
1

Learning Deep Architectures for AI

Yoshua Bengio
Dept. IRO, Université de Montréal
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Abstract

Theoretical results suggest that in order to learn the kind of complicated functions that can represent high-
level abstractions (e.g. in vision, language, and other AI-level tasks), one may needdeep architectures.
Deep architectures are composed of multiple levels of non-linear operations, such as in neural nets with
many hidden layers or in complicated propositional formulae re-using many sub-formulae. Searching the
parameter space of deep architectures is a difficult task, but learning algorithms such as those for Deep
Belief Networks have recently been proposed to tackle this problem with notable success, beating the
state-of-the-art in certain areas. This paper discusses the motivations and principles regarding learning
algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning
of single-layer models such as Restricted Boltzmann Machines, used to construct deeper models such as
Deep Belief Networks.

1 Introduction

Allowing computers to model our world well enough to exhibitwhat we call intelligence has been the focus
of more than half a century of research. To achieve this, it isclear that a large quantity of information
about our world should somehow be stored, explicitly or implicitly, in the computer. Because it seems
daunting to formalize manually all that information in a form that computers can use to answer questions
and generalize to new contexts, many researchers have turned to learning algorithmsto capture a large
fraction of that information. Much progress has been made tounderstand and improve learning algorithms,
but the challenge of artificial intelligence (AI) remains. Do we have algorithms that can understand scenes
and describe them in natural language? Not really, except invery limited settings. Do we have algorithms
that can infer enough semantic concepts to be able to interact with most humans using these concepts? No.
If we consider image understanding, one of the best specifiedof the AI tasks, we realize that we do not yet
have learning algorithms that can discover the many visual and semantic concepts that would seem to be
necessary to interpret most images on the web. The situationis similar for other AI tasks.

Consider for example the task of interpreting an input imagesuch as the one in Figure 1. When humans
try to solve a particular AI task (such as machine vision or natural language processing), they often exploit
their intuition about how to decompose the problem into sub-problems and multiple levels of representation,
e.g., in object parts and constellation models (Weber, Welling, & Perona, 2000; Niebles & Fei-Fei, 2007;
Sudderth, Torralba, Freeman, & Willsky, ) where models for parts can be re-used in different object instances.
For example, the current state-of-the-art in machine vision involves a sequence of modules starting from
pixels and ending in a linear or kernel classifier (Pinto, DiCarlo, & Cox, 2008; Mutch & Lowe, 2008), with
intermediate modules mixing engineered transformations and learning, e.g. first extracting low-level features
that are invariant to small geometric variations (such as edge detectors from Gabor filters), transforming them



gradually (e.g. to make them invariant to contrast changes and contrast inversion, sometimes by pooling and
sub-sampling), and then detecting the most frequent patterns. A plausible and common way to extract useful
information from a natural image involves transforming theraw pixel representation into gradually more
abstract representations, e.g., starting from the presence of edges, the detection of more complex but local
shapes, up to the identification of abstract categories associated with sub-objects and objects which are parts
of the image, and putting all these together to capture enough understanding of the scene to answer questions
about it. Here, we assume that the computational machinery necessary to express complex behaviors (which
one might label “intelligent”) requireshighly varyingmathematical functions, i.e. mathematical functions
that are highly non-linear in terms of raw sensory inputs, and display a very large number of variations (ups
and downs) across the domain of interest. We view the raw input to the learning system as a high dimensional
entity, made of many observed variables, which are related by unknown intricate statistical relationships. For
example, using knowledge of the 3D geometry of solid objectsand lighting, we can relate small variations in
underlying physical and geometric factors (such as position, orientation, lighting of an object) with changes
in pixel intensities for all the pixels in an image. We call thesefactors of variationbecause they are different
aspects of the data that can vary separately and often independently. In this case, explicit knowledge of
the physical factors involved allows one to get a picture of the mathematical form of these dependencies,
and of the shape of the set of images (as points in a high-dimensional space of pixel intensities) associated
with the same 3D object. If a machine captured the factors that explain the statistical variations in the data,
and how they interact to generate the kind of data we observe,we would be able to say that the machine
understandsthose aspects of the world covered by these factors of variation. Unfortunately, in general and
for most factors of variation underlying natural images, wedo not have an analytical understanding of these
factors of variation. We do not have enough formalized priorknowledge about the world to explain the
observed variety of images, even for such an apparently simple abstraction asMAN , illustrated in Figure 1.
A high-level abstraction such asMAN has the property that it corresponds to a very large set of possible
images, which might be very different from each other from the point of view of simple Euclidean distance
in the space of pixel intensities. The set of images for whichthat label could be appropriate forms a highly
convoluted region in pixel space that is not even necessarily a connected region. TheMAN category can be
seen as a high-level abstraction with respect to the space ofimages. What we call abstraction here can be a
category (such as theMAN category) or afeature, a function of sensory data, which can be discrete (e.g.,the
input sentence is at the past tense) or continuous (e.g.,the input video shows an object moving at
a particular velocity). Many lower-level and intermediate-level concepts (which we also call abstractions
here) would be useful to construct aMAN -detector. Lower level abstractions are more directly tiedto
particular percepts, whereas higher level ones are what we call “more abstract” because their connection to
actual percepts is more remote, and through other, intermediate-level abstractions.

In addition to the difficulty of coming up with the appropriate intermediate abstractions, the number of
visual and semantic categories (such asMAN ) that we would like an “intelligent” machine to capture is
rather large. The focus of deep architecture learning is to automatically discover such abstractions, from the
lowest level features to the highest level concepts. Ideally, we would like learning algorithms that enable
this discovery with as little human effort as possible, i.e., without having to manually define all necessary
abstractions or having to provide a huge set of relevant hand-labeled examples. If these algorithms could
tap into the huge resource of text and images on the web, it would certainly help to transfer much of human
knowledge into machine-interpretable form.

1.1 How do We Train Deep Architectures?

Deep learning methods aim at learning feature hierarchies with features from higher levels of the hierarchy
formed by the composition of lower level features. Automatically learning features at multiple levels of
abstraction allows a system to learn complex functions mapping the input to the output directly from data,
without depending completely on human-crafted features. This is especially important for higher-level ab-
stractions, which humans often do not know how to specify explicitly in terms of raw sensory input. The
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Figure 1: We would like the raw input image to be transformed into gradually higher levels of representation,
representing more and more abstract functions of the raw input, e.g., edges, local shapes, object parts,
etc. In practice, we do not know in advance what the “right” representation should be for all these levels
of abstractions, although linguistic concepts might help guessing what the higher levels should implicitly
represent.
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ability to automatically learn powerful features will become increasingly important as the amount of data
and range of applications to machine learning methods continues to grow.

Depth of architecturerefers to the number of levels of composition of non-linear operations in the func-
tion learned. Whereas most current learning algorithms correspond toshallow architectures(1, 2 or 3 levels),
the mammal brain is organized in adeep architecture(Serre, Kreiman, Kouh, Cadieu, Knoblich, & Poggio,
2007) with a given input percept represented at multiple levels of abstraction, each level corresponding to
a different area of cortex. Humans often describe such concepts in hierarchical ways, with multiple levels
of abstraction. The brain also appears to process information through multiple stages of transformation and
representation. This is particularly clear in the primate visual system (Serre et al., 2007), with its sequence
of processing stages: detection of edges, primitive shapes, and moving up to gradually more complex visual
shapes.

Inspired by the architectural depth of the brain, neural network researchers had wanted for decades to
train deep multi-layer neural networks (Utgoff & Stracuzzi, 2002; Bengio & LeCun, 2007), but no success-
ful attempts were reported before 20061: researchers reported positive experimental results withtypically
two or three levels (i.e. one or two hidden layers), but training deeper networks consistently yielded poorer
results. Something that can be considered abreakthroughhappened in 2006: Hinton and collaborators at
U. of Toronto introduced Deep Belief Networks or DBNs for short (Hinton, Osindero, & Teh, 2006), with
a learning algorithm that greedily trains one layer at a time, exploiting an unsupervised learning algorithm
for each layer, a Restricted Boltzmann Machine (RBM) (Freund & Haussler, 1994). Shortly after, related
algorithms based on auto-encoders were proposed (Bengio, Lamblin, Popovici, & Larochelle, 2007; Ran-
zato, Poultney, Chopra, & LeCun, 2007), apparently exploiting the same principle:guiding the training of
intermediate levels of representation using unsupervisedlearning, which can be performed locally at each
level. Other algorithms for deep architectures were proposed more recently that exploit neither RBMs nor
auto-encoders and that exploit the same principle (Weston,Ratle, & Collobert, 2008) (see Section 4).

Since 2006, deep networks have been applied with success notonly in classification tasks (Bengio et al.,
2007; Ranzato et al., 2007; Larochelle, Erhan, Courville, Bergstra, & Bengio, 2007; Ranzato, Boureau, &
LeCun, 2008; Vincent, Larochelle, Bengio, & Manzagol, 2008; Ahmed, Yu, Xu, Gong, & Xing, 2008),
but also in regression (Salakhutdinov & Hinton, 2008), dimensionality reduction (Hinton & Salakhutdinov,
2006a; Salakhutdinov & Hinton, 2007a), modeling textures (Osindero & Hinton, 2008), object segmenta-
tion (Levner, 2008), information retrieval (Salakhutdinov & Hinton, 2007b; Ranzato & Szummer, 2008;
Torralba, Fergus, & Weiss, 2008), robotics (Hadsell, Erkan, Sermanet, Scoffier, Muller, & LeCun, 2008),
natural language processing (Collobert & Weston, 2008; Weston et al., 2008; Mnih & Hinton, 2009), and
collaborative filtering (Salakhutdinov, Mnih, & Hinton, 2007). Although auto-encoders, RBMs and DBNs
can be trained with unlabeled data, in many of the above applications, they have been successfully used to
initialize deepsupervisedfeedforward neural networks applied to a specific task.

1.2 Intermediate Representations: Sharing Features and Abstractions Across Tasks

Since a deep architecture can be seen as the composition of a series of processing stages, the immediate
question that deep architectures raise is: what kind of representation of the data should be found as the out-
put of each stage (i.e., the input of another)? What kind of interface should there be between these stages? A
hallmark of recent research on deep architectures is the focus on these intermediate representations: the suc-
cess of deep architectures belongs to the representations learned in an unsupervised way by RBMs (Hinton
et al., 2006), ordinary auto-encoders (Bengio et al., 2007), sparse auto-encoders (Ranzato et al., 2007, 2008),
or denoising auto-encoders (Vincent et al., 2008). These algorithms (described in more detail in Section 7.2)
can be seen as learning to transform one representation (theoutput of the previous stage) into another, at
each step maybe disentangling better the factors of variations underlying the data. As we discuss at length
in Section 4, it has been observed again and again that once a good representation has been found at each

1Except for neural networks with a special structure called convolutional networks, discussed in Section 4.5.
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level, it can be used to initialize and successfully train a deep neural network by supervised gradient-based
optimization.

Each level of abstraction found in the brain consists of the “activation” (neural excitation) of a small
subset of a large number of features that are, in general, notmutually exclusive. Because these features are
not mutually exclusive, they form what is called adistributed representation(Hinton, 1986a; Rumelhart,
Hinton, & Williams, 1986b): the information is not localized in a particular neuron but distributed across
many. In addition to being distributed, it appears that the brain uses a representation that issparse: only
a small fraction (around 1%) of the neurons are active together at a given time (but that is already a very
large number of neurons). Section 3.2 introduces the notionof sparse distributed representation and 7.1
describes in more detail the machine learning approaches, some inspired by the observations of the sparse
representations in the brain, that have been used to build deep architectures with sparse representations.

Whereas dense distributed representations are one extremeof a spectrum, and sparse representations are
in the middle of that spectrum, purely local representations are the other extreme. Locality of representation
is intimately connected with the notion oflocal generalization. Many existing machine learning methods are
local in input space: to obtain a learned function that behaves differently in different regions of data-space,
they require different tunable parameters for each of theseregions (see more in Section 3.1). Even though
statistical efficiency is not necessarily poor when the number of tunable parameters is large, good general-
ization can be obtained only when adding some form of prior (e.g. that smaller values of the parameters are
preferred). When that prior is not task-specific, it tends toforce the solution to be very smooth, as discussed
in Section 3.1. In contrast to learning methods based on local generalization, the total number of patterns
that can be distinguished using a distributed representation scales possibly exponentially with the dimension
of the representation (i.e. the number of learned features).

In many machine vision systems, learning algorithms have been limited to specific parts of such a pro-
cessing chain. The rest of the design remains labor-intensive, which might limit the scale of such systems.
On the other hand, a hallmark of what we would consider intelligent machines includes a large enough reper-
toire of concepts. RecognizingMAN is not enough. We need algorithms that can tackle a very largeset of
such tasks and concepts. It seems daunting to manually definethat many tasks, and learning becomes essen-
tial in this context. Furthermore, it would seem foolish notto exploit the underlying commonalities between
these tasks and between the concepts they require. This has been the focus of research onmulti-task learn-
ing (Caruana, 1993; Baxter, 1995; Intrator & Edelman, 1996; Thrun, 1996; Baxter, 1997). Architectures
with multiple levels naturally provide such sharing and re-use of components: the low-level visual features
(like edge detectors) and intermediate-level visual features (like object parts) that are useful to detectMAN
are also useful for a large group of other visual tasks. Deep learning algorithms are based on learning inter-
mediate representations which can be shared across tasks. Hence they can leverage unsupervised data and
data from similar tasks to boost performance on large and challenging problems that routinely suffer from a
poverty of labelled data, as has been shown by Collobert and Weston (2008), beating the state-of-the-art in
several natural language processing tasks. A similar multi-task approach for deep architectures was applied
in vision tasks by Ahmed et al. (2008).

