spadée tangent vector for
translation is thus gangent imageand it has high values only on the edges of the ink.
The tangent plane for an image translated by only one pixddaimilar but changes
abruptly since the edges are also shifted by one pixel. Heérgclsvo tangent planes are
almost orthogonal, and the manifold has high curvaturectvis bad for local learning
methods, which must cover the manifold with many small Imgatches to correctly
capture its shape.

made to grow exponentially with the number of input variabtais problem is directly
connected with the well-known curse of dimensionality ftassical non-parametric
learning algorithms (for regression, classification anasity estimation). If the shapes
of all these pieces are unrelated, one needs enough exafopksch piece in order
to generalize properly. However, if these shapes are cekatel can be predicted from
each othemon-local learning algorithmbave the potential to generalize to pieces not
covered by the training set. Such ability would seem necg$salearning in complex
domains such as in the Al-set.

One way to represent a highly-varying function compactitifview parameters)
is through the composition of many non-linearities. Suchtiple composition of non-
linearities appear to grant non-local properties to th@regbr, in the sense that the
value of f(z) or f’(x) can be strongly dependent on training examples far figm
while at the same time allowing to capture a large number datians. We have al-
ready discussed parity and other examples (section 3.R}titmangly suggest that the
learning of more abstract functions is much more efficienémwit is done sequentially,
by composing previously learned concepts. When the reptasen of a concept re-
quires an exponential number of elements, (e.g., with d@halrcuit), the number of
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training examples required to learn the concept may alsonipesictical.

Gaussian processes, SVMs, log-linear models, graph-lvaaaifold learning and
graph-based semi-supervised learning algorithms careadelen as shallow architec-
tures. Although multi-layer neural networks with many legyean represent deep cir-
cuits, training deep networks has always been seen as sahefw challenge. Until
very recently, empirical studies often found that deep oetagenerally performed no
better, and often worse, than neural networks with one orftigden layers [Tesauro,
1992]. A notable exceptionto this is the convolutional méaetwork architecture [Le-
Cunetal., 1989, LeCun etal., 1998] discussed in the nekibsethat has a sparse con-
nectivity from layer to layer. Despite its importance, tbpit of deep network training
has been somewhat neglected by the research community.vidovaepromising new
method recently proposed by Hinton et al. [2006] is causingsargence of interest in
the subject.

A common explanation for the difficulty of deep network leamis the presence
of local minima or plateaus in the loss function. Gradieasdd optimization meth-
ods that start from random initial conditions appear to fjet trapped in poor local
minima or plateaus. The problem seems particularly direnfmrow networks (with
few hidden units or with a bottleneck) and for networks withmg symmetries (i.e.,
fully-connected networks in which hidden units are exclesige). The solution re-
cently introduced by Hinton et al. [2006] for training degyy¢red networks is based
on a greedy, layer-wise unsupervised learning phase . Thigpenvised learning phase
provides an initial configuration of the parameters with etha gradient-based super-
vised learning phase is initialized. The main idea of theupesvised phase is to pair
each feed-forward layer with a feed-back layer that attsnptreconstruct the input
of the layer from its output. This reconstruction criterignarantees that most of the
information contained in the input is preserved in the otigdihe layer. The resulting
architecture is a so-called Deep Belief Networks (DBN).ehthe initial unsupervised
training of each feed-forward/feed-back pair, the feedvard half of the network is
refined using a gradient-descent based supervised metlacH-flsopagation). This
training strategyholds great promise as a principle to break through the peoflof
training deep networkdJpper layers of a DBN are supposed to represent more abstrac
concepts that explain the input observatignvhereas lower layers extract low-level
features frome. Lower layers learn simpler concepts first, and higher layeiild on
them to learn more abstract concepts. This strategy hasatdieen much exploited
in machine learning, but it is at the basis of the greedy layiee constructive learning
algorithm for DBNs. More precisely, each layer is trainedmunsupervised way so as
to capture the main features of the distribution it sees pstint produces an internal
representation for its input that can be used as input fonéx layer. In a DBN, each
layer is trained as a Restricted Boltzmann Machine [Teh aimtiid, 2001] using the
Contrastive Divergence [Hinton, 2002] approximation of thg-likelihood gradient.
The outputs of each layer (i.e., hidden units) constitutecéofred and distributed rep-
resentation that estimates causes for the input of the.|&@fer the layers have been
thus initialized, a final output layer is added on top of théamek (e.g., predicting
the class probabilities), and the whole deep network istiimed by a gradient-based
optimization of the prediction error. The only differencélwan ordinary multi-layer
neural network resides in the initialization of the paraengtwhich is not random, but
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is performed through unsupervised training of each layer $equential fashion.

