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Abstract

Theoretical results suggest that in order to learn the kfrsbmplicated functions that can represent high-
level abstractions (e.g. in vision, language, and otheledd! tasks), one may neeatkep architectures
Deep architectures are composed of multiple levels of inal operations, such as in neural nets with
many hidden layers or in complicated propositional forreule-using many sub-formulae. Searching the
parameter space of deep architectures is a difficult tagkdebming algorithms such as those for Deep
Belief Networks have recently been proposed to tackle thiblpm with notable success, beating the
state-of-the-art in certain areas. This paper discussemtitivations and principles regarding learning
algorithms for deep architectures, in particular thosdaitipg as building blocks unsupervised learning
of single-layer models such as Restricted Boltzmann Mashinsed to construct deeper models such as
Deep Belief Networks.

1 Introduction

Allowing computers to model our world well enough to exhilhiat we call intelligence has been the focus
of more than half a century of research. To achieve this, dléar that a large quantity of information
about our world should somehow be stored, explicitly or iaifly, in the computer. Because it seems
daunting to formalize manually all that information in arffothat computers can use to answer questions
and generalize to new contexts, many researchers havelttoiearning algorithmsto capture a large
fraction of that information. Much progress has been madmtierstand and improve learning algorithms,
but the challenge of artificial intelligence (Al) remainso e have algorithms that can understand scenes
and describe them in natural language? Not really, excepary limited settings. Do we have algorithms
that can infer enough semantic concepts to be able to itterdcmost humans using these concepts? No.
If we consider image understanding, one of the best spedfilte Al tasks, we realize that we do not yet
have learning algorithms that can discover the many vismdlsemantic concepts that would seem to be
necessary to interpret most images on the web. The situigt&milar for other Al tasks.

Consider for example the task of interpreting an input imageh as the one in Figure 1. When humans
try to solve a particular Al task (such as machine vision dura language processing), they often exploit
their intuition about how to decompose the problem into prdbblems and multiple levels of representation,
e.g., in object parts and constellation models (Weber, idggll& Perona, 2000; Niebles & Fei-Fei, 2007;
Sudderth, Torralba, Freeman, & Willsky, ) where models fmt@can be re-used in different object instances.
For example, the current state-of-the-art in machine mishwolves a sequence of modules starting from
pixels and ending in a linear or kernel classifier (Pinto, &G, & Cox, 2008; Mutch & Lowe, 2008), with
intermediate modules mixing engineered transformatioddearning, e.g. first extracting low-level features
that are invariant to small geometric variations (such geelbtectors from Gabor filters), transforming them



gradually (e.g. to make them invariant to contrast changdsantrast inversion, sometimes by pooling and
sub-sampling), and then detecting the most frequent patté plausible and common way to extract useful
information from a natural image involves transforming thev pixel representation into gradually more
abstract representations, e.g., starting from the presehedges, the detection of more complex but local
shapes, up to the identification of abstract categoriesaed with sub-objects and objects which are parts
of the image, and putting all these together to capture émanderstanding of the scene to answer questions
about it. Here, we assume that the computational machiremgssary to express complex behaviors (which
one might label “intelligent”) requirekighly varyingmathematical functions, i.e. mathematical functions
that are highly non-linear in terms of raw sensory inputsl, display a very large number of variations (ups
and downs) across the domain of interest. We view the rawt bogihe learning system as a high dimensional
entity, made of many observed variables, which are relagathknown intricate statistical relationships. For
example, using knowledge of the 3D geometry of solid objanttlighting, we can relate small variations in
underlying physical and geometric factors (such as positicientation, lighting of an object) with changes
in pixel intensities for all the pixels in an image. We cak#efactors of variatiorbecause they are different
aspects of the data that can vary separately and often indep#y. In this case, explicit knowledge of
the physical factors involved allows one to get a picturehef iInathematical form of these dependencies,
and of the shape of the set of images (as points in a high-diimeal space of pixel intensities) associated
with the same 3D object. If a machine captured the factoftsetk@lain the statistical variations in the data,
and how they interact to generate the kind of data we obsemeyould be able to say that the machine
understandshose aspects of the world covered by these factors of i@riat/nfortunately, in general and
for most factors of variation underlying natural images,deenot have an analytical understanding of these
factors of variation. We do not have enough formalized pkisowledge about the world to explain the
observed variety of images, even for such an apparentlylsiafystraction aMAN, illustrated in Figure 1.

A high-level abstraction such &8AN has the property that it corresponds to a very large set cfilples
images, which might be very different from each other froe ploint of view of simple Euclidean distance
in the space of pixel intensities. The set of images for withet label could be appropriate forms a highly
convoluted region in pixel space that is not even necegsadbnnected region. THRdAN category can be
seen as a high-level abstraction with respect to the spaosagies. What we call abstraction here can be a
category (such as thdAN category) or deature a function of sensory data, which can be discrete (thg.,
input sentence is at the past tense) or continuous (e.gthe input video shows an object moving at

a particular velocity). Many lower-level and intermediate-level concepts (vahiee also call abstractions
here) would be useful to constructMAN -detector. Lower level abstractions are more directly ted
particular percepts, whereas higher level ones are whatléneore abstract” because their connection to
actual percepts is more remote, and through other, intdateetvel abstractions.

In addition to the difficulty of coming up with the appropeahtermediate abstractions, the number of
visual and semantic categories (suchMN ) that we would like an “intelligent” machine to capture is
rather large. The focus of deep architecture learning isitoraatically discover such abstractions, from the
lowest level features to the highest level concepts. Igeake would like learning algorithms that enable
this discovery with as little human effort as possible,, ivéthout having to manually define all necessary
abstractions or having to provide a huge set of relevant felpeled examples. If these algorithms could
tap into the huge resource of text and images on the web, ilda@urtainly help to transfer much of human
knowledge into machine-interpretable form.

1.1 How do We Train Deep Architectures?

Deep learning methods aim at learning feature hierarchitbsfeatures from higher levels of the hierarchy
formed by the composition of lower level features. Autorcaty learning features at multiple levels of
abstraction allows a system to learn complex functions nmgpiine input to the output directly from data,
without depending completely on human-crafted featurdss iE especially important for higher-level ab-
stractions, which humans often do not know how to specifylieitly in terms of raw sensory input. The
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Figure 1: We would like the raw inputimage to be transformmed gradually higher levels of representation,

representing more and more abstract functions of the rawtjrmpg., edges, local shapes, object parts,
etc. In practice, we do not know in advance what the “righpresentation should be for all these levels
of abstractions, although linguistic concepts might halpgging what the higher levels should implicitly

represent.



ability to automatically learn powerful features will bene increasingly important as the amount of data
and range of applications to machine learning methodsmmoesito grow.

Depth of architectureefers to the number of levels of composition of non-lingaemtions in the func-
tion learned. Whereas most current learning algorithmespond tshallow architecture§l, 2 or 3 levels),
the mammal brain is organized irdaep architectur¢Serre, Kreiman, Kouh, Cadieu, Knoblich, & Poggio,
2007) with a given input percept represented at multiplelieof abstraction, each level corresponding to
a different area of cortex. Humans often describe such gisde hierarchical ways, with multiple levels
of abstraction. The brain also appears to process infoom#trough multiple stages of transformation and
representation. This is particularly clear in the primatgl system (Serre et al., 2007), with its sequence
of processing stages: detection of edges, primitive shapelsmoving up to gradually more complex visual
shapes.

Inspired by the architectural depth of the brain, neuraivoek researchers had wanted for decades to
train deep multi-layer neural networks (Utgoff & Stracy2002; Bengio & LeCun, 2007), but no success-
ful attempts were reported before 2008esearchers reported positive experimental results tyfifcally
two or three levels (i.e. one or two hidden layers), but irajrdeeper networks consistently yielded poorer
results. Something that can be considerdaemkthroughhappened in 2006: Hinton and collaborators at
U. of Toronto introduced Deep Belief Networks or DBNs for gh@linton, Osindero, & Teh, 2006), with
a learning algorithm that greedily trains one layer at a timeloiting an unsupervised learning algorithm
for each layer, a Restricted Boltzmann Machine (RBM) (Frk&Haussler, 1994). Shortly after, related
algorithms based on auto-encoders were proposed (Bengmblin, Popovici, & Larochelle, 2007; Ran-
zato, Poultney, Chopra, & LeCun, 2007), apparently exjplgithe same principleguiding the training of
intermediate levels of representation using unsupenisarching, which can be performed locally at each
level Other algorithms for deep architectures were proposea memently that exploit neither RBMs nor
auto-encoders and that exploit the same principle (We&atie, & Collobert, 2008) (see Section 4).

Since 2006, deep networks have been applied with successlydh classification tasks (Bengio et al.,
2007; Ranzato et al., 2007; Larochelle, Erhan, CourvillergBtra, & Bengio, 2007; Ranzato, Boureau, &
LeCun, 2008; Vincent, Larochelle, Bengio, & Manzagol, 2008med, Yu, Xu, Gong, & Xing, 2008),
but also in regression (Salakhutdinov & Hinton, 2008), disienality reduction (Hinton & Salakhutdinov,
2006a; Salakhutdinov & Hinton, 2007a), modeling textui@sifdero & Hinton, 2008), object segmenta-
tion (Levner, 2008), information retrieval (Salakhutdin& Hinton, 2007b; Ranzato & Szummer, 2008;
Torralba, Fergus, & Weiss, 2008), robotics (Hadsell, Erkeermanet, Scoffier, Muller, & LeCun, 2008),
natural language processing (Collobert & Weston, 2008;tovest al., 2008; Mnih & Hinton, 2009), and
collaborative filtering (Salakhutdinov, Mnih, & Hinton, @@). Although auto-encoders, RBMs and DBNs
can be trained with unlabeled data, in many of the above egipiins, they have been successfully used to
initialize deepsupervisedeedforward neural networks applied to a specific task.

1.2 Intermediate Representations: Sharing Features and Adiractions Across Tasks

Since a deep architecture can be seen as the compositioneoiea ef processing stages, the immediate
guestion that deep architectures raise is: what kind ofsprtation of the data should be found as the out-
put of each stage (i.e., the input of another)? What kindtefface should there be between these stages? A
hallmark of recent research on deep architectures is thesfoe these intermediate representations: the suc-
cess of deep architectures belongs to the representagiamseld in an unsupervised way by RBMs (Hinton
et al., 2006), ordinary auto-encoders (Bengio et al., 20p8rse auto-encoders (Ranzato et al., 2007, 2008),
or denoising auto-encoders (Vincent et al., 2008). Thagariéhms (described in more detail in Section 7.2)
can be seen as learning to transform one representationthat of the previous stage) into another, at
each step maybe disentangling better the factors of vanisitinderlying the data. As we discuss at length
in Section 4, it has been observed again and again that onsedargpresentation has been found at each

1Except for neural networks with a special structure call@avolutional networks, discussed in Section 4.5.



level, it can be used to initialize and successfully traireegineural network by supervised gradient-based
optimization.

Each level of abstraction found in the brain consists of thetivation” (neural excitation) of a small
subset of a large number of features that are, in generamuottally exclusive. Because these features are
not mutually exclusive, they form what is calleddastributed representatiofHinton, 1986a; Rumelhart,
Hinton, & Williams, 1986b): the information is not localidén a particular neuron but distributed across
many. In addition to being distributed, it appears that trerbuses a representation thasgarse only
a small fraction (around 1%) of the neurons are active tagetha given time (but that is already a very
large number of neurons). Section 3.2 introduces the natf@parse distributed representation and 7.1
describes in more detail the machine learning approacbess sspired by the observations of the sparse
representations in the brain, that have been used to bugld @ehitectures with sparse representations.

Whereas dense distributed representations are one extfenrgpectrum, and sparse representations are
in the middle of that spectrum, purely local representatiane the other extreme. Locality of representation
is intimately connected with the notion lofcal generalizationMany existing machine learning methods are
local in input spaceto obtain a learned function that behaves differently ffedent regions of data-space,
they require different tunable parameters for each of theg®ns (see more in Section 3.1). Even though
statistical efficiency is not necessarily poor when the neind tunable parameters is large, good general-
ization can be obtained only when adding some form of prigy. (fhat smaller values of the parameters are
preferred). When that prior is not task-specific, it tend®tae the solution to be very smooth, as discussed
in Section 3.1. In contrast to learning methods based on gerzeralization, the total number of patterns
that can be distinguished using a distributed represemtatiales possibly exponentially with the dimension
of the representation (i.e. the number of learned features)

In many machine vision systems, learning algorithms haen lienited to specific parts of such a pro-
cessing chain. The rest of the design remains labor-intensihich might limit the scale of such systems.
On the other hand, a hallmark of what we would consider iigietit machines includes a large enough reper-
toire of concepts. RecognizifgAN is not enough. We need algorithms that can tackle a very kEatef
such tasks and concepts. It seems daunting to manually diefinmany tasks, and learning becomes essen-
tial in this context. Furthermore, it would seem foolish tméxploit the underlying commonalities between
these tasks and between the concepts they require. Thigebaghe focus of research amulti-task learn-
ing (Caruana, 1993; Baxter, 1995; Intrator & Edelman, 1996,uhhd996; Baxter, 1997). Architectures
with multiple levels naturally provide such sharing anduse of components: the low-level visual features
(like edge detectors) and intermediate-level visual fiestlike object parts) that are useful to detdl&N
are also useful for a large group of other visual tasks. Deaming algorithms are based on learning inter-
mediate representations which can be shared across taskse khey can leverage unsupervised data and
data from similar tasks to boost performance on large anlieciging problems that routinely suffer from a
poverty of labelled data, as has been shown by Collobert aastdff (2008), beating the state-of-the-art in
several natural language processing tasks. A similar ftagki approach for deep architectures was applied
in vision tasks by Ahmed et al. (2008).

In addition, learning about a large set of interrelated epte might provide a key to the kind of broad
generalizations that humans appear able to do, which wedamtl expect from separately trained object
detectors, with one detector per visual category. If eaghevel category is itself represented through
a particular distributed configuration of abstract featuirem a common pool, generalization to unseen
categories could follow naturally from new configuratiofistese features. Even though only some config-
urations of these features would be present in the trainiageles, if they represent different aspects of the
data, new examples could meaningfully be represented bycoafigurations of these features.

1.3 Desiderata for Learning Al

Summarizing some of the above issues, and trying to put thetmei broader perspective of Al, we state a
number of requirements we perceive for learning algorittoregoproach Al.



o Ability to learn complex, highly-varying functions, i.avjth a number of variations much greater than
the number of training examples.

e Ability to learn with little human input the low-level, intmediate, and high-level abstractions that
would be useful to represent the kind of complex functioredeel for Al tasks.

e Ability to learn from a very large set of examples: computattime for training should scale well
with the number of examples, i.e. close to linearly.

e Ability to learn from mostly unlabeled data, i.e. to work hretsemi-supervised setting, where not all
the examples come with complete and correct semantic labels

o Ability to exploit the synergies present across a large nematbtasks, i.e. multi-task learning. These
synergies exist because all the Al tasks provide differeaws on the same underlying reality.

e Strongunsupervised learnin@.e. capturing most of the statistical structure in theesbed data),
which seems essential in the limit of a large number of taskksvahen future tasks are not known
ahead of time.

Other elements are equally important but are not directlynested to the material in this paper. They
include the ability to learn to represent context of varyleggth and structure (Pollack, 1990), so as to
allow machines to operate in a context-dependent strearhs#reations and produce a stream of actions,
the ability to make decisions when actions influence theréuabservations and future rewards (Sutton &
Barto, 1998), and the ability to influence future observatiso as to collect more relevant information about
the world, i.e. a form of active learning (Cohn, Ghahramé&niprdan, 1995).

1.4 Ouitline of the Paper

Section 2 reviews theoretical results (which can be skipp#tbut hurting the understanding of the remain-
der) showing that an architecture with insufficient depth cequire many more computational elements,
potentially exponentially more (with respect to input 3jzban architectures whose depth is matched to the
task. We claim that insufficient depth can be detrimentaldarning. Indeed, if a solution to the task is
represented with a very large but shallow architecturen(wiiny computational elements), a lot of training
examples might be needed to tune each of these elementsgtndeca highly-varying function. Section 3.1
is also meant to motivate the reader, this time to highligbtlimitations of local generalization and local
estimation, which we expect to avoid using deep architestuiith a distributed representation (Section 3.2).
In later sections, the paper describes and analyses somealtjorithms that have been proposed to train
deep architectures. Section 4 introduces concepts fromehel networks literature relevant to the task of
training deep architectures. We first consider the prewitifisulties in training neural networks with many
layers, and then introduce unsupervised learning alguosttihat could be exploited to initialize deep neural
networks. Many of these algorithms (including those forRgM) are related to theuto-encodera simple
unsupervised algorithm for learning a one-layer model tmahputes a distributed representation for its
input (Rumelhart et al., 1986b; Bourlard & Kamp, 1988; Hm&Zemel, 1994). To fully understand RBMs
and many related unsupervised learning algorithms, Seétiotroduces the class of energy-based models,
including those used to build generative models with hiddanables such as the Boltzmann Machine.
Section 6 focus on the greedy layer-wise training algorgtfor Deep Belief Networks (DBNs) (Hinton
et al., 2006) and Stacked Auto-Encoders (Bengio et al., 2R@nzato et al., 2007; Vincent et al., 2008).
Section 7 discusses variants of RBMs and auto-encodersi#ivat been recently proposed to extend and
improve them, including the use of sparsity, and the modeditemporal dependencies. Section 8 discusses
algorithms for jointly training all the layers of a Deep BxINetwork using variational bounds. Finally, we
consider in Section 9 forward looking questions such as thothesized difficult optimization problem
involved in training deep architectures. In particular,faow up on the hypothesis that part of the success
of current learning strategies for deep architectures iseoted to the optimization of lower layers. We



discuss the principle of continuation methods, which mingngradually less smooth versions of the desired
cost function, to make a dent in the optimization of deepisctures.

2 Theoretical Advantages of Deep Architectures

In this section, we present a motivating argument for thdystf learning algorithms for deep architectures,
by way of theoretical results revealing potential limitgs of architectures with insufficient depth. This part
of the paper (this section and the next) motivates the dlyos described in the later sections, and can be
skipped without making the remainder difficult to follow.

The main point of this section is that some functions caneatfficiently represented (in terms of number
of tunable elements) by architectures that are too shalltvse results suggest that it would be worthwhile
to explore learning algorithms for deep architectures,ciWwhhight be able to represent some functions
otherwise not efficiently representable. Where simplersnadlower architectures fail to efficiently represent
(and hence to learn) a task of interest, we can hope for legaigorithms that could set the parameters of a
deep architecture for this task.

We say that the expression of a functiorc@mpactwhen it has few computational elements, i.e. few
degrees of freedom that need to be tuned by learning. So fadrfiumber of training examples, and short of
other sources of knowledge injected in the learning algorjiwe would expect that compact representations
of the target functiohwould yield better generalization.

More precisely, functions that can be compactly represebyea deptht architecture might require an
exponential number of computational elements to be reptedey a depttk — 1 architecture. Since the
number of computational elements one can afford dependseonumber of training examples available to
tune or select them, the consequences are not just congnattbut also statistical: poor generalization may
be expected when using an insufficiently deep architectureepresenting some functions.

We consider the case of fixed-dimension inputs, where theotetion performed by the machine can
be represented by a directed acyclic graph where each noftermes a computation that is the application
of a function on its inputs, each of which is the output of &eothode in the graph or one of the external
inputs to the graph. The whole graph can be viewed aiscait that computes a function applied to the
external inputs. When the set of functions allowed for thepatation nodes is limited togic gates such
as{ AND, OR, NOT}, this is a Boolean circuit, dogic circuit.

To formalize the notion of depth of architecture, one musbiduce the notion of aet of computational
elementsAn example of such a set is the set of computations that caeifermed by an artificial neuron
(depending on the values of its synaptic weights). A funtian be expressed by the composition of
computational elements from a given set. It is defined by ptgrehich formalizes this composition, with
one node per computational element. Depth of architecafees to the depth of that graph, i.e. the longest
path from an input node to an output node. When the set of ctatipoal elements is the set of computations
an artificial neuron can perform, depth corresponds to thebau of layers in a neural network. Let us
explore the notion of depth with examples of architectufelifterent depths. Consider the functigifz) =
x xsin(a *x + b). It can be expressed as the composition of simple operagimisas addition, subtraction,
multiplication, and thein operation, as illustrated in Figure 2. In the example, tivesald be a different
node for the multiplicatior x = and for the final multiplication by.. Each node in the graph is associated
with an output value obtained by applying some function guuirvalues that are the outputs of other nodes
of the graph. For example, in a logic circuit each node canprdma Boolean function taken from a small
set of Boolean functions. The graph as a whole has input naxié®utput nodes and computes a function
from input to output. Thelepthof an architecture is the maximum length of a path from anyirgd the
graph to any output of the graph, i.e. 4 in the case ekin(a * « + b) in Figure 2.

¢ If we include affine operations and their possible compositvith sigmoids in the set of computa-
tional elements, linear regression and logistic regredsave depth 1, i.e., have a single level.

2The target function is the function that we would like thertes to discover.
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Figure 2: Examples of functions represented by a graph opcoations, where each node is taken in some
“element set” of allowed computations. Left: the elemen¢ga, +, —, sin} UR.. The architecture computes
zxsin(axz+b) and has depth 4. Right: the elements are artificial neurampatng f (x) = tanh(b+w’'x);
each element in the set has a differémt b) parameter. The architecture is a multi-layer neural netwbr
depth 3.

e When we put a fixed kernel computatidf(u, v) in the set of allowed operations, along with affine
operations, kernel machines (Scholkopf, Burges, & Sni#89a) with a fixed kernel can be consid-
ered to have two levels. The first level has one element canpii(x, x;) for each prototype; (a
selected representative training example) and matchesphévectorx with the prototypes;. The
second level performs an affine combination ), a; K (x, x;) to associate the matching prototypes
x; with the expected response.

e When we put artificial neurons (affine transformation folkmhby a non-linearity) in our set of el-
ements, we obtain ordinary multi-layer neural networksr{ielhart et al., 1986b). With the most
common choice of one hidden layer, they also have depth tveohidden layer and the output layer).

e Decision trees can also be seen as having two levels, asdestin Section 3.1.

e Boosting (Freund & Schapire, 1996) usually adds one levitgstbase learners: that level computes a
vote or linear combination of the outputs of the base leaner

e Stacking (Wolpert, 1992) is another meta-learning alganithat adds one level.

e Based on current knowledge of brain anatomy (Serre et ab.7Q0 appears that the cortex can be
seen as a deep architecture.