In addition, learning about a large set of interrelated concepts might provide a key to the kind of broad
generalizations that humans appear able to do, which we would not expect from separately trained object
detectors, with one detector per visual category. If each high-level category is itself represented through
a particular distributed configuration of abstract features from a common pool, generalization to unseen
categories could follow naturally from new configurations of these features. Even though only some config-
urations of these features would be present in the training examples, if they represent different aspects of the
data, new examples could meaningfully be represented by newconfigurations of these features.

1.3 Desiderata for Learning AI

Summarizing some of the above issues, and trying to put them in the broader perspective of AI, we state a
number of requirements we perceive for learning algorithmsto approach AI.
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• Ability to learn complex, highly-varying functions, i.e.,with a number of variations much greater than
the number of training examples.

• Ability to learn with little human input the low-level, intermediate, and high-level abstractions that
would be useful to represent the kind of complex functions needed for AI tasks.

• Ability to learn from a very large set of examples: computation time for training should scale well
with the number of examples, i.e. close to linearly.

• Ability to learn from mostly unlabeled data, i.e. to work in the semi-supervised setting, where not all
the examples come with complete and correct semantic labels.

• Ability to exploit the synergies present across a large number of tasks, i.e. multi-task learning. These
synergies exist because all the AI tasks provide different views on the same underlying reality.

• Strongunsupervised learning(i.e. capturing most of the statistical structure in the observed data),
which seems essential in the limit of a large number of tasks and when future tasks are not known
ahead of time.

Other elements are equally important but are not directly connected to the material in this paper. They
include the ability to learn to represent context of varyinglength and structure (Pollack, 1990), so as to
allow machines to operate in a context-dependent stream of observations and produce a stream of actions,
the ability to make decisions when actions influence the future observations and future rewards (Sutton &
Barto, 1998), and the ability to influence future observations so as to collect more relevant information about
the world, i.e. a form of active learning (Cohn, Ghahramani,& Jordan, 1995).

1.4 Outline of the Paper

Section 2 reviews theoretical results (which can be skippedwithout hurting the understanding of the remain-
der) showing that an architecture with insufficient depth can require many more computational elements,
potentially exponentially more (with respect to input size), than architectures whose depth is matched to the
task. We claim that insufficient depth can be detrimental forlearning. Indeed, if a solution to the task is
represented with a very large but shallow architecture (with many computational elements), a lot of training
examples might be needed to tune each of these elements and capture a highly-varying function. Section 3.1
is also meant to motivate the reader, this time to highlight the limitations of local generalization and local
estimation, which we expect to avoid using deep architectures with a distributed representation (Section 3.2).

In later sections, the paper describes and analyses some of the algorithms that have been proposed to train
deep architectures. Section 4 introduces concepts from theneural networks literature relevant to the task of
training deep architectures. We first consider the previousdifficulties in training neural networks with many
layers, and then introduce unsupervised learning algorithms that could be exploited to initialize deep neural
networks. Many of these algorithms (including those for theRBM) are related to theauto-encoder: a simple
unsupervised algorithm for learning a one-layer model thatcomputes a distributed representation for its
input (Rumelhart et al., 1986b; Bourlard & Kamp, 1988; Hinton & Zemel, 1994). To fully understand RBMs
and many related unsupervised learning algorithms, Section 5 introduces the class of energy-based models,
including those used to build generative models with hiddenvariables such as the Boltzmann Machine.
Section 6 focus on the greedy layer-wise training algorithms for Deep Belief Networks (DBNs) (Hinton
et al., 2006) and Stacked Auto-Encoders (Bengio et al., 2007; Ranzato et al., 2007; Vincent et al., 2008).
Section 7 discusses variants of RBMs and auto-encoders thathave been recently proposed to extend and
improve them, including the use of sparsity, and the modeling of temporal dependencies. Section 8 discusses
algorithms for jointly training all the layers of a Deep Belief Network using variational bounds. Finally, we
consider in Section 9 forward looking questions such as the hypothesized difficult optimization problem
involved in training deep architectures. In particular, wefollow up on the hypothesis that part of the success
of current learning strategies for deep architectures is connected to the optimization of lower layers. We
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discuss the principle of continuation methods, which minimize gradually less smooth versions of the desired
cost function, to make a dent in the optimization of deep architectures.

2 Theoretical Advantages of Deep Architectures

In this section, we present a motivating argument for the study of learning algorithms for deep architectures,
by way of theoretical results revealing potential limitations of architectures with insufficient depth. This part
of the paper (this section and the next) motivates the algorithms described in the later sections, and can be
skipped without making the remainder difficult to follow.

The main point of this section is that some functions cannot be efficiently represented (in terms of number
of tunable elements) by architectures that are too shallow.These results suggest that it would be worthwhile
to explore learning algorithms for deep architectures, which might be able to represent some functions
otherwise not efficiently representable. Where simpler andshallower architectures fail to efficiently represent
(and hence to learn) a task of interest, we can hope for learning algorithms that could set the parameters of a
deep architecture for this task.

We say that the expression of a function iscompactwhen it has few computational elements, i.e. few
degrees of freedom that need to be tuned by learning. So for a fixed number of training examples, and short of
other sources of knowledge injected in the learning algorithm, we would expect that compact representations
of the target function2 would yield better generalization.

More precisely, functions that can be compactly represented by a depthk architecture might require an
exponential number of computational elements to be represented by a depthk − 1 architecture. Since the
number of computational elements one can afford depends on the number of training examples available to
tune or select them, the consequences are not just computational but also statistical: poor generalization may
be expected when using an insufficiently deep architecture for representing some functions.

We consider the case of fixed-dimension inputs, where the computation performed by the machine can
be represented by a directed acyclic graph where each node performs a computation that is the application
of a function on its inputs, each of which is the output of another node in the graph or one of the external
inputs to the graph. The whole graph can be viewed as acircuit that computes a function applied to the
external inputs. When the set of functions allowed for the computation nodes is limited tologic gates, such
as{ AND, OR, NOT}, this is a Boolean circuit, orlogic circuit.

To formalize the notion of depth of architecture, one must introduce the notion of aset of computational
elements. An example of such a set is the set of computations that can beperformed by an artificial neuron
(depending on the values of its synaptic weights). A function can be expressed by the composition of
computational elements from a given set. It is defined by a graph which formalizes this composition, with
one node per computational element. Depth of architecture refers to the depth of that graph, i.e. the longest
path from an input node to an output node. When the set of computational elements is the set of computations
an artificial neuron can perform, depth corresponds to the number of layers in a neural network. Let us
explore the notion of depth with examples of architectures of different depths. Consider the functionf(x) =
x ∗ sin(a ∗ x+ b). It can be expressed as the composition of simple operationssuch as addition, subtraction,
multiplication, and thesin operation, as illustrated in Figure 2. In the example, therewould be a different
node for the multiplicationa ∗ x and for the final multiplication byx. Each node in the graph is associated
with an output value obtained by applying some function on input values that are the outputs of other nodes
of the graph. For example, in a logic circuit each node can compute a Boolean function taken from a small
set of Boolean functions. The graph as a whole has input nodesand output nodes and computes a function
from input to output. Thedepthof an architecture is the maximum length of a path from any input of the
graph to any output of the graph, i.e. 4 in the case ofx ∗ sin(a ∗ x+ b) in Figure 2.

• If we include affine operations and their possible composition with sigmoids in the set of computa-
tional elements, linear regression and logistic regression have depth 1, i.e., have a single level.

2The target function is the function that we would like the learner to discover.
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Figure 2: Examples of functions represented by a graph of computations, where each node is taken in some
“element set” of allowed computations. Left: the elements are{∗,+,−, sin}∪R. The architecture computes
x∗sin(a∗x+b) and has depth 4. Right: the elements are artificial neurons computingf(x) = tanh(b+w′x);
each element in the set has a different(w, b) parameter. The architecture is a multi-layer neural network of
depth 3.

• When we put a fixed kernel computationK(u,v) in the set of allowed operations, along with affine
operations, kernel machines (Schölkopf, Burges, & Smola,1999a) with a fixed kernel can be consid-
ered to have two levels. The first level has one element computingK(x,xi) for each prototypexi (a
selected representative training example) and matches theinput vectorx with the prototypesxi. The
second level performs an affine combinationb+

∑
i αiK(x,xi) to associate the matching prototypes

xi with the expected response.

• When we put artificial neurons (affine transformation followed by a non-linearity) in our set of el-
ements, we obtain ordinary multi-layer neural networks (Rumelhart et al., 1986b). With the most
common choice of one hidden layer, they also have depth two (the hidden layer and the output layer).

• Decision trees can also be seen as having two levels, as discussed in Section 3.1.

• Boosting (Freund & Schapire, 1996) usually adds one level toits base learners: that level computes a
vote or linear combination of the outputs of the base learners.

• Stacking (Wolpert, 1992) is another meta-learning algorithm that adds one level.

• Based on current knowledge of brain anatomy (Serre et al., 2007), it appears that the cortex can be
seen as a deep architecture.

Although depth depends on the choice of the set of allowed computations for each element, graphs
associated with one set can often be converted to graphs associated with another by a translation operation
that multiplies depth. Theoretical results suggest that itis not the absolute number of levels that matters, but
the number of levels relative to how many are required to represent efficiently the target function (with some
choice of set of computational elements).

2.1 Computational Complexity

The most formal arguments about the power of deep architectures come from investigations into computa-
tional complexity of circuits. The basic conclusion that these results suggest is thatwhen a function can be
compactly represented by a deep architecture, it might needa very large architecture to be represented by
an insufficiently deep one.
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A two-layer circuit of logic gates can represent any Booleanfunction (Mendelson, 1997). Any Boolean
function can be written as a sum of products (disjunctive normal form: AND gates on the first layer with
optional negation of inputs, and OR gate on the second layer)or a product of sums (conjunctive normal
form: OR gates on the first layer with optional negation of inputs, and AND gate on the second layer).
To understand the limitations of shallow architectures, the first result to consider is that with depth-two
logical circuits, most Boolean functions require anexponential(with respect to input size) number of logic
gates (Wegener, 1987) to be represented.

More interestingly, there are functions computable with a polynomial-size logic gates circuit of depthk
that require exponential size when restricted to depthk − 1 (Håstad, 1986). The proof of this theorem relies
on earlier results (Yao, 1985) showing thatd-bit parity circuits of depth 2 have exponential size. Thed-bit
parity functionis defined as usual:

parity : (b1, . . . , bd) ∈ {0, 1}
d 7→

{
1 if

∑d
i=1 bi is even

0 otherwise.

One might wonder whether these computational complexity results for Boolean circuits are relevant to
machine learning. See Orponen (1994) for an early survey of theoretical results in computational complexity
relevant to learning algorithms. Interestingly, many of the results for Boolean circuits can be generalized to
architectures whose computational elements arelinear thresholdunits (also known as artificial neurons (Mc-
Culloch & Pitts, 1943)), which compute

f(x) = 1w′x+b≥0 (1)

with parametersw andb. Thefan-in of a circuit is the maximum number of inputs of a particular element.
Circuits are often organized in layers, like multi-layer neural networks, where elements in a layer only take
their input from elements in the previous layer(s), and the first layer is the neural network input. Thesizeof
a circuit is the number of its computational elements (excluding input elements, which do not perform any
computation).

Of particular interest is the following theorem, which applies tomonotone weighted threshold circuits
(i.e. multi-layer neural networks with linear threshold units and positive weights) when trying to represent a
function compactly representable with a depthk circuit:

Theorem 2.1. A monotone weighted threshold circuit of depthk − 1 computing a functionfk ∈ Fk,N has
size at least2cN for some constantc > 0 andN > N0 (Håstad & Goldmann, 1991).

The class of functionsFk,N is defined as follows. It contains functions withN2k−2 inputs, defined by a
depthk circuit that is a tree. At the leaves of the tree there are unnegated input variables, and the function
value is at the root. Thei-th level from the bottom consists of AND gates wheni is even and OR gates when
i is odd. The fan-in at the top and bottom level isN and at all other levels it isN2.

The above results do not prove that other classes of functions (such as those we want to learn to perform
AI tasks) require deep architectures, nor that these demonstrated limitations apply to other types of circuits.
However, these theoretical results beg the question: are the depth 1, 2 and 3 architectures (typically found
in most machine learning algorithms) too shallow to represent efficiently more complicated functions of the
kind needed for AI tasks? Results such as the above theorem also suggest thatthere might be no universally
right depth: each function (i.e. each task) might require a particular minimum depth (for a given set of
computational elements). We should therefore strive to develop learning algorithms that use the data to
determine the depth of the final architecture. Note also thatrecursive computation defines a computation
graph whose depth increases linearly with the number of iterations.