Experiments have been performed on the MNIST and other elatas try to un-
derstand why the Deep Belief Networks are doing much betizn teither shallow
networks or deep networks with random initialization. Téessults are reported and
discussed in [Bengio et al., 2007]. Several conclusionseairawn from these exper-
iments, among which the following, of particular interestéx

1. Similar results can be obtained by training each layemaswao-associator in-
stead of a Restricted Boltzmann Machine, suggesting thather general prin-
ciple has been discovered.

2. Test classification error is significantly improved witlich greedy layer-wise
unsupervised initialization over either a shallow networla deep network with
the same architecture but with random initialization. Ihcalses many possible
hidden layer sizes were tried, and selected based on vialidatror.

3. When using a greedy layer-wise strategy thatupervisednstead of unsuper-
vised, the results are not as good, probably becaus®ib igreedy unsupervised
feature learning extracts more information than stricédz@ssary for the predic-
tion task, whereas greedy supervised feature learningggreecause it does not
take into account that there will be more layers later) etfrdess information
than necessary, which prematurely scuttles efforts to avgby adding layers.

4. The greedy layer-wise unsupervised strategy helps gkr&tion mostly be-
cause it helps the supervised optimization to get startadanbetter solution.

6 Experiments with Visual Pattern Recognition

One essential question when designing a learning archied how to represent in-
variance. While invariance properties are crucial to amyneg task, it is particularly
apparentin visual pattern recognition. In this section wesider several experiments
in handwriting recognition and object recognition to ilkzte the relative advantages
and disadvantages of kernel methods, shallow archites;tarel deep architectures.

6.1 Representing Invariance

The example of figure 4 shows that the manifold containingrafislated versions of a
character image has high curvature. Because the manifoighsy varying, a classifier
that is invariant to translations (i.e., that produces astam output when the input
moves on the manifold, but changes when the input moves tithanclass manifold)
needs to compute a highly varying function. As we showed @engrevious section,
template-based method are inefficient at representingyrigarying functions. The
number of such variations may increase exponentially withdimensionality of the
manifolds where the input density concentrates. That d#ioerlity is the number of
dimensions along which samples within a category can vary.

We will now describe two sets of results with visual patteznagnition. The first
part is a survey of results obtained with shallow and deebpitectures on the MNIST

26



dataset, which contains isolated handwritten digits. Bo®grd part analyzes results of
experiments with the NORB dataset, which contains objeots five different generic
categories, placed on uniform or cluttered backgrounds.

For visual pattern recognition, Type-2 architectures haveble handling the wide
variability of appearance in pixel images that result froariations in pose, illumi-
nation, and clutter, unless an impracticably large numib¢emplates (e.g., support
vectors) are used. Ad-hoc preprocessing and feature égtnazan, of course, be used
to mitigate the problem, but at the expense of human labore Hee will concentrate
on methods that deal with raw pixel data and that integrattife extraction as part of
the learning process.