Although depth depends on the choice of the set of allowedpetations for each element, graphs
associated with one set can often be converted to graphsiatssbwith another by a translation operation
that multiplies depth. Theoretical results suggest thatribt the absolute number of levels that matters, but
the number of levels relative to how many are required toasgmt efficiently the target function (with some
choice of set of computational elements).

2.1 Computational Complexity

The most formal arguments about the power of deep archiesttome from investigations into computa-
tional complexity of circuits. The basic conclusion thatdk results suggest is thahen a function can be
compactly represented by a deep architecture, it might rreeery large architecture to be represented by
an insufficiently deep one



A two-layer circuit of logic gates can represent any Boolarction (Mendelson, 1997). Any Boolean
function can be written as a sum of products (disjunctiverrarform: AND gates on the first layer with
optional negation of inputs, and OR gate on the second layea) product of sums (conjunctive normal
form: OR gates on the first layer with optional negation ofuty and AND gate on the second layer).
To understand the limitations of shallow architectures, fihst result to consider is that with depth-two
logical circuits, most Boolean functions require@ponentialwith respect to input size) number of logic
gates (Wegener, 1987) to be represented.

More interestingly, there are functions computable wittolypomial-size logic gates circuit of depth
that require exponential size when restricted to dépthl (Hastad, 1986). The proof of this theorem relies
on earlier results (Yao, 1985) showing thibit parity circuits of depth 2 have exponential siZEhe d-bit
parity functionis defined as usual:

Lif Y% b, is even

o d
parity : (b1,...,bq) € {0,1}* — { 0 othanmise.

One might wonder whether these computational complexgulte for Boolean circuits are relevant to
machine learning. See Orponen (1994) for an early survdyemiretical results in computational complexity
relevant to learning algorithms. Interestingly, many @& thsults for Boolean circuits can be generalized to
architectures whose computational elementdiaear thresholdunits (also known as artificial neurons (Mc-
Culloch & Pitts, 1943)), which compute

f(x) = Lwx1b>0 (1)

with parametersv andb. Thefan-inof a circuit is the maximum number of inputs of a particulameént.
Circuits are often organized in layers, like multi-layeured networks, where elements in a layer only take
their input from elements in the previous layer(s), and tret fayer is the neural network input. Teizeof
a circuit is the number of its computational elements (ediclg input elements, which do not perform any
computation).

Of particular interest is the following theorem, which applto monotone weighted threshold circuits
(i.e. multi-layer neural networks with linear thresholdterand positive weights) when trying to represent a
function compactly representable with a depttircuit:

Theorem 2.1. A monotone weighted threshold circuit of depth 1 computing a functiorf;, € F n has
size at lease? for some constant > 0 and N > N, (Hastad & Goldmann, 1991).

The class of functiongy, n is defined as follows. It contains functions wil¥i**—2 inputs, defined by a
depthk circuit that is a tree. At the leaves of the tree there are gateg input variables, and the function
value is at the root. Theth level from the bottom consists of AND gates whiga even and OR gates when
i is odd. The fan-in at the top and bottom leveNsand at all other levels it i&/2.

The above results do not prove that other classes of furec(grch as those we want to learn to perform
Al tasks) require deep architectures, nor that these detnaded limitations apply to other types of circuits.
However, these theoretical results beg the question: arddhth 1, 2 and 3 architectures (typically found
in most machine learning algorithms) too shallow to repmeséiciently more complicated functions of the
kind needed for Al tasks? Results such as the above theosensadjgest thahere might be no universally
right depth each function (i.e. each task) might require a particularimum depth (for a given set of
computational elements). We should therefore strive telbgvlearning algorithms that use the data to
determine the depth of the final architecture. Note alsorbairsive computation defines a computation
graph whose depth increases linearly with the number ctitars.

2.2 Informal Arguments

Depth of architecture is connected to the notion of highdyying functions. We argue that, in general, deep
architectures can compactly represent highly-varyingfions which would otherwise require a very large
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Figure 3: Example of polynomial circuit (with products ondoldyers and sums on even ones) illustrating
the factorization enjoyed by a deep architecture. For eXathe level-1 producksxs would occur many
times (exponential in depth) in a depth 2 (sum of productpeson of the above polynomial.

size to be represented with an inappropriate architectWe.say that a function ikighly-varyingwhen

a piecewise approximation (e.g., piecewise-constant@rewise-linear) of that function would require a
large number of pieces. A deep architecture is a compogifionany operations, and it could in any case
be represented by a possibly very large depth-2 archigctlihe composition of computational units in
a small but deep circuit can actually be seen as an efficiagtdfization” of a large but shallow circuit.
Reorganizing the way in which computational units are cosepaan have a drastic effect on the efficiency
of representation size. For example, imagine a depthepresentation of polynomials where odd layers
implement products and even layers implement sums. Thistacture can be seen as a particularly efficient
factorization, which when expanded into a depth 2 architecsuch as a sum of products, might require a
huge number of terms in the sum: consider a level 1 produat fdkxs in Figure 3) from the deptRk
architecture. It could occur many times as a factor in manyseof the depth 2 architecture. One can see
in this example that deep architectures can be advantagfesame computations (e.g. at one level) can
be shared (when considering the expanded depth 2 exprisBidhat case, the overall expression to be
represented can be factored out, i.e., represented mongemtiymwith a deep architecture.

Further examples suggesting greater expressive poweregf aiechitectures and their potential for Al
and machine learning are also discussed by Bengio and LeZD@Y). An earlier discussion of the ex-
pected advantages of deeper architectures in a more aggpéispective is found in Utgoff and Stracuzzi
(2002). Note that connectionist cognitive psychologisteéehbeen studying for long time the idea of neu-
ral computation organized with a hierarchy of levels of esgntation corresponding to different levels of
abstraction, with a distributed representation at eachl igvcClelland & Rumelhart, 1981; Hinton & An-
derson, 1981; Rumelhart, McClelland, & the PDP Researchugrd986a; McClelland, Rumelhart, & the
PDP Research Group, 1986; Hinton, 1986b; McClelland & Rimart] 1988). The modern deep architec-
ture approaches discussed here owe all of these conceptesméarly developments. These concepts were
introduced in cognitive psychology (and then in computérsze / Al) in order to explain phenomena that
were not as naturally captured by earlier cognitive modetsl also to connect the cognitive explanation
with the computational characteristics of the neural galbest

To conclude, a number of computational complexity resuftsngly suggest that functions that can be
compactly represented with a degtlarchitecture could require a very large number of elementsder to
be represented by a shallower architecture. Since eacleetarfthe architecture might have to be selected,
i.e., learned, using examples, these results suggestepét df architecture can be very important from
the point of view of statistical efficiency. This notion isvidoped further in the next section, discussing a
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related weakness of many shallow architectures assoacidttedon-parametric learning algorithms: locality
in input space of the estimator.

3 Local vsNon-Local Generalization

3.1 The Limits of Matching Local Templates

How can a learning algorithm compactly represent a “comapdid” function of the input, i.e., one that has
many more variations than the number of available trainkangples? This question is both connected to the
depth question and to the question of locality of estimatéfs argue that local estimators are inappropriate
to learn highly-varying functions, even though they canepttilly be represented efficiently with deep
architectures. An estimator thatlscal in input spaceobtains good generalization for a new inpuby
mostly exploiting training examples in the neighborhoodkof For example, thé: nearest neighbors of
the test pointk, among the training examples, vote for the predictios.at. ocal estimators implicitly or
explicitly partition the input space in regions (possibiya soft rather than hard way) and require different
parameters or degrees of freedom to account for the possilge of the target function in each of the
regions. When many regions are necessary because theofurschighly varying, the number of required
parameters will also be large, and thus the number of exanmgleded to achieve good generalization.

The local generalization issue is directly connected tditeeature on thecurse of dimensionalifybut
the results we cite show thathat matters for generalization is not dimensionality, mstead the number
of “variations” of the function we wish to obtain after leanmy. For example, if the function represented
by the model is piecewise-constant (e.g. decision trebs)) the question that matters is the number of
pieces required to approximate properly the target functichere are connections between the number of
variations and the input dimension: one can readily designilfes of target functions for which the number
of variations is exponential in the input dimension, sucthasparity function withd inputs.

Architectures based on matching local templates can begtit@f as having two levels. The first level
is made of a set of templates which can be matched to the idptemplate unit will output a value that
indicates the degree of matching. The second level combivese values, typically with a simple linear
combination (an OR-like operation), in order to estimate desired output. One can think of this linear
combination as performing a kind of interpolation in ordeptoduce an answer in the region of input space
that is between the templates.

The prototypical example of architectures based on madchacal templates is thé&ernel ma-
chine(Scholkopf et al., 1999a)

FoO) =b+ Y aiK(x,x,), 2

whereb anda; form the second level, while on the first level, tkernel functionk (x, x;) matches the
inputx to the training exampleg; (the sum runs over some or all of the input patterns in thaitrgiset).
In the above equatiorf,(x) could be for example the discriminant function of a classifie the output of a
regression predictor.

A kernel islocal when K (x,x;) > p is true only forx in some connected region arourd(for some
thresholdp). The size of that region can usually be controlled by a hygaameter of the kernel function.
An example of local kernel is the Gaussian kerfdl, x;) = e~ !Ix=*ill’/* wheres controls the size of
the region arounc;. We can see the Gaussian kernel as computing a soft corganbgcause it can be
written as a product of one-dimensional conditiohu, v) = []; e~ (W=v)*/o* |f |u; — v,|/o is small
for all dimensiongj, then the pattern matches af(u, v) is large. Ifju; — v;|/o is large for a singlg,
then there is no match ardd(u, v) is small.

Well-known examples of kernel machines include Supportafeiglachines (SVMs) (Boser, Guyon, &
Vapnik, 1992; Cortes & Vapnik, 1995) and Gaussian proceds@iams & Rasmussen, 1998or classifi-

3In the Gaussian Process case, as in kernel regregiiaijn eq. 2 is the conditional expectation of the target vagabto predict,
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cation and regression, but also classical non-parametiaing algorithms for classification, regression and
density estimation, such as thenearest neighbor algorithm, Nadaraya-Watson or Parzedamis density
and regression estimators, etc. Below, we disoussifold learning algorithmsuch as Isomap and LLE that
can also be seen as local kernel machines, as well as retatecsapervised learning algorithms also based
on the construction of aeighborhood graplwith one node per example and arcs between neighboring
examples).

Kernel machines with a local kernel yield generalizatiorelploiting what could be called trmmooth-
ness prior the assumption that the target function is smooth or can édeapproximated with a smooth
function. For example, in supervised learning, if we haetthining exampléx;, y;), then it makes sense
to construct a predictof (x) which will output something close tg, whenx is close tox;. Note how this
prior requires defining a notion of proximity in input spacEhis is a useful prior, but one of the claims
made in Bengio, Delalleau, and Le Roux (2006) and Bengio atin (2007) is that such a prior is often
insufficient to generalize when the target function is hygldrying in input space.

The limitations of a fixed generic kernel such as the Gaudstamel have motivated a lot of research in
designing kernelbased on prior knowledge about the task (Jaakkola & Haydda8; Scholkopf, Mika,
Burges, Knirsch, Milller, Ratsch, & Smola, 1999b; Gart2®03; Cortes, Haffner, & Mohri, 2004). How-
ever, if we lack sufficient prior knowledge for designing gapeopriate kernel, can we learn it? This question
also motivated much research (Lanckriet, Cristianini,tB#r El Gahoui, & Jordan, 2002; Wang & Chan,
2002; Cristianini, Shawe-Taylor, Elisseeff, & Kandola,02), and deep architectures can be viewed as a
promising development in this direction. It has been shdwat & Gaussian Process kernel machine can
be improved using a Deep Belief Network to learn a featuresg&alakhutdinov & Hinton, 2008): after
training the Deep Belief Network, its parameters are useditialize a deterministic non-linear transfor-
mation (a multi-layer neural network) that computes a featector (a new feature space for the data), and
that transformation can be tuned to minimize the predicémor made by the Gaussian process, using a
gradient-based optimization. The feature space can beasearearned representation of the data. Good
representations bring close to each other examples whaoie stibstract characteristics that are relevant fac-
tors of variation of the data distribution. Learning algloms for deep architectures can be seen as ways to
learn a good feature space for kernel machines.

Consider one directior in which a target functiorf (what the learner should ideally capture) goes
up and down (i.e. a& increases,f(x + av) — b crosses 0, becomes positive, then negative, positive,
then negative, etc.), in a series of “bumps”. Following Sith(2002), Bengio et al. (2006), Bengio and
LeCun (2007) show that for kernel machines with a Gaussiaingkethe required number of examples
grows linearly with the number of bumps in the target funttio be learned. They also show that for a
maximally varying function such as the parity function, thember of examples necessary to achieve some
error rate with a Gaussian kernel machinexgonential in the input dimension

For complex tasks in high dimension, the complexity of theisien surface could quickly make learning
impractical when using a local kernel method. It could alsatgued that if the curve has many variations
and these variations are not related to each other throughdsrlying regularity, then no learning algorithm
will do much better than estimators that are local in inpwtcgp However, it might be worth looking for
more compact representations of these variations, bedare=could be found, it would be likely to lead to
better generalization, especially for variations not daghe training set. Of course this could only happen
if there were underlying regularities to be captured in Hrget function; we expect this property to hold in
Al tasks.

Estimators that are local in input space are found not orgypervised learning algorithms such as those
discussed above, but also in unsupervised and semi-sapdrigarning algorithms, e.g. Locally Linear
Embedding (Roweis & Saul, 2000), Isomap (Tenenbaum, daS8vLangford, 2000), kernel Principal
Component Analysis (Scholkopf, Smola, & Muller, 1998) kernel PCA) Laplacian Eigenmaps (Belkin &
Niyogi, 2003), Manifold Charting (Brand, 2003), spectrhistering algorithms Weiss (1999), and kernel-
based non-parametric semi-supervised algorithms (Zhah@mani, & Lafferty, 2003; Zhou, Bousquet,

given the inputx.
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Navin Lal, Weston, & Schdlkopf, 2004; Belkin, Matveeva, &Mgi, 2004; Delalleau, Bengio, & Le Roux,
2005). Most of these unsupervised and semi-supervisedthligs rely on theneighborhood grapha graph
with one node per example and arcs between near neighbdfrsth&se algorithms, one can get a geometric
intuition of what they are doing, as well as how being locaineators can hinder them. This is illustrated
with the example in Figure 4 in the case of manifold learnidgre again, it was found that in order to cover
the many possible variations in the function to be learned,meeds a number of examples proportional to
the number of variations to be covered (Bengio, Monperrusagchelle, 2006).

transformation

4 |

raw input vector space

Figure 4: The set of images associated with the same objes$ ébrms a manifold or a set of disjoint
manifolds, i.e. regions of lower dimension than the orijs@ace of images. By rotating or shrinking, e.g.,
a digit 4, we get other images of the same class, i.e. on the saamifold. Since the manifold is locally
smooth, it can in principle be approximated locally by linpatches, each being tangent to the manifold.
Unfortunately, if the manifold is highly curved, the patstege required to be small, and exponentially many
might be needed with respect to manifold dimension.

Finally let us consider the case of semi-supervised legraigorithms based on the neighborhood
graph (Zhu et al., 2003; Zhou et al., 2004; Belkin et al., 2(Ddlalleau et al., 2005). These algorithms
partition the neighborhood graph in regions of constantllali can be shown that the number of regions
with constant label cannot be greater than the number ofddlexamples (Bengio et al., 2006). Hence one
needs at least as many labeled examples as there are variatimterest for the classification. This can be
prohibitive if the decision surface of interest has a vergdanumber of variations.

Decision trees (Breiman, Friedman, Olshen, & Stone, 1982 among the best studied learning algo-
rithms. Because they can focus on specific subsets of inpisthkas, at first blush they seem non-local.
However, they are also local estimators in the sense ofnglgn a partition of the input space and using
separate parameters for each region (Bengio, Delalleaum&r8, 2007), with each region associated with
a leaf of the decision tree. This means that they also suféen the limitation discussed above for other
non-parametric learning algorithms: they need at least @syniraining examples as there are variations
of interest in the target function, and they cannot genegaldb new variations not covered in the training
set. Theoretical analysis (Bengio et al., 2007) shows fipatasses of functions for which the number of
training examples necessary to achieve a given error ratginential in the input dimension. This analysis
is built along lines similar to ideas exploited previoushtihe computational complexity literature (Cucker
& Grigoriev, 1999). These results are also in line with poexd empirical results (Pérez & Rendell, 1996;
Vilalta, Blix, & Rendell, 1997) showing that the generatipa performance of decision trees degrades when
the number of variations in the target function increases.

Ensembles of trees (like boosted trees (Freund & Schap®@§)]l and forests (Ho, 1995; Breiman,
2001)) are more powerful than a single tree. They add a tlkidlIto the architecture which allows the
model to discriminate among a number of regieponential in the number of parametéBengio et al.,
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2007). Asiillustrated in Figure 5, they implicitly formdastributed representatioa notion discussed further

in Section 3.2) with the output of all the trees in the for&sch tree in an ensemble can be associated with
a discrete symbol identifying the leaf/region in which timut example falls for that tree. The identity
of the leaf node in which the input pattern is associated &mhetree forms a tuple that is a very rich
description of the input pattern: it can represent a veigdaumber of possible patterns, because the number
of intersections of the leaf regions associated withrttieees can be exponentialin

3.2 Learning Distributed Representations

In Section 1.2, we argued that deep architectures call f&imgachoices about the kind of representation at
the interface between levels of the system, and we intratitiee basic notion of local representation (dis-
cussed further in the previous section), of distributedesgntation, and of sparse distributed representation.
The idea of distributed representation is an old idea in im&clearning and neural networks research (Hin-
ton, 1986b; Rumelhart et al., 1986a; Bengio, Ducharme, &¥in, 2001), and it may be of help in dealing
with the curse of dimensionality and the limitations of Ibganeralization. A cartoolocal representation
forintegersi € {1,2,..., N} is a vectorr (i) of IV bits with a single 1 an&v — 1 zeros, i.e. withj-th ele-
mentr; (i) = 1,—;, called theone-hotrepresentation of. A distributed representation for the same integer
could be a vector dbg, N bits, which is a much more compact way to represeRor the same number of
possible configurations, a distributed representationpecaentially be exponentially more compact than a
very local one. Introducing the notion spparsity(e.g. encouraging many units to take the value 0) allows for
representations that are in between being fully local (haximally sparse) and non-sparse (i.e. dense) dis-
tributed representations. Neurons in the cortex are ledli¢w have a distributed and sparse representation,
with around 1% of the neurons active at any one time. In practve often take advantage of representations
which are continuous-valued, which increases their esprepower. An example of continuous-valued lo-
cal representation is one where thth element varies according to some distance between ph amnd a
prototype or region center, as with the Gaussian kerneud&a in Section 3.1. In a distributed representa-
tion the input pattern is represented by a set of featur@satieanot mutually exclusive, and might even be
statistically independent. For example, clustering athors do not build a distributed representation since
the clusters are essentially mutually exclusive, wheradspendent Component Analysis (ICA) (Bell &
Sejnowski, 1995; Pearlmutter & Parra, 1996) and Principmh@onent Analysis (PCA) (Hotelling, 1933)
build a distributed representation.

Consider a discrete distributed representatifq) for an input patterrx, wherer;(x) € {1,...M},
i € {1,...,N}. Eachr;(x) can be seen as a classificationxoiinto M classes. As illustrated in Figure 5
(with M = 2), eachr;(x) partitions thex-space inM regions, but the different partitions can be combined
to give rise to a potentially exponential number of possilelgions inx-space, corresponding to different
configurations of:(x). Note that when representing a particular input distrimutsome configurations may
be impossible because they are incompatible. For exammplanguage modeling, a local representation of
a word could directly encode its identity by an index in thealoulary table, or equivalently a one-hot code
with as many entries as the vocabulary size. On the other, lzadidtributed representation could represent
the word by combining syntactic features (e.qg., distrilmutbver parts of speech it can have), morphological
features (which suffix or prefix does it have?), and semapttuires (is it the name of a kind of animal?).
Like in clustering, we construct discrete classes, but titeqdial number of combined classes is huge: we
obtain what we call anulti-clustering Whereas clustering forms a single partition and genenaliglves a
heavy loss of information about the input, a multi-clusigmprovides &etof separate partitions of the input
space. ldentifying which region of each partition the inpwample belongs to forms a description of the
input pattern which might be very rich, possibly not losimy &anformation. The tuple of symbols specifying
which region of each partition the input belongs to can b& seea transformation of the input into a new
space, where the statistical structure of the data and therfof variation in it could be disentangled. This
corresponds to the kind of partition afspace that an ensemble of trees can represent, as distussed
previous section. This is also what we would like a deep &echire to capture, but with multiple levels of
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Figure 5: Whereas a single decision tree (here just a 2-wditipa) can discriminate among a number of
regions linear in the number of parameters (leaves), amariseof trees can discriminate among a number
of regions exponential in the number of trees, i.e. expaakint the total number of parameters (at least
as long as the number of trees does not exceed the numberui§,inpghich is not quite the case here).
Each distinguishable region is associated with one of taeee of each tree (here there are 3 2-way trees,
each defining 2 regions, for a total of 7 regions). This is eajent to a multi-clustering, here 3 clusterings
each associated with 2 regions. A binomial RBM is a multstduing with 2 linearly separated regions
per partition (each associated with one binomial hiddet).uAi multi-clustering is therefore a distributed
representation of the input pattern.

representation, the higher levels being more abstractegrésenting more complex regions of input space.