2.2 Informal Arguments

Depth of architecture is connected to the notion of highly-varying functions. We argue that, in general, deep
architectures can compactly represent highly-varying functions which would otherwise require a very large
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Figure 3: Example of polynomial circuit (with products on odd layers and sums on even ones) illustrating
the factorization enjoyed by a deep architecture. For example the level-1 productx2x3 would occur many
times (exponential in depth) in a depth 2 (sum of product) expansion of the above polynomial.

size to be represented with an inappropriate architecture.We say that a function ishighly-varyingwhen
a piecewise approximation (e.g., piecewise-constant or piecewise-linear) of that function would require a
large number of pieces. A deep architecture is a compositionof many operations, and it could in any case
be represented by a possibly very large depth-2 architecture. The composition of computational units in
a small but deep circuit can actually be seen as an efficient “factorization” of a large but shallow circuit.
Reorganizing the way in which computational units are composed can have a drastic effect on the efficiency
of representation size. For example, imagine a depth2k representation of polynomials where odd layers
implement products and even layers implement sums. This architecture can be seen as a particularly efficient
factorization, which when expanded into a depth 2 architecture such as a sum of products, might require a
huge number of terms in the sum: consider a level 1 product (like x2x3 in Figure 3) from the depth2k
architecture. It could occur many times as a factor in many terms of the depth 2 architecture. One can see
in this example that deep architectures can be advantageousif some computations (e.g. at one level) can
be shared (when considering the expanded depth 2 expression): in that case, the overall expression to be
represented can be factored out, i.e., represented more compactly with a deep architecture.

Further examples suggesting greater expressive power of deep architectures and their potential for AI
and machine learning are also discussed by Bengio and LeCun (2007). An earlier discussion of the ex-
pected advantages of deeper architectures in a more cognitive perspective is found in Utgoff and Stracuzzi
(2002). Note that connectionist cognitive psychologists have been studying for long time the idea of neu-
ral computation organized with a hierarchy of levels of representation corresponding to different levels of
abstraction, with a distributed representation at each level (McClelland & Rumelhart, 1981; Hinton & An-
derson, 1981; Rumelhart, McClelland, & the PDP Research Group, 1986a; McClelland, Rumelhart, & the
PDP Research Group, 1986; Hinton, 1986b; McClelland & Rumelhart, 1988). The modern deep architec-
ture approaches discussed here owe all of these concepts to these early developments. These concepts were
introduced in cognitive psychology (and then in computer science / AI) in order to explain phenomena that
were not as naturally captured by earlier cognitive models,and also to connect the cognitive explanation
with the computational characteristics of the neural substrate.

To conclude, a number of computational complexity results strongly suggest that functions that can be
compactly represented with a depthk architecture could require a very large number of elements in order to
be represented by a shallower architecture. Since each element of the architecture might have to be selected,
i.e., learned, using examples, these results suggest that depth of architecture can be very important from
the point of view of statistical efficiency. This notion is developed further in the next section, discussing a
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related weakness of many shallow architectures associatedwith non-parametric learning algorithms: locality
in input space of the estimator.

3 Local vsNon-Local Generalization

3.1 The Limits of Matching Local Templates

How can a learning algorithm compactly represent a “complicated” function of the input, i.e., one that has
many more variations than the number of available training examples? This question is both connected to the
depth question and to the question of locality of estimators. We argue that local estimators are inappropriate
to learn highly-varying functions, even though they can potentially be represented efficiently with deep
architectures. An estimator that islocal in input spaceobtains good generalization for a new inputx by
mostly exploiting training examples in the neighborhood ofx. For example, thek nearest neighbors of
the test pointx, among the training examples, vote for the prediction atx. Local estimators implicitly or
explicitly partition the input space in regions (possibly in a soft rather than hard way) and require different
parameters or degrees of freedom to account for the possibleshape of the target function in each of the
regions. When many regions are necessary because the function is highly varying, the number of required
parameters will also be large, and thus the number of examples needed to achieve good generalization.

The local generalization issue is directly connected to theliterature on thecurse of dimensionality, but
the results we cite show thatwhat matters for generalization is not dimensionality, butinstead the number
of “variations” of the function we wish to obtain after learning. For example, if the function represented
by the model is piecewise-constant (e.g. decision trees), then the question that matters is the number of
pieces required to approximate properly the target function. There are connections between the number of
variations and the input dimension: one can readily design families of target functions for which the number
of variations is exponential in the input dimension, such asthe parity function withd inputs.

Architectures based on matching local templates can be thought of as having two levels. The first level
is made of a set of templates which can be matched to the input.A template unit will output a value that
indicates the degree of matching. The second level combinesthese values, typically with a simple linear
combination (an OR-like operation), in order to estimate the desired output. One can think of this linear
combination as performing a kind of interpolation in order to produce an answer in the region of input space
that is between the templates.

The prototypical example of architectures based on matching local templates is thekernel ma-
chine(Schölkopf et al., 1999a)

f(x) = b+
∑

i

αiK(x,xi), (2)

whereb andαi form the second level, while on the first level, thekernel functionK(x,xi) matches the
input x to the training examplexi (the sum runs over some or all of the input patterns in the training set).
In the above equation,f(x) could be for example the discriminant function of a classifier, or the output of a
regression predictor.

A kernel is local whenK(x,xi) > ρ is true only forx in some connected region aroundxi (for some
thresholdρ). The size of that region can usually be controlled by a hyper-parameter of the kernel function.
An example of local kernel is the Gaussian kernelK(x,xi) = e−||x−xi||

2/σ2

, whereσ controls the size of
the region aroundxi. We can see the Gaussian kernel as computing a soft conjunction, because it can be
written as a product of one-dimensional conditions:K(u,v) =

∏
j e

−(uj−vj)
2/σ2

. If |uj − vj |/σ is small
for all dimensionsj, then the pattern matches andK(u,v) is large. If |uj − vj |/σ is large for a singlej,
then there is no match andK(u,v) is small.

Well-known examples of kernel machines include Support Vector Machines (SVMs) (Boser, Guyon, &
Vapnik, 1992; Cortes & Vapnik, 1995) and Gaussian processes(Williams & Rasmussen, 1996)3 for classifi-

3In the Gaussian Process case, as in kernel regression,f(x) in eq. 2 is the conditional expectation of the target variableY to predict,
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cation and regression, but also classical non-parametric learning algorithms for classification, regression and
density estimation, such as thek-nearest neighbor algorithm, Nadaraya-Watson or Parzen windows density
and regression estimators, etc. Below, we discussmanifold learning algorithmssuch as Isomap and LLE that
can also be seen as local kernel machines, as well as related semi-supervised learning algorithms also based
on the construction of aneighborhood graph(with one node per example and arcs between neighboring
examples).

Kernel machines with a local kernel yield generalization byexploiting what could be called thesmooth-
ness prior: the assumption that the target function is smooth or can be well approximated with a smooth
function. For example, in supervised learning, if we have the training example(xi, yi), then it makes sense
to construct a predictorf(x) which will output something close toyi whenx is close toxi. Note how this
prior requires defining a notion of proximity in input space.This is a useful prior, but one of the claims
made in Bengio, Delalleau, and Le Roux (2006) and Bengio and LeCun (2007) is that such a prior is often
insufficient to generalize when the target function is highly-varying in input space.

The limitations of a fixed generic kernel such as the Gaussiankernel have motivated a lot of research in
designing kernelsbased on prior knowledge about the task (Jaakkola & Haussler, 1998; Schölkopf, Mika,
Burges, Knirsch, Müller, Rätsch, & Smola, 1999b; Gärtner, 2003; Cortes, Haffner, & Mohri, 2004). How-
ever, if we lack sufficient prior knowledge for designing an appropriate kernel, can we learn it? This question
also motivated much research (Lanckriet, Cristianini, Bartlett, El Gahoui, & Jordan, 2002; Wang & Chan,
2002; Cristianini, Shawe-Taylor, Elisseeff, & Kandola, 2002), and deep architectures can be viewed as a
promising development in this direction. It has been shown that a Gaussian Process kernel machine can
be improved using a Deep Belief Network to learn a feature space (Salakhutdinov & Hinton, 2008): after
training the Deep Belief Network, its parameters are used toinitialize a deterministic non-linear transfor-
mation (a multi-layer neural network) that computes a feature vector (a new feature space for the data), and
that transformation can be tuned to minimize the predictionerror made by the Gaussian process, using a
gradient-based optimization. The feature space can be seenas a learned representation of the data. Good
representations bring close to each other examples which share abstract characteristics that are relevant fac-
tors of variation of the data distribution. Learning algorithms for deep architectures can be seen as ways to
learn a good feature space for kernel machines.

Consider one directionv in which a target functionf (what the learner should ideally capture) goes
up and down (i.e. asα increases,f(x + αv) − b crosses 0, becomes positive, then negative, positive,
then negative, etc.), in a series of “bumps”. Following Schmitt (2002), Bengio et al. (2006), Bengio and
LeCun (2007) show that for kernel machines with a Gaussian kernel, the required number of examples
grows linearly with the number of bumps in the target function to be learned. They also show that for a
maximally varying function such as the parity function, thenumber of examples necessary to achieve some
error rate with a Gaussian kernel machine isexponential in the input dimension.

For complex tasks in high dimension, the complexity of the decision surface could quickly make learning
impractical when using a local kernel method. It could also be argued that if the curve has many variations
and these variations are not related to each other through anunderlying regularity, then no learning algorithm
will do much better than estimators that are local in input space. However, it might be worth looking for
more compact representations of these variations, becauseif one could be found, it would be likely to lead to
better generalization, especially for variations not seenin the training set. Of course this could only happen
if there were underlying regularities to be captured in the target function; we expect this property to hold in
AI tasks.

Estimators that are local in input space are found not only insupervised learning algorithms such as those
discussed above, but also in unsupervised and semi-supervised learning algorithms, e.g. Locally Linear
Embedding (Roweis & Saul, 2000), Isomap (Tenenbaum, de Silva, & Langford, 2000), kernel Principal
Component Analysis (Schölkopf, Smola, & Müller, 1998) (or kernel PCA) Laplacian Eigenmaps (Belkin &
Niyogi, 2003), Manifold Charting (Brand, 2003), spectral clustering algorithms Weiss (1999), and kernel-
based non-parametric semi-supervised algorithms (Zhu, Ghahramani, & Lafferty, 2003; Zhou, Bousquet,

given the inputx.
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Navin Lal, Weston, & Schölkopf, 2004; Belkin, Matveeva, & Niyogi, 2004; Delalleau, Bengio, & Le Roux,
2005). Most of these unsupervised and semi-supervised algorithms rely on theneighborhood graph: a graph
with one node per example and arcs between near neighbors. With these algorithms, one can get a geometric
intuition of what they are doing, as well as how being local estimators can hinder them. This is illustrated
with the example in Figure 4 in the case of manifold learning.Here again, it was found that in order to cover
the many possible variations in the function to be learned, one needs a number of examples proportional to
the number of variations to be covered (Bengio, Monperrus, &Larochelle, 2006).

Figure 4: The set of images associated with the same object class forms a manifold or a set of disjoint
manifolds, i.e. regions of lower dimension than the original space of images. By rotating or shrinking, e.g.,
a digit 4, we get other images of the same class, i.e. on the same manifold. Since the manifold is locally
smooth, it can in principle be approximated locally by linear patches, each being tangent to the manifold.
Unfortunately, if the manifold is highly curved, the patches are required to be small, and exponentially many
might be needed with respect to manifold dimension.

Finally let us consider the case of semi-supervised learning algorithms based on the neighborhood
graph (Zhu et al., 2003; Zhou et al., 2004; Belkin et al., 2004; Delalleau et al., 2005). These algorithms
partition the neighborhood graph in regions of constant label. It can be shown that the number of regions
with constant label cannot be greater than the number of labeled examples (Bengio et al., 2006). Hence one
needs at least as many labeled examples as there are variations of interest for the classification. This can be
prohibitive if the decision surface of interest has a very large number of variations.

Decision trees (Breiman, Friedman, Olshen, & Stone, 1984) are among the best studied learning algo-
rithms. Because they can focus on specific subsets of input variables, at first blush they seem non-local.
However, they are also local estimators in the sense of relying on a partition of the input space and using
separate parameters for each region (Bengio, Delalleau, & Simard, 2007), with each region associated with
a leaf of the decision tree. This means that they also suffer from the limitation discussed above for other
non-parametric learning algorithms: they need at least as many training examples as there are variations
of interest in the target function, and they cannot generalize to new variations not covered in the training
set. Theoretical analysis (Bengio et al., 2007) shows specific classes of functions for which the number of
training examples necessary to achieve a given error rate isexponential in the input dimension. This analysis
is built along lines similar to ideas exploited previously in the computational complexity literature (Cucker
& Grigoriev, 1999). These results are also in line with previous empirical results (Pérez & Rendell, 1996;
Vilalta, Blix, & Rendell, 1997) showing that the generalization performance of decision trees degrades when
the number of variations in the target function increases.