6.2 Convolutional Networks

Convolutional nets are multi-layer architectures in whilel successive layers are de-
signed to learn progressively higher-level features,| timé last layer which represents
categories. All the layers are trained simultaneously toimize an overall loss func-
tion. Unlike with most other models of classification andteat recognition, there is
no distinct feature extractor and classifier in a convohaimetwork. All the layers are
similar in nature and trained from data in an integratedifash

The basic module of a convolutional net is composed fefadure detection layer
followed by afeature pooling layer A typical convolutional net is composed of one,
two or three such detection/pooling modules in seriesovadid by a classification
module. The input state (and output state) of each layer easebn as a series of
two-dimensional retinotopic arrays called feature mapd.lafer i, the valuec;;,,
produced by the-th feature detection layer at positidn, y) in the j-th feature map
is computed by applying a series of convolution kernels, to feature maps in the
previous layer (with index — 1), and passing the result through a hyperbolic tangent
sigmoid function:

Pi—-1Q;—1
Cijzy = tanh <bv:j Y wz‘jkpqc(i1>,k,(z+p>,<y+q>> (4)
k

p=0 ¢q=0

whereP; andQ); are the width and height of the convolution kernel. The cdumion
kernel parameters;;.,,, and the bias;; are subject to learning. A feature detection
layer can be seen as a bank of convolutional filters followgdlpoint-wise non-
linearity. Each filter detects a particular feature at eMepation on the input. Hence
spatially translating the input of a feature detection tay#l translate the output but
leave it otherwise unchanged. Translation invariance isnadly built-in by constrain-

INg wijrpg = Wijrp o TOrall p,p’,q, ¢, i.e., the same parameters are used at different
locations.

A feature pooling layer has the same number of features imie as the feature
detection layer that precedes it. Each value in a subsagpiiap is the average (or
the max) of the values in a local neighborhood in the corredpwy feature map in
the previous layer. That average or max is added to a tranaibk, multiplied by a
trainable coefficient, and the result is passed through alinearity (e.g., thetanh
function). The windows are stepped without overlap. Thenrethe maps of a feature
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Figure 5. The architecture of the convolutional net usedtierNORB experiments.
The input is an image pair, the system extracts 8 feature wfgize92 x 92, 8 maps
of 23 x 23, 24 maps ofl 8 x 18, 24 maps of; x 6, and 100 dimensional feature vector.
The feature vector is then transformed into a 5-dimensigeelor in the last layer to
compute the distance with target vectors.

pooling layer are less than the resolution of the maps in teeipus layer. The role

of the pooling layer is build a representation that is insatito small variations of the
positions of features in the input. Alternated layers oftfiea detection and feature
pooling can extract features from increasingly large réigeields, with increasing

robustness to irrelevant variabilities of the inputs. TastImodule of a convolutional
network is generally a one- or two-layer neural net.

Training a convolutional net can be performed with stodogsin-line) gradient
descent, computing the gradients with a variant of the h@olpagation method. While
convolutional nets are deep (generally 5 to 7 layers of mo@ak functions), they do not
seem to suffer from the convergence problems that plagye fdég-connected neural
nets. While there is no definitive explanation for this, wepgct that this phenomenon
is linked to the heavily constrained parameterization, a§ as to the asymmetry of
the architecture.

Convolutional nets are being used commercially in severdely-deployed sys-
tems for reading bank check [LeCun et al., 1998], recoggihiandwriting for tablet-
PC, and for detecting faces, people, and objects in videa=airtime.

6.3 The lessons from MNIST

MNIST is a dataset of handwritten digits with 60,000 tragngamples and 10,000 test
samples. Digit images have been size-normalized so as tatlitva 20 x 20 pixel
window, and centered by center of mass i28ax 28 field. With this procedure, the
position of the characters vary slightly from one samplertother. Numerous authors
have reported results on MNIST, allowing precise compasdoetween methods. A
small subset of relevant results are listed in table 1. Nog@bd results on MNIST
are listed in the table. In particular, results obtainechvdeslanted images or with
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hand-designed feature extractors were left out.