In the realm of supervised learning, multi-layer neuraivogks (Rumelhart et al., 1986a, 1986b) and in
the realm of unsupervised learning, Boltzmann machine&lécHinton, & Sejnowski, 1985) have been
introduced with the goal of learning distributed interna@presentations in the hidden layers. Unlike in
the linguistic example above, the objective is to let leagralgorithms discover the features that compose
the distributed representation. In a multi-layer neuraivoek with more than one hidden layer, there are
several representations, one at each layer. Learningptaulévels of distributed representations involves a
challenging training problem, which we discuss next.

4 Neural Networks for Deep Architectures

4.1 Multi-Layer Neural Networks

A typical set of equations for multi-layer neural networlkunelhart et al., 1986b) is the following. As
illustrated in Figure 6, layek computes an output vect&” using the outpuh*~! of the previous layer,
starting with the inpuk = h?,

h* = tanh(b* + W* h*™1) ©)

with parameter®” (a vector of offsets) antl’* (a matrix of weights). Theanh is applied element-wise
and can be replaced bjgm(u) = 1/(1 + e~*) = (tanh(u) + 1) or other saturating non-linearities. The
top layer outpuh’ is used for making a prediction and is combined with a suged/targey into a loss
function L(h*, ), typically convex. The output layer might have a non-linigatifferent from the one used

in other layers, e.g., the softmax

£ £y, e—1
W ebi+Wih
L Zj ebj W ne=1

(4)

whereW/ is thei-th row of W, h! is positive andy_, h{ = 1. The softmax outpuh{ can be used as
estimator of P(Y = i|x), with the interpretation thalt” is the class associated with input patternin this
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Figure 6: Multi-layer neural network, typically used in supised learning to make a prediction or classifica-
tion, through a series of layers, each of which combinesfareadperation and a non-linearity. Deterministic
transformations are computed in a feedforward way from ipertix, through the hidden layeis”®, to the
network outpuh’, which gets compared with a labgto obtain the losg.(h?, y) to be minimized.

case one often uses the negative conditional log-liketihbt’, ) = — log hf; as a loss, whose expected
value over(x, y) pairs is to be minimized.

4.2 The Challenge of Training Deep Neural Networks

After having motivated the need for deep architectures dn@tnon-local estimators, we now turn to the
difficult problem of training them. Experimental evideneggests that training deep architectures is more
difficult than training shallow architectures (Bengio et @007; Erhan, Manzagol, Bengio, Bengio, & Vin-
cent, 2009).

Until 2006, deep architectures have not been discussed mtich machine learning literature, because
of poor training and generalization errors generally otgei(Bengio et al., 2007) using the standard random
initialization of the parameters. Note that dexmvolutional neural network@ eCun, Boser, Denker, Hen-
derson, Howard, Hubbard, & Jackel, 1989; LeCun, Bottou,gden& Haffner, 1998; Simard, Steinkraus,
& Platt, 2003; Ranzato et al., 2007) were found easier toti@s discussed in Section 4.5, for reasons that
have yet to be really clarified.

Many unreported negative observations as well as the arpatal results in Bengio et al. (2007), Erhan
et al. (2009) suggest that gradient-based training of dapprsised multi-layer neural networks (starting
from random initialization) gets stuck in local minima oaf#aus, and that as the architecture gets deeper,
it becomes more difficult to obtain good generalization. Whktarting from random initialization, the so-
lutions obtained with deeper neural networks appear toespand to poor solutions that perform worse
than the solutions obtained for networks with 1 or 2 hiddegeita (Bengio et al., 2007; Larochelle, Bengio,
Louradour, & Lamblin, 2009). However, it was discoveredr(tdn et al., 2006) that much better results
could be achieved when pre-training each layer with an uersiged learning algorithm, one layer after the
other, starting with the first layer (that directly takesmiput the observes). The initial experiments used
the RBM generative model for each layer (Hinton et al., 20863 were followed by experiments yielding
similar results using variations of auto-encoders foniraj each layer (Bengio et al., 2007; Ranzato et al.,
2007; Vincent et al., 2008). Most of these papers exploiidiea of greedy layer-wise unsupervised learn-
ing (developed in more detail in the next section): firstrirtie lower layer with an unsupervised learning
algorithm (such as one for the RBM or some auto-encoderng@fise to an initial set of parameter values
for the first layer of a neural network. Then use the outpuheffirst layer (a new representation for the raw
input) as input for another layer, and similarly initialiteat layer with an unsupervised learning algorithm.
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After having thus initialized a number of layers, the whodairal network can be fine-tuned with respect to
a supervised training criterion as usual. The advantagasidipervised pre-training versus random initial-
ization was clearly demonstrated in several statisticatgarisons (Bengio et al., 2007; Larochelle et al.,
2007, 2009; Erhan et al., 2009). What principles might explae improvement in classification error ob-
served in the literature when using unsupervised prei#gihOne clue may help to identify the principles
behind the success of some training algorithms for deeptaothires, and it comes from an algorithm that
exploits neither RBMs nor auto-encoders (Weston et al.820%hat this algorithm has in common with the
training algorithms based on RBMs and auto-encoders i to inject aminsupervised training signal
at each layetthat may help to guide the parameters of that layer towarterregions in parameter space.
In (Weston et al., 2008), the neural networks are trainedgupairs of example&x, x), which are either
supposed to be “neighbors” or not. Considiéi(x) the level+ representation of in the model. A local
training criterion is defined at each layer that pushes ttegrimediate representation(x) andh” (%) either
towards each other or away from each other, according tohehetandx are supposed to be neighbors or
not (k-nearest neighbors in input space, in the paper). The sataegam had already been used successfully
to learn a low-dimensional embedding with an unsupervisadifold learning algorithm (Hadsell, Chopra,
& LeCun, 2006).

Clearly, test errors can be significantly improved, at Iéaisthe types of tasks studied, but why? One
basic question to ask is whether the improvement is bagidak to better optimization or to better regular-
ization. As discussed below, the answer may not fit the usefalitlon of optimization and regularization.

In some experiments (Bengio et al., 2007; Larochelle e28l09) it is clear that one can get training
classification error down to zero even with a deep neural oitwhat has no unsupervised pre-training,
pointing more in the direction of a regularization effectthan optimization effect. Experiments in Erhan
et al. (2009) also give evidence in the same direction: fersdime training error (at different points during
training), test error is systematically lower with unsupsed pre-training. As discussed in Erhan et al.
(2009), unsupervised pre-training can be seen as a forngofaezer (and prior): unsupervised pre-training
amounts to a constraint on the region in parameter spacesvelsslution is allowed. The constraint forces
solutions near ones that correspond to the unsupervisaihgai.e., hopefully corresponding to solutions
capturing significant statistical structure in the input tBe other hand, other experiments (Bengio et al.,
2007; Larochelle et al., 2009) suggest that poor tuning®fatver layers might be responsible for the worse
results without pre-training: when the top hidden layerdestrained (forced to be small) tdeep networks
with random initialization (no unsupervised pre-trainjrdp poorly on both training and test seend much
worse than pre-trained networks. In the experiments meeti@arlier where training error goes to zero, it
was always the case that the number of hidden units in eaeh (ayhyper-parameter) was allowed to be as
large as necessary (to minimize error on a validation sdtg &xplanatory hypothesis proposed in Bengio
et al. (2007), Larochelle et al. (2009) is that when the tafgbn layer is unconstrained, the top two layers
(corresponding to a regular 1-hidden-layer neural netyaficient to fit the training set, using as input the
representation computed by the lower layers, even if thaesentation is poor. On the other hand, with
unsupervised pre-training, the lower layers are 'betteéindped’, and a smaller ore more regularized top
layer suffices to get a low training error but also yields éretteneralization. Other experiments described
in Erhan et al. (2009) are also consistent with the explanatiat with random parameter initialization,
the lower layers (closer to the input layer) are poorly tedin These experiments show that the effect of
unsupervised pre-training is most marked for the lowerrsupé a deep architecture.

We know that a two-layer network (one hidden layer) can bd wained in general, and that from
the point of view of the top two layers in a deep network, thegnf a shallow network whose input is
the output of the lower layers. If the top layers of a deep petwvithout unsupervised pre-training have
enough capacity (enough hidden units) this can be suffitdelting training error very low, but this yields
worse generalization than shallow neural networks. Whainitrg error is low and test error is high, we
usually call the phenomenon overfitting and since unsupedvpre-training brings test error down, that
would point to it as a kind of regularizer. On the other handhwetter initialization of the lower hidden
layers, both training and generalization error can be vany Me hypothesize that in a well-trained deep
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neural network, the hidden layers form a “good” represémtadf the data, which helps to make good
predictions. When the lower layers are poorly initializésbse deterministic and continuous representations
generally keep most of the information about the input, hese representations might scramble the input
and hurt rather than help the top layers to perform classifics that generalize well. Optimizing the last
layer of a deep neural network is often a convex optimizafiozblem. Optimizing the last two layers,
although not convex, is known to be much easier than optigiaideep network (in fact when the number
of hidden units goes to infinity, the training criterion ofveotlayer network can be cast as convex (Bengio,
Le Roux, Vincent, Delalleau, & Marcotte, 2006)). Accorditogthis hypothesis, although replacing the top
two layers of a deep neural network by a convex machine suahGeussian process or an SVM can yield
some improvements (Bengio & LeCun, 2007), especially orntri@ing error, it would not help much in
terms of generalization if the lower layers have not beeficently optimized, i.e., if a good representation
of the raw input has not been discovered.

Hence, one hypothesis is that unsupervised pre-trainitps lgeneralization by allowing for a 'better’
tuning of lower layers of a deep architecture. Althoughrirag error can be reduced either by exploiting
only the top layers ability to fit the training examples, betieneralization is achieved when all the layers are
tuned appropriately. Another source of better generatimatould come from a form of regularization: with
unsupervised pre-training, the lower layers are constthto capture regularities of the input distribution.
Consider random input-output paif&, Y). Such regularization is similar to the hypothesized effec
unlabeled examples in semi-supervised learning (LassBisbop, & Minka, 2006) or the regularization
effect achieved by maximizing the likelihood &f(X,Y") (generative models) v® (Y| X) (discriminant
models) (Ng & Jordan, 2001; Liang & Jordan, 2008). If the tieX) and P(Y'|X) are unrelated as
functions ofX (e.g., chosen independently, so that learning about oremiaténform us of the other), then
unsupervised learning d?(X) is not going to help learning(Y'| X). But if they are related, and if the
same parameters are involved in estimatig{) and P(Y'| X)®, then eacl{ X, Y") pair brings information
on P(Y|X) not only in the usual way but also through X). For example, in a Deep Belief Net, both
distributions share essentially the same parameterseqmatiameters involved in estimatiffY’| X ) benefit
from a form of data-dependent regularization: they havegre@to some extent witR(Y|X) as well as
with P(X).

Let us return to the optimization versus regularizationl@xation of the better results obtained with
unsupervised pre-training. Note how one should be carefighausing the word 'optimization’ here. We
do not have an optimization difficulty in the usual sense efword. Indeed, from the point of view of
the whole network, there is no difficulty since one can drianting error very low, by relying mostly
on the top two layers. However, if one considers the problétuming the lower layers (while keeping
small either the number of hidden units of the penultimageidi.e. top hidden layer) or the magnitude of
the weights of the top two layers), then one can maybe talkiaéo optimization difficulty. One way to
reconcile the optimization and regularization viewpomight be to consider the truly online setting (where
examples come from an infinite stream and one does not cycletheough a training set). In that case,
online gradient descent is performing a stochastic opttion of the generalization error. If the effect of
unsupervised pre-training was purely one of regularimatime would expect that with a virtually infinite
training set, online error with or without pre-training wdwonverge to the same level. On the other hand, if
the explanatory hypothesis presented here is correct, wévexpect that unsupervised pre-training would
bring clear benefits even in the online setting. To exploa¢ tluestion, we have used the 'infinite MNIST’
dataset (Loosli, Canu, & Bottou, 2007) i.e. a virtually intinstream of MNIST-like digit images (obtained
by random translations, rotations, scaling, etc. defin&inmard, LeCun, and Denker (1993)). As illustrated
in Figure 7, a 3-hidden layer neural network trained onlineverges to significantly lower error when it
is pre-trained (as a Stacked Denoising Auto-Encoder, se&o8e/.2). The figure shows progress with the

4For example, the MNIST digit images form rather well-sefettaclusters, especially when learning good representatieven
unsupervised (van der Maaten & Hinton, 2008), so that thésidecsurfaces can be guessed reasonably well even befeireg sy
label.

SFor example, all the lower layers of a multi-layer neuralegttmatingP (Y| X) can be initialized with the parameters from a Deep
Belief Net estimatingP(X).
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Figure 7: Deep architecture trained online with 10 millic@amples of digit images, either with pre-training
(triangles) or without (circles). The classification erstiown (vertical axis, log-scale) is computed online
on the next 1000 examples, plotted against the number of gheanseen from the beginning. The first
2.5 million examples are used for unsupervised pre-trgif@f a stack of denoising auto-encoders). The
oscillations near the end are because the error rate isdse t zero, making the sampling variations appear
large on the log-scale. Whereas with a very large trainihgespularization effects should dissipate, one can
see that without pre-training, training converges to a polmcal minimum: unsupervised pre-training helps
to find a better minimum of the online error. Experiments perfed by Dumitru Erhan.

online error (on the next 1000 examples), an unbiased MGatp estimate of generalization error. The first

2.5 million updates are used for unsupervised pre-trainite figure strongly suggests that unsupervised
pre-training converges to a lower error, i.e., that it actsamly as a regularizer but also to find better minima
of the optimized criterion.

To explain that lower layers would be more difficult to optimj the above clues suggest that the gradient
propagated backwards into the lower layer might not be seffico move the parameters into regions
corresponding to good solutions. According to that hypsitehe optimization with respect to the lower
level parameters gets stuck in a poor local minimum or platea. small gradient). Since gradient-based
training of the top layers works reasonably well, it wouldanghat the gradient becomes less informative
about the required changes in the parameters as we move daakds the lower layers. As argued in
Section 4.5, this might be connected with the observatiahdlep convolutional neural networks are easier
to train, maybe because they have a very special sparseatntityen each layer. There might also be a
link between this difficulty in exploiting the gradient ing@networks and the difficulty in training recurrent
neural networks through long sequences, analyzed in (léttehr1991; Bengio, Simard, & Frasconi, 1994;
Lin, Horne, Tino, & Giles, 1995). In recurrent neural netk&rthe difficulty can be traced to a vanishing (or
sometimes exploding) gradient propagated through manylinearities. There is an additional difficulty in
the case of recurrent neural networks, due to a mismatcheleetwshort-term (i.e., shorter paths in unfolded
graph of computations) and long-term components of theignadassociated with longer paths in that
graph).
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4.3 Unsupervised Learning for Deep Architectures

As we have seen above, layer-wise unsupervised learningdeasa crucial component of all the successful
learning algorithms for deep architectures up to now. Ifgrats of a criterion defined at the output layer
become less useful as they are propagated backwards to layess, it is reasonable to believe that an
unsupervised learning criterion defined at the level of glsitayer could be used to move its parameters in
a favorable direction. It would be reasonable to expectithie single-layer learning algorithm discovered
a representation that captures statistical regularitighelayer’s input. PCA and most variants of ICA
seem inappropriate because they generally do not make setise so-callecdbvercomplete casavhere
the number of outputs of the layer is greater than the numbis mputs. This suggests looking in the
direction of extensions of ICA to deal with the overcomplesse (Lewicki & Sejnowski, 1998; Hinton,
Welling, Teh, & Osindero, 2001; Teh, Welling, Osindero, &tbn, 2003), as well as algorithms related to
PCA and ICA, such as auto-encoders and RBMs, which can béedpplthe overcomplete case. Indeed,
experiments performed with these one-layer unsupervésgding algorithms in the context of a multi-layer
system confirm this idea (Hinton et al., 2006; Bengio et @07 Ranzato et al., 2007). Furthermore,
stacking linear projections (e.g. two layers of PCA) id stilinear transformation, i.e., not building deeper
architectures.

In addition to the motivation that unsupervised learninglddielp reduce the dependency on the unre-
liable update direction given by the gradient of a suped/igg@erion, we have already introduced another
motivation for using unsupervised learning at each levael@éep architecture. It could be a way to naturally
decompose the problem into sub-problems associated viféretit levels of abstraction. We know that
unsupervised learning algorithms can extract salientinétion about the input distribution. This informa-
tion can be captured in a distributed representation a.set of features which encode the salient factors of
variation in the input. A one-layer unsupervised learnifggpathm could extract such salient features, but
because of the limited capacity of that layer, the featuxémeted on the first level of the architecture can
be seen akw-level featureslt is conceivable that learning a second layer based onaime principle but
taking as input the features learned with the first layer @@xitract slightlyhigher-level featuresin this
way, one could imagine that higher-level abstractions ¢tharacterize the input could emerge. Note how
in this process all learning could remain local to each latferefore side-stepping the issue of gradient
diffusion that might be hurting gradient-based learningl@ép neural networks, when we try to optimize a
single global criterion. This motivates the next sectioheve we discuss deep generative architectures and
introduce Deep Belief Networks formally.

4.4 Deep Generative Architectures

Besides being useful for pre-training a supervised prediectnsupervised learning in deep architectures
can be of interest to learn a distribution and generate sssrfpbm it. Generative models can often be
represented as graphical models (Jordan, 1998): thesésaedized as graphs in which nodes represent ran-
dom variables and arcs say something about the type of depepéxisting between the random variables.
The joint distribution of all the variables can be writtenté@rms of products involving only a node and its
neighbors in the graph. With directed arcs (defining pamemdl, a node is conditionally independent of its
ancestors, given its parents. Some of the random variabkgiaphical model can be observed, and others
cannot (called hidden variables). Sigmoid belief netwakes generative multi-layer neural networks that
were proposed and studied before 2006, and trained usiraivaal approximations (Dayan, Hinton, Neal,
& Zemel, 1995; Hinton, Dayan, Frey, & Neal, 1995; Saul, Jad&k& Jordan, 1996; Titov & Henderson,
2007). In a sigmoid belief network, the units (typically &g random variables) in each layer are indepen-
dent given the values of the units in the layer above, agiifitesd in Figure 8. The typical parametrization
of these conditional distributions (going downwards iagtef upwards in ordinary neural nets) is similar to
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Figure 8: Example of a generative multi-layer neural nelybere a sigmoid belief network, represented as
a directed graphical model (with one node per random vagjabid directed arcs indicating direct depen-
dence). The observed dataisind the hidden factors at levelare the elements of vecth. The top layer

h3 has a factorized prior.

the neuron activation equation of eq. 3:

P(hf = 1[h*1) = sigm(bf + > "W/ Hhit) (5)
J

whereh! is the binary activation of hidden node layerk, h* is the vectoh¥, h%, .. .), and we denote the
input vectorx = h°. Note how the notatio®(. . .) always represents a probability distribution associated
with our model, wherea# is the training distribution (the empirical distributiofi the training set, or the
generating distribution for our examples). The bottom tayenerates a vectorin the input space, and we
would like the model to give high probability to the trainidgta. Considering multiple levels, the generative
model is thus decomposed as follows:

-1
P(x,h',... h") = P(h%) (H P(h’“|h’“+1)> P(x|h?) (6)
k=1
and marginalization yield®(x), but this is intractable in practice except for tiny modétsa sigmoid belief
network, the top level priaP (h*) is generally chosen to be factorized, i.e., very simpiéa’) = [, P(h?),
and a single Bernoulli parameter is required for e®¢h! = 1) in the case of binary units.
Deep Belief Networks are similar to sigmoid belief netwqiist with a slightly different parametrization
for the top two layers, as illustrated in Figure 9:
-2
P(x,h',... h") = P(h’~' h’) <H P(hk|hk“)> P(x|h'). 7)
k=1
The joint distribution of the top two layers is a RestrictedltBmann Machine (RBM),

— ’ —
P(hz’l,hg) . eb’h’Z Ltc'hf+n? wht—1! 8)

illustrated in Figure 10, and whose inference and trainiggrithms are described in more detail in Sec-
tions 5.3 and 5.4 respectively. This apparently slight gesfnrom sigmoidal belief networks to DBNs comes
with a different learning algorithm, which exploits the ot of training greedily one layer at a time, building
up gradually more abstract representations of the raw impaithe posteriord®(h*|x). A detailed descrip-
tion of RBMs and of the greedy layer-wise training algorithfar deep architectures follows in Sections 5
and 6.
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Figure 9: Graphical model of a Deep Belief Network with olvservectorx and hidden layerkh!, h? and
h3. Notation is as in Figure 8. The structure is similar to a sigivbelief network, except for the top
two layers. Instead of having a factorized prior #(h?), the joint of the top two layersl’(h?, h3), is a
Restricted Boltzmann Machine. The model is mixed, with dewsrows on the arcs between the top two
layers is because an RBM is an undirected graphical modedr#tan a directed one.