Ensembles of trees (like boosted trees (Freund & Schapire, 1996), and forests (Ho, 1995; Breiman,
2001)) are more powerful than a single tree. They add a third level to the architecture which allows the
model to discriminate among a number of regionsexponential in the number of parameters(Bengio et al.,
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2007). As illustrated in Figure 5, they implicitly form adistributed representation(a notion discussed further
in Section 3.2) with the output of all the trees in the forest.Each tree in an ensemble can be associated with
a discrete symbol identifying the leaf/region in which the input example falls for that tree. The identity
of the leaf node in which the input pattern is associated for each tree forms a tuple that is a very rich
description of the input pattern: it can represent a very large number of possible patterns, because the number
of intersections of the leaf regions associated with then trees can be exponential inn.

3.2 Learning Distributed Representations

In Section 1.2, we argued that deep architectures call for making choices about the kind of representation at
the interface between levels of the system, and we introduced the basic notion of local representation (dis-
cussed further in the previous section), of distributed representation, and of sparse distributed representation.
The idea of distributed representation is an old idea in machine learning and neural networks research (Hin-
ton, 1986b; Rumelhart et al., 1986a; Bengio, Ducharme, & Vincent, 2001), and it may be of help in dealing
with the curse of dimensionality and the limitations of local generalization. A cartoonlocal representation
for integersi ∈ {1, 2, . . . , N} is a vectorr(i) of N bits with a single 1 andN − 1 zeros, i.e. withj-th ele-
mentrj(i) = 1i=j , called theone-hotrepresentation ofi. A distributed representation for the same integer
could be a vector oflog2N bits, which is a much more compact way to representi. For the same number of
possible configurations, a distributed representation canpotentially be exponentially more compact than a
very local one. Introducing the notion ofsparsity(e.g. encouraging many units to take the value 0) allows for
representations that are in between being fully local (i.e.maximally sparse) and non-sparse (i.e. dense) dis-
tributed representations. Neurons in the cortex are believed to have a distributed and sparse representation,
with around 1% of the neurons active at any one time. In practice, we often take advantage of representations
which are continuous-valued, which increases their expressive power. An example of continuous-valued lo-
cal representation is one where thei-th element varies according to some distance between the input and a
prototype or region center, as with the Gaussian kernel discussed in Section 3.1. In a distributed representa-
tion the input pattern is represented by a set of features that are not mutually exclusive, and might even be
statistically independent. For example, clustering algorithms do not build a distributed representation since
the clusters are essentially mutually exclusive, whereas Independent Component Analysis (ICA) (Bell &
Sejnowski, 1995; Pearlmutter & Parra, 1996) and Principal Component Analysis (PCA) (Hotelling, 1933)
build a distributed representation.

Consider a discrete distributed representationr(x) for an input patternx, whereri(x) ∈ {1, . . .M},
i ∈ {1, . . . , N}. Eachri(x) can be seen as a classification ofx intoM classes. As illustrated in Figure 5
(with M = 2), eachri(x) partitions thex-space inM regions, but the different partitions can be combined
to give rise to a potentially exponential number of possibleregions inx-space, corresponding to different
configurations ofr(x). Note that when representing a particular input distribution, some configurations may
be impossible because they are incompatible. For example, in language modeling, a local representation of
a word could directly encode its identity by an index in the vocabulary table, or equivalently a one-hot code
with as many entries as the vocabulary size. On the other hand, a distributed representation could represent
the word by combining syntactic features (e.g., distribution over parts of speech it can have), morphological
features (which suffix or prefix does it have?), and semantic features (is it the name of a kind of animal?).
Like in clustering, we construct discrete classes, but the potential number of combined classes is huge: we
obtain what we call amulti-clustering. Whereas clustering forms a single partition and generallyinvolves a
heavy loss of information about the input, a multi-clustering provides asetof separate partitions of the input
space. Identifying which region of each partition the inputexample belongs to forms a description of the
input pattern which might be very rich, possibly not losing any information. The tuple of symbols specifying
which region of each partition the input belongs to can be seen as a transformation of the input into a new
space, where the statistical structure of the data and the factors of variation in it could be disentangled. This
corresponds to the kind of partition ofx-space that an ensemble of trees can represent, as discussedin the
previous section. This is also what we would like a deep architecture to capture, but with multiple levels of
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Figure 5: Whereas a single decision tree (here just a 2-way partition) can discriminate among a number of
regions linear in the number of parameters (leaves), an ensemble of trees can discriminate among a number
of regions exponential in the number of trees, i.e. exponential in the total number of parameters (at least
as long as the number of trees does not exceed the number of inputs, which is not quite the case here).
Each distinguishable region is associated with one of the leaves of each tree (here there are 3 2-way trees,
each defining 2 regions, for a total of 7 regions). This is equivalent to a multi-clustering, here 3 clusterings
each associated with 2 regions. A binomial RBM is a multi-clustering with 2 linearly separated regions
per partition (each associated with one binomial hidden unit). A multi-clustering is therefore a distributed
representation of the input pattern.

representation, the higher levels being more abstract and representing more complex regions of input space.
In the realm of supervised learning, multi-layer neural networks (Rumelhart et al., 1986a, 1986b) and in

the realm of unsupervised learning, Boltzmann machines (Ackley, Hinton, & Sejnowski, 1985) have been
introduced with the goal of learning distributed internal representations in the hidden layers. Unlike in
the linguistic example above, the objective is to let learning algorithms discover the features that compose
the distributed representation. In a multi-layer neural network with more than one hidden layer, there are
several representations, one at each layer. Learning multiple levels of distributed representations involves a
challenging training problem, which we discuss next.

4 Neural Networks for Deep Architectures

4.1 Multi-Layer Neural Networks

A typical set of equations for multi-layer neural networks (Rumelhart et al., 1986b) is the following. As
illustrated in Figure 6, layerk computes an output vectorhk using the outputhk−1 of the previous layer,
starting with the inputx = h0,

hk = tanh(bk + W k hk−1) (3)

with parametersbk (a vector of offsets) andW k (a matrix of weights). Thetanh is applied element-wise
and can be replaced bysigm(u) = 1/(1 + e−u) = 1

2 (tanh(u) + 1) or other saturating non-linearities. The
top layer outputhℓ is used for making a prediction and is combined with a supervised targety into a loss
functionL(hℓ, y), typically convex. The output layer might have a non-linearity different from the one used
in other layers, e.g., the softmax

hℓ
i =

eb
ℓ
i+W ℓ

i h
ℓ−1

∑
j e

bℓ
j
+W ℓ

j
hℓ−1

(4)

whereW ℓ
i is the i-th row ofW ℓ, hℓ

i is positive and
∑

i h
ℓ
i = 1. The softmax outputhℓ

i can be used as
estimator ofP (Y = i|x), with the interpretation thatY is the class associated with input patternx. In this
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Figure 6: Multi-layer neural network, typically used in supervised learning to make a prediction or classifica-
tion, through a series of layers, each of which combines an affine operation and a non-linearity. Deterministic
transformations are computed in a feedforward way from the inputx, through the hidden layershk, to the
network outputhℓ, which gets compared with a labely to obtain the lossL(hℓ, y) to be minimized.

case one often uses the negative conditional log-likelihoodL(hℓ, y) = − loghℓ
y as a loss, whose expected

value over(x, y) pairs is to be minimized.

4.2 The Challenge of Training Deep Neural Networks

After having motivated the need for deep architectures thatare non-local estimators, we now turn to the
difficult problem of training them. Experimental evidence suggests that training deep architectures is more
difficult than training shallow architectures (Bengio et al., 2007; Erhan, Manzagol, Bengio, Bengio, & Vin-
cent, 2009).

Until 2006, deep architectures have not been discussed muchin the machine learning literature, because
of poor training and generalization errors generally obtained (Bengio et al., 2007) using the standard random
initialization of the parameters. Note that deepconvolutional neural networks(LeCun, Boser, Denker, Hen-
derson, Howard, Hubbard, & Jackel, 1989; LeCun, Bottou, Bengio, & Haffner, 1998; Simard, Steinkraus,
& Platt, 2003; Ranzato et al., 2007) were found easier to train, as discussed in Section 4.5, for reasons that
have yet to be really clarified.

Many unreported negative observations as well as the experimental results in Bengio et al. (2007), Erhan
et al. (2009) suggest that gradient-based training of deep supervised multi-layer neural networks (starting
from random initialization) gets stuck in local minima or plateaus, and that as the architecture gets deeper,
it becomes more difficult to obtain good generalization. When starting from random initialization, the so-
lutions obtained with deeper neural networks appear to correspond to poor solutions that perform worse
than the solutions obtained for networks with 1 or 2 hidden layers (Bengio et al., 2007; Larochelle, Bengio,
Louradour, & Lamblin, 2009). However, it was discovered (Hinton et al., 2006) that much better results
could be achieved when pre-training each layer with an unsupervised learning algorithm, one layer after the
other, starting with the first layer (that directly takes in input the observedx). The initial experiments used
the RBM generative model for each layer (Hinton et al., 2006), and were followed by experiments yielding
similar results using variations of auto-encoders for training each layer (Bengio et al., 2007; Ranzato et al.,
2007; Vincent et al., 2008). Most of these papers exploit theidea of greedy layer-wise unsupervised learn-
ing (developed in more detail in the next section): first train the lower layer with an unsupervised learning
algorithm (such as one for the RBM or some auto-encoder), giving rise to an initial set of parameter values
for the first layer of a neural network. Then use the output of the first layer (a new representation for the raw
input) as input for another layer, and similarly initializethat layer with an unsupervised learning algorithm.

16



After having thus initialized a number of layers, the whole neural network can be fine-tuned with respect to
a supervised training criterion as usual. The advantage of unsupervised pre-training versus random initial-
ization was clearly demonstrated in several statistical comparisons (Bengio et al., 2007; Larochelle et al.,
2007, 2009; Erhan et al., 2009). What principles might explain the improvement in classification error ob-
served in the literature when using unsupervised pre-training? One clue may help to identify the principles
behind the success of some training algorithms for deep architectures, and it comes from an algorithm that
exploits neither RBMs nor auto-encoders (Weston et al., 2008). What this algorithm has in common with the
training algorithms based on RBMs and auto-encoders is the idea to inject anunsupervised training signal
at each layerthat may help to guide the parameters of that layer towards better regions in parameter space.
In (Weston et al., 2008), the neural networks are trained using pairs of examples(x, x̃), which are either
supposed to be “neighbors” or not. Considerhk(x) the level-k representation ofx in the model. A local
training criterion is defined at each layer that pushes the intermediate representationshk(x) andhk(x̃) either
towards each other or away from each other, according to whetherx andx̃ are supposed to be neighbors or
not (k-nearest neighbors in input space, in the paper). The same criterion had already been used successfully
to learn a low-dimensional embedding with an unsupervised manifold learning algorithm (Hadsell, Chopra,
& LeCun, 2006).

Clearly, test errors can be significantly improved, at leastfor the types of tasks studied, but why? One
basic question to ask is whether the improvement is basically due to better optimization or to better regular-
ization. As discussed below, the answer may not fit the usual definition of optimization and regularization.

In some experiments (Bengio et al., 2007; Larochelle et al.,2009) it is clear that one can get training
classification error down to zero even with a deep neural network that has no unsupervised pre-training,
pointing more in the direction of a regularization effect than an optimization effect. Experiments in Erhan
et al. (2009) also give evidence in the same direction: for the same training error (at different points during
training), test error is systematically lower with unsupervised pre-training. As discussed in Erhan et al.
(2009), unsupervised pre-training can be seen as a form of regularizer (and prior): unsupervised pre-training
amounts to a constraint on the region in parameter space where a solution is allowed. The constraint forces
solutions near ones that correspond to the unsupervised training, i.e., hopefully corresponding to solutions
capturing significant statistical structure in the input. On the other hand, other experiments (Bengio et al.,
2007; Larochelle et al., 2009) suggest that poor tuning of the lower layers might be responsible for the worse
results without pre-training: when the top hidden layer is constrained (forced to be small) thedeep networks
with random initialization (no unsupervised pre-training) do poorly on both training and test sets, and much
worse than pre-trained networks. In the experiments mentioned earlier where training error goes to zero, it
was always the case that the number of hidden units in each layer (a hyper-parameter) was allowed to be as
large as necessary (to minimize error on a validation set). The explanatory hypothesis proposed in Bengio
et al. (2007), Larochelle et al. (2009) is that when the top hidden layer is unconstrained, the top two layers
(corresponding to a regular 1-hidden-layer neural net) aresufficient to fit the training set, using as input the
representation computed by the lower layers, even if that representation is poor. On the other hand, with
unsupervised pre-training, the lower layers are ’better optimized’, and a smaller ore more regularized top
layer suffices to get a low training error but also yields better generalization. Other experiments described
in Erhan et al. (2009) are also consistent with the explanation that with random parameter initialization,
the lower layers (closer to the input layer) are poorly trained. These experiments show that the effect of
unsupervised pre-training is most marked for the lower layers of a deep architecture.