Results are reported with three convolutional net archites: LeNet-5, LeNet-6,
and the subsampling convolutional net of [Simard et al.,00he input field is a
32 x 32 pixel map in which th&8 x 28 images are centered. In LeNet-5[LeCun et al.,
1998], the first feature detection layer produces 6 featuapsmf size28 x 28 using
5 x 5 convolution kernels. The first feature pooling layer proeli614 x 14 feature
maps through & x 2 subsampling ratio an2l x 2 receptive fields. The second feature
detection layer produces 16 feature maps of dize< 10 using5 x 5 convolution
kernels, and is followed by a pooling layer withx 2 subsampling. The next layer
produces 100 feature maps of sizex 1 using5 x 5 convolution kernels. The last
layer produces 10 feature maps (one per output categoryyet-6 has a very similar
architecture, but the number of feature maps at each leeahaich larger: 50 feature
maps in the first layer, 50 in the third layer, and 200 featuepsin the penultimate
layer.

The convolutional net in [Simard et al., 2003] is somewhatilsir to the original
one in [LeCun et al., 1989] in that there is no separate cativyl and subsampling
layers. Each layer computes a convolution with a subsampkedt (there is no feature
pooling operation). Their simple convolutional networlsttafeatures at the first layer,
with 5 by 5 kernels and 2 by 2 subsampling, 60 features at tt@sklayer, also with 5
by 5 kernels and 2 by 2 subsampling, 100 features at the tiyet With 5 by 5 kernels,
and 10 output units.

The MNIST samples are highly variable because of writindestiput have little
variation due to position and scale. Hence, it is a datasetstparticularly favorable
for template-based methods. Yet, the error rate yieldedupp8rt Vector Machines
with Gaussian kernel (1.4% error) is only marginally bettean that of considerably
smaller neural net with a single hidden layer of 800 hiddeitsufl.6% as reported
by [Simard et al., 2003]), and similar to the results obtdimgth a 3-layer neural
net as reported in [Hinton et al., 2006] (1.53% error). Thethesult every obtained
with a knowledge-free, SVM-like methods on MNIST is [Haffn@002] at 1.03%,
using the so-called Extrapolated Vector Machine methoti wérly stopping. Other
authors have reported different results with SVM on MNIS{i the digits were pre-
processed differently. For example, the 1.1% obtained patlfnomial SVM reported
in [Cortes and Vapnik, 1995] and [LeCun et al., 1998] was ioleté with digits cen-
tered by bounding box instead of by center of mass. The bseattgeon the original
MNIST set with a knowledge free method was reported in [Hirgbal., 2006] (0.95%
error), using a Deep Belief Network, which is a deep, fulppoected neural network
initially trained with a greedy layer-wise unsupervisedthual, and refined with super-
vised back-propagation. By knowledge-free method, we neearethod that has no
prior knowledge of the pictorial nature of the signal. Thasethods would produce
exactly the same result if the input pixels were scrambletl @ifixed permutation.

Convolutional nets use the pictorial nature of the data, thednvariance of cate-
gories to small geometric distortions. It is a broad (low @bexity) prior, which can
be specified compactly (with a short piece of code). Yet ingpsiabout a considerable
reduction of the ensemble of functions that can be learnduk Fest convolutional
net on the unmodified MNIST set is LeNet-6, which yields a rdd260%. As with
Hinton’s results, this result was obtained by initializithg filters in the first layer us-
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Classifier Defor- Error Reference
mations %

Knowledge-free methods

2-layer NN, 800 hid. units 1.60 Simard et al. 2003

3-layer NN, 500+300 units 1.53 Hinton et al. 2006

SVM, Gaussian kernel 1.40 DeCoste et al. 2002

EVM, Gaussian kernel 1.03 Haffner 2002

Unsupervised stacked RBM + backprop 0.95 Hinton et al. 2006
Convolutional networks

Convolutional network LeNet-5 0.80 Ranzato et al. 2006

Convolutional network LeNet-6 0.70 Ranzato et al. 2006

Conv. net. LeNet-6 + unsup. learning 0.60 Ranzato et al. 2006
Training set augmented with affine distortions

2-layer NN, 800 hid. units Affine 1.10 Simard et al. 2003

Virtual SVM, deg. 9 poly Affine 0.80 DeCoste et al. 2002

Convolutional network, Affine  0.60  Simard et al. 2003
Training set augmented with elastic distortions