4.5 Convolutional Neural Networks

Although deep supervised neural networks were generaligddoo difficult to train before the use of un-

supervised pre-training, there is one notable exceptionvalutional neural networks. Convolutional nets
were inspired by the visual system’s structure, and in palgr by the models of it proposed by Hubel and
Wiesel (1962). The first computational models based on tloesd connectivities between neurons and on
hierarchically organized transformations of the imagefaved in Fukushima’s Neocognitron (Fukushima,
1980). As he recognized, when neurons with the same paresreate applied on patches of the previous
layer at different locations, a form of translational ineaice is obtained. Later, Le Cun, following up on

this idea, designed and trained convolutional networksgisiie error gradient, obtaining state-of-the-art
performance (LeCun et al., 1989; LeCun et al., 1998) on s¢yattern recognition tasks. Modern under-
standing of the physiology of the visual system is conststét the processing style found in convolutional

networks (Serre et al., 2007), at least for the quick redagmof objects, i.e., without the benefit of attention

and top-down feedback connections. To this day, pattewgrdton systems based on convolutional neural
networks are among the best performing systems. This hasdbemvn clearly for handwritten character

recognition (LeCun et al., 1998), which has served as a madbarning benchmark for many yeérs.

Concerning our discussion of training deep architectutles,example of convolutional neural net-
works (LeCun et al., 1989; LeCun et al., 1998; Simard et &0 Ranzato et al., 2007) is interesting
because they typically have five, six or seven layers, a nuofidayers which makes fully-connected neural
networks almost impossible to train properly when iniiatli randomly. What is particular in their architec-
ture that might explain their good generalization perfangesin vision tasks?

Le Cun’s convolutional neural networks are organized irefayof two types: convolutional layers and
subsampling layers. Each layer hasopographic structurgi.e., each neuron is associated with a fixed
two-dimensional position that corresponds to a locatiothéinput image, along with a receptive field (the
region of the input image that influences the response of¢lieam). At each location of each layer, there

6Maybe too many years? Itis good that the field is moving towandre ambitious benchmarks, such as those introduced byr,eC
Huang, and Bottou (2004), Larochelle et al. (2007).
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Figure 10: Undirected graphical model of a Restricted Bodan Machine (RBM). There are no links
between units of the same layer, only between input (or Msinitsx; and hidden unitd;, making the
conditionalsP(h|x) and P(x|h) factorize conveniently.

are a number of different neurons, each with its set of inpigits, associated with neurons in a rectangular
patch in the previous layer. The same set of weights, butferdift input rectangular patch, are associated
with neurons at different locations.

One untested hypothesis is that the small fan-in of thessone{few inputs per neuron) helps gradients
to propagate through so many layers without diffusing sohmasto become useless. Note that this alone
would not suffice to explain the success of convolutionaloeks, since random sparse connectivity is not
enough to yield good results in deep neural networks. Howewveeffect of the fan-in would be consistent
with the idea that gradients propagated through many patiduglly become too diffuse, i.e., the credit
or blame for the output error is distributed too widely andiyr Another hypothesis (which does not
necessarily exclude the first) is that the hierarchicalllooanectivity structure is a very strong prior that is
particularly appropriate for vision tasks, and sets thapeaters of the whole network in a favorable region
(with all non-connections corresponding to zero weightnfrwhich gradient-based optimization works
well. The fact is that even withandom weightsn the first layers, a convolutional neural network performs
well (Ranzato, Huang, Boureau, & LeCun, 2007), i.e., bdttan a trained fully connected neural network
but worse than a fully optimized convolutional neural netiwo

4.6 Auto-Encoders

Some of the deep architectures discussed below (Deep B#disfand Stacked Auto-Encoders) exploit as
component or monitoring device a particular type of neustivork: the auto-encoder, also called auto-
associator, or Diabolo network (Rumelhart et al., 1986hjiod & Kamp, 1988; Hinton & Zemel, 1994;
Schwenk & Milgram, 1995; Japkowicz, Hanson, & Gluck, 2000here are also connections between the
auto-encoder and RBMs discussed in Section 5.4.3, showaiguto-encoder training approximates RBM
training by Contrastive Divergence. Because training a@o-aacoder seems easier than training a deep
network, they have been used as building blocks to train deeporks, where each level is associated with
an auto-encoder that can be trained separately.

An auto-encoder is trained to encode the input in some reptaton so that the input can be recon-
structed from that representation. Hence the target owpthie auto-encoder is the auto-encoder input
itself. If there is one linear hidden layer and the mean segharror criterion is used to train the network,
then thek hidden units learn to project the input in the span of the firgtrincipal components of the
data (Bourlard & Kamp, 1988). If the hidden layer is non-nghe auto-encoder behaves differently from
PCA, with the ability to capture multi-modal aspects of thpuit distribution (Japkowicz et al., 2000). The
formulation that we prefer generalizes the mean squared eriterion to the minimization of the negative
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log-likelihood of the reconstruction, given the encoditg):
RE = —log P(x|c(x)). 9)

If x|c(x) is Gaussian, we recover the familiar squared error. If tpetsx; are either binary or considered
to be binomial probabilities, then the loss function woudd b

—log P(x|e(x)) = — in log f;(c(x)) + (1 — x;) log(1 — fi(c(x))) (10)

wheref(c(x)) is the output of the network, and in this case should be a veftoumbers in(0, 1), e.g.,
obtained with a sigmoid. The hope is that the cete) is a distributed representation that captures the
main factors of variation in the data: becausge) is viewed as a lossy compressionxgfit cannot be a
good compression (with small loss) for al] so learning drives it to be one that is a good compression in
particular for training examples, and hopefully for othasswell (and that is the sense in which an auto-
encoder generalizes), but not for arbitrary inputs.

One serious issue with this approach is that if there is neratbnstraint, then an auto-encoder with
dimensional input and an encoding of dimension at leasiuld potentially just learn the identity function,
for which many encodings would be useless (e.qg., just cgyia input). Surprisingly, experiments reported
in (Bengio et al., 2007) suggest that in practice, when &@iwith stochastic gradient descent, non-linear
auto-encoders with more hidden units than inputs (callestanmplete) yield useful representations (in the
sense of classification error measured on a network takisggpresentation in input). A simple explanation
is based on the observation that stochastic gradient desithrearly stopping is similar to af, regular-
ization of the parameters (Zinkevich, 2003; Collobert & B&n 2004). To achieve perfect reconstruction of
continuous inputs, a one-hidden layer auto-encoder withlimear hidden units needs very small weights in
the first layer (to bring the non-linearity of the hidden sriit their linear regime) and very large weights in
the second layer. With binary inputs, very large weightsadse needed to completely minimize the recon-
struction error. Since the implicit or explicit regularima makes it difficult to reach large-weight solutions,
the optimization algorithm finds encodings which only wor&lMor examples similar to those in the train-
ing set, which is what we want. It means that the repres@mtagiexploiting statistical regularities present
in the training set, rather than learning to replicate tremtdy.

There are different ways that an auto-encoder with moredridohits than inputs could be prevented from
learning the identity, and still capture something usehdw the input in its hidden representation. Instead
or in addition to constraining the encoder by explicit or limipregularization of the weights, one strategy is
to add noise in the encoding. This is essentially what RBMsadave will see later. Another strategy, which
was found very successful (Olshausen & Field, 1997; Doic&al & Lewicki, 2006; Ranzato et al., 2007;
Ranzato & LeCun, 2007; Ranzato et al., 2008; Mairal, BacmcBpSapiro, & Zisserman, 2009), is based
on a sparsity constraint on the code. Interestingly, thepeaaches give rise to weight vectors that match
well qualitatively the observed receptive fields of neurom¥1 and V2 (Lee, Ekanadham, & Ng, 2008),
major areas of the mammal visual system. The question o$ip#s discussed further in Section 7.1.

Whereas sparsity and regularization reduce represemdhtiapacity in order to avoid learning the iden-
tity, RBMs can have a very large capacity and still not leqmnitlentity, because they are not (only) trying
to encode the input but also to capture the statistical treén the input, by approximately maximizing the
likelihood of a generative model. There is a variant of agiacoder which shares that property with RBMs,
calleddenoising auto-encoddNincent et al., 2008). The denoising auto-encoder mingmithe error in
reconstructing the input from a stochastically corruptad$formation of the input. It can be shown that it
maximizes a lower bound on the log-likelihood of a geneeativodel. See Section 7.2 for more details.

5 Energy-Based Models and Boltzmann Machines

Because Deep Belief Networks (DBNs) are based on Restrizdsétdmann Machines (RBMs), which are
particularenergy-based models/e introduce here the main mathematical concepts helpfuhtlerstand
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them, includingContrastive DivergencéCD).

5.1 Energy-Based Models and Products of Experts

Energy-basednodels associate a scalar energy to each configuration ofattiebles of interest (LeCun

& Huang, 2005; LeCun, Chopra, Hadsell, Ranzato, & Huang62&&anzato, Boureau, Chopra, & LeCun,
2007). Learning corresponds to modifying that energy fimmcdo that its shape has desirable properties. For
example, we would like plausible or desirable configuratittrhave low energy. Energy-based probabilistic
models define a probability distribution through an energyction, as follows:

efEncrgy(x)

Pl =

(11)
i.e., energies operate in the log-probability domain. Tévelgeneralizesxponential familynodels (Brown,
1986), for which the energy functidfnergy(x) is linear inx. We will see below that the conditional dis-
tribution of one layer given another, in the RBM, can be takem any of the exponential family distribu-
tions (Welling, Rosen-Zvi, & Hinton, 2005).

The normalizing facto is called thepartition functionby analogy with physical systems,

7 — Z efEncrgy(x) (12)

with a sum running over the input space, or an appropriaggiat whenx is continuous.
In the product of expertformulation (Hinton, 1999, 2002), the energy function isiansof terms, each
one associated with an “experf;:

Im@®:2mm (13)

P(x) x HH(X) x He_fi(x). (14)

Each expertP;(x) can thus be seen as a detector of implausible configuratiosrs or equivalently, as
enforcing constraints or. This is clearer if we consider the special case whkfg) can only take two
values, one (small) corresponding to the case where théraontss satisfied, and one (large) corresponding
to the case where it is not. Hinton (1999) explains the acgeg of a product of experts by opposition to
a mixture of expertsvhere the product of probabilities is replaced by a weiglsteth of probabilities. To
simplify, assume that each expert corresponds to a conssthat can either be satisfied or not. In a mixture
model, the constraint associated with an expert is an itidicaf belonging to a region which excludes
the other regions. One advantage of the product of expentsulation is therefore that the set ¢f(x)
forms a distributed representation: instead of trying tdifi@n the space with one region per expert as in
mixture models, they partition the space according to a&llgbssible configurations (where each expert can
have its constraint violated or not). Hinton (1999) prombsaa algorithm for estimating the gradient of
log P(x) in eq. 14 with respect to parameters associated with eadrexising a variant (Hinton, 2002) of
the Contrastive Divergence algorithm (Section 5.4).

5.1.1 Introducing Hidden Variables

In many cases of interest, we do not observe the exarfullly, or we want to introduce some non-observed
variables to increase the expressive power of the model. &sconsider an observed part (still denoted
here) and &iddenparth

e—Energy(x,h)

P(x,h) = Z

(15)
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and because only is observed, we care about the marginal

efEncrgy(x,h)

P(x)=>_ — (16)

In such cases, to map this formulation to one similar to egwielintroduce the notation (inspired from
physics) offree energydefined as follows:

e—FreeEnergy(x)

—, )

P(x) =
with Z = 3= e~ FrecEnerey(x) j g,

FreeEnergy(x) = — log Z ¢~ Energy(x.h), (18)

So the free energy is just a marginalization of energiesendlg-domain. The data log-likelihood gradient
then has a particularly interesting form. Let us introddde represent parameters of the model. Starting
from eq. 17, we obtain

Olog P(x) _ OFreeEnergy(x) n 1 Z o—FrecEnergy(%) OFreeEnergy(x)
00 00 Z 00
B BFreeEnergy 6F‘reeEnergy( )
= Z P(x = (19)
Hence the average log-likelihood gradient over the trajsiet is
dlog P(x)| OFreeEnergy(x) OFrecEnergy(x)
Fe [ oo |~ e 0 +br 00 €0

where expectations are oveywith P the training set empirical distribution argp the expectation under
the model’s distributio®. Therefore, if we could sample frofd and compute the free energy tractably, we
would have a Monte-Carlo method to obtain a stochastic estinof the log-likelihood gradient.

If the energy can be written as a sum of terms associated wittost one hidden unit

Energy(x, h) )+ Z% x, h;) (21)

a condition satisfied in the case of the RBM, then the freeggnand numerator of the likelihood can be
computed tractably (even though it involves a sum with aroagptial number of terms):

P(X) _ %e—FreeEnergy(x) — %ge—Energy(X,h)
5 0 S D 2 i M | (R
Z h; hy Z i ho '
_ eB(x) o~ (xh) Z e~ 2(xh2) Z e~ Yk (xhy)
Z ™ o hy,
_ e~ i (xhi) (22)
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In the abovey -, is a sum over all the values thht can take (e.g. 2 values in the usual binomial units
case); note how that sum is much easier to carry out than thg Sy over all values oh. Note that all sums
can be replaced by integraldlifis continuous, and the same principles apply. In many caseseoest, the
sum or integral (over a single hidden unit’s values) is eaggompute. The numerator of the likelihood (i.e.
also the free energy) can be computed exactly in the caseelthergy(x,h) = —g(x) + >, vi(x, h;),
and we have

FreeEnergy(x) = —log P(x) —log Z = —f3(x) — Z logz e ileh), (23)
i h;

5.1.2 Conditional Enelgy-Based Models

Whereas computing the partition function is difficult in geal, if our ultimate goal is to make a decision
concerning a variablg given a variablex, instead of considering all configuratiofs, y), it is enough to
consider the configurations gffor each givenx. A common case is one whegecan only take values in a
small discrete set, i.e.

e—Energy(x,y)

P(y|X) = Zy e—Energy(x,y)

(24)

In this case the gradient of the conditional log-likelihaeith respect to parameters of the energy function
can be computed efficiently. This formulation applies tostdminant variant of the RBM called Discrimi-
native RBM (Larochelle & Bengio, 2008). Such conditionategy-based models have also been exploited
in a series of probabilistic language models based on naetalorks (Bengio et al., 2001; Schwenk &
Gauvain, 2002; Bengio, Ducharme, Vincent, & Jauvin, 2003; Emami, & Jelinek, 2003; Schwenk, 2004;
Schwenk & Gauvain, 2005; Mnih & Hinton, 2009). That formidat (or generally when it is easy to sum
or maximize over the set of values of the terms of the partitimction) has been explored at length (LeCun
& Huang, 2005; LeCun et al., 2006; Ranzato et al., 2007, 2Q@Hpbert & Weston, 2008). An important
and interesting element in the latter work is that it shoved #uch energy-based models can be optimized
not just with respect to log-likelihood but with respect toma general criteria whose gradient has the prop-
erty of making the energy of “correct” responses decreaskewtaking the energy of competing responses
increase. This criterion does not necessarily give risepoo@abilistic model (because the exponential of
the negated energy function is not required to be integyablg it gives rise to a function that can be used
to choosey givenx, which is often the ultimate goal in applications.

5.2 Boltzmann Machines

The Boltzmann machine is a particular type of energy-basedetwith hidden variables, and RBMs are
special forms of Boltzmann machines in whiPiih|x) andP(x|h) are both tractable because they factorize.
In a Boltzmann machine (Hinton, Sejnowski, & Ackley, 1984;kley et al., 1985; Hinton & Sejnowski,
1986), the energy function is a general second-order paotyalo

Energy(x,h) = —b’x —c’h — h'Wx — x'Ux — h’'Vh. (25)

There are two types of parameters, which we collectivelyotkehyf: the offsetsdb; andc; (each associated
with a single element of the vectaror of the vectoih), and the weight$V/;;, U;; andV;; (each associated
with a pair of units). Matrice$/ andV are assumed to be symmefriand in most models with zeros in
the diagonal. Non-zeros in the diagonal can be used to obther variants, e.g., with Gaussian instead of
binomial units (Welling et al., 2005).

Because of the quadratic interaction termhjrthe trick to analytically compute the free energy (eq. 22)
cannot be applied here. However, an MCMC (Monte Carlo MaiRbain (Andrieu, de Freitas, Doucet, &

E.g. if U was not symmetric, the extra degrees of freedom wbelwasted since; U;;x; + x;Uj;x; can be rewrittenc; (U;; +
Uji)x; = 2% (Usj + Uji)xj + 2%;(Uij + Ujs)xq, i.e., in a symmetric-matrix form.
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Jordan, 2003)) sampling procedure can be applied in ordatin a stochastic estimator of the gradient.
The gradient of the log-likelihood can be written as followtrting from eq. 16:

OlogP(x)  0Olog), e Enerey(eh) — Jlog > %h e Prerey(h)
00 N 00 00
—- 1 Z —Energy(x,h) 8EnergY(X h)
Zh e—Energy(x,h) 00
1 —Energy(x,h) 3Energy(5{, h)
+ Zi,h e—Energy(f{,h) Z € o0
5)Energy (x,h) 5)Energy(§c, h)
= —ZP h|x) +ZP h)———=——. (26)

Note thatam’#g(x’h) is easy to compute. Hence if we have a procedure to sample fdix) and one
to sample fromP(x, h), we can obtain an unbiased stochastic estimator of theketiHood gradient. Hin-
ton et al. (1984), Ackley et al. (1985), Hinton and Sejnow(dl€i86) introduced the following terminology:
in the positive phasex is clampedto the observed input vector, and we samhlgiven x; in the nega-
tive phaseboth x andh are sampled, ideally from the model itself. Only approxiensampling can be
achieved tractably, e.g., using an iterative proceduredbiastructs an MCMC. The MCMC sampling ap-
proach introduced in Hinton et al. (1984), Ackley et al. (33&Hinton and Sejnowski (1986) is based on
Gibbs samplingGeman & Geman, 1984; Andrieu et al., 2003). Gibbs samplirtejoint of N random
variablesX = (X; ... Xy) is done through a sequenceMdfsampling sub-steps of the form

where X _; contains theV — 1 other random variables i, excludingX;. After theseN samples have
been obtained, a step of the chain is completed, yieldingrgpkaof X whose distribution converges to
P(X) as the number of steps goestg under some conditions. A sufficient condition for converggof
a finite-state Markov Chain is that it is aperiotland irreducibl.

How can we perform Gibbs sampling in a Boltzmann machine3L-et(x, h) denote all the units in the
Boltzmann machine, ang_; the set of values associated with all units exceptttteone. The Boltzmann
machine energy function can be rewritten by putting all taeameters in a vectel and a symmetric matrix
A,

Energy(y) = —d'y — y'Ay. (28)
Let d_; denote the vectod without the elemend;, A_; the matrix A without thei-th row and column,
anda_; the vector that is théth row (or column) ofA, without thei-th element. Using this notation, we

obtain thatP(y;|y—;) can be computed and sampled from easily in a Boltzmann mackior example, if
yi € {0,1} and the diagonal ofi is null:

exp(d; +d";y—; +2a’y_; +y ,A_iy—:)

Plyi=1ly-i) exp(d; +d"y_i+2a y_ i +y ;Aiy—i) +exp(d_y—i +y A_iy_:)
exp(d; +2a’;y_;) 1
exp(d; +2a’ ;y_i)+1 1+exp(—d; —2a’ ;y_;)
= sigm(d; +2a’;y_;) (29)

which is essentially the usual equation for computing a eesroutput in terms of other neurogs.;, in
artificial neural networks.

8Aperiodic: no state is periodic with peridd > 1; a state has periok if one can only return to it at times+ k, t + 2k, etc.
9rreducible: one can reach any state from any state in fimite with non-zero probability.
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Since two MCMC chains (one for the positive phase and onéhfonegative phase) are needed for each
examplex, the computation of the gradient can be very expensive, @idiig time very long. This is
essentially why the Boltzmann machine was replaced in tee8i@'s by the back-propagation algorithm for
multi-layer neural network as the dominant learning apphodiowever, recent work has shown that short
chains can sometimes be used successfully, and this is ith@gbe of Contrastive Divergence, discussed
below (section 5.4) to train RBMs. Note also that the neggtivase chain does not have to be restarted for
each new exampte (since it does not depend on the training data), and thisreatéen has been exploited
in persistent MCMC estimators (Tieleman, 2008; Salakmatdi& Hinton, 2009) discussed in Section 5.4.2.

5.3 Restricted Boltzmann Machines

The RestrictedBoltzmann Machine (RBM) is the building block of a Deep BENgetwork (DBN) because

it shares parametrization with individual layers of a DBNd@ecause efficient learning algorithms were
found to train it. The undirected graphical model of an RBMilligstrated in Figure 10, showing that
the h; are independent of each other when conditioningkoand thex; are independent of each other
when conditioning orh. In an RBM,U = 0 andV = 0 in eq. 25, i.e., the only interaction terms are
between a hidden unit and a visible unit, but not betweerswifithe same layer. This form of model was
first introduced under the name bfarmonium(Smolensky, 1986), and learning algorithms (beyond the
ones for Boltzmann Machines) were discussed in Freund anddta (1994). Empirically demonstrated
and efficient learning algorithms and variants were progasere recently (Hinton, 2002; Welling et al.,
2005; Carreira-Perpifian & Hinton, 2005). As a consequ@fitiee lack of input-input and hidden-hidden
interactions, the energy function is bilinear,

Energy(x,h) = —b'x — ¢’h — h’'Wx (30)

and the factorization of the free energy of the input, introedd with eq. 21 and 23 can be applied with
B(x) = b’x andy;(x,h;) = —h;(c; + W;x), whereW; is the row vector corresponding to ti¢h row of
W. Therefore the free energy of the input (i.e. its unnornealilbg-probability) can be computed efficiently:

FreeEnergy(x) = —b'x — Z log Z ehileitWix) (31)
i h;

Using the same factorization trick (in eq. 22) due to the afform of Energy(x, h) with respect td,
we readily obtain a tractable expression for the condifipnabability P(h|x):

exp(b’x + ¢’h + h'Wx)
S exp(b’x 4 ¢/h + h'Wx)
[L; exp(cih; 4+ h;W;x)
IL Zﬁi exp(cifli + fliWiX)
exp(h;(c; + W;x))
1:[ i, exp(hi(c; + Wix))

= HP(hl-|x).

