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Learning in DAGs

e Two things could be learned:
- Graph structure
- Parameters governing the conditional probability distribution

* [earning the structure often involves a search over candidate structures
and a method to score each structure.
- In practice, it 1s often difficult to extract the conditional independence
relationships that make DAGs so appealing in the first place.
- MCMC methods are also used to search over the space of structures.

* We will focus on the problem of learning the parameters.




Maximum Likelihood Learning

e Consider the parameter set 60 = (0,..., 6) which govern the conditional
probability distributions P(X; | Pa;, 0).

* One way to learn the parameters 1s to maximize the likelihood (or
probability) of the data D (set of observed variables):

Oy = argmax{lnP(D |0)}
0
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0

Sum over H (latents)

could be problematic
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* When there are no latent variables, the situation 1s much easier:
- If we can condition on all the variables, the graph factors by d-separation and we can
estimate the parameters for all the P(X; | Pa;, 0) independently (eg. Naive Bayes Classifier).




ML Example: Multivariate Gaussian

Multivariate Gaussian distribution:

p(X =z)=N(z|pX) = ! exp{—2

/ \ (27)D/2|3|1/2

Mean Covariance

Maximum Likelihood Solution:

<— Nice simple closed-form

/ solutions

(xn — /LML)(xn — NML)T




Gaussian Mixture Models

* Now let’s consider a random variable distributed according to a mixture of Gaussians.
* Conditional distributions for a D-dimensional X:
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where I is an index over the multivariate Gaussian components in the mixture

and the mixing proportion, w;, is the marginal probability that X is generated
by mixture component .

« Marginal distributions: p(X =) =

P(x | 1)




Gaussian Mixture Models (cont.)

Graphical model:




Maximum Likelihood of GMM

e Log likelihood function:

Inp(D | w,u, % Zln{zwz (T | iy 2 )}

e Sum over mixture components appears inside the log

- No closed form ML solution




Complete and Incomplete Data

e If we knew the mixture component identities, things would be easier.

- This is the difference between complete data and incomplete data:

1 - 1

complete iIncomplete

e The complete data picture treats the latent variables as missing data.




The makings of an 1terative scheme

e Problem: we don’t know the values of the latent variables (they’re missing!)

 The EM idea: instead maximize the expected value of the complete-
data log likelihood

- with the expectation w.r.t. P(latents | observed, parameters)

1 - 1




Expectation-Maximization Algorithm

E-step (expectation): evaluate the posterior distribution P(Z | X, 6/d)
using current estimate, 0/, of the parameters.

M-step (maximization): re-estimate 6 by maximizing the expected
complete-data log-likelihood:

6" = argmax Q(0,0°)
0

arg max {Z P(Z | X,0°)InP(X,Z | 9)}
0 7

Note that the log and the summation have been exchanged - this will
often make the summation tractable.

Iterate E and M steps until convergence. Guaranteed to converge to a
local optimum with linear convergence rate




E Step: Mixture of Gaussians

e Calculate P(1, | X,, 0) for each observed example X,
Xn — [Xl,n7 SR 7Xd,n7 SR 7XD,n]T

P(I, =i | w)P(X, | I, =i, s, 55)
P(X;)
P(L, =i | w)P(Xy | I =i, 15, %)
> P(Ln = i | wi) P(X,, | In = i, i, )
wiN (X | i, 2)
> wiN (X | g, )

P(I,=1| X,,0)

Where § = {01,...,0;,...,0k},0; = {w;, pu;, 2;} and N (+) is the multivariate
Gaussian probability density function.




M Step: Mixture of Gaussians

e For mixtures of Gaussians:

0 «— arg max Pll,=1i|X,=2,00nP(X,, =x,,1, =10
g { 33P0, = i g

e We already computed P(1, =i | X, = x, ,0) in the E step and we can
decompose the joint P(X, = x,, I, =il 6’):

SN Plin | @, ) np(@n,in [0) = > Y Plin | zn,0) Inp(ay | in,0)P(in | ¢)
= > ) Plin |2, 0)Inw)+ Y Y Plin | zn,0) InN (2, | 1, X5)

 Now we maximize this expression w.r.t 6’ (on to the M step)




M Step: Mixture of Gaussians (cont.)

e Let’s consider updating w;: (subject to the constraint }’; w;’= 1)




M Step: Mixture of Gaussians (cont.)