2-layer NN, 800 hid. units Elastic 0.70 Simard etal. 2003

SVM Gaussian Ker. + on-line training Elastic 0.67 this vokjrohapte?
Shape context features + elastic K-NN Elastic 0.63 Beloaga. 2002
Convolutional network Elastic 0.40 Simard et al. 2003
Conv. net. LeNet-6 Elastic 0.49 Ranzato et al. 2006
Conv. net. LeNet-6 + unsup. learning Elastic 0.39 Ranzatd. @006

Table 1. Test error rates of various learning models on thel$MNdataset. Many
results obtained with deslanted images or hand-desigradréeextractors were left
out.

ing an unsupervised algorithm, prior to training with bgmopagation [Ranzato et al.,
2006]. The same LeNet-6 trained purely supervised fromaemnahitialization yields
0.70% error. A smaller convolutional net, LeNet-5 yield8@%. The same network
was reported to yield 0.95% in [LeCun et al., 1998] with a deralumber of training
iterations.

When the training set is augmented with elastically disibktersions of the training
samples, the test error rate (on the original, non-distidest set) drops significantly. A
conventional 2-layer neural network with 800 hidden unitdds 0.70% error [Simard
et al., 2003]. While SVMs slightly outperform 2-layer nelungts on the undistorted
set, the advantage all but disappears on the distorted sethid volume, Loosli et
al. report 0.67% error with a Gaussian SVM and a sample sefeptocedure. The
number of support vectors in the resulting SVM is considbr&drger than 800.

Convolutional nets applied to the elastically distortetlasghieve between 0.39%
and 0.49% error, depending on the architecture, the losgtim and the number of
training epochs. Simard et al. [2003] reports 0.40% with lassmpling convolutional
net. Ranzato et al. [2006] report 0.49% using LeNet-6 witidan initialization, and
0.39% using LeNet-6 with unsupervised pre-training of th fayer. This is the best
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error rate ever reported on the original MNIST test set (aithpreprocessing). For
comparison, we included the result of Belongie et al. [200B}ained using a hand-
built nearest neighbor method based on elastic matchingagfescontext feature rep-
resentations.

Hence a deep network, with small dose of prior knowledge eldéé in the archi-
tecture, combined with a learning algorithm that can dedhmiillions of examples,
goes a long way towards improving performance. Not only depdeetworks yield
lower error rates, they are faster to run and faster to trailacge datasets than the best
kernel methods. Layer-wise unsupervised initializationgistenly reduces the error
rate of convolutional nets by 0.1% over gradient-desceshfrandom initial condi-
tions.

6.4 The lessons from NORB

While MNIST is a useful benchmark, its images are simple ghdo allow a global
template matching scheme to perform well. Natural image3nbbjects with back-
ground clutter are considerably more challenging. NORB(Jue et al., 2004] is a
publicly available dataset of object images from 5 genegiegories. It contains im-
ages of 50 different toys, with 10 toys in each of the 5 geneategories: four-legged
animals, human figures, airplanes, trucks, and cars. Thebits are split into a
training set with 25 objects, and a test set with the remgi@fh object (see examples
in Figure 6).

Each object is captured by a stereo camera pair in 162 differews (9 elevations,
18 azimuths) under 6 different illuminations. Two datas#sived from NORB are
used. The first dataset, called thermalized-unifornset, are images of a single object
with a normalized size placed at the center of images witfoumi background. The
training set has 24,300 stereo image pairs of size®j and another 24,300 for testing
(from different object instances).

The second set, thtered-clutteredset, contains objects with randomly perturbed
positions, scales, in-plane rotation, brightness, andrashh The objects are placed
on highly cluttered backgrounds and other NORB objectsqulain the periphery. A
6-th category of images is included: background imagesaioinig no objects. Some
examples images of this set are shown in figure 7. Each imathe ijittered-cluttered
set is randomly perturbed so that the objects are at diffgresitions ([-3, +3] pixels
horizontally and vertically), scales (ratio in [0.8, 1 lihage-plane angles<{°, 5°]),
brightness ([-20, 20] shifts of gray scale), and contrg§ts8( 1.3] gain). The central
object could be occluded by the randomly placed distracforgenerate the training
set, each image was perturbed with 10 different configunatad the above parameters,
which makes up 291,600 image pairs of size £@88. The testing set has 2 drawings
of perturbations per image, and contains 58,320 pairs.