P(hlx) =

In the commonly studied case whéaige {0, 1}, we obtain the usual neuron equation for a neuron’s output
given its input:
ecﬁ-Wix

Ph; =1lx) = -

= sigm(c; + W;x). (32)

Sincex andh play a symmetric role in the energy function, a similar datitvn allows to efficiently compute
and sampleP(x|h):
P(xh) = [[ P(xilh) (33)
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and in the binary case
P(x; = 1]h) = sigm(b; + W/;h) (34)

whereW; is thej-th column ofiV.

In Hinton et al. (2006), binomial input units are used to etepixel gray levels in input images as if
they were the probability of a binary event. In the case ofdwaitten character images this approximation
works well, but in other cases it does not. Experiments shgwie advantage of using Gaussian input
units rather than binomial units when the inputs are cowtisavalued are described in Bengio et al. (2007).
See Welling et al. (2005) for a general formulation wherandh (given the other) can be in any of the
exponential family distributions (discrete and continsipu

Although RBMs might not be able to represent efficiently satistributions that could be represented
compactly with an unrestricted Boltzmann machine, RBMsregmmesent any discrete distribution (Freund
& Haussler, 1994; Le Roux & Bengio, 2008), if enough hiddeitsuare used. In addition, it can be shown
that unless the RBM already perfectly models the trainirggritiution, adding a hidden unit (and properly
choosing its weights and offset) can always improve thedikegihood (Le Roux & Bengio, 2008).

An RBM can also be seen as forming a multi-clustering (seé@e8.2), as illustrated in Figure 5. Each
hidden unit creates a 2-region partition of the input spagth(a linear separation). When we consider the
configurations of say three hidden units, there are 8 coorafipg possible intersections of 3 half-planes (by
choosing each half-plane among the two half-planes adsdoieth the linear separation of a hidden unit).
Each of these 8 intersections corresponds to a region irt gggace that gives the same hidden configuration
(i.e. code) to a set of input configurations. The binary sgttif the hidden units thus identifies one region in
input space among all the regions associated with configmsabf the hidden units. For allin one of these
regions,P(h|x) is maximal for the correspondirlg configuration. Note that not all configurations of the
hidden units correspond to a non-empty region in input spaseéllustrated in Figure 5, this representation
is similar to what an ensemble of 2-leaf trees would create.

The sum over the exponential number of possible hidden-legefigurations of an RBM can also be
seen as a patrticularly interesting form of mixture, with apanential number of components (with respect
to the number of parameters):

P(x) = 3 P(x|h)P(h) (35)
h

where P(x|h) is the model associated with the component indexed by caafign h. For example, if
P(x/h) is chosen to be Gaussian (see Welling et al. (2005), Bengib €007)), this is a Gaussian mixture
with 2" components wheh hasn bits. Of course, thes®” components cannot be tuned independently
because they depend on shared parameters (the RBM parg)y@terthat is also the strength of the model,
since it can generalize to configurations (regions of inpaice) for which no training example was seen.
We can see that the Gaussian mean (in the Gaussian casajiisedkds a linear combinatiér+- 1W'h, i.e.,
each hidden unit bih; contributes (or not) a vectd¥’; in the mean.

5.3.1 Gibbs Sampling in RBMs

Sampling from an RBM is useful for several reasons. Firstlof & useful in learning algorithms, to obtain
an estimator of the log-likelihood gradient. Second, icsipa of examples generated from the model is
useful to get an idea of what the model has captured or noticaptbout the data distribution. Since the
joint distribution of the top two layers of a DBN is an RBM, spling from an RBM enables us to sample
from a DBN, as elaborated in Section 6.1.

Gibbs sampling in fully connected Boltzmann Machines isvdi®cause there are as many sub-steps in
the Gibbs chain as there are units in the network. On the dited, the factorization enjoyed by RBMs
brings two benefits: first we do not need to sample in the pegithiase because the free energy (and therefore
its gradient) is computed analytically; second, the setniables in(x, h) can be sampled in two sub-steps
in each step of the Gibbs chain. First we saniplgivenx, and then a new givenh. In general product
of experts models, an alternative to Gibbs sampling is ldybtonte-Carlo (Duane, Kennedy, Pendleton,
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& Roweth, 1987; Neal, 1994), an MCMC method involving a numiiffree-energy gradient computation
sub-steps for each step of the Markov chain. The RBM stredtitherefore a special case of product of
experts model: theth termlog > -, eleitWix)hi in eq, 31 corresponds to an expert, i.e., there is one expert
per hidden neuron and one for the input offset. With that isppstructure, a very efficient Gibbs sampling
can be performed. Fdr Gibbs steps, starting from a training example (i.e. sanggdftiom P):

x; ~ P(x)
h o~ P
Xo v P(X|h1)
hy ~ P(

Xpy1 ~  P(x(hg). (36)

It makes sense to start the chain from a training exampleusecas the model becomes better at capturing
the structure in the training data, the model distributidrand the training distributiod® become more
similar (having similar statistics). Note that if we stattbe chain fromP itself, it would have converged in
one step, so starting froif is a good way to ensure that only a few steps are necessargrfoergence.

Algorithm 1

RBMupdat e(x1,¢, W, b, c)

This is the RBM update procedure for binomial units. It casilyaadapted to other types of units.
x1 IS a sample from the training distribution for the RBM

€ is a learning rate for the stochastic gradient descent intr@stive Divergence

W is the RBM weight matrix, of dimension (number of hidden apitumber of inputs)

b is the RBM offset vector for input units

c is the RBM offset vector for hidden units

Notation: Q(hs. = 1|x2) is the vector with elementg (hy; = 1]x3)

for all hidden unitg do
e computeQ)(hy; = 1[x1) (for binomial unitssigm(c; + >-; Wijx1;))
e sampleh;; from Q(hy;|x1)
end for
for all visible unitsj do
e computeP (xz; = 1|h;) (for binomial unitssigm(b; + >, W;;hi;))
e samplexy; from P(xg; = 1|h;)
end for
for all hidden units do
o compute) (hy; = 1|x2) (for binomial units sigm(c; + Zj Wiixa2;))
end for
oW — W+ e(hi1x] — Q(ha. = 1|x2)x5)
eb —b+e(x; —x3)
ec—c+e(h; — Q(hy = 1]x32))

5.4 Contrastive Divergence

Contrastive Divergence is an approximation of the logliile@od gradient that has been found to be a suc-
cessful update rule for training RBMs (Carreira-PerpiBahlinton, 2005). A pseudo-code is shown in
Algorithm 1, with the particular equations for the condit# distributions for the case of binary input and
hidden units.
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5.4.1 Justifying Contrastive Divergence

To obtain this algorithm, thé&rst approximation we are going to make is replace the average over all
possible inputs (in the second term of eq. 20) by a single Bar§ince we update the parameters often (e.g.,
with stochastic or mini-batch gradient updates after ona faw training examples), there is already some
averaging going on across updates (which we know to work (kelCun, Bottou, Orr, & Miiller, 1998)),
and the extra variance introduced by taking one or a few MChlt@des instead of doing the complete sum
might be partially canceled in the process of online gradigrlates, over consecutive parameter updates.
We introduce additional variance with this approximatidniee gradient, but it does not hurt much if it is
comparable or smaller than the variance due to online gnadescent.

Running a long MCMC chain is still very expensive. The ide&eftep Contrastive Divergence (CD-
k) (Hinton, 1999, 2002) is simple, and involvesecond approximation which introduces some bias in the
gradient: run the MCMC chairy, xs, . . . x;+1 for only k stepsstarting from the observed example = x.
The CD+ update (i.e., not the log-likelihood gradient) after sgegmamplex is therefore

OFreeEnergy(x)  OFreeEnergy(x)
> 06 06

wherex = x4 is the last sample from our Markov chain, obtained aftesteps. We know that when
k — oo, the bias goes away. We also know that when the model disiiibis very close to the empirical
distribution, i.e.,P &~ P, then when we start the chain fram(a sample fromP) the MCMC has already
converged, and we need only one step to obtain an unbiasguleséom P (although it would still be
correlated withx).

The surprising empirical result is that even= 1 (CD-1) often gives good results. An extensive numer-
ical comparison of training with CI2-versus exact log-likelihood gradient has been present&aireira-
Perpifian and Hinton (2005). In these experiments, takiagger than 1 gives more precise results, although
very good approximations of the solution can be obtained &vith £ = 1. Theoretical results (Bengio &
Delalleau, 2009) discussed below in Section 5.4.3 help tietstand why small values éfcan work: CD%
corresponds to keeping the fifsterms of a series that converges to the log-likelihood gnaidi

One way to interpret Contrastive Divergence is that it isragjmating the log-likelihood gradieifically
around the training point;. The stochastic reconstructian= x;; (for CD-k) has a distribution (given
x1) which is in some sense centered arosndind becomes more spread out around i asreases, until
it becomes the model distribution. The GDdpdate will decrease the free energy of the training peint
(which would increase its likelihood if all the other freeeegies were kept constant), and increase the free
energy ofk, which is in the neighborhood of;. Note thatx is in the neighborhood of;, but at the same
time more likely to be in regions of high probability undeetmodel (especially fok larger). As argued
by LeCun et al. (2006), what is mostly needed from the trgimilgorithm for an energy-based model is that
it makes the energy (free energy, here, to marginalize nigeldables) of observed inputs smaller, shoveling
“energy” elsewhere, and most importantly in their neigltmamd. The Contrastive Divergence algorithm is
fueled by thecontrastbetween the statistics collected when the input is a realitigexample and when
the input is a chain sample. As further argued in the next@®abne can think of the unsupervised learning
problem as discovering a decision surface that can rougpgrsite the regions of high probability (where
there are many observed training examples) from the restefore we want to penalize the model when it
generates examples on the wrong side of that divide, and dgag to identify where that divide should be
moved is to compare training examples with samples from theeh

Ad

(37)

5.4.2 Alternatives to Contrastive Divergence

An exciting recent development in the research on learniggrithms for RBMs is use of a so-called
persistent MCMC for the negative phase (Tieleman, 2008al®aitdinov & Hinton, 2009), following
an approach already introduced in Neal (1992). The ideamplsi keep a background MCMC chain
...xy — h; — x;11 — hyyq ... to obtain the negative phase samples (which should be frermtidel).
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Instead of running a short chain as in GDthe approximation made is that we ignore the fact that param
eters are changing as we move along the chain, i.e., we danda separate chain for each value of the
parameters (as in the traditional Boltzmann Machine Iegraigorithm). Maybe because the parameters
move slowly, the approximation works very well, usually igty rise to better log-likelihood than CB-
(experiments were againkt= 1 andk = 10). The trade-off with CD-1 is that the variance is larger but
the bias is smaller. Something interesting also happ&rthe model systematically moves away from the
samples obtained in the negative phase, and this interétttsh& chain itself, preventing it from staying in
the same region very long, substantially improving the mixiate of the chain. This is a very desirable and
unforeseen effect, which helps to explore more quickly fhece of RBM configurations.

Another alternative to Contrastive Divergence is Scorediiiag (Hyvarinen, 2005, 2007b, 2007a), a
general approach to train energy-based models in whichnibegg can be computed tractably, but not
the normalization constarf. The score function of a densip(x) = ¢(x)/Z isy = m%f(x), and we
exploit the fact that the score function of our model doesdeyend on its normalization constant, i.e.,
P = %}‘j(x). The basic idea is to match the score function of the moddi thié score function of the
empirical density. The average (under the empirical dgnhsitthe squared norm of the difference between
the two score functions can be written in terms of squareseifrtodel score function and second derivatives

%. Score matching has been shown to be locally consistentgtityan, 2005), i.e. converging if the
model family matches the data generating process, and ivdws used for unsupervised models of image
and audio data (Koster & Hyvarinen, 2007).

5.4.3 Truncations of the Log-Likelihood Gradient in Gibbs-Chain Models

Here we approach the Contrastive Divergence update rube rdifferent perspective, which gives rise to
possible generalizations of it and links it to the recorcdtan error often used to monitor its performance and
that is used to optimize auto-encoders (eq. 9). The inspirddr this derivation comes from Hinton et al.
(2006): first from the idea (explained in Section 8.1) that@ibbs chain can be associated with an infinite
directed graphical model (which here we associate it witlygransion of the log-likelihood gradient), and
second that the convergence of the chain justifies Contealdfvergence (since the expected value of eq. 37
becomes equivalentto eq. 19 when the chain sasaptames from the model). In particular we are interested
in clarifying and understanding the bias in the Contrasiiiergence update rule, compared to using the
true (intractable) gradient of the log-likelihood.

Consider a converging Markov chaia = h; = x;11 = ... defined by conditional distributions
P(hy|x;) and P(x¢+1|h;), with x; sampled from the training data empirical distribution. Takowing
Theorem, demonstrated by Bengio and Delalleau (2009), sttmw one can expand the log-likelihood
gradient for any > 1.

Theorem 5.1. Consider the converging Gibbs chati = h; = xs = hy ... starting at data point; .
The log-likelihood gradient can be written

(38)

00 N 00 00 00

dlog P(x1) _ OFreeEnergy(xi) 4B {8FreeEnergy(xt)] 4B {8log P(xt)}
and the final term converges to zerotagoes to infinity.

Since the final term becomes small iagcreases, that justifies truncating the chairktsteps in the
Markov chain, using the approximation

dlog P(x1)  OFreeEnergy(x1) R [aFreeEnergy(ka) ]

00 o 00 00

10Tijmen TielemanUsing fast weights to improve Persistent Contrastive Djeece talk given at U. Montreal, Nov. 11th, 2008
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which is exactly the CD: update (eq. 37) when we replace the expectation with a sgagielex = x4 1.
This tells us that the bias of CBis £ {%&x’““)}. Experiments and theory support the idea that £D-

yields better and faster convergence (in terms of numbeemdtions) than CO% — 1), due to smaller bias
(though the computational overhead might not always behwit)it However, although experiments show
that the CDk bias can indeed be large whénrs small, empirically the update rule of Cbstill mostly
moves the model's parameters in the same quadrant as klgikd gradient (Bengio & Delalleau, 2009).
This is in agreement with the good results can be obtained with £ = 1. An intuitive picture that may
help to understand the phenomenon is the following: wherirthet examplex; is used to initialize the
chain, even the first Markov chain step §¢) tends to be in the right direction comparedktq i.e. roughly
going down the energy landscape frem Since the gradient depends on the change betwgemdx;,
we tend to get the direction of the gradient right.

So CD-1 corresponds to truncating the chain after two sasr(plee fromh; |x;, and one fronx,|h,).
What about stopping after the first one (ile;|x;)? It can be analyzed from the following log-likelihood
gradient expansion (Bengio & Delalleau, 2009):

Olog P(x1) _ E{@logP(xﬂhl)}_E[alogp(hl)}

00 00 00 (39)

Let us consider a mean-field approximation of the first exgémt, in which instead of the average over
all h; configurations according t&(h;|x;) one replace#; by its average configuratidm, = E[h; |x1],
yielding:

- [8logP(x1|h1)] _ dlog P(xa[hy) (40)

00 00 '

If, as in CD, we then ignore the second expectation in eq.r8(ring a corresponding bias in the estimation
of the log-likelihood gradient), we then obtain the riglard side of eq. 40 as an update direction, which is
minus the gradient of theeconstruction erroy

—log P(x1|hy)

typically used to train auto-encoders (see eq. 9 with) = F[h|x])*.

So we have found that the truncation of the Gibbs chain gigego first approximation (one sample) to
roughly reconstruction error (through a biased mean-figft@ximation), with slightly better approximation
(two samples) to CD-1 (approximating the expectation byrapda), and with more terms to CR-(still
approximating expectations by samples). Note that recactsdn error is deterministically computed and
for this reason has been used to track progress when traRBivs with CD.

5.4.4 Model Samples Are Negative Examples

Here we argue that training an energy-based model can bevachby solving a series of classification
problems in which one tries to discriminate training exa@sgtom samples generated by the model. In the
Boltzmann machine learning algorithms, as well as in Catitra Divergence, an important element is the
ability to sample from the modeinaybe approximately. An elegant way to understand theevaluhese
samples in improving the log-likelihood was introduced irlliig, Zemel, and Hinton (2003), using a con-
nection with boosting. We start by explaining the idea infally and then formalize it, justifying algorithms
based on training the generative model with a classificatit@rionseparating model samples from training
examples The maximum likelihood criterion wants the likelihood te high on the training examples and
low elsewhere. If we already have a model and we want to iserégslikelihood, the contrast between where
the model puts high probability (represented by sampleg)drere the training examples are indicates how

11t is debatable whether or not one would take into accountidhethath; depends o when computing the gradient in the
mean-field approximation of eq. 40, but it must be the caseaw @ direct link with auto-encoders.
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to change the model. If we were able to approximately separaining examples from model samples with
a decision surface, we could increase likelihood by redytie value of the energy function on one side
of the decision surface (the side where there are more tiggegnamples) and increasing it on the other side
(the side where there are more samples from the model). Muetieally, consider the gradient of the log-
likelihood with respect to the parameters of theeEnergy(x) (or Energy(x) if we do notintroduce explicit
hidden variables), given in eq. 20. Now consider a highlytagzed two-class probabilistic classifier which
is only able to produce an output probabilifix) = P(y = 1|x) barely different from% (hopefully on the
right side more often than not). Letx) = sigm(—a(x)), i.e.,—a(x) is the discriminant function or an un-
normalized conditional log-probability, just like the &renergy. Le denote the empirical distribution over
(x,y) pairs, andP; the distribution ove wheny = i. Assume thaP(y = 1) = P(y = 0) = 1, so that
Vf, Bplf(x,y)] = Ep, [f(x, DIP(y = 1) + Ep [f(x,0)]P(y = 0) = 5(Ep [f(x,1)] + Ep [f(x,0)]).
Using this, the average conditional log-likelihood gradifr this probabilistic classifier is written

E; [Blog;;(yIX)] - B, {B(ylogq(X) + (16—9@/)10g(1 - q(X)))}
SN )
~ % <—E151 {36{;(;)] +Bp PC(;(HX)D (41)

where the last equality is when the classifier is highly ragméd: when the output weights are smallx)

is close to 0 and/(x) ~ 3, so that(1 — ¢(x)) ~ q(x). This expression for the log-likelihood gradient
corresponds exactly to the one obtained for energy-baseelsiwhere the likelihood is expressed in terms
of a free energy (eq. 20), when we interpret training examfsem P; as positive exampleg (= 1) (i.e.

P, = P) and model samples as negative exampies:(0, i.e. P, = P). The gradient is also similar in
structure to the contrastive divergence gradient estin{atp 37). One way to interpret this result is that if
we could improve a classifier that separated training sasripden model samples, we could improve the log-
likelihood of the model, by putting more probability massthe side of training samples. Practically, this
could be achieved with a classifier whose discriminant fionat/as defined as the free energy of a generative
model (up to a multiplicative factor), and assuming one daldtain samples (possibly approximate) from
the model. A particular variant of this idea has been usedstify a boosting-like incremental algorithm for
adding experts in products of experts (Welling et al., 2003)

6 Greedy Layer-Wise Training of Deep Architectures
6.1 Layer-Wise Training of Deep Belief Networks

A Deep Belief Network (Hinton et al., 2006) withlayers models the joint distribution between observed
vectorx and/ hidden layers” as follows:

-2

P(x,h!,... h") = (H P(h’“|hk+1)> P(h*~1 n%) (42)

k=0

wherex = h°, P(h*~!|h*) is a conditional distribution in an RBM associated with lev®f the DBN, and
P(h*~1 h*) is the joint distribution in the top-level RBM. This is illtrated in Figure 11.

The conditional distribution®(h”* |h*+!) and the top-level joint (an RBMP(h*~!, h) define the gen-
erative model. In the following we introduce the lettgfor exact or approximate posteriors of that model,
which are used for inference and training. TQeposteriors are all approximate except for the top level
Q(h’|h*~1) which is equal to the tru®(h’|/h*~!) becauséh’, h*~!) form an RBM, where exact inference
is possible.
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Algorithm 2

Tr ai nUnsuper vi sedDBN(IB, €, ¢, W, b, c, mean-field-computation)

Train a DBN in a purely unsupervised way, with the greedyiayise procedure in which each added layer
is trained as an RBM (e.g. by contrastive divergence).

P is the input training distribution for the network

€ is a learning rate for the RBM training

¢ is the number of layers to train

Wk is the weight matrix for levet, for k from 1 to/

b* is the visible units offset vector for RBM at levie) for k from 1 to/

c” is the hidden units offset vector for RBM at levelfor k from 1 to/

mean-field-computation is a boolean that is true iff trajndata at each additional level is obtained by a
mean-field approximation instead of stochastic sampling

for k=1to/do
e initialize W* = 0,b* =0,c* =0
while not stopping criteriomlo
e sampleh® = x from P
fori=1tok —1do
if mean-field-computatiotihen
e assignh’; to Q(h} = 1/h*~1), for all elementg of h’
else
e sampleh’; from Q(h! |h’~1), for all elements of h’
end if
end for
e RBMupdat e(h*~1 ¢, W* b c*) {thus providingQ (h*|h*~1) for future usé
end while
end for
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Figure 11: Deep Belief Network as a generative model (gewverpath with P distributions, full arcs) and a
means to extract multiple levels of representation of tipeiirfrecognition path witld) distributions, dashed
arcs). The top two layerh? andh? form an RBM (for their joint distribution). The lower layefsrm a
directed graphical model (sigmoid belief i€t = h! = x) and the prior for the penultimate layh? is
provided by the top-level RBMQ (h**+!|h*) approximates?(h*+!|h*) but can be computed easily.