We know that a two-layer network (one hidden layer) can be well trained in general, and that from
the point of view of the top two layers in a deep network, they form a shallow network whose input is
the output of the lower layers. If the top layers of a deep network without unsupervised pre-training have
enough capacity (enough hidden units) this can be sufficientto bring training error very low, but this yields
worse generalization than shallow neural networks. When training error is low and test error is high, we
usually call the phenomenon overfitting and since unsupervised pre-training brings test error down, that
would point to it as a kind of regularizer. On the other hand, with better initialization of the lower hidden
layers, both training and generalization error can be very low. We hypothesize that in a well-trained deep
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neural network, the hidden layers form a “good” representation of the data, which helps to make good
predictions. When the lower layers are poorly initialized,these deterministic and continuous representations
generally keep most of the information about the input, but these representations might scramble the input
and hurt rather than help the top layers to perform classifications that generalize well. Optimizing the last
layer of a deep neural network is often a convex optimizationproblem. Optimizing the last two layers,
although not convex, is known to be much easier than optimizing a deep network (in fact when the number
of hidden units goes to infinity, the training criterion of a two-layer network can be cast as convex (Bengio,
Le Roux, Vincent, Delalleau, & Marcotte, 2006)). Accordingto this hypothesis, although replacing the top
two layers of a deep neural network by a convex machine such asa Gaussian process or an SVM can yield
some improvements (Bengio & LeCun, 2007), especially on thetraining error, it would not help much in
terms of generalization if the lower layers have not been sufficiently optimized, i.e., if a good representation
of the raw input has not been discovered.

Hence, one hypothesis is that unsupervised pre-training helps generalization by allowing for a ’better’
tuning of lower layers of a deep architecture. Although training error can be reduced either by exploiting
only the top layers ability to fit the training examples, better generalization is achieved when all the layers are
tuned appropriately. Another source of better generalization could come from a form of regularization: with
unsupervised pre-training, the lower layers are constrained to capture regularities of the input distribution.
Consider random input-output pairs(X,Y ). Such regularization is similar to the hypothesized effect of
unlabeled examples in semi-supervised learning (Lasserre, Bishop, & Minka, 2006) or the regularization
effect achieved by maximizing the likelihood ofP (X,Y ) (generative models) vsP (Y |X) (discriminant
models) (Ng & Jordan, 2001; Liang & Jordan, 2008). If the trueP (X) andP (Y |X) are unrelated as
functions ofX (e.g., chosen independently, so that learning about one does not inform us of the other), then
unsupervised learning ofP (X) is not going to help learningP (Y |X). But if they are related4, and if the
same parameters are involved in estimatingP (X) andP (Y |X)5, then each(X,Y ) pair brings information
on P (Y |X) not only in the usual way but also throughP (X). For example, in a Deep Belief Net, both
distributions share essentially the same parameters, so the parameters involved in estimatingP (Y |X) benefit
from a form of data-dependent regularization: they have to agree to some extent withP (Y |X) as well as
with P (X).

Let us return to the optimization versus regularization explanation of the better results obtained with
unsupervised pre-training. Note how one should be careful when using the word ’optimization’ here. We
do not have an optimization difficulty in the usual sense of the word. Indeed, from the point of view of
the whole network, there is no difficulty since one can drive training error very low, by relying mostly
on the top two layers. However, if one considers the problem of tuning the lower layers (while keeping
small either the number of hidden units of the penultimate layer (i.e. top hidden layer) or the magnitude of
the weights of the top two layers), then one can maybe talk about an optimization difficulty. One way to
reconcile the optimization and regularization viewpointsmight be to consider the truly online setting (where
examples come from an infinite stream and one does not cycle back through a training set). In that case,
online gradient descent is performing a stochastic optimization of the generalization error. If the effect of
unsupervised pre-training was purely one of regularization, one would expect that with a virtually infinite
training set, online error with or without pre-training would converge to the same level. On the other hand, if
the explanatory hypothesis presented here is correct, we would expect that unsupervised pre-training would
bring clear benefits even in the online setting. To explore that question, we have used the ’infinite MNIST’
dataset (Loosli, Canu, & Bottou, 2007) i.e. a virtually infinite stream of MNIST-like digit images (obtained
by random translations, rotations, scaling, etc. defined inSimard, LeCun, and Denker (1993)). As illustrated
in Figure 7, a 3-hidden layer neural network trained online converges to significantly lower error when it
is pre-trained (as a Stacked Denoising Auto-Encoder, see Section 7.2). The figure shows progress with the

4For example, the MNIST digit images form rather well-separated clusters, especially when learning good representations, even
unsupervised (van der Maaten & Hinton, 2008), so that the decision surfaces can be guessed reasonably well even before seeing any
label.

5For example, all the lower layers of a multi-layer neural netestimatingP (Y |X) can be initialized with the parameters from a Deep
Belief Net estimatingP (X).
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Figure 7: Deep architecture trained online with 10 million examples of digit images, either with pre-training
(triangles) or without (circles). The classification errorshown (vertical axis, log-scale) is computed online
on the next 1000 examples, plotted against the number of examples seen from the beginning. The first
2.5 million examples are used for unsupervised pre-training (of a stack of denoising auto-encoders). The
oscillations near the end are because the error rate is too close to zero, making the sampling variations appear
large on the log-scale. Whereas with a very large training set regularization effects should dissipate, one can
see that without pre-training, training converges to a poorer local minimum: unsupervised pre-training helps
to find a better minimum of the online error. Experiments performed by Dumitru Erhan.

online error (on the next 1000 examples), an unbiased Monte-Carlo estimate of generalization error. The first
2.5 million updates are used for unsupervised pre-training. The figure strongly suggests that unsupervised
pre-training converges to a lower error, i.e., that it acts not only as a regularizer but also to find better minima
of the optimized criterion.

To explain that lower layers would be more difficult to optimize, the above clues suggest that the gradient
propagated backwards into the lower layer might not be sufficient to move the parameters into regions
corresponding to good solutions. According to that hypothesis, the optimization with respect to the lower
level parameters gets stuck in a poor local minimum or plateau (i.e. small gradient). Since gradient-based
training of the top layers works reasonably well, it would mean that the gradient becomes less informative
about the required changes in the parameters as we move back towards the lower layers. As argued in
Section 4.5, this might be connected with the observation that deep convolutional neural networks are easier
to train, maybe because they have a very special sparse connectivity in each layer. There might also be a
link between this difficulty in exploiting the gradient in deep networks and the difficulty in training recurrent
neural networks through long sequences, analyzed in (Hochreiter, 1991; Bengio, Simard, & Frasconi, 1994;
Lin, Horne, Tino, & Giles, 1995). In recurrent neural networks, the difficulty can be traced to a vanishing (or
sometimes exploding) gradient propagated through many non-linearities. There is an additional difficulty in
the case of recurrent neural networks, due to a mismatch between short-term (i.e., shorter paths in unfolded
graph of computations) and long-term components of the gradient (associated with longer paths in that
graph).
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4.3 Unsupervised Learning for Deep Architectures

As we have seen above, layer-wise unsupervised learning hasbeen a crucial component of all the successful
learning algorithms for deep architectures up to now. If gradients of a criterion defined at the output layer
become less useful as they are propagated backwards to lowerlayers, it is reasonable to believe that an
unsupervised learning criterion defined at the level of a single layer could be used to move its parameters in
a favorable direction. It would be reasonable to expect thisif the single-layer learning algorithm discovered
a representation that captures statistical regularities of the layer’s input. PCA and most variants of ICA
seem inappropriate because they generally do not make sensein the so-calledovercomplete case, where
the number of outputs of the layer is greater than the number of its inputs. This suggests looking in the
direction of extensions of ICA to deal with the overcompletecase (Lewicki & Sejnowski, 1998; Hinton,
Welling, Teh, & Osindero, 2001; Teh, Welling, Osindero, & Hinton, 2003), as well as algorithms related to
PCA and ICA, such as auto-encoders and RBMs, which can be applied in the overcomplete case. Indeed,
experiments performed with these one-layer unsupervised learning algorithms in the context of a multi-layer
system confirm this idea (Hinton et al., 2006; Bengio et al., 2007; Ranzato et al., 2007). Furthermore,
stacking linear projections (e.g. two layers of PCA) is still a linear transformation, i.e., not building deeper
architectures.

In addition to the motivation that unsupervised learning could help reduce the dependency on the unre-
liable update direction given by the gradient of a supervised criterion, we have already introduced another
motivation for using unsupervised learning at each level ofa deep architecture. It could be a way to naturally
decompose the problem into sub-problems associated with different levels of abstraction. We know that
unsupervised learning algorithms can extract salient information about the input distribution. This informa-
tion can be captured in a distributed representation, i.e.,a set of features which encode the salient factors of
variation in the input. A one-layer unsupervised learning algorithm could extract such salient features, but
because of the limited capacity of that layer, the features extracted on the first level of the architecture can
be seen aslow-level features. It is conceivable that learning a second layer based on the same principle but
taking as input the features learned with the first layer could extract slightlyhigher-level features. In this
way, one could imagine that higher-level abstractions thatcharacterize the input could emerge. Note how
in this process all learning could remain local to each layer, therefore side-stepping the issue of gradient
diffusion that might be hurting gradient-based learning ofdeep neural networks, when we try to optimize a
single global criterion. This motivates the next section, where we discuss deep generative architectures and
introduce Deep Belief Networks formally.

4.4 Deep Generative Architectures

Besides being useful for pre-training a supervised predictor, unsupervised learning in deep architectures
can be of interest to learn a distribution and generate samples from it. Generative models can often be
represented as graphical models (Jordan, 1998): these are visualized as graphs in which nodes represent ran-
dom variables and arcs say something about the type of dependency existing between the random variables.
The joint distribution of all the variables can be written interms of products involving only a node and its
neighbors in the graph. With directed arcs (defining parenthood), a node is conditionally independent of its
ancestors, given its parents. Some of the random variables in a graphical model can be observed, and others
cannot (called hidden variables). Sigmoid belief networksare generative multi-layer neural networks that
were proposed and studied before 2006, and trained using variational approximations (Dayan, Hinton, Neal,
& Zemel, 1995; Hinton, Dayan, Frey, & Neal, 1995; Saul, Jaakkola, & Jordan, 1996; Titov & Henderson,
2007). In a sigmoid belief network, the units (typically binary random variables) in each layer are indepen-
dent given the values of the units in the layer above, as illustrated in Figure 8. The typical parametrization
of these conditional distributions (going downwards instead of upwards in ordinary neural nets) is similar to
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Figure 8: Example of a generative multi-layer neural network, here a sigmoid belief network, represented as
a directed graphical model (with one node per random variable, and directed arcs indicating direct depen-
dence). The observed data isx and the hidden factors at levelk are the elements of vectorhk. The top layer
h3 has a factorized prior.

the neuron activation equation of eq. 3:

P (hk
i = 1|hk+1) = sigm(bk

i +
∑

j

W k+1
i,j hk+1

j ) (5)

wherehk
i is the binary activation of hidden nodei in layerk, hk is the vector(hk

1 ,h
k
2 , . . .), and we denote the

input vectorx = h0. Note how the notationP (. . .) always represents a probability distribution associated
with our model, whereaŝP is the training distribution (the empirical distribution of the training set, or the
generating distribution for our examples). The bottom layer generates a vectorx in the input space, and we
would like the model to give high probability to the trainingdata. Considering multiple levels, the generative
model is thus decomposed as follows:

P (x,h1, . . . ,hℓ) = P (hℓ)

(
ℓ−1∏

k=1

P (hk|hk+1)

)
P (x|h1) (6)

and marginalization yieldsP (x), but this is intractable in practice except for tiny models.In a sigmoid belief
network, the top level priorP (hℓ) is generally chosen to be factorized, i.e., very simple:P (hℓ) =

∏
i P (hℓ

i),
and a single Bernoulli parameter is required for eachP (hℓ

i = 1) in the case of binary units.
Deep Belief Networks are similar to sigmoid belief networks, but with a slightly different parametrization

for the top two layers, as illustrated in Figure 9:

P (x,h1, . . . ,hℓ) = P (hℓ−1,hℓ)

(
ℓ−2∏

k=1

P (hk|hk+1)

)
P (x|h1). (7)

The joint distribution of the top two layers is a Restricted Boltzmann Machine (RBM),

P (hℓ−1,hℓ) ∝ eb
′
h

ℓ−1+c
′
h

ℓ+h
ℓ′Wh

ℓ−1

(8)

illustrated in Figure 10, and whose inference and training algorithms are described in more detail in Sec-
tions 5.3 and 5.4 respectively. This apparently slight change from sigmoidal belief networks to DBNs comes
with a different learning algorithm, which exploits the notion of training greedily one layer at a time, building
up gradually more abstract representations of the raw inputinto the posteriorsP (hk|x). A detailed descrip-
tion of RBMs and of the greedy layer-wise training algorithms for deep architectures follows in Sections 5
and 6.
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Figure 9: Graphical model of a Deep Belief Network with observed vectorx and hidden layersh1,h2 and
h3. Notation is as in Figure 8. The structure is similar to a sigmoid belief network, except for the top
two layers. Instead of having a factorized prior forP (h3), the joint of the top two layers,P (h2,h3), is a
Restricted Boltzmann Machine. The model is mixed, with double arrows on the arcs between the top two
layers is because an RBM is an undirected graphical model rather than a directed one.