In the NORB datasets, the only useful and reliable clue istape of the object,
while all the other parameters that affect the appearaneeatject to variation, or
are designed to contain no useful clue. Parameters thatuljecs to variation are:
viewing angles (pose), lighting conditions. Potentialesdwhose impact was elimi-
nated include: color (all images are grayscale), and olga¢tire. For specific object
recognition tasks, the color and texture information mayhk#ful, but for generic
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Figure 6: The 25 testing objects in tim@rmalized-uniforrNORB set. The testing
objects are unseen by the trained system.

recognition tasks the color and texture information arérddions rather than useful
clues. By preserving natural variabilities and elimingtirrelevant clues and system-
atic biases, NORB can serve as a benchmark dataset in whigidden regularity that
would unfairly advantage some methods over others can lgk use

A six-layer net dubbed LeNet-7, shown in figure 5, was usedéexperiments
with the NORB dataset reported here. The architecture isngisdly identical to that
of LeNet-5 and LeNet-6, except of the sizes of the featuresn@pe input is a pair of
96x 96 gray scale images. The first feature detection layer wsdge 5< 5 convolution
kernels to generate 8 feature maps of $i2ex 92. The first 2 maps take input from
the left image, the next two from the right image, and the faftom both. There
are 308 trainable parameters in this layer. The first fegbo@ing layer uses a4
subsampling, to produce 8 feature maps of &izex 23. The second feature detection
layer uses 96 convolution kernels of size ®to output 24 feature maps of siz8 x
18. Each map takes input from 2 monocular maps and 2 binoculaspeach with
a different combination, as shown in figure 8. This configorats used to combine
features from the stereo image pairs. This layer conta#8Btrainable parameters.
The next pooling layer uses a3 subsampling which outputs 24 feature maps of size
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| | SVM | Conv Net | SVM/Conv |

test error 11.6% | 10.4% | 6.0% | 6.2% 5.9%
train time
(MIN*GHz) 480 64 448 | 3,200 50+
test time
per sample 0.95 0.03 0.04+
(sec*GHz)
fraction of S.V. 28% 28%
dim=80
parameters | ¢=2,000 step size = o=5
C=40 2x107°-2x1077 C=0.01

Table 2: Testing error rates and training/testing timingstloe normalized-uniform
dataset of different methods. The timing is normalized tpdtiietical 1GHz single
CPU. The convolutional nets have multiple results withetigint training passes due to
its iterative training.

6 x 6. The next layer haé x 6 convolution kernels to produce 100 feature maps of
sizel x 1, and the last layer has 5 units. In the experiments, we ajsortreesults
using a hybrid method, which consists in training the coatiohal network in the
conventional way, chopping off the last layer, and trairenGaussian kernel SVM on
the output of the penultimate layer. Many of the results ia ection were previously
reported in [Huang and LeCun, 2006].

6.5 Results on thenormalized-uniform set

Table 2 shows the results on the smaller NORB dataset witformibackground.
This dataset simulates a scenario in which objects can Heqtlgrsegmented from
the background, and is therefore rather unrealistic.

The SVM is composed of five binary SVMs that are trained tosifgone object
category against all other categories. The convolutioealtrained on this set has a
smaller penultimate layer with 80 outputs. The input feasuto the SVM of the hybrid
system are accordingly 80-dimensional vectors.

The timing figures in Table 2 represent the CPU time on a fietgilGHz CPU. The
results of the convolutional net trained after 2, 14, 10Gpasre listed in the table. The
network is slightly over-trained with more than 30 passesr@gularization was used in
the experiment). The SVM in the hybrid system is trained dlerfeatures extracted
from the network trained with 100 passes. The improvemerithefcombination is
marginal over the convolutional net alone.