When we train the DBN in a greedy layerwise fashion, as ilatetd with the pseudo-code of Algo-
rithm 2, each layer is initialized as an RBM, and we der@th”, h*~!) the k-th RBM trained in this way,
whereasP(. ..) denotes probabilities according to the DBN. We will igeh*|h*~1) as an approximation
of P(h*|h¥~1), because it is easy to compute and sample fepfh”* | |h*~!) (which factorizes), and not
from P(h*|h*~1) (which does not). Thes@(h*|h*~1) can also be used to construct a representation of
the input vectox. To obtain an approximate posterior or representation lfdha levels, we use the fol-
lowing procedure. First sample! ~ Q(h'!|x) from the first-level RBM, or alternatively with a mean-field
approach usa'! = E[h'|x] instead of a sample df', where the expectation is over the RBM distribution
Q(h'|x). This is just the output probabilities of the hidden unitsthie common case where they are bi-
nomial units:h! = sigm(b! + W'x). Taking either the mean-field vecthr or the samplén! as input
for the second-level RBM, compute® or a sampléh?, etc. until the last layer. Once a DBN is trained as
per Algorithm 2, the parametef&? (RBM weights) anct? (RBM hidden unit offets) for each layer can be
used to initialize a deep multi-layer neural network. Theammeters can then be fine-tuned with respect to
another criterion (typically a supervised learning ciaaj.

A sample of the DBN generative model fercan be obtained as follows:

1. Sample a visible vectdr’—! from the top-level RBM. This can be achieved approximatglyunning
a Gibbs chain in that RBM alternating betwekh ~ P(h‘[h‘~!) andh’~! ~ P(h‘!|h?), as
outlined in Section 5.3.1. By starting the chain from a repreatiorh’~' obtained from a training
set example (through th@’s as above), fewer Gibbs steps might be required.

2. Fork = ¢—1downto 1, samplé*~! givenh* according to the levet-hidden-to-visible conditional
distribution P(h*~1|h*).

3. x = h¥ is the DBN sample.
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6.2 Training Stacked Auto-Encoders

Auto-Encoders have been used as building blocks to buildimitidlize a deep multi-layer neural net-
work (Bengio et al., 2007; Ranzato et al., 2007; Larochelld.¢ 2007; Vincent et al., 2008). The training
procedure is similar to the one for Deep Belief Networks:

1. Train the first layer as an auto-encoder to minimize somma &f reconstruction error of the raw input.
This is purely unsupervised.

2. The hidden units’ outputs (i.e. the codes) of the autadacare now used as input for another layer,
also trained to be an auto-encoder. Again, we only need alddlexamples.

3. lterate as in (2) to initialize the desired number of addl layers.

4. Take the last hidden layer output as input to a supervisger land initialize its parameters (either
randomly or by supervised training, keeping the rest of ttvork fixed).

5. Fine-tune all the parameters of this deep architectutie respect to the supervised criterion. Alter-
nately, unfold all the auto-encoders into a very deep antméer and fine-tune the global reconstruc-
tion error, as in (Hinton & Salakhutdinov, 2006b).

The hope is that the unsupervised pre-training in this grésgkr-wise fashion has put the parameters of
all the layers in a region of parameter space from which a tfodoedal optimum can be reached by local
descent. This indeed appears to happen in a number of taskgiBet al., 2007; Ranzato et al., 2007;
Larochelle et al., 2007; Vincent et al., 2008).

The principle is exactly the same as the one previously megdor training DBNs, but using auto-
encoders instead of RBMs. Comparative experimental esuljgest that Deep Belief Networks typically
have an edge over Stacked Auto-Encoders (Bengio et al.,; AGidchelle et al., 2007; Vincent et al.,
2008). This may be because GDis closer to the log-likelihood gradient than the recortian error
gradient. However, since the reconstruction error grddiiaa less variance than Cbbecause no sampling
is involved), it might be interesting to combine the twoeria, at least in the initial phases of learning. Note
also that the DBN advantage disappeared in experimentsvtherordinary auto-encoder was replaced by
a denoising auto-encoder (Vincent et al., 2008), whichdstsistic (see Section 7.2).

An advantage of using auto-encoders instead of RBMs as thepenvised building block of a deep
architecture is that almost any parametrization of therky® possible, as long as the training criterion
is continuous in the parameters. On the other hand, the ofageobabilistic models for which CD or
other known tractable estimators of the log-likelihooddieat can be applied is currently more limited. A
disadvantage of Stacked Auto-Encoders is that they do magmond to a generative model: with generative
models such as RBMs and DBNs, samples can be drawn to chelitatively what has been learned, e.g.,
by visualizing the images or word sequences that the modslaplausible.

6.3 Semi-Supervised and Partially Supervised Training

With DBNs and Stacked Auto-Encoders two kinds of trainirgnsils are available, and can be combined:
the local layer-wise unsupervised training signal (from®BM or auto-encoder associated with the layer),
and a global supervised training signal (from the deep Aay&r network sharing the same parameters
as the DBN or Stacked Auto-Encoder). In the algorithms prieskabove, the two training signals are
used in sequence: first an unsupervised training phase,emotid a supervised fine-tuning phase. Other
combinations are possible.

One possibility is to combine both signals during trainiagd this is called partially supervised training
in Bengio et al. (2007). It has been found useful (Bengio e2&07) when the true input distributid?( X )
is believed to be not strongly related R{Y | X'). To make sure that an RBM preserves information relevant

12Good at least in the sense of generalization.
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toY in its hidden representation, the CD update is combinedthéltlassification log-probability gradient,
and for some distributions better predictions are thusinbth

7 Variants of RBMs and Auto-Encoders

We review here some of the variations that have been propms#te basic RBM and auto-encoder models
to extend and improve them.

We have already mentioned that it is straightforward to galime the conditional distributions associated
with visible or hidden units in RBMs, e.g., to any member a #xponential family (Welling et al., 2005).
Gaussian units and exponential or truncated exponentitd bave been proposed or used in Freund and
Haussler (1994), Welling et al. (2003), Bengio et al. (20Q@&rochelle et al. (2007). With respect to the
analysis presented here, the equations can be easily ddapsmply changing the domain of the sum
(or integral) for theh; andx;. Diagonal quadratic terms (e.g., to yield Gaussian or tatedt Gaussian
distributions) can also be added in the energy function autHosing the property that the free energy
factorizes.

7.1 Sparse Representations in Auto-Encoders and RBMs

Sparsity has become a concept of great interest recentlgniyin machine learning but also in statistics
and signal processing, in particular with the work on cormapeel sensing (Candes & Tao, 2005; Donoho,
2006), but it was introduced earlier in computational neai@nce in the context of sparse coding in the
visual system (Olshausen & Field, 1997), and has been a kaeyesit of a variant of auto-encoders (Ranzato
etal., 2007, 2007; Ranzato & LeCun, 2007; Ranzato et al82@airal et al., 2009) with a sparse distributed
representation.

7.1.1 Why a Sparse Representation?

We argue here that if one is going to have fixed-size repratiens, then sparse representations are more
efficient (than non-sparse ones) to allow for varying nunddfebits per example. According to learning
theory (Vapnik, 1995; Li & Vitanyi, 1997), to obtain good gaalization it is enough that the total number
of bits needed to encode thhole training sebe small, compared to the size of the training set. In many
domains of interest different examples require differamhber of bits when compressed.

On the other hand, dimensionality reduction algorithmsetlubr linear such as PCA and ICA, or non-
linear such as LLE and Isomap, map each example to the samdgie@nsional space. In light of the above
argument, it would be more efficient to map each example taiahia-length representation. To simplify
the argument, assume this representation is a binary veétae are required to map each example to a
fixed-length representation, a good solution would be taskdhat representation to have enough degrees
of freedom to represent the vast majority of the exampledgvalhithe same allowing to compress that fixed-
length bit vector to a smaller variable-size code for moshefexamples. We now have two representations:
the fixed-length one, which we might use as input to make ptiedis and make decisions, and a smaller,
variable-size one, which can in principle be obtained frbmfixed-length one through a compression step.
For example, if the bits in our fixed-length representatientor have a high probability of being O (i.e. a
sparsity condition), then for most examples it is easy toma@ss the fixed-length vector (in average by the
amount of sparsity). For a given level of sparsity, the nundfeonfigurations of sparse vectors is much
smaller than when less sparsity (or none at all) is imposethesentropy of sparser codes is smaller.

Another argument in favor of sparsity is that the fixed-léngipresentation is going to be used as input
for further processing, so that it should be easy to interggdighly compressed encoding is usually highly
entangled, so that no subset of bits in the code can realiytbgpreted unless all the other bits are taken into
account. Instead, we would like our fixed-length sparseasgntation to have the property that individual
bits or small subsets of these bits can be interpretedcoaespond to meaningful aspects of the input, and
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capture factors of variation in the data. For example, witip@ech signal as input, if some bits encode the
speaker characteristics and other bits encode generigrésanf the phoneme being pronounced, we have
disentangled some of the factors of variation in the datd,smme subset of the factors might be sufficient
for some particular prediction tasks.

Another way to justify sparsity of the representation waspmsed in Ranzato et al. (2008), in the con-
text of models based on auto-encoders. This view actuafjasxs how one might get good models even
though the partition function is not explicitly minimizeak, only minimized approximately, as long as other
constraints (such as sparsity) are used on the learnedsespiedion. Suppose that the representation learned
by an auto-encoder is sparse, then the auto-encoder camooistruct well every possible input pattern, be-
cause the number of sparse configurations is necessarillesthan the number of dense configurations. To
minimize the average reconstruction error on the traineigthe auto-encoder then has to find a representa-
tion which captures statistical regularities of the datdrdiution. First of all, Ranzato et al. (2008) connect
the free energy with a form of reconstruction error (when maces summing over hidden unit configu-
rations by maximizing over them). Minimizing reconstractierror on the training set therefore amounts to
minimizing free energy, i.e., maximizing the numerator ofmergy-based model likelihood (eq. 17). Since
the denominator (the partition function) is just a sum ofribenerator over all possible input configurations,
maximizing likelihood roughly amounts to making reconstion error high for most possible input config-
urations, while making it low for those in the training sehig can be achieved if the encoder (which maps
an input to its representation) is constrained in such a Watyit cannot represent well most of the possible
input patterns (i.e., the reconstruction emaust be higlior most of the possible input configurations). Note
how this is already achieved when the code is much smallerttr@input. Another approach is to impose a
sparsity penalty on the representation (Ranzato et al8)20fhich can be incorporated in the training crite-
rion. In this way, the term of the log-likelihood gradiensasiated with the partition function is completely
avoided, and replaced by a sparsity penalty on the hiddercodeé. Interestingly, this idea could potentially
be used to improve CR-RBM training, which only uses aapproximateestimator of the gradient of the
log of the partition function. If we add a sparsity penaltythe hidden representation, we may compensate
for the weaknesses of that approximation, by making surenarease the free energy of most possible input
configurations, and not only of the reconstructed neighbbthie input example that are obtained in the
negative phase of Contrastive Divergence.

7.1.2 Sparse Auto-Encoders and Sparse Coding

There are many ways to enforce some form of sparsity on thaehithyer representation. The first success-
ful deep architectures exploiting sparsity of represémainvolved auto-encoders (Ranzato et al., 2007).
Sparsity was achieved with a so-called sparsifying logidty which the codes are obtained with a nearly
saturating logistic whose bias is adapted to maintain a l@vage number of times the code is significantly
non-zero. One year later the same group introduced a sorsintjaler variant (Ranzato et al., 2008) based
on a Student-t prior on the codes. The Student-t prior has bsed in the past to obtain sparsity of the MAP
estimates of the codes generating an input (Olshausen &,Hi897) in computational neuroscience models
of the V1 visual cortex area. Another approach also conddoteomputational neuroscience involves two
levels of sparse RBMs (Lee et al., 2008). Sparsity is ackiievith a regularization term that penalizes a
deviation of the expected activation of the hidden unitefalow fixed level. Whereas Olshausen and Field
(1997) had already shown that one level of sparse coding @féw led to filters very similar to those seen
in V1, Lee et al. (2008) find that when training a sparse Ded@Bdetwork (i.e. two sparse RBMs on top
of each other), the second level appears to learn to detaeaMieatures similar to those observed in area
V2 of visual cortex (i.e., the area that follows area V1 inth&n chain of processing of the visual cortex of
primates).

In the compressed sensing literature sparsity is achiewtedive/; penalty on the codes, i.e., given bases
W (each column ofV is a basis) we typically look for codéssuch that the input signalis reconstructed
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with low /5 reconstruction error whill is sparse:

m}jn||x—Wh||§+)\||h||1 (43)

where|h|[; = )", |h;|. The actual number of non-zero componenthafould be given by thé, norm,

but minimizing with it is combinatorially difficult, and th& norm is the closesi-norm that is also convex,
making the overall minimization in eq. 43 convex. As is nowlwaderstood (Candes & Tao, 2005; Donoho,
2006), the/; norm is a very good proxy for th norm and naturally induces sparse results, and it can even
be shown taecover exactlyhe true sparse code (if there is one), under mild conditibitte that the/y
penalty corresponds to a Laplace prior, and that the postdoies not have a point mass at 0, but because
of the above properties, theodeof the posterior (which is recovered when minimizing eq. ¥3)ften at

0. Although minimizing eq. 43 is convex, minimizing jointthe codes and the decoder bagEsis not
convex, but has been done successfully with many diffedgorithms (Olshausen & Field, 1997; Lewicki

& Sejnowski, 2000; Doi et al., 2006; Grosse, Raina, Kwong, & R007; Raina, Battle, Lee, Packer, & Ng,
2007; Mairal et al., 2009).

Like directed graphical models (such as the sigmoid belkgfvorks discussed in Section 4.4), sparse
coding performs a kind afxplaining awayit chooses one configuration (among many) of the hiddensode
that could explain the input. These different configuradgicompete, and when one is selected, the others
are completely turned off. This can be seen both as an ady@aarad as a disadvantage. The advantage
is that if a cause is much more probable than the other, thiartlie one that we want to highlight. The
disadvantage is that it makes the resulting codes somewlthle, in the sense that small perturbations of
the inputx could give rise to very different values of the optimal cddeT his unstability could spell trouble
for higher levels of learned transformations or a trainegsifier that would takh as input. Indeed it could
make generalization more difficult if very similar inputsncand up being represented very differently in
the sparse code layer. There is also a computational weskihdisese approaches that some authors have
tried to address. Even though optimizing eq. 43 is efficieaan be hundreds of time slower than the kind
of computation involved in computing the codes in ordinamjoaencoders or RBMs, making both training
and recognition very slow. Another issue connected to thieility question is the joint optimization of the
basedV with higher levels of a deep architecture. This is partidylanportant in view of the objective of
fine-tuning the encoding so that it focusses on the mostidigtant aspects of the signal. As discussed in
Section 9.1.2, significant classification error improvetagvere obtained when fine-tuning all the levels of a
deep architecture with respect to a discriminant criteabimterest. In principle one can compute gradients
through the optimization of the codes, but if the result @& dptimization is unstable, the gradient may not
exist or be numerically unreliable. To address both thel#tfalssue and the above fine-tuning issue, Bagnell
and Bradley (2009) propose to replace thepenalty by a softer approximation which only gives rise to
approximately sparse coefficients (i.e., many very smadffaments, without actually converging to 0).

Keep in mind that sparse auto-encoders and sparse RBMs daoiff@t from any of these sparse coding
issues: computational complexity (of inferring the codesability of the inferred codes, and numerical
stability and computational cost of computing gradientstlom first layer in the context of global fine-
tuning of a deep architecture. Sparse coding systems ondnparize the decoder: the encoder is defined
implicitly as the solution of an optimization. Instead, axlioary auto-encoder or an RBM has an encoder
part (computing?(h|x)) and a decoder part (computififx|h)). A middle ground between ordinary auto-
encoders and sparse coding is proposed in a series of papsparse auto-encoders (Ranzato et al., 2007,
2007; Ranzato & LeCun, 2007; Ranzato et al., 2008) appligghitern recognition and machine vision
tasks. They propose to let the codebe free (as in sparse coding algorithms), but include a petrézed
encoder (as in ordinary auto-encoders and RBMs) and a pdnathe difference between the free codes
and the outputs of the parametrized encoder. In this wayplimized code try to satisfy two objectives:
reconstruct well the input (like in sparse coding), whild heing too far from the output of the encoder
(which is stable by construction, because of the simplerpatazation of the encoder). In the experiments
performed, the encoder is just an affine transformatiorofadld by a non-linearity like the sigmoid, and
the decoder is linear as in sparse coding. Experiments dhatte resulting codes work very well in the
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context of a deep architecture (with supervised fine-tunjRgnzato et al., 2008), and are more stable (e.g.
with respect to slight perturbations of input images) thades obtained by sparse coding (Kavukcuoglu,
Ranzato, & LeCun, 2008).

7.2 Denoising Auto-Encoders

The denoising auto-encoder (Vincent et al., 2008) is a sistatversion of the auto-encoder where the input
is stochastically corrupted, but the uncorrupted inputiisused as target for the reconstruction. Intuitively,
a denoising auto-encoder does two things: try to encodathé {preserve the information about the input),
and try to undo the effect of a corruption process stochaltiapplied to the input of the auto-encoder. The
latter can only be done by capturing the statistical depecide between the inputs. In fact, in (Vincent
et al., 2008), the stochastic corruption process consgigtaridomly setting some of the inputs (as many as
half of them) to zero. Hence the denoising auto-encoderiagrto predict the missing values from the
non-missing values, for randomly selected subsets of nggsatterns. The training criterion for denoising
auto-encoders is expressed as a reconstruction loghldaad,

—log P(x|c(%k)) (44)

wherex is the uncorrupted input is the stochastically corrupted input, angk) is the code obtained

from x. Hence the output of the decoder is viewed as the parametthd@bove distribution (over of the

uncorrupted input). In the experiments performed (Vinardl., 2008), the distribution is factorized and
binomial (one bit per pixel), and input pixel intensitieg @mterpreted as probabilities.

Consider a randori-dimensional vectoX, S a set oft indices,Xs = (Xg,, ... Xg, ) the sub-elements
selected byS, and letX _g all the sub-elements except thoseSinNote that the set of conditional distribu-
tions P(Xs| X _g) for some choices of fully characterize the joint distributioR (X ), and this is exploited
for example in Gibbs sampling. Note that bad things can hapgeen|S| = 1 and some pairs of input
are perfectly correlated: the predictions can be perfegheliough the joint has not really been captured,
and this would correspond to a Gibbs chain that does not n@x, does not converge. By considering
random-size subsets and also insisting on reconstructenything (like ordinary auto-encoders), this type
of problem may be avoided in denoising auto-encoders.

Interestingly, in a series of experimental comparisons @/&ision tasks, stacking denoising auto-
encoders into a deep architecture fine-tuned with respeatsiapervised criterion yielded generalization
performance that was systematically better than stackidmpary auto-encoders, and comparable or supe-
rior to Deep Belief Networks (Vincent et al., 2008).

An interesting property of the denoising auto-encoderas ithcan be shown to correspond to a genera-
tive model. Its training criterion is a bound on the log-likeod of that generative model. Several possible
generative models are discussed in (Vincent et al., 2008imple generative model is semi-parametric:
sample a training example, corrupt it stochastically, gpipé encoder function to obtain the hidden repre-
sentation, apply the decoder function to it (obtaining peaters for a distribution over inputs), and sample
an input. This is not very satisfying because it requiresgepkthe training set around (like non-parametric
density models). Another generative model (that is not ggamametric, i.e. does not involve explicitly the
training set) looks more like a sigmoid belief net, but withextra generative step that maps the uncorrupted
input to the corrupted input. The training criterion for ttlenoising auto-encoder can then be seen as a
variational bound for that generative model. However, bhgedraining the denoising auto-encoder does not
involve learning the prior on the hidden units involved irsthenerative model, it is unlikely that generating
from this model would yield very plausible patterns. Instga the semi-parametric case, the prior on the
hidden units is obtained by stochastically transformirgttiaining set (through the random corruption and
the encoder), so the prior on the hidden units is more inieges

Another interesting property of the denoising auto-encdsl¢hat it naturally lends itself to data with
missing values or multi-modal data (when a subset of the fi@damay be available for any particular
example). This is because ittimined with inputs that have “missing” parts (when corruption detssin
randomly hiding some of the input values).
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7.3 Lateral Connections

The RBM can be made slightly less restricted by introducimigraction terms or “lateral connections” be-
tween visible units. Sampling from P(h|x) is still easy but sampling from P(x|h) is now generally
more difficult, and amounts to sampling from a Markov RandaebdRwhich is also a fully observed Boltz-
mann machine, in which the offsets are dependent on the @fllie Osindero and Hinton (2008) propose
such a model for capturing image statistics and their resulygest that Deep Belief Nets (DBNSs) using
such modules generate more realistic image patches thars DBINg ordinary RBMs. Their results also
show that the resulting distribution has marginal and piaivstatistics for pixel intensities that are similar
to those observed on real image patches.

These lateral connections capture pairwise dependefeesan be more easily captured this way than
using hidden units, saving the hidden units for capturigghér-order dependencies. In the case of the first
layer, it can be seen that this amounts to a form of whiteniggh has been found useful as a preprocessing
step in image processing systems (Olshausen & Field, 199%.idea proposed by Osindero and Hinton
(2008) is to use lateral connections at all levels of a DBNi¢Wwltan now be seen as a hierarchy of Markov
random fields). The generic advantage of this type of approamld be that the higher level factors rep-
resented by the hidden units do not have to encode all th¢'idetils” that the lateral connections at the
levels below can capture. For example, when generating ageraf a face, the approximate locations of the
mouth and nose might be specified at a high level whereasphegise location could be selected in order
to satisfy the pairwise preferences encoded in the lateraiections at a lower level. This appears to yield
generated images with sharper edges and generally moreaagadn the relative locations of parts, without
having to expand a large number of higher-level units.

In order to sample fron®(x|h), we can start a Markov chain at the current example (whichuymably
already has pixel co-dependencies similar to those reptesddy the model, so that convergence should be
quick) and only run a short chain. Dendtethe square matrix of visible-to-visible connections, astpe
general Boltzmann Machine energy function in eq. 25. To cedgampling variance in CD for this model,
Osindero and Hinton (2008) used five damped mean-field stegpasad of an ordinary Gibbs chain on the
x's: x; = ax¢—1 + (1 — a)sigm(b + Ux;—1 + W'h), witha € (0,1).