4.5 Convolutional Neural Networks

Although deep supervised neural networks were generally found too difficult to train before the use of un-
supervised pre-training, there is one notable exception: convolutional neural networks. Convolutional nets
were inspired by the visual system’s structure, and in particular by the models of it proposed by Hubel and
Wiesel (1962). The first computational models based on theselocal connectivities between neurons and on
hierarchically organized transformations of the image arefound in Fukushima’s Neocognitron (Fukushima,
1980). As he recognized, when neurons with the same parameters are applied on patches of the previous
layer at different locations, a form of translational invariance is obtained. Later, Le Cun, following up on
this idea, designed and trained convolutional networks using the error gradient, obtaining state-of-the-art
performance (LeCun et al., 1989; LeCun et al., 1998) on several pattern recognition tasks. Modern under-
standing of the physiology of the visual system is consistent with the processing style found in convolutional
networks (Serre et al., 2007), at least for the quick recognition of objects, i.e., without the benefit of attention
and top-down feedback connections. To this day, pattern recognition systems based on convolutional neural
networks are among the best performing systems. This has been shown clearly for handwritten character
recognition (LeCun et al., 1998), which has served as a machine learning benchmark for many years.6

Concerning our discussion of training deep architectures,the example of convolutional neural net-
works (LeCun et al., 1989; LeCun et al., 1998; Simard et al., 2003; Ranzato et al., 2007) is interesting
because they typically have five, six or seven layers, a number of layers which makes fully-connected neural
networks almost impossible to train properly when initialized randomly. What is particular in their architec-
ture that might explain their good generalization performance in vision tasks?

Le Cun’s convolutional neural networks are organized in layers of two types: convolutional layers and
subsampling layers. Each layer has atopographic structure, i.e., each neuron is associated with a fixed
two-dimensional position that corresponds to a location inthe input image, along with a receptive field (the
region of the input image that influences the response of the neuron). At each location of each layer, there

6Maybe too many years? It is good that the field is moving towards more ambitious benchmarks, such as those introduced by LeCun,
Huang, and Bottou (2004), Larochelle et al. (2007).
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Figure 10: Undirected graphical model of a Restricted Boltzmann Machine (RBM). There are no links
between units of the same layer, only between input (or visible) unitsxj and hidden unitshj , making the
conditionalsP (h|x) andP (x|h) factorize conveniently.

are a number of different neurons, each with its set of input weights, associated with neurons in a rectangular
patch in the previous layer. The same set of weights, but a different input rectangular patch, are associated
with neurons at different locations.

One untested hypothesis is that the small fan-in of these neurons (few inputs per neuron) helps gradients
to propagate through so many layers without diffusing so much as to become useless. Note that this alone
would not suffice to explain the success of convolutional networks, since random sparse connectivity is not
enough to yield good results in deep neural networks. However, an effect of the fan-in would be consistent
with the idea that gradients propagated through many paths gradually become too diffuse, i.e., the credit
or blame for the output error is distributed too widely and thinly. Another hypothesis (which does not
necessarily exclude the first) is that the hierarchical local connectivity structure is a very strong prior that is
particularly appropriate for vision tasks, and sets the parameters of the whole network in a favorable region
(with all non-connections corresponding to zero weight) from which gradient-based optimization works
well. The fact is that even withrandom weightsin the first layers, a convolutional neural network performs
well (Ranzato, Huang, Boureau, & LeCun, 2007), i.e., betterthan a trained fully connected neural network
but worse than a fully optimized convolutional neural network.

4.6 Auto-Encoders

Some of the deep architectures discussed below (Deep BeliefNets and Stacked Auto-Encoders) exploit as
component or monitoring device a particular type of neural network: the auto-encoder, also called auto-
associator, or Diabolo network (Rumelhart et al., 1986b; Bourlard & Kamp, 1988; Hinton & Zemel, 1994;
Schwenk & Milgram, 1995; Japkowicz, Hanson, & Gluck, 2000).There are also connections between the
auto-encoder and RBMs discussed in Section 5.4.3, showing that auto-encoder training approximates RBM
training by Contrastive Divergence. Because training an auto-encoder seems easier than training a deep
network, they have been used as building blocks to train deepnetworks, where each level is associated with
an auto-encoder that can be trained separately.

An auto-encoder is trained to encode the input in some representation so that the input can be recon-
structed from that representation. Hence the target outputof the auto-encoder is the auto-encoder input
itself. If there is one linear hidden layer and the mean squared error criterion is used to train the network,
then thek hidden units learn to project the input in the span of the firstk principal components of the
data (Bourlard & Kamp, 1988). If the hidden layer is non-linear, the auto-encoder behaves differently from
PCA, with the ability to capture multi-modal aspects of the input distribution (Japkowicz et al., 2000). The
formulation that we prefer generalizes the mean squared error criterion to the minimization of the negative
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log-likelihood of the reconstruction, given the encodingc(x):

RE = − logP (x|c(x)). (9)

If x|c(x) is Gaussian, we recover the familiar squared error. If the inputsxi are either binary or considered
to be binomial probabilities, then the loss function would be

− logP (x|c(x)) = −
∑

i

xi log fi(c(x)) + (1 − xi) log(1− fi(c(x))) (10)

wheref(c(x)) is the output of the network, and in this case should be a vector of numbers in(0, 1), e.g.,
obtained with a sigmoid. The hope is that the codec(x) is a distributed representation that captures the
main factors of variation in the data: becausec(x) is viewed as a lossy compression ofx, it cannot be a
good compression (with small loss) for allx, so learning drives it to be one that is a good compression in
particular for training examples, and hopefully for othersas well (and that is the sense in which an auto-
encoder generalizes), but not for arbitrary inputs.

One serious issue with this approach is that if there is no other constraint, then an auto-encoder withn-
dimensional input and an encoding of dimension at leastn could potentially just learn the identity function,
for which many encodings would be useless (e.g., just copying the input). Surprisingly, experiments reported
in (Bengio et al., 2007) suggest that in practice, when trained with stochastic gradient descent, non-linear
auto-encoders with more hidden units than inputs (called overcomplete) yield useful representations (in the
sense of classification error measured on a network taking this representation in input). A simple explanation
is based on the observation that stochastic gradient descent with early stopping is similar to anℓ2 regular-
ization of the parameters (Zinkevich, 2003; Collobert & Bengio, 2004). To achieve perfect reconstruction of
continuous inputs, a one-hidden layer auto-encoder with non-linear hidden units needs very small weights in
the first layer (to bring the non-linearity of the hidden units in their linear regime) and very large weights in
the second layer. With binary inputs, very large weights arealso needed to completely minimize the recon-
struction error. Since the implicit or explicit regularization makes it difficult to reach large-weight solutions,
the optimization algorithm finds encodings which only work well for examples similar to those in the train-
ing set, which is what we want. It means that the representation is exploiting statistical regularities present
in the training set, rather than learning to replicate the identity.

There are different ways that an auto-encoder with more hidden units than inputs could be prevented from
learning the identity, and still capture something useful about the input in its hidden representation. Instead
or in addition to constraining the encoder by explicit or implicit regularization of the weights, one strategy is
to add noise in the encoding. This is essentially what RBMs do, as we will see later. Another strategy, which
was found very successful (Olshausen & Field, 1997; Doi, Balcan, & Lewicki, 2006; Ranzato et al., 2007;
Ranzato & LeCun, 2007; Ranzato et al., 2008; Mairal, Bach, Ponce, Sapiro, & Zisserman, 2009), is based
on a sparsity constraint on the code. Interestingly, these approaches give rise to weight vectors that match
well qualitatively the observed receptive fields of neuronsin V1 and V2 (Lee, Ekanadham, & Ng, 2008),
major areas of the mammal visual system. The question of sparsity is discussed further in Section 7.1.

Whereas sparsity and regularization reduce representational capacity in order to avoid learning the iden-
tity, RBMs can have a very large capacity and still not learn the identity, because they are not (only) trying
to encode the input but also to capture the statistical structure in the input, by approximately maximizing the
likelihood of a generative model. There is a variant of auto-encoder which shares that property with RBMs,
calleddenoising auto-encoder(Vincent et al., 2008). The denoising auto-encoder minimizes the error in
reconstructing the input from a stochastically corrupted transformation of the input. It can be shown that it
maximizes a lower bound on the log-likelihood of a generative model. See Section 7.2 for more details.

5 Energy-Based Models and Boltzmann Machines

Because Deep Belief Networks (DBNs) are based on RestrictedBoltzmann Machines (RBMs), which are
particularenergy-based models, we introduce here the main mathematical concepts helpful to understand
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them, includingContrastive Divergence(CD).

5.1 Energy-Based Models and Products of Experts

Energy-basedmodels associate a scalar energy to each configuration of thevariables of interest (LeCun
& Huang, 2005; LeCun, Chopra, Hadsell, Ranzato, & Huang, 2006; Ranzato, Boureau, Chopra, & LeCun,
2007). Learning corresponds to modifying that energy function so that its shape has desirable properties. For
example, we would like plausible or desirable configurations to have low energy. Energy-based probabilistic
models define a probability distribution through an energy function, as follows:

P (x) =
e−Energy(x)

Z
, (11)

i.e., energies operate in the log-probability domain. Th above generalizesexponential familymodels (Brown,
1986), for which the energy functionEnergy(x) is linear inx. We will see below that the conditional dis-
tribution of one layer given another, in the RBM, can be takenfrom any of the exponential family distribu-
tions (Welling, Rosen-Zvi, & Hinton, 2005).

The normalizing factorZ is called thepartition functionby analogy with physical systems,

Z =
∑

x

e−Energy(x) (12)

with a sum running over the input space, or an appropriate integral whenx is continuous.
In theproduct of expertsformulation (Hinton, 1999, 2002), the energy function is a sum of terms, each

one associated with an “expert”fi:
Energy(x) =

∑

i

fi(x), (13)

i.e.
P (x) ∝

∏

i

Pi(x) ∝
∏

i

e−fi(x). (14)

Each expertPi(x) can thus be seen as a detector of implausible configurations of x, or equivalently, as
enforcing constraints onx. This is clearer if we consider the special case wherefi(x) can only take two
values, one (small) corresponding to the case where the constraint is satisfied, and one (large) corresponding
to the case where it is not. Hinton (1999) explains the advantages of a product of experts by opposition to
a mixture of expertswhere the product of probabilities is replaced by a weightedsum of probabilities. To
simplify, assume that each expert corresponds to a constraint that can either be satisfied or not. In a mixture
model, the constraint associated with an expert is an indication of belonging to a region which excludes
the other regions. One advantage of the product of experts formulation is therefore that the set offi(x)
forms a distributed representation: instead of trying to partition the space with one region per expert as in
mixture models, they partition the space according to all the possible configurations (where each expert can
have its constraint violated or not). Hinton (1999) proposed an algorithm for estimating the gradient of
logP (x) in eq. 14 with respect to parameters associated with each expert, using a variant (Hinton, 2002) of
the Contrastive Divergence algorithm (Section 5.4).

5.1.1 Introducing Hidden Variables

In many cases of interest, we do not observe the examplex fully, or we want to introduce some non-observed
variables to increase the expressive power of the model. So we consider an observed part (still denotedx

here) and ahiddenparth

P (x,h) =
e−Energy(x,h)

Z
(15)
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and because onlyx is observed, we care about the marginal

P (x) =
∑

h

e−Energy(x,h)

Z
. (16)

In such cases, to map this formulation to one similar to eq. 11, we introduce the notation (inspired from
physics) offree energy, defined as follows:

P (x) =
e−FreeEnergy(x)

Z
, (17)

with Z =
∑

x
e−FreeEnergy(x), i.e.

FreeEnergy(x) = − log
∑

h

e−Energy(x,h). (18)

So the free energy is just a marginalization of energies in the log-domain. The data log-likelihood gradient
then has a particularly interesting form. Let us introduceθ to represent parameters of the model. Starting
from eq. 17, we obtain

∂ logP (x)

∂θ
= −

∂FreeEnergy(x)

∂θ
+

1

Z

∑

x̃

e−FreeEnergy(x̃) ∂FreeEnergy(x̃)

∂θ

= −
∂FreeEnergy(x)

∂θ
+
∑

x̃

P (x̃)
∂FreeEnergy(x̃)

∂θ
. (19)

Hence the average log-likelihood gradient over the training set is

EP̂

[
∂ logP (x)

∂θ

]
= −EP̂

[
∂FreeEnergy(x)

∂θ

]
+ EP

[
∂FreeEnergy(x)

∂θ

]
(20)

where expectations are overx, with P̂ the training set empirical distribution andEP the expectation under
the model’s distributionP . Therefore, if we could sample fromP and compute the free energy tractably, we
would have a Monte-Carlo method to obtain a stochastic estimator of the log-likelihood gradient.