 Now consider updating the mean vectors u;:

8 y / /
o [ZZP(zn | 0, ) IN N (x| 5, 25) | =0

n 7

S Plin | 2, 0)zy
quzvzl P(in | xnve)




M Step: Mixture of Gaussians (cont.)

e Finally, let’s consider updating the covariance matrices 2;:

882, ZZP(zn | 2, 0) In N (xy, | ,ug,ZfL.)] =0

62/ ZZP Zn | QEna <__ 1n(|2/|) ;( — ,Ui>TE;_1(£En — Nz))] — 0

This is the new u;

N . //;/
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EM Gaussian Mixture: Summary

e Given observed X; fo Xy and hidden variables /; to Iy (mixture
component) iterate E and M steps until convergence.

e E step: for each data point n compute

wiN (zy | pi, 2;)

P(iy | xn,0) =
Zf:l wJN(xn | g, 25)

* M step: Update the parameters of component i (from 1 to K) with

1 N
Wi — > Pliyn | 2,0)
n=1

SO Plin |z, 0)zy
Sy Plin | 2,,0)
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: GMM model of Old Faithful data
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eruptions
(minutes)

Duration of eruption (minutes)






















Over-fitting with Gaussian Mixtures

e Singularities (infinities) occur in the likelihood function when
components “collapse” onto a data point

1 1
2 — —
N(xp | xp,oI) = om) D72 — 00

e
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e Also, maximum likelihood cannot determine the number of mixture
components (the likelihood always increases with more components).




EM II: Clustering Documents with Naive Bayes

e Consider you have a collection of D unlabeled documents.

e Build an initial naive Bayes classifier with parameters 6. Use EM to find
the maximum likelihood estimation of the parameters.

e Naive Bayes assumption for document clustering:

- The probability of a document d; given class c; is the product of the probabilities of the
words wg;x in the document given that class:

P(d; | c;,0) HPwdch,)

- The model parameters are the probabilities of the words w; given the class cj: O ¢
(consider this as a class specific vocabulary) and the marginal probabilities of the class c;: 0,

e Repeat until convergence:

- E step: Use the current classifier (6) to estimate component membership of each unlabled
document, i.e. the probability that each class generated each document P(c; | d;, 0).

- M step: Re-estimate the classifier (6) given the estimated component membership of each
document.




EM II: Clustering Documents with Naive Bayes

e E step:
P(c; | 0)P(d; | c;,0)
P(d; | 9)
P(c; | 0) TIE, P(wa, i | ¢5,0)
S Pler | O T, Plwa, i | e, 0)

SUPU Num (wy, di) Py; = ¢; | d;)
S SR Num(w,, di) Py; = ¢ | d)

SIPUP(ys = ¢ | dy)
0., — Plc;|0)=
J D

P(wy | ije) —

where |D]| is the number of documents, C is the number of classes, |d;| is the
number of words in document d; and w; is the ¢-th word in the vocabulary of
size |V|.




EM: optimizing a lower bound

e Recall: our original goal is to maximize the likelihood p(X | 6).

e Suppose that direct optimization of p(X | 0) is difficult, but that

optimizing the complete-data likelihood function p(X, Z 1 0) is
significantly easier.

e Introduce a distribution g(Z) over the latents, for any choice of g(Z):

Inp(X | 0) = L(q,0) + KL(q||p)

KL (q|lp) I

A

Zq(z) 1m{p(x,z | 9)} Inp(D)

Z L(q)




EM: optimizing a lower bound (cont.)

e Maximizing L(q, 6) with respect to a free-form ¢ distribution, we
obtain the true posterior distribution:

9(2) =p(Z | X,0)

e The lower bound £(q, #) then becomes

L(q,0) > p(Z]X,6%)n {pfg‘(’; (‘9?21)}

Q(6,0°“) + const

which, as a function of 0 is the expected complete-data log likelihood
(up to an additive constant).




EM: optimizing a lower bound (cont.)

Initial Configuration:




EM: optimizing a lower bound (cont.)

E-step:




EM: optimizing a lower bound (cont.)
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