Despite the relative simplicity of the task (no positionigéon, uniform back-
grounds, only 6 types of illuminations), the SVM performiex poorly. Interestingly,
it require a very large amount of CPU time for training andites The convolutional
net reaches the same error rate as the SVM with 8 times lesinggaime. Further
training halves the error rate. It is interesting that desjis deep architecture, its
non-convex loss, the total absence of explicit regulaioratnd a lack of tight gener-
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alization bounds, the convolutional net is both better @sder than an SVM.

6.6 Results on thgittered-cluttered set

The results on this set are shown in table 3. To classify theg€gories, 6 binary (“one
vs. others”) SVM sub-classifiers are trained independertigh with the full set of
291,600 samples. The training samples are ta& x 108 pixel image pairs turned
into a 23,328-dimensional input vector, with values betn@¢o 255.

| | SVM | Conv Net | SVM/Conv |
testerror | 43.3% | 16.38% | 7.5% | 7.2% 5.9%
train time
(Min*GHz) 10,944 420 2,100 | 5,880 330+
test time
per sample| 2.2 0.04 0.06+
(sec*GHz)
#SV 5% 2%
dim=100
parameters| ¢=10* step size = o=5
C=40 2x107° - 1x107¢ c=1

Table 3: Testing error rates and training/testing timingsteejittered-cluttereddataset
of different methods. The timing is normalized to hypotbatil GHz single CPU. The
convolutional nets have multiple results with differeatiting passes due to its iterative
training.

SVMs have relatively few free parameters to tune prior toriesy. In the case of
Gaussian kernels, one can choeg&aussian kernel sizes) anti(penalty coefficient)
that yield best results by grid tuning. A rather disappaigtiest error rate 0£3.3% is
obtained on this set, as shown in the first column of table & tf&ining time depends
heavily on the value of for Gaussian kernel SVMs. The experiments are run on a
64-CPU (1.5GHz) cluster, and the timing information is natized into a hypothetical
1GHz single CPU to make the measurement meaningful.

For the convolutional net LeNet-7, we listed results afifecent number of passes
(1, 5, 14) and their timing information. The test error raggténs out a?.2% after
about 10 passes. No significant over-training was obsearetino early stopping was
performed. One parameter controlling the training procedoust be heuristically cho-
sen: the global step size of the stochastic gradient praee@est results are obtained
by adopting a schedule in which this step size is progrelysiecreased.

A full propagation of one data sample through the networluies about 4 mil-
lion multiply-add operations. Parallelizing the convadutal net is relatively simple
since multiple convolutions can be performed simultanBoad each convolution
can be performed independently on sub-regions of the layldre convolutional nets
are computationally very efficient. The training time ssaseiblinearly with dataset
size in practice, and the testing can be done in real-timerateaof a few frames per
second.
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The third column shows the result of a hybrid system in whioh fiast layer of
the convolutional net was replaced by a Gaussian SVM aféémiirg. The training
and testing features are extracted with the convolutioealtrained after 14 passes.
The penultimate layer of the network has 100 outputs, tloeeghe features are 100-
dimensional. The SVMs applied on features extracted frarctnvolutional net yield
an error rate 05.9%, a significant improvement over either method alone. Byiipoe
rating a learned feature extractor into the kernel functibe SVM was indeed able to
leverage both the ability to use low-level spatially locehfures and at the same time
keep all the advantages of a large margin classifier.

The poor performance of SVM with Gaussian kernels on rawlgiienot unex-
pected. As we pointed out in previous sections, a Gaussiarek8VM merely com-
putes matching scores (based on Euclidean distance) bethweacoming pattern and
templates from the training set. This global template miatgfs very sensitive to vari-
ations in registration, pose, and illumination. More imaoitly, most of the pixels in
a NORB image are actually on the background clutter, ratiem bn the object to be
recognized. Hence the template matching scores are dadibgtirrelevant variabili-
ties of the background. This points to a crucial deficiencgtahdard kernel methods:
their inability to select relevant input features, and igniorelevant ones.