7.4 Conditional RBMs and Temporal RBMs

A Conditional RBMs an RBM where some of the parameters are not free but asahgtarametrized func-
tions of a conditioning random variable. For example, cdeisan RBM for the joint distributiod(x, h)
between observed vecterand hidden vectoh, with parametergb, c, W) as per eq. 25, respectively for
input offsetsb, hidden units offsets, and the weight matriXy/. This idea has been introduced by Taylor,
Hinton, and Roweis (2006) for context-dependent RBMs inchtthe hidden units offsetsare affine func-
tions of a context variable. Hence the RBM represenf3(x, h|z) or, marginalizing oveh, P(x|z). In
general the parametets= (b, c, W) of an RBM can be written as a parametrized functica f(z;w), i.e.,
the actual free parameters of the conditional RBM with ctioding variablez are denoted. Generalizing
RBMs to conditional RBMs allows building deep architectune which the hidden variables at each level
can be conditioned on the value of other variables (typigalpresenting some form of context).

The Contrastive Divergence algorithm for RBMs can be eagigeralized to the case of Conditional
RBMs. The CD gradient estimatdYd on a parametet can be simply back-propagated to obtain a gradient

estimator onw: 50
Aw = Af——. (45)
Ow
In the affine case = 3 + Mz (with ¢, § andz column vectors and/ a matrix) studied by Taylor et al.
(2006), the CD update on the conditional parameters is simpl

A = Ac
AM = Ac? (46)
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Figure 12: Example of Temporal RBM for modeling sequentagthd including dependencies between the
hidden states. The double-arrow full arcs indicate an ewetid connection, i.e. an RBM. The single-arrow
dotted arcs indicate conditional dependency:(theh,) RBM is conditioned by the values of the pastinputs
and past hidden state vectors.

where the last multiplication is an outer product (applytimgchain rule on derivatives), adxt is the update
given by CD#% on hidden units offsets.

This idea has been successfully applied to model conditidistributions P (x;|x;—1,X¢—2, X;—3) In
sequential data of human motion (Taylor et al., 2006), whgrés a vector of joint angles and other ge-
ometric features computed from motion capture data of humavements such as walking and running.
Interestingly, this allowgeneratingrealistic human motiosequenceshy successively sampling theth
frame given the previously samplédrames, i.e. approximating

T

P(x1,%2,...,X7) ~ P(X1,...X}) H P(x¢|%¢—1,.- - Xt—k)- 47
t=k+1

The initial frames can be generated by using special nullesbhs context or using a separate model for
P(x1,...xx).

As demonstrated by Memisevic and Hinton (2007), it can béulise make not just the offsets but also
the weights conditional on a context variable. In that casegweatly increase the number of degrees of
freedom, introducing the capability to model three-wagiattions between an input usit, a hidden unit
h;, and a context unit;, through interaction parametefs,. This approach has been used withn image
andz the previous image in a video, and the model learns to cafiawdields(Memisevic & Hinton, 2007).

Probabilistic models of sequential data with hidden vdesh, (calledstate can gain a lot by capturing
the temporal dependencies between the hidden state aediftenes in the sequence. This is what allows
Hidden Markov Model¢gHMMSs) (Rabiner & Juang, 1986) to capture dependenciesamg@ sequence even
if the model only considers the hidden state sequence to bar&dM chain of order 1 (where the direct
dependence is only betwedn andh; ;). Whereas the hidden state representatipin HMMs is local
(all the possible values df, are enumerated and specific parameters associated witloetingse values),
Temporal RBM#$iave been proposed (Sutskever & Hinton, 2007) to constrdistabuted representation of
the state. The idea is an extension of the Conditional RBMereed above, but where the context includes
not only past inputs but also past values of the state, eggbuid a model of

P(htaxt|ht—17xt—la---aht—kaxt—k) (48)

where the context ig; = (h;—1,x;—1,...,h;_k, %), as illustrated in Figure 12. Although sampling
of sequences generated by Temporal RBMs can be done as intiGoadRBMs (with the same MCMC
approximation used to sample from RBMs, at each time step)ténference of the hidden state sequence
given an input sequence is no longer tractable. Insteadsk&gr and Hinton (2007) propose to use a
mean-field filtering approximation of the hidden sequencsqror.
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7.5 Factored RBMs

In several probabilistic language models, it has been megdo learn a distributed representation of each
word (Deerwester, Dumais, Furnas, Landauer, & Harshma@Q;1Bliikkulainen & Dyer, 1991; Bengio
et al.,, 2001, 2003; Schwenk & Gauvain, 2002; Xu et al., 200hwenk, 2004; Schwenk & Gauvain,
2005; Mnih & Hinton, 2009). For an RBM that models a sequerfceards, it would be convenient to
have a parametrization that leads to automatically legraidistributed representation for each word in the
vocabulary. This is essentially what Mnih and Hinton (20pm@pose. Consider an RBM inputthat is
the concatenation of one-hot vectarsfor each wordw; in a fixed-size sequendev;, ws, . .., wy), i.€.,

v, contains all 0's except for a 1 at positian, andx = (v{, v5,...,v})’. Mnih and Hinton (2007) use

a factorization of the RBM weight matri¥/ into two factors, one that depends on the locatian the
input subsequence, and one that does not. Consider the tatopwf the hidden units’ probabilities given
the input subsequende, vo, ..., vy). Instead of applying directly a matri¥ to x, do the following.
First, each word symbal; is mapped through a matrik to ad-dimensional vectoR ,,, = Rvy, fort €
{1...k}, second, the concatenated vectas , , R’ ,,,..., R, )" are multiplied by a matrix3. Hence

W = BDiag(R), whereDiag(R) is a block-diagonal matrix filled witlR on the diagonal. This model
has produced n-grams with better log-likelihood (Mnih & kin, 2007, 2009), with further improvements
in generalization performance when averaging predictigitls state-of-the-art n-gram models (Mnih &
Hinton, 2007).

7.6 Generalizing RBMs and Contrastive Divergence

Let us try to generalize the definition of RBM so as to includarge class of parametrizations for which
essentially the same ideas and learning algorithms (su€oasastive Divergence) that we have discussed
above can be applied in a straightforward way. We generBIEs as follows: aGeneralized RBMs an
energy-based probabilistic model with input vectoand hidden vectoh whose energy function is such
that P(h|x) and P(x|h) both factorize. This definition can be formalized in termshef parametrization of
the energy function, which is also proposed by Hinton et2006):

Proposition 7.1. The energy function associated with a model of the form oflBauch thatP(h|x) =
[[; P(hi|x) and P(x|h) = [[; P(x;|h) must have the form

Energy(x, h) = Z ¢j(x5) + Z &i(h;) + Z 1,5 (hi, X;). (49)

This is a direct application of the Hammersley-Clifforddnem (Hammersley & Clifford, 1971; Clifford,
1990). Hinton et al. (2006) also showed that the above foramiscessary and sufficient condition to obtain
complementary priots Complementary priors allow the posterior distributifih|x) to factorize by a
proper choice ofP(h).

In the case where the hidden and input values are binarynévisformulation does not actually bring
any additional power of representation. Indegd;(h;,x;), which can take at most four different values
according to the x 2 configurations ofh;, x;) could always be rewritten as a second order polynomial in
(hi,x;): a + bx; + ch; + dh;x;. Howeverb andc can be folded into the offset terms amdhto a global
additive constant which does not matter (because it getsetlad by the partition function).

On the other hand, whex or h are real vectors, one could imagine higher-capacity mogedf the
(h;, x;) interaction, possibly non-parametric, e.g., graduallgiag terms ton; ; So as to better model the
interaction. Furthermore, sampling from the conditionasitiesP(x;|h) or P(h;|x) would be tractable
even if then; ; are complicated functions, simply because these are 1rdiimeal densities from which
efficient approximate sampling and numerical integratieneasy (e.g., by computing cumulative sums of
the density over nested subintervals or bins).

This analysis also highlights the basic limitation of RBMs#)ich is that its parametrization only con-
siders pairwise interactions between variables. It is beedheh are hidden and because we can choose
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the number of hidden units, that we still have full expresgewer over possible marginal distributions in
x (in fact we can represent any discrete distribution (Le R&Bengio, 2008)). Other variants of RBMs
discussed in Section 7.4 allow three-way interactions (Mewic & Hinton, 2007).

What would be a Contrastive Divergence update in this gémetaRBM formulation? To simplify
notations we note that thg;’s and¢;’s in eq. 49 can be incorporated within the;’s, so we ignore them in
the following. Theorem 5.1 can still be applied with

FreeEnergy(x) = —logZexp (— Zm_j(hi,xj)> .
h i

The gradient of the free energy of a samglis thus

OFreeEnergy(x) eXp (_ 24,5 Mg (b, Xj)) Z Is,j(hi, x5)
a0 h D_j €Xp (— >y iy (h, Xj)) i 06

I, (hs, x;)
Xh: P(hlx) > —

ij

i j(hi, x;)
> 90 x

Ey

.3

Thanks to Proposition 7.1, a Gibbs chain can still be runlgadiruncating the log-likelihood gradient
expansion (eq. 38) aftérsteps of the Gibbs chain, and approximating expectatiotfssaimples from this
chain, one obtains an approximation of the log-likelihooadient at training poink; that depends only on
Gibbs samplet;, hy11 andxy1:

dlog P(x1)  OFreeEnergy(xi) n OFreeEnergy(xj4+1)
0 el 06

1R

377i,j(h1,z'7X1,j) 3ﬁi,j(hk+1,i,xk+1,j)
(— Z B R + ; 90 x Af

2%

with Af the update rule for parametét®f the model, corresponding to CbBin such a generalized RBM.
Note that in most parametrizations we would have a particlement ofy depend om; ;’s in such a way
that no explicit sum is needed. For instance (taking expectaverh,_; instead of sampling) we recover
Algorithm 1 when

1 (hi,x;) = =Wijhix; — —— — —
wheren;, andn, are respectively the numbers of hidden and visible unitd, @& also recover the other

variants described by Welling et al. (2005), Bengio et &0(@) for different forms of the energy and allowed
set of values for hidden and input units.

8 Stochastic Variational Bounds for Joint Optimization of DBN Lay-
ers
In this section we discuss mathematical underpinningggafrghms for training a DBN as a whole. The log-

likelihood of a DBN can be lower bounded using Jensen'’s iaétyiand as we discuss below, this can justify
the greedy layer-wise training strategy introduced in ¢btiret al., 2006) and described in Section 6.1. We
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will use eq. 42 for a DBN joint distribution, writink for h' (the first level hidden vector) to lighten notation,
and introducing an arbitrary conditional distributi@qth|x). First multiplylog P(x) by 1 = >, Q(h|x),

then useP(x) = ﬁg;‘l‘zg and multiply byl = ggﬁ{ig and expand the terms:

log P(x)

B o P(x,h)
(2}; Q(hIX)> log P(x) —zhjcz(hl o8 BT

P(x.h) Q(hjx)
2 Qb Yo8 5 o)

Q(h[x)

= Homix + ) Q) log PG b) + 3 Q(hlx)log Frs

h h

= KL(Q(h|x)||P(h|x)) + Hompx) + »_ Q(hlx) (log P(h) + log P(x|h))  (50)
h

where Hynx) iS the entropy of the distributio® (h|x). Non-negativity of the KL divergence gives the
inequality

log P(x) > Homujx) + »_ Q(h[x) (log P(h) +log P(x|h)), (51)

h

which becomes an equality whéhand( are identical, e.g. in the single-layer case (i.e., an RBM)ereas
we have chosen to ugeto denote probabilities under the DBN, we ga¢o denote probabilities under an
RBM (the first level RBM), and in the equations cho@géh|x) to be the hidden-given-visible conditional
distribution of that first level RBM. We define that first Ie\RBM such thai)(x|h) = P(x|h). In general
P(h|x) # Q(h|x). This is because although the margifdh) on the first layer hidden vectért = h is
determined by the upper layers in the DBN, the RBM margip@i) only depends on the parameters of the
RBM.

8.1 Unfolding RBMs into Infinite Directed Belief Networks

Before using the above decomposition of the likelihood &iifu the greedy training procedure for DBNSs,
we need to establish a connection betw&€h') in a DBN and the corresponding margida(h!) given by
the first level RBM. The interesting observation is that éhexists a DBN whoshk! marginal equals the first
RBM's h! marginal, i.e.P(h') = Q(h'), as long the dimension af? equals the dimension &° = x. To
see this, consider a second-level RBM whose weight matiixdégranspose of the first-level RBM (that is
why we need the matching dimensions). Hence, by symmetiyeofdles of visible and hidden in an RBM
joint distribution (when transposing the weight matrix)etmarginal distribution over the visible vector of
the second RBM is equal to the marginal distributipth) of the hidden vector of the first RBM.

Another interesting way to see this is given by Hinton et2006): consider the infinite Gibbs sampling
Markov chain starting at = —oo and terminating at = 0, alternating betweer andh! for the first RBM,
with visible vectors sampled on eveérand hidden vectors on odd This chain can be seen as an infinite
directed belief network with tied parameters (all even stege weight matri¥y’’ while all odd ones use
weight matrixW). Alternatively, we can summarize any sub-chain from —oo to ¢t = 7 by an RBM with
weight matrixi¥ or W' according to the parity of, and obtain a DBN with — 7 layers (not counting the
input layer), as illustrated in Figure 13. This argumenbakows that a 2-layer DBN in which the second
level has weights equal to the transpose of the first levajmisiis equivalent to a single RBM.

8.2 \Variational Justification of Greedy Layerwise Training

Here we discuss the argument made by Hinton et al. (2006atidihg one RBM layer improves the like-
lihood of a DBN. Let us suppose we have trained an RBM to maglelhich provides us with a model
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RBM Xi-1

Xt

Figure 13: An RBM can be unfolded as an infinite directed lhekwork with tied weights (see text). Left:
the weight matrixi?” or its transpose are used depending on the parity of the laglex. This sequence
of random variables corresponds to a Gibbs Markov chain teggex, (for ¢ large). On the right, the
top-level RBM in a DBN can also be unfolded in the same waywéhg that a DBN is an infinite directed
graphical model in whiclsomeof the layers are tied (all except the bottom few ones).
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Q(x) expressed through two conditionagh'|x) and Q(x|/h'). Exploiting the argument in the previ-
ous subsection, let us now initialize an equivalent 2-1dyBN, i.e., generatind®(x) = Q(x), by taking
P(x|h!) = Q(x|h!) and P(h!, h?) given by a second-level RBM whose weights are the transpioteo
first-level RBM. Now let us come back to eq. 50 above, and theative of improving the DBN likelihood by
changingP(h'), i.e., keeping?(x|h') andQ(h'|x) fixed but allowing the second level RBM to change. In-
terestingly, increasing the KL divergence teimreaseghe likelihood. Starting fron®(h!|x) = Q(h!|x),
the KL term is zero (i.e., can only increase) and the entrepytin eq. 50 does not depend on the DBN
P(h'), so small improvements to the term wiff(h!) guarantee an increase liog P(x). We are also
guaranteed that further improvements of fagh') term (i.e. further training of the second RBM, detailed
below) cannot bring the log-likelihood lower than it was dxefthe second RBM was added. This is simply
because of the positivity of the KL and entropy terms: furth@ning of the second RBM increases a lower
bound on the log-likelihood (eq. 51), as argued by Hintonl.et2906). This justifies training the second
RBM to maximize the expectation over the training se}of, Q(h'|x)log P(h').

The second-level RBM is thus trained to maximize

> P(x)Q(h'[x)log P(h') (52)
x,h1

with respect taP(h'). This is the maximum-likelihood criterion for a model thees examplek! obtained
as marginal samples from the joint distributiétix)Q(h!|x). If there was no constraint oR(h'), the
maximizer of the above training criterion would be its “emigal” or target distribution

Z P(x)Q(h!|x). (53)

If we keep the first-level RBM fixed, then the second-level RBbuld therefore be trained as follows:
samplex from the training set, then samgé ~ Q(h'|x), and consider thdi! as a training sample for the
second-level RBM (i.e. as an observation for its 'visiblettor).

The same argument can be made to justify adding a third layer,We obtain the greedy layer-wise
training procedure outlined in Section 6.1. In practicergguirement that layer sizes alternate is not satis-
fied, and consequently neither is it common practice tcdlidte the newly added RBM with the transpose of
the weights at the previous layer (Hinton et al., 2006; Bemgial., 2007), although it would be interesting
to verify experimentally (in the case where the size coigtigimposed) whether the initialization with the
transpose of the previous layer helps to speed up training.

Note that as we continue training the top part of the modedl (fais includes adding extra layers),
there is no guarantee thiig P(x) (in average over the training set) will monotonically inase. As our
lower bound continues to increase, the actual log-likelthoould start decreasing. Let us examine more
closely how this could happen. It would require the KL terndexrease as the second RBM continues to
be trained. However, this is unlikely in general: as the D8R{h') deviates more and more from the
first RBM's marginal@(h') on h!, it is likely that the posteriorg’(h'|x) (from the DBN) andQ (h!|x)
(from the RBM) deviate more and more (sinBéh'|x) o P(x|h!)P(h')), making the KL term in eq. 50
increase. As the training likelihood for the second RBM &&ses,P(h') moves smoothly fronQ(h?)
towardsP* (h'). Consequently, it seems very plausible that continueditrgiof the second RBM is going
to increase the DBN's likelihood (not just initially) and lyansitivity, adding more layers will also likely
increase the DBN's likelihood. However, it is not true thatrieasing the training likelihood for the second
RBM starting from any parameter configuration guaranteasttite DBN likelihood will increase, since at
least one pathological counter-example can be found (5k&uer, personal communication). Consider the
case where the first RBM has very large hidden biases, safiat|x) = Q(h') = 1,,_; = P*(h?),
but large weights and small visible offsets so tifdk;|h) = 1x,-n,, i.€., the hidden vector is copied to
the visible units. When initializing the second RBM with tihanspose of the weights of the first RBM, the
training likelihood of the second RBM cannot be improved;, can the DBN likelihood. However, if the
second RBM was started from a “worse” configuration (worsthansense of its training likelihood, and
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also worse in the sense of the DBN likelihood), thefh') would move toward$>* (h') = Q(h'), making
the second RBM likelihood improve while the KL term would desse and the DBN likelihood would
decrease. These conditions could not happen when initiglithe second RBM properly (with a copy of
the first RBM). So it remains an open question whether we caicfimditions (excluding the above) which
guarantee that while the likelihood of the second RBM insesathe DBN likelihood also increases.

Another argument to explain why the greedy procedure waskihé following (Hinton, NIPS'2007
tutorial). The training distribution for the second RBM ifgalesh® from P*(h')) looks more like data
generated by an RBM than the original training distribut}%(nc). This is becaus®* (h!) was obtained by
applying one sub-step of an RBM Gibbs chain on examples ﬂgbém), and we know that applying many
Gibbs steps would yield data from that RBM.

Unfortunately, when we train an RBM that will not be the t@vél level of a DBN, we are not taking into
account the fact that more capacity will be added later taawpthe prior on the hidden units. Le Roux and
Bengio (2008) have proposed considering alternatives tar@stive Divergence for training RBMs destined
to initialize intermediate layers of a DBN. The idea is to sioler thatP (h) will be modeled with a very high
capacity model (the higher levels of the DBN). In the limiseaf infinite capacity, one can write down what
that optimalP (h) will be: itis simply the stochastic transformation of themrital distribution through the
stochastic mappin@ (h|x) of the first RBM (or previous RBMs). Plugging this back int@ texpression
for log P(x), one finds that a good criterion for training the first RBM ige tL divergence between the
data distribution and the distribution of the stochasticorestruction vectors after one step of the Gibbs
chain. Experiments (Le Roux & Bengio, 2008) confirm that triterion yields better optimization of the
DBN (initialized with this RBM). Unfortunately, this criten is not tractable since it involves summing
over all configurations of the hidden vectar Tractable approximations of it might be considered, since
this criterion looks like a form of reconstruction error ostachastic auto-encoder (with a generative model
similar to one proposed for denoising auto-encoders (Viheeal., 2008)). Another interesting alternative,
explored in the next section, is to directly work on jointiogization of all the layers of a DBN.

8.3 Joint Unsupervised Training of All the Layers

We discuss here how one could train a whole deep architestisteas a DBN in an unsupervised way, i.e.
to represent well the input distribution.

8.3.1 The Wake-Sleep Algorithm

The Wake-Sleep algorithm (Hinton et al., 1995) was intraglLto train sigmoidal belief networks (i.e. where
the distribution of the top layer units factorizes). It issbd on a “recognition” mode)(h|x) (along with
Q(x) the training set distribution) that acts as a variation@ragimation to the generative mode{h, x).

In a DBN, Q(h|x) is as defined above (sec. 6.1), obtained by propagating saraplvard (from input to
higher layers) at each layer. In the Wake-Sleep algorithexdacouple the recognition parameters (upward
weights, used to comput@(h|x)) from the generative parameters (downward weights, usednmute
P(x|h)). The basic idea of the algorithm is simple:

1. Wake phase samplex from the training set, generate ~ Q(h|x) and use thigh,x) as fully
observed data for training(x|h) and P(h). This corresponds to doing one stochastic gradient step
with respect to

> Q(h|x)log P(x; h). (54)
h

2. Sleep phase sample(h, x) from the modelP(x,h), and use that pair as fully observed data for
training@Q(h|x). This corresponds to doing one stochastic gradient stépregipect to

Y P(h,x)log Q(h[x). (55)

h,x
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The Wake-Sleep algorithm has been used for DBNs in (Hintah,£2006), after the weights associated with
each layer have trained as RBMs as discussed earlier. FoNavidh layers(h', ..., h’), the Wake phase
updates for the weights of the top RBM (betwdeiT! andh’) is done by considering thi‘~! sample
(obtained fromQ (h|x)) as training data for the top RBM.