If the energy can be written as a sum of terms associated with at most one hidden unit

Energy(x,h) = −β(x) +
∑

i

γi(x,hi), (21)

a condition satisfied in the case of the RBM, then the free energy and numerator of the likelihood can be
computed tractably (even though it involves a sum with an exponential number of terms):

P (x) =
1

Z
e−FreeEnergy(x) =

1

Z

∑

h

e−Energy(x,h)

=
1

Z

∑

h1

∑

h2

. . .
∑

hk

eβ(x)−
P

i γi(x,hi) =
1

Z

∑

h1

∑

h2

. . .
∑

hk

eβ(x)
∏

i

e−γi(x,hi)

=
eβ(x)

Z

∑

h1

e−γ1(x,h1)
∑

h2

e−γ2(x,h2) . . .
∑

hk

e−γk(x,hk)

=
eβ(x)

Z

∏

i

∑

hi

e−γi(x,hi) (22)
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In the above,
∑

hi
is a sum over all the values thathi can take (e.g. 2 values in the usual binomial units

case); note how that sum is much easier to carry out than the sum
∑

h
over all values ofh. Note that all sums

can be replaced by integrals ifh is continuous, and the same principles apply. In many cases of interest, the
sum or integral (over a single hidden unit’s values) is easy to compute. The numerator of the likelihood (i.e.
also the free energy) can be computed exactly in the case where Energy(x,h) = −β(x) +

∑
i γi(x,hi),

and we have

FreeEnergy(x) = − logP (x)− logZ = −β(x)−
∑

i

log
∑

hi

e−γi(x,hi). (23)

5.1.2 Conditional Energy-Based Models

Whereas computing the partition function is difficult in general, if our ultimate goal is to make a decision
concerning a variabley given a variablex, instead of considering all configurations(x, y), it is enough to
consider the configurations ofy for each givenx. A common case is one wherey can only take values in a
small discrete set, i.e.

P (y|x) =
e−Energy(x,y)

∑
y e

−Energy(x,y)
. (24)

In this case the gradient of the conditional log-likelihoodwith respect to parameters of the energy function
can be computed efficiently. This formulation applies to a discriminant variant of the RBM called Discrimi-
native RBM (Larochelle & Bengio, 2008). Such conditional energy-based models have also been exploited
in a series of probabilistic language models based on neuralnetworks (Bengio et al., 2001; Schwenk &
Gauvain, 2002; Bengio, Ducharme, Vincent, & Jauvin, 2003; Xu, Emami, & Jelinek, 2003; Schwenk, 2004;
Schwenk & Gauvain, 2005; Mnih & Hinton, 2009). That formulation (or generally when it is easy to sum
or maximize over the set of values of the terms of the partition function) has been explored at length (LeCun
& Huang, 2005; LeCun et al., 2006; Ranzato et al., 2007, 2007;Collobert & Weston, 2008). An important
and interesting element in the latter work is that it shows that such energy-based models can be optimized
not just with respect to log-likelihood but with respect to more general criteria whose gradient has the prop-
erty of making the energy of “correct” responses decrease while making the energy of competing responses
increase. This criterion does not necessarily give rise to aprobabilistic model (because the exponential of
the negated energy function is not required to be integrable), but it gives rise to a function that can be used
to choosey givenx, which is often the ultimate goal in applications.

5.2 Boltzmann Machines

The Boltzmann machine is a particular type of energy-based model with hidden variables, and RBMs are
special forms of Boltzmann machines in whichP (h|x) andP (x|h) are both tractable because they factorize.
In a Boltzmann machine (Hinton, Sejnowski, & Ackley, 1984; Ackley et al., 1985; Hinton & Sejnowski,
1986), the energy function is a general second-order polynomial:

Energy(x,h) = −b′x− c′h− h′Wx− x′Ux− h′V h. (25)

There are two types of parameters, which we collectively denote byθ: the offsetsbi andci (each associated
with a single element of the vectorx or of the vectorh), and the weightsWij , Uij andVij (each associated
with a pair of units). MatricesU andV are assumed to be symmetric7, and in most models with zeros in
the diagonal. Non-zeros in the diagonal can be used to obtainother variants, e.g., with Gaussian instead of
binomial units (Welling et al., 2005).

Because of the quadratic interaction terms inh, the trick to analytically compute the free energy (eq. 22)
cannot be applied here. However, an MCMC (Monte Carlo MarkovChain (Andrieu, de Freitas, Doucet, &

7E.g. if U was not symmetric, the extra degrees of freedom would be wasted sincexiUijxj +xjUjixi can be rewrittenxi(Uij +

Uji)xj = 1

2
xi(Uij + Uji)xj + 1

2
xj(Uij + Uji)xi, i.e., in a symmetric-matrix form.
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Jordan, 2003)) sampling procedure can be applied in order toobtain a stochastic estimator of the gradient.
The gradient of the log-likelihood can be written as follows, starting from eq. 16:

∂ logP (x)

∂θ
=

∂ log
∑

h
e−Energy(x,h)

∂θ
−
∂ log

∑
x̃,h e

−Energy(x̃,h)

∂θ

= −
1∑

h
e−Energy(x,h)

∑

h

e−Energy(x,h)∂Energy(x,h)

∂θ

+
1∑

x̃,h e
−Energy(x̃,h)

∑

x̃,h

e−Energy(x̃,h)∂Energy(x̃,h)

∂θ

= −
∑

h

P (h|x)
∂Energy(x,h)

∂θ
+
∑

x̃,h

P (x̃,h)
∂Energy(x̃,h)

∂θ
. (26)

Note that∂Energy(x,h)
∂θ is easy to compute. Hence if we have a procedure to sample fromP (h|x) and one

to sample fromP (x,h), we can obtain an unbiased stochastic estimator of the log-likelihood gradient. Hin-
ton et al. (1984), Ackley et al. (1985), Hinton and Sejnowski(1986) introduced the following terminology:
in the positive phase, x is clampedto the observed input vector, and we sampleh givenx; in the nega-
tive phaseboth x andh are sampled, ideally from the model itself. Only approximate sampling can be
achieved tractably, e.g., using an iterative procedure that constructs an MCMC. The MCMC sampling ap-
proach introduced in Hinton et al. (1984), Ackley et al. (1985), Hinton and Sejnowski (1986) is based on
Gibbs sampling(Geman & Geman, 1984; Andrieu et al., 2003). Gibbs sampling of the joint ofN random
variablesX = (X1 . . . XN) is done through a sequence ofN sampling sub-steps of the form

Xi ∼ P (Xi|X−i = x−i) (27)

whereX−i contains theN − 1 other random variables inX , excludingXi. After theseN samples have
been obtained, a step of the chain is completed, yielding a sample ofX whose distribution converges to
P (X) as the number of steps goes to∞, under some conditions. A sufficient condition for convergence of
a finite-state Markov Chain is that it is aperiodic8 and irreducible9.

How can we perform Gibbs sampling in a Boltzmann machine? Lety = (x,h) denote all the units in the
Boltzmann machine, andy−i the set of values associated with all units except thei-th one. The Boltzmann
machine energy function can be rewritten by putting all the parameters in a vectord and a symmetric matrix
A,

Energy(y) = −d′y − y′Ay. (28)

Let d−i denote the vectord without the elementdi, A−i the matrixA without thei-th row and column,
anda−i the vector that is thei-th row (or column) ofA, without thei-th element. Using this notation, we
obtain thatP (yi|y−i) can be computed and sampled from easily in a Boltzmann machine. For example, if
yi ∈ {0, 1} and the diagonal ofA is null:

P (yi = 1|y−i) =
exp(di + d′

−iy−i + 2a′
−iy−i + y′

−iA−iy−i)

exp(di + d′
−iy−i + 2a′

−iy−i + y′
−iA−iy−i) + exp(d′

−iy−i + y′
−iA−iy−i)

=
exp(di + 2a′

−iy−i)

exp(di + 2a′
−iy−i) + 1

=
1

1 + exp(−di − 2a′
−iy−i)

= sigm(di + 2a′
−iy−i) (29)

which is essentially the usual equation for computing a neuron’s output in terms of other neuronsy−i, in
artificial neural networks.

8Aperiodic: no state is periodic with periodk > 1; a state has periodk if one can only return to it at timest + k, t + 2k, etc.
9Irreducible: one can reach any state from any state in finite time with non-zero probability.
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Since two MCMC chains (one for the positive phase and one for the negative phase) are needed for each
examplex, the computation of the gradient can be very expensive, and training time very long. This is
essentially why the Boltzmann machine was replaced in the late 80’s by the back-propagation algorithm for
multi-layer neural network as the dominant learning approach. However, recent work has shown that short
chains can sometimes be used successfully, and this is the principle of Contrastive Divergence, discussed
below (section 5.4) to train RBMs. Note also that the negative phase chain does not have to be restarted for
each new examplex (since it does not depend on the training data), and this observation has been exploited
in persistent MCMC estimators (Tieleman, 2008; Salakhutdinov & Hinton, 2009) discussed in Section 5.4.2.

5.3 Restricted Boltzmann Machines

TheRestrictedBoltzmann Machine (RBM) is the building block of a Deep Belief Network (DBN) because
it shares parametrization with individual layers of a DBN, and because efficient learning algorithms were
found to train it. The undirected graphical model of an RBM isillustrated in Figure 10, showing that
the hi are independent of each other when conditioning onx and thexj are independent of each other
when conditioning onh. In an RBM,U = 0 andV = 0 in eq. 25, i.e., the only interaction terms are
between a hidden unit and a visible unit, but not between units of the same layer. This form of model was
first introduced under the name ofHarmonium(Smolensky, 1986), and learning algorithms (beyond the
ones for Boltzmann Machines) were discussed in Freund and Haussler (1994). Empirically demonstrated
and efficient learning algorithms and variants were proposed more recently (Hinton, 2002; Welling et al.,
2005; Carreira-Perpiñan & Hinton, 2005). As a consequenceof the lack of input-input and hidden-hidden
interactions, the energy function is bilinear,

Energy(x,h) = −b′x− c′h− h′Wx (30)

and the factorization of the free energy of the input, introduced with eq. 21 and 23 can be applied with
β(x) = b′x andγi(x,hi) = −hi(ci +Wix), whereWi is the row vector corresponding to thei-th row of
W . Therefore the free energy of the input (i.e. its unnormalized log-probability) can be computed efficiently:

FreeEnergy(x) = −b′x−
∑

i

log
∑

hi

ehi(ci+Wix). (31)

Using the same factorization trick (in eq. 22) due to the affine form ofEnergy(x,h) with respect toh,
we readily obtain a tractable expression for the conditional probabilityP (h|x):

P (h|x) =
exp(b′x + c′h + h′Wx)

∑
h̃

exp(b′x + c′h̃ + h̃′Wx)

=

∏
i exp(cihi + hiWix)

∏
i

∑
h̃i

exp(cih̃i + h̃iWix)

=
∏

i

exp(hi(ci +Wix))
∑

h̃i
exp(h̃i(ci +Wix))

=
∏

i

P (hi|x).

In the commonly studied case wherehi ∈ {0, 1}, we obtain the usual neuron equation for a neuron’s output
given its input:

P (hi = 1|x) =
eci+Wix

1 + eci+Wix
= sigm(ci +Wix). (32)

Sincex andh play a symmetric role in the energy function, a similar derivation allows to efficiently compute
and sampleP (x|h):

P (x|h) =
∏

i

P (xi|h) (33)
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and in the binary case
P (xj = 1|h) = sigm(bj +W ′

·jh) (34)

whereW·j is thej-th column ofW .
In Hinton et al. (2006), binomial input units are used to encode pixel gray levels in input images as if

they were the probability of a binary event. In the case of handwritten character images this approximation
works well, but in other cases it does not. Experiments showing the advantage of using Gaussian input
units rather than binomial units when the inputs are continuous-valued are described in Bengio et al. (2007).
See Welling et al. (2005) for a general formulation wherex andh (given the other) can be in any of the
exponential family distributions (discrete and continuous).

Although RBMs might not be able to represent efficiently somedistributions that could be represented
compactly with an unrestricted Boltzmann machine, RBMs canrepresent any discrete distribution (Freund
& Haussler, 1994; Le Roux & Bengio, 2008), if enough hidden units are used. In addition, it can be shown
that unless the RBM already perfectly models the training distribution, adding a hidden unit (and properly
choosing its weights and offset) can always improve the log-likelihood (Le Roux & Bengio, 2008).

An RBM can also be seen as forming a multi-clustering (see Section 3.2), as illustrated in Figure 5. Each
hidden unit creates a 2-region partition of the input space (with a linear separation). When we consider the
configurations of say three hidden units, there are 8 corresponding possible intersections of 3 half-planes (by
choosing each half-plane among the two half-planes associated with the linear separation of a hidden unit).
Each of these 8 intersections corresponds to a region in input space that gives the same hidden configuration
(i.e. code) to a set of input configurations. The binary setting of the hidden units thus identifies one region in
input space among all the regions associated with configurations of the hidden units. For allx in one of these
regions,P (h|x) is maximal for the correspondingh configuration. Note that not all configurations of the
hidden units correspond to a non-empty region in input space. As illustrated in Figure 5, this representation
is similar to what an ensemble of 2-leaf trees would create.