SVMs have presumed advantages provided by generalizadiomds, capacity con-
trol through margin maximization, a convex loss functiamg aniversal approximation
properties. By contrast, convolutional nets have no gdizateon bounds (beyond the
most general VC bounds), no explicit regularization, a higion-convex loss func-
tion, and no claim to universality. Yet the experimentalifeswith NORB show that
convolutional nets are more accurate than Gaussian SVMsfagtaer of 6, faster to
train by a large factor (2 to 20), and faster to run by a factd®

7 Conclusion

This work was motivated by our requirements for learningoalpms that could ad-
dress the challenge of Al, which include statistical scifitgp computational scala-
bility and human-labor scalability. Because the set of4dskolved in Al is widely
diverse, engineering a separate solution for each task s@&apractical. We have
explored many limitations okernel machineand othershallow architectures Such
architectures are inefficient for representing compleghhj-varying functions, which
we believe are necessary for Al-related tasks such as anigperception.

One limitation was based on the well-known depth-breaditietoff in circuits de-
sign Hastad [1987]. This suggests that many functions eamisch more efficiently
represented with deeper architectures, often with a madesber of levels (e.g., log-
arithmic in the number of inputs).

The second limitation regards mathematical consequerfdbe @urse of dimen-
sionality. It applies to local kernels such as the Gausse&mne{, in whichK (x, ;)
can be seen as a template matcher. It tells us that archigegtlying on local kernels
can be very inefficient at representing functions that hae@ywariations, i.e., func-
tions that are not globally smooth (but may still be locallyaoth). Indeed, it could be
argued thakernel machines are little more than souped-up templateneas
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A third limitation pertains to the computational cost offieiag. In theory, the con-
vex optimization associated with kernel machine learniieplg efficient optimization
and reproducible results. Unfortunately, most currenbatbms are (at least) quadratic
in the number of examples. This essentially precludes #ygatication to very large-
scale datasets for which linear- or sublinear-time al@pong are required (particularly
for on-line learning). This problem is somewhat mitigatgdécent progress with on-
line algorithms for kernel machines (e.g., see [Bordes.e805]), but there remains
the question of the increase in the number of support veatotise number of examples
increases.

A fourth and most serious limitation, which follows from tfiest (shallowness) and
second (locality) pertains to inefficiency iapresentation Shallow architectures and
local estimators are simply too inefficient (in terms of reqd number of examples and
adaptable components) to represent many abstract fusafanterest. Ultimately, this
makes them unaffordable if our goal is to learn the Al-set.d&aot mean to suggest
that kernel machines have no place in Al. For example, owltesuggest that com-
bining a deep architecture with a kernel machine that takeshtgher-level learned
representation as input can be quite powerful. Learningrtiresformation from pixels
to high-level features before applying an SVM is in fact a wajearn the kernel. We
do suggest that machine learning researchers aiming atltheoBlem should investi-
gate architectures that do not have the representationightions of kernel machines,
and deep architectures are by definition not shallow andllysuat local as well.

Until recently, many believed that training deep architees was too difficult an
optimization problem. However, at least two different aggrhes have worked well
in training such architectures: simple gradient desceptieg to convolutional net-
works [LeCun et al., 1989, LeCun et al., 1998] (for signalsl amages), and more
recently, layer-by-layer unsupervised learning followmdgradient descent [Hinton
et al., 2006, Bengio et al., 2007, Ranzato et al., 2006]. &ekeon deep architectures
is in its infancy, and better learning algorithms for deegh#tectures remain to be dis-
covered. Taking a larger perspective on the objective aisring learning principles
that can lead to Al has been a guiding perspective of this wékkhope to have helped
inspire others to seek a solution to the problem of scalingtimee learning towards Al.
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Figure 7: Some of the 291,600 examples from jittered-clutteredtraining set (left
camera images). Each column shows images from one cate§dith background
category is added
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Figure 8: The learned convolution kernels of the C3 layee Tblumns correspond to
the 24 feature maps output by C3, and the rows correspone @®feémature maps output
by the S2 layer. Each feature map draw from 2 monocular mag® dainocular maps

of S2. 96 convolution kernels are use in total.
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