A variational approximation can be used to justify the W&teep algorithm. The log-likelihood decom-
position in eq. 50

log P(x) = KL(Q(h[x)|| P(h[x)) + Hompx) + Y Q(hlx) (log P(h) + log P(x|h)) (56)
h

shows that the log-likelihood can be bounded from below leyojhposite of the Helmholtz free energy (Hin-
ton et al., 1995; Frey, Hinton, & Dayan, 19956)

log P(x) = K L(Q(h|x)|[P(h[x)) — F(x) > —F(x) (57)
where
F(x) = —Hgemx) — »_ Q(hlx) (log P(h) + log P(x|h)) (58)
h

and the inequality is tight whe = P. The variational approach is based on maximizing the loveeinkl

— F while trying to make the bound tight, i.eminimizing KX L(Q(h|x)|| P (h|x)). When the bound is tight,
an increase of F'(x) is more likely to yield an increase &g P(x). Since we decouple the parameters of
@ and of P, we can now see what the two phases are doing. In the Wake pleasensider) fixed and
do a stochastic gradient step towards maximizing the egpegtlue off’(x) over samplex of the training
set, with respect to parameters Bf(i.e. we do not care about the entropy®J. In the Sleep phase we
would ideally like to makey as close taP as possible in the sense of minimizidgL (Q (h|x)||P(h|x))
(i.e. taking@ as the reference), but instead we minimigé (P (h, x)||Q(h, x)), taking P as the reference,
because({ L(Q(h|x)||P(h|x)) is intractable.

8.3.2 Transforming the DBN into a Boltzmann Machine

Another approach was recently proposed, yielding in attleas case results superior to the use of the
Wake-Sleep algorithm (Salakhutdinov & Hinton, 2009). Afidtializing each layer as an RBM as already
discussed in section 6.1, the DBN is transformed into a spording deep Boltzmann machine. Because in
a Boltzmann machine each unit receives input from above #sw&om below, it is proposed to halve the
RBM weights when initializing the deep Boltzmann machiranirthe layerwise RBMs. The authors then
propose approximations for the positive phase and negalimse gradients of the Boltzmann machine (see
section 5.2 and eq. 26). For the positive phase (which ircgpiarequires holding fixed and sampling from
P(h|x)), they propose a variational approximation correspontling mean-field relaxation (propagating
probabilities associated with each unit given the othathar than samples, and iterating a few dozen times
to let them settle). For the negative phase (which in priecipquires sampling from the joirf®(h, x))
they propose to use the idea of a persistent MCMC chain afréiadussed in section 5.4.1 and introduced
in Tieleman (2008). The idea is to keep a setlofx) states (or particles) that are updated by one Gibbs
step according to the current model (i.e. sample each uodrding to its probability given all the others at
the previous step). Even though the parameters keep clipfugry slowly), we continue the same Markov
chain instead of starting a new one (as in the old Boltzmanchima algorithm (Hinton et al., 1984; Ackley
et al., 1985; Hinton & Sejnowski, 1986)). This strategy sedm work very well, and (Salakhutdinov
& Hinton, 2009) report an improvement over DBNs on the MNIS3tabet, both in terms of data log-
likelihood (estimated using annealed importance samgSadpkhutdinov & Murray, 2008)) and in terms of
classification error (after supervised fine-tuning), biiggdown the error rate from 1.2% to 0.95%.
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9 Looking Forward

9.1 Global Optimization Strategies

As discussed Section 4.2, part of the explanation for thieebgeneralization observed with unsupervised
pre-training in deep architectures could well be that thelp lto better optimize the lower layers (near the
input), by initializing supervised training in regions cdfameter space associated with better unsupervised
models.

Here, we draw connections between existing work and appesaihat could help to deal with difficult
optimization problems, based on the principlecohtinuation methodgAllgower & Georg, 1980). Al-
though they provide no guarantee to obtain the global optinmhese methods have been particularly useful
in computational chemistry to find approximate solutionslifficult optimization problems involving the
configurations of molecules (Coleman & Wu, 1994; More & Wu9&9Wu, 1997). The basic idea is to
first solve a smoothed version of the problem and gradualgider less smoothing, with the intuition that
a smooth version of the problem reveals the global pictuist,lijke with simulated annealing (Kirkpatrick,
Jr., , & Vecchi, 1983). One defines a single-parameter faofilgost function”), () such thaiC, can be
optimized easily (maybe convex #), while C is the criterion that we actually wish to minimize. One first
minimizesCy(8) and then gradually increasaswhile keepingd at a local minimum of” (6). Typically
Cy is a highly smoothed version @f;, so that? gradually moves into the basin of attraction of a dominant
(if not global) minimum ofC}.

9.1.1 Greedy Layerwise Training of DBNs as a Continuation M#éod

The greedy layerwise training algorithm for DBNs describre8ection 6.1 can be viewed as an approximate
continuation method, as follows. First of all recall (Senti8.1) that the top-level RBM of a DBN can
be unfolded into an infinite directed graphical model withdtiparameters. At each step of the greedy
layerwise procedure, we untie the parameters of the tog-RBM from the parameters of the penultimate
level. So one can view the layerwise procedure as followse Miodel structure remains the same, an
infinite chain of sigmoid belief layers, but we change thestraint on the parameters at each step of the
layerwise procedure. Initially all the layers are tied. ékftraining the first RBM (i.e. optimizing under this
constraint), we untie the first level parameters from the ifter training the second RBM (i.e. optimizing
under this slightly relaxed constraint), we untie the sectavel parameters from the rest, etc. Instead
of a continuum of training criteria, we have a discrete segaeof (presumably) gradually more difficult
optimization problems. By making the process greedy we fixghrameters of the firgtlevels after they
have been trained and only optimize ket 1)-th, i.e. train an RBM. For this analogy to be strict we would
need to initialize the weights of the newly added RBM with trenspose of the previous one. Note also
that instead of optimizing all the parameters, the greeggriavise approach only optimizes the new ones.
But even with these approximations, this analysis suggestxplanation for the good performance of the
layerwise training approach in terms of reaching bettartgms.

9.1.2 Unsupervised to Supervised Transition

The experiments in many papers clearly show that an unsiggéerpre-training followed by a supervised
fine-tuning works very well for deep architectures. Wheng@vious work on combining supervised and
unsupervised criteria (Lasserre et al., 2006) focus ondfalarization effect of an unsupervised criterion
(and unlabeled examples, in semi-supervised learning)digcussion of Section 4.2 suggests that part of
the gain observed with unsupervised pre-training of ded¢war&s may arise out of better optimization of
the lower layers of the deep architecture.

Much recent work has focussed on starting from an unsugEtvepresentation learning algorithm (such
as sparse coding) and fine-tuning the representation witkcaminant criterion or combining the discrimi-
nant and unsupervised criteria (Larochelle & Bengio, 2088iral et al., 2009; Bagnell & Bradley, 2009).
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In Larochelle and Bengio (2008), an RBM is trained with a tpart visible vector that includes both
the inputx and the target clasg. Such an RBM can either be trained to model the jditk, y) (e.g.
by contrastive divergence) or to model the conditioR4)/|x) (the exact gradient of the conditional log-
likelihood is tractable). The best results reported (Lasdle & Bengio, 2008) combine both criteria, but the
model is initialized using the non-discriminant criterion

In Mairal et al. (2009), Bagnell and Bradley (2009) the taskearning the decoder bases in a sparse
coding system is coupled with a classification problem. Aitéializing the decoder bases using non-
discriminant learning, they can be fine-tuned using a disicant criterion that is applied jointly on the
representation parameters (i.e., the first layer basdsitres rise to the sparse codes) and a set of classifier
parameters (e.g., a linear classifier that takes the resm codes as input). According to Mairal et al.
(2009), trying to directly optimize the supervised critgrivithout first initializing with the non-discriminant
training yielded very poor results. In fact, they proposermoth transitiofrom the non-discriminant crite-
rion to the discriminant one, hence performing a kind of cardtion method to optimize the discriminant
criterion.

9.1.3 Controlling Temperature

Even optimizing the log-likelihood of a single RBM might belifficult optimization problem. It turns out
that the use of stochastic gradient (such as the one obtaim@®dCD-k) and small initial weights is again
close to a continuation method, and could easily be turneddne. Consider the family of optimization
problems corresponding to thegularization path(Hastie, Rosset, Tibshirani, & Zhu, 2004) for an RBM,
e.g., with/, regularization of the parameters, the family of traininigecia parametrized by € (0, 1]:

Ca(0) = — D log Po(xi) — [|6]]* log A. (59)

WhenA — 0, we haved — 0, and it can be shown that the RBM log-likelihood becomes egnu 6.
When\ — 1, there is no regularization (note that some intermedialg@evaf A might be better in terms
of generalization, if the training set is small). Contnafjithe magnitude of the offsets and weights in an
RBM is equivalent to controlling théemperaturein a Boltzmann machine (a scaling coefficient for the
energy function). High temperature corresponds to a higtdghastic system, and at the limit a factorial
and uniform distribution over the input. Low temperatureresponds to a more deterministic system where
only a small subset of possible configurations are plausible

Interestingly, one observes routinely that stochasticligre descent starting from small weights grad-
ually allows the weights to increase in magnitude, thus axprately following the regularization path.
Early stoppingis a well-known and efficient capacity control techniquedazben monitoring performance
on a validation set during training and keeping the bestrpaters in terms of validation set error. The
mathematical connection between early stoppingfandgularization (along with margin) has already been
established (Zinkevich, 2003; Collobert & Bengio, 2004artng from small parameters and doing gradient
descent yields gradually larger parameters, correspgrdia gradually less regularized training criterion.
However, with ordinary stochastic gradient descent (wilerplicit regularization term), there is no guar-
antee that we would be tracking the sequence of local mingsacated with a sequence of values\of
in eq. 59. It might be possible to slightly change the stottbagadient algorithm to make it track better
the regularization path, (i.e. make it closer to a contiimmatethod), by controlling\ explicitly, gradually
increasing\ when the optimization is near enough a local minimum for theent value of\. Note that
the same technique might be extended for other difficult inoewr optimization problems found in machine
learning, such as training a deep supervised neural netwlekwant to start from a globally optimal so-
lution and gradually track local minima, starting from hgaegularization and moving slowly to little or
none.
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9.1.4 Shaping: Training with a Curriculum

Another continuation method may be obtained by graduadiggforming the training task, from an easy
one (maybe convex) where examples illustrate the simplecejts, to the target one (with more difficult
examples). Humans need about two decades to be trainedyasufuttional adults of our society. That
training is highly organized, based on an education systednaacurriculum which introduces different
concepts at different times, exploiting previously leargencepts to ease the learning of new abstractions.
The idea of training a learning machine with a curriculum bartraced back at least to (Elman, 1993). The
basic idea is testart smal| learn easier aspects of the task or easier sub-tasks, angthdually increase
the difficulty level. From the point of view of building repentations, advocated here, the idea is to learn
representations that capture low-level abstractions frstl then exploit them and compose them to learn
slightly higher-level abstractions necessary to explasrercomplex structure in the data. By choosing
which examples to present and in which order to present thehetlearning system, one cgaidetraining
and remarkably increase the speed at which learning cam.o€his idea is routinely exploited ianimal
training and is calledshaping(Skinner, 1958; Peterson, 2004; Krueger & Dayan, 2009).

Shaping and the use of a curriculum can also be seen as catiimmethods. For this purpose, consider
the learning problem of modeling the data coming from a trajulistribution?. The idea is to reweight the
probability of sampling the examples from the training idigttion, according to a given schedule that starts
from the “easiest” examples and moves gradually towardmeles illustrating more abstract concepts. At
point¢ in the schedule, we train from distributidh, with P, = P and P, chosen to be easy to learn. Like
in any continuation method, we move along the schedule whetearner has reached a local minimum at
the current point in the schedule, i.e., when it has sufficiently mastered tbeipusly presented examples
(sampled fromP,). Making small changes ihcorresponds to smooth changes in the probability of samplin
examples in the training distribution, so we can construmb@tinuous path starting from an easy learning
problem and ending in the desired training distributionisitiea is developed further in Bengio, Louradour,
Collobert, and Weston (2009), with experiments showingdbefeneralization obtained when training with
a curriculum leading to a target distribution, compared#&ining only with the target distribution, on both
vision and language tasks.

There is a connection between the shaping/curriculum idddte greedy layer-wise idea. In both cases
we want to exploit the notion that a high level abstractiomweore conveniently be learned once appropriate
lower-level abstractions have been learned. In the casheofalyer-wise approach, this is achieved by
gradually adding more capacity in a way that builds upon ipresty learned concepts. In the case of the
curriculum, we control the training examples so as to make that the simpler concepts have actually been
learned before showing many examples of the more advancepts. Showing complicated illustrations
of the more advanced concepts is likely to be generally aenafstime, as suggested by the difficulty for
humans to grasp a new idea if they do not first understand theepds necessary to express that new idea
compactly.

With the curriculum idea we introduce a teacher, in additmtine learner and the training distribution or
environment. The teacher can use two sources of informadidacide on the schedule: (a) prior knowledge
about a sequence of concepts that can more easily be leamesdoresented in that order, and (b) monitoring
of the learner’s progress to decide when to move on to newriabfeom the curriculum. The teacher has
to select a level of difficulty for new examples which is a caompise between “too easy” (the learner will
not need to change its model to account for these examplésitaem hard” (the learner cannot make an
incremental change that can account for these examplesgoMi most likely be treated as outliers or
special cases, i.e. not helping generalization).

9.2 Why Unsupervised Learning is Important

One of the claims of this paper is that powerful unsupervigesemi-supervised learning is a crucial com-
ponent in building successful learning algorithms for dagghitectures aimed at approaching Al. We briefly
cover the arguments in favor of this hypothesis here:
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9.3

Unknown future tasks: if a learning agent does not know whatré learning tasks it will have to
deal with in the future, but it knows that the task will be defirwith respect to a world (i.e. random
variables) that it can observe now, it would appear venredi to collect as much information as
possible about this world so as to learn what makes it tick.

Once a good high-level representation is learned, othenilegatasks (e.g., supervised or reinforce-
ment learning) could be much easier. We know for exampledmaiel machines can be very powerful
if using an appropriate kernel, i.e. an appropriate feaspace. Similarly, we know powerful rein-
forcement learning algorithms which have guarantees ircttse where the actions are essentially
obtained through linear combination of appropriate fezguiWe do not know what the appropriate
representation should be, but one would be reassured ipitizad the salient factors of variation in
the input data, and disentangled them.

Layer-wise unsupervised learning: this was argued in Sedti3. Much of the learning could be done
using information available locally in one layer or subdayf the architecture, thus avoiding the
hypothesized problems with supervised gradients propagttrough long chains with large fan-in
elements.

Connected to the two previous points is the idea that unsigeer learning could put the parameters
of a supervised or reinforcement learning machine in a re§iom which gradient descent (local
optimization) would yield good solutions. This has beenfied empirically in several settings, in
particular in the experiment of Figure 7 and in Bengio et 20Q7), Larochelle et al. (2009), Erhan
et al. (2009).

The extra constraints imposed on the optimization by réumithe model to capture not only the
input-to-target dependency but also the statistical wgids of the input distribution might be helpful
in avoiding some poor local minima (those that do not comesipto good modeling of the input
distribution). Note that in general extra constraints mag areate more local minima, but we observe
experimentally (Bengio et al., 2007) that both training &t error can be reduced by unsupervised
pre-training, suggesting that the unsupervised preitrgimoves the parameters in a region of space
closer to local minima corresponding to learning better@sentations (in the lower layers).

Less prone to overfitting: it has been argued (Hinton, 2006)i6 debatable) that unsupervised learn-
ing is less prone to overfitting than supervised learningefarchitectures have typically been used
to construct a supervised classifier, and in that case thepengsed learning component can clearly
be seen as a regularizer or a prior (Ng & Jordan, 2001; Lasseml., 2006; Liang & Jordan, 2008)
that forces the resulting parameters to make sense not@mhptlel classes given inputs but also to
capture the structure of the input distribution.

Open Questions

Research on deep architectures is still young and manyiqoesemain unanswered. The following are
potentially interesting.

1.

Can the results pertaining to the role of computationpthidé circuits be generalized beyond logic
gates and linear threshold units?

. Is there a depth that is mostly sufficient for the compartetinecessary to approach human-level

performance of Al tasks?

. How can the theoretical results on depth of circuits wiftxed size input be generalized to dynamical

circuits operating in time, with context and the possipitif recursive computation?

. Why is gradient-based training of deep neural network®frandom initialization often unsuccessful?
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Are RBMs trained by CD doing a good job of preserving th@infation in their input (since they
are not trained as auto-encoders they might lose informatmut the input that may turn out to be
important later), and if not how can that be fixed?

. Is the presence of local minima an important issue inimngiRBMs?

. Could we replace RBMs and auto-encoders by algorithnisibald be proficient at extracting good

representations but involving an easier optimization [@oh perhaps even a convex one?

. Should the number of Gibbs steps in Contrastive Divergéecadjusted during training?

. Besides reconstruction error, are there other more gppte ways to monitor progress during train-

ing of RBMs and DBNs? Equivalently, are there tractable apipnations of the partition function in
RBMs and DBNs? Recent work in this direction (Salakhutdi&dvurray, 2008; Murray & Salakhut-
dinov, 2009) using annealed importance sampling is enginga

Could RBMs and auto-encoders be improved by imposinggsorm of sparsity penalty on the rep-
resentations they learn, and what would be good ways to do so?

Without increasing the number of hidden units, can thpacitly of an RBM be increased using non-
parametric forms of its energy function?

Since we only have a generative model for single derpigirto-encoders, is there a probabilistic
interpretation to models learned$tackedAuto-Encoders otackedenoising Auto-Encoders?

How efficient is the greedy layer-wise algorithm formiag Deep Belief Networks (in terms of max-
imizing the training data likelihood)? Is it too greedy?

Can we obtain low variance and low bias estimators of digelikelihood gradient in Deep Belief
Networks and related deep generative models, i.e., canimgyjtrain all the layers (with respect to
the unsupervised objective)?

Can optimization strategies based on continuation oakstieliver significantly improved training of
deep architectures?

Are there other efficiently trainable deep architelresides Deep Belief Networks, Stacked Auto-
Encoders, and deep Boltzmann machines?

Is a curriculum needed to learn the kinds of high-levsti@utions that humans take years or decades
to learn?

Can the principles discovered to train deep architestbe applied or generalized to train recurrent
networks or dynamical belief networks, which learn to repre context and long-term dependencies?

How can deep architectures be generalized to repregentiation that, by its nature, might seem not
easily representable by vectors, because of its variabdessid structure (e.g. trees, graphs)?

Although Deep Belief Networks are in principle well sditfor the semi-supervised setting, how
should their algorithms be adapted to this setting and houladvihney fare compared to existing semi-
supervised algorithms?

When labeled examples are available, how should sigeehand unsupervised criteria be combined
to learn the model’s representations of the input?

Can we find analogs of the computations necessary for&iive Divergence and Deep Belief Net
learning in the brain?
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23. The cortex is not at all like a feedforward neural networthat there are significant feedback connec-
tions (e.g. going back from later stages of visual processirearlier ones) and these may serve a role
not only in learning (as in RBMSs) but also in integrating axtial priors with visual evidence (Lee
& Mumford, 2003). What kind of models can give rise to suclerattions in deep architectures, and
learn properly with such interactions?

10 Conclusion

This paper started with a number of motivations: first to @sening to approach Al, then on the intuitive
plausibility of decomposing a problem into multiple levels computation and representation, followed
by theoretical results showing that a computational aechitre that does not have enough of these levels
can require a huge number of computational elements, andraig algorithm that relies only on local
generalization is unlikely to generalize well when tryioge¢arn highly-varying functions.

Turning to architectures and algorithms, we first motivadéstributed representations of the data, in
which a huge number of possible configurations of abstrattifes of the input are possible, allowing a
system to compactly represent each example, while opehanddor to a rich form of generalization. The
discussion then focused on the difficulty of successfulyning deep architectures for learning multiple
levels of distributed representations. Although the raagor the failure of standard gradient-based methods
in this case remain to be clarified, several algorithms haenlintroduced in recent years that demonstrate
much better performance than was previously possible witple gradient-based optimization, and we have
tried to focus on the underlying principles behind theircass.

Although much of this paper has focused on deep neural nedegy graphical model architectures, the
idea of exploring learning algorithms for deep architeetlshould be explored beyond the neural net frame-
work. For example, it would be interesting to consider esiens of decision tree and boosting algorithms
to multiple levels.

Kernel-learning algorithms suggest another path whiclukhbe explored, since a feature space that
captures the abstractions relevant to the distributionteféest would be just the right space in which to apply
the kernel machinery. Research in this direction shouldictem ways in which the learned kernel would
have the ability to generalize non-locally, to avoid theseuof dimensionality issues raised in Section 3.1
when trying to learn a highly-varying function.

The paper focused on a particular family of algorithms, tleepBelief Networks, and their component
elements, the Restricted Boltzmann Machine, and very neighhors: different kinds of auto-encoders,
which can also be stacked successfully to form a deep acthit= We studied and connected together
estimators of the log-likelihood gradient in RestrictedtBmann machines, helping to justify the use of the
Contrastive Divergence update for training RestrictedBoann Machines. We highlighted an optimization
principle that has worked well for Deep Belief Networks amthted algorithms such as Stacked Auto-
Encoders, based on a greedy, layerwise, unsuperviseaiiation of each level of the model. We found that
this optimization principle is actually an approximaticdreomore general optimization principle, exploited
in so-called continuation methods, in which a series of gadig more difficult optimization problems are
solved. This suggested new avenues for optimizing deeptactives, either by tracking solutions along a
regularization path, or by presenting the system with asecel of selected examples illustrating gradually
more complicated concepts, in a way analogous to the wagstadr animals are trained.
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