The sum over the exponential number of possible hidden-layer configurations of an RBM can also be
seen as a particularly interesting form of mixture, with an exponential number of components (with respect
to the number of parameters):

P (x) =
∑

h

P (x|h)P (h) (35)

whereP (x|h) is the model associated with the component indexed by configurationh. For example, if
P (x|h) is chosen to be Gaussian (see Welling et al. (2005), Bengio etal. (2007)), this is a Gaussian mixture
with 2n components whenh hasn bits. Of course, these2n components cannot be tuned independently
because they depend on shared parameters (the RBM parameters), and that is also the strength of the model,
since it can generalize to configurations (regions of input space) for which no training example was seen.
We can see that the Gaussian mean (in the Gaussian case) is obtained as a linear combinationb +W ′h, i.e.,
each hidden unit bithi contributes (or not) a vectorWi in the mean.

5.3.1 Gibbs Sampling in RBMs

Sampling from an RBM is useful for several reasons. First of all it is useful in learning algorithms, to obtain
an estimator of the log-likelihood gradient. Second, inspection of examples generated from the model is
useful to get an idea of what the model has captured or not captured about the data distribution. Since the
joint distribution of the top two layers of a DBN is an RBM, sampling from an RBM enables us to sample
from a DBN, as elaborated in Section 6.1.

Gibbs sampling in fully connected Boltzmann Machines is slow because there are as many sub-steps in
the Gibbs chain as there are units in the network. On the otherhand, the factorization enjoyed by RBMs
brings two benefits: first we do not need to sample in the positive phase because the free energy (and therefore
its gradient) is computed analytically; second, the set of variables in(x,h) can be sampled in two sub-steps
in each step of the Gibbs chain. First we sampleh givenx, and then a newx givenh. In general product
of experts models, an alternative to Gibbs sampling is hybrid Monte-Carlo (Duane, Kennedy, Pendleton,
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& Roweth, 1987; Neal, 1994), an MCMC method involving a number of free-energy gradient computation
sub-steps for each step of the Markov chain. The RBM structure is therefore a special case of product of
experts model: thei-th termlog

∑
hi
e(ci+Wix)hi in eq. 31 corresponds to an expert, i.e., there is one expert

per hidden neuron and one for the input offset. With that special structure, a very efficient Gibbs sampling
can be performed. Fork Gibbs steps, starting from a training example (i.e. sampling from P̂ ):

x1 ∼ P̂ (x)

h1 ∼ P (h|x1)

x2 ∼ P (x|h1)

h2 ∼ P (h|x2)

. . .

xk+1 ∼ P (x|hk). (36)

It makes sense to start the chain from a training example because as the model becomes better at capturing
the structure in the training data, the model distributionP and the training distribution̂P become more
similar (having similar statistics). Note that if we started the chain fromP itself, it would have converged in
one step, so starting from̂P is a good way to ensure that only a few steps are necessary for convergence.

Algorithm 1
RBMupdate(x1, ǫ,W,b, c)
This is the RBM update procedure for binomial units. It can easily adapted to other types of units.
x1 is a sample from the training distribution for the RBM
ǫ is a learning rate for the stochastic gradient descent in Contrastive Divergence
W is the RBM weight matrix, of dimension (number of hidden units, number of inputs)
b is the RBM offset vector for input units
c is the RBM offset vector for hidden units
Notation:Q(h2· = 1|x2) is the vector with elementsQ(h2i = 1|x2)

for all hidden unitsi do
• computeQ(h1i = 1|x1) (for binomial units,sigm(ci +

∑
j Wijx1j))

• sampleh1i fromQ(h1i|x1)
end for
for all visible unitsj do
• computeP (x2j = 1|h1) (for binomial units,sigm(bj +

∑
iWijh1i))

• samplex2j fromP (x2j = 1|h1)
end for
for all hidden unitsi do
• computeQ(h2i = 1|x2) (for binomial units,sigm(ci +

∑
j Wijx2j))

end for
•W ←W + ǫ(h1x

′
1 −Q(h2· = 1|x2)x

′
2)

• b← b + ǫ(x1 − x2)
• c← c + ǫ(h1 −Q(h2· = 1|x2))

5.4 Contrastive Divergence

Contrastive Divergence is an approximation of the log-likelihood gradient that has been found to be a suc-
cessful update rule for training RBMs (Carreira-Perpiñan& Hinton, 2005). A pseudo-code is shown in
Algorithm 1, with the particular equations for the conditional distributions for the case of binary input and
hidden units.

31



5.4.1 Justifying Contrastive Divergence

To obtain this algorithm, thefirst approximation we are going to make is replace the average over all
possible inputs (in the second term of eq. 20) by a single sample. Since we update the parameters often (e.g.,
with stochastic or mini-batch gradient updates after one ora few training examples), there is already some
averaging going on across updates (which we know to work well(LeCun, Bottou, Orr, & Müller, 1998)),
and the extra variance introduced by taking one or a few MCMC samples instead of doing the complete sum
might be partially canceled in the process of online gradient updates, over consecutive parameter updates.
We introduce additional variance with this approximation of the gradient, but it does not hurt much if it is
comparable or smaller than the variance due to online gradient descent.

Running a long MCMC chain is still very expensive. The idea ofk-step Contrastive Divergence (CD-
k) (Hinton, 1999, 2002) is simple, and involves asecond approximation, which introduces some bias in the
gradient: run the MCMC chainx1,x2, . . .xk+1 for onlyk stepsstarting from the observed examplex1 = x.
The CD-k update (i.e., not the log-likelihood gradient) after seeing examplex is therefore

∆θ ∝
∂FreeEnergy(x)

∂θ
−
∂FreeEnergy(x̃)

∂θ
(37)

wherex̃ = xk+1 is the last sample from our Markov chain, obtained afterk steps. We know that when
k → ∞, the bias goes away. We also know that when the model distribution is very close to the empirical
distribution, i.e.,P ≈ P̂ , then when we start the chain fromx (a sample fromP̂ ) the MCMC has already
converged, and we need only one step to obtain an unbiased sample fromP (although it would still be
correlated withx).

The surprising empirical result is that evenk = 1 (CD-1) often gives good results. An extensive numer-
ical comparison of training with CD-k versus exact log-likelihood gradient has been presented inCarreira-
Perpiñan and Hinton (2005). In these experiments, takingk larger than 1 gives more precise results, although
very good approximations of the solution can be obtained even with k = 1. Theoretical results (Bengio &
Delalleau, 2009) discussed below in Section 5.4.3 help to understand why small values ofk can work: CD-k
corresponds to keeping the firstk terms of a series that converges to the log-likelihood gradient.

One way to interpret Contrastive Divergence is that it is approximating the log-likelihood gradientlocally
around the training pointx1. The stochastic reconstructioñx = xk+1 (for CD-k) has a distribution (given
x1) which is in some sense centered aroundx1 and becomes more spread out around it ask increases, until
it becomes the model distribution. The CD-k update will decrease the free energy of the training pointx1

(which would increase its likelihood if all the other free energies were kept constant), and increase the free
energy ofx̃, which is in the neighborhood ofx1. Note thatx̃ is in the neighborhood ofx1, but at the same
time more likely to be in regions of high probability under the model (especially fork larger). As argued
by LeCun et al. (2006), what is mostly needed from the training algorithm for an energy-based model is that
it makes the energy (free energy, here, to marginalize hidden variables) of observed inputs smaller, shoveling
“energy” elsewhere, and most importantly in their neighborhood. The Contrastive Divergence algorithm is
fueled by thecontrastbetween the statistics collected when the input is a real training example and when
the input is a chain sample. As further argued in the next section, one can think of the unsupervised learning
problem as discovering a decision surface that can roughly separate the regions of high probability (where
there are many observed training examples) from the rest. Therefore we want to penalize the model when it
generates examples on the wrong side of that divide, and a good way to identify where that divide should be
moved is to compare training examples with samples from the model.

5.4.2 Alternatives to Contrastive Divergence

An exciting recent development in the research on learning algorithms for RBMs is use of a so-called
persistent MCMC for the negative phase (Tieleman, 2008; Salakhutdinov & Hinton, 2009), following
an approach already introduced in Neal (1992). The idea is simple: keep a background MCMC chain
. . .xt → ht → xt+1 → ht+1 . . . to obtain the negative phase samples (which should be from the model).
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Instead of running a short chain as in CD-k, the approximation made is that we ignore the fact that param-
eters are changing as we move along the chain, i.e., we do not run a separate chain for each value of the
parameters (as in the traditional Boltzmann Machine learning algorithm). Maybe because the parameters
move slowly, the approximation works very well, usually giving rise to better log-likelihood than CD-k
(experiments were againstk = 1 andk = 10). The trade-off with CD-1 is that the variance is larger but
the bias is smaller. Something interesting also happens10: the model systematically moves away from the
samples obtained in the negative phase, and this interacts with the chain itself, preventing it from staying in
the same region very long, substantially improving the mixing rate of the chain. This is a very desirable and
unforeseen effect, which helps to explore more quickly the space of RBM configurations.

Another alternative to Contrastive Divergence is Score Matching (Hyvärinen, 2005, 2007b, 2007a), a
general approach to train energy-based models in which the energy can be computed tractably, but not
the normalization constantZ. The score function of a densityp(x) = q(x)/Z is ψ = ∂ log p(x)

∂x
, and we

exploit the fact that the score function of our model does notdepend on its normalization constant, i.e.,
ψ = ∂ log q(x)

∂x
. The basic idea is to match the score function of the model with the score function of the

empirical density. The average (under the empirical density) of the squared norm of the difference between
the two score functions can be written in terms of squares of the model score function and second derivatives
∂2 log q(x)

∂x2 . Score matching has been shown to be locally consistent (Hyvärinen, 2005), i.e. converging if the
model family matches the data generating process, and it hasbeen used for unsupervised models of image
and audio data (Köster & Hyvärinen, 2007).

5.4.3 Truncations of the Log-Likelihood Gradient in Gibbs-Chain Models

Here we approach the Contrastive Divergence update rule from a different perspective, which gives rise to
possible generalizations of it and links it to the reconstruction error often used to monitor its performance and
that is used to optimize auto-encoders (eq. 9). The inspiration for this derivation comes from Hinton et al.
(2006): first from the idea (explained in Section 8.1) that the Gibbs chain can be associated with an infinite
directed graphical model (which here we associate it with anexpansion of the log-likelihood gradient), and
second that the convergence of the chain justifies Contrastive Divergence (since the expected value of eq. 37
becomes equivalent to eq. 19 when the chain samplex̃ comes from the model). In particular we are interested
in clarifying and understanding the bias in the ContrastiveDivergence update rule, compared to using the
true (intractable) gradient of the log-likelihood.

Consider a converging Markov chainxt ⇒ ht ⇒ xt+1 ⇒ . . . defined by conditional distributions
P (ht|xt) andP (xt+1|ht), with x1 sampled from the training data empirical distribution. Thefollowing
Theorem, demonstrated by Bengio and Delalleau (2009), shows how one can expand the log-likelihood
gradient for anyt ≥ 1.

Theorem 5.1. Consider the converging Gibbs chainx1 ⇒ h1 ⇒ x2 ⇒ h2 . . . starting at data pointx1.
The log-likelihood gradient can be written

∂ logP (x1)

∂θ
= −

∂FreeEnergy(x1)

∂θ
+ E

[
∂FreeEnergy(xt)

∂θ

]
+ E

[
∂ logP (xt)

∂θ

]
(38)

and the final term converges to zero ast goes to infinity.

Since the final term becomes small ast increases, that justifies truncating the chain tok steps in the
Markov chain, using the approximation

∂ logP (x1)

∂θ
≃ −

∂FreeEnergy(x1)

∂θ
+ E

[
∂FreeEnergy(xk+1)

∂θ

]

10Tijmen Tieleman,Using fast weights to improve Persistent Contrastive Divergence, talk given at U. Montreal, Nov. 11th, 2008
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which is exactly the CD-k update (eq. 37) when we replace the expectation with a singlesamplẽx = xk+1.

This tells us that the bias of CD-k isE
[

∂ log P (xk+1)
∂θ

]
. Experiments and theory support the idea that CD-k

yields better and faster convergence (in terms of number of iterations) than CD-(k − 1), due to smaller bias
(though the computational overhead might not always be worth it). However, although experiments show
that the CD-k bias can indeed be large whenk is small, empirically the update rule of CD-k still mostly
moves the model’s parameters in the same quadrant as log-likelihood gradient (Bengio & Delalleau, 2009).
This is in agreement with the good results can be obtained even with k = 1. An intuitive picture that may
help to understand the phenomenon is the following: when theinput examplex1 is used to initialize the
chain, even the first Markov chain step (tox2) tends to be in the right direction compared tox1, i.e. roughly
going down the energy landscape fromx1. Since the gradient depends on the change betweenx2 andx1,
we tend to get the direction of the gradient right.

So CD-1 corresponds to truncating the chain after two samples (one fromh1|x1, and one fromx2|h1).
What about stopping after the first one (i.e.h1|x1)? It can be analyzed from the following log-likelihood
gradient expansion (Bengio & Delalleau, 2009):

∂ logP (x1)

∂θ
= E

[
∂ logP (x1|h1)

∂θ

]
− E

[
∂ logP (h1)

∂θ

]
. (39)

Let us consider a mean-field approximation of the first expectation, in which instead of the average over
all h1 configurations according toP (h1|x1) one replacesh1 by its average configuration̂h1 = E[h1|x1],
yielding:

E

[
∂ logP (x1|h1)

∂θ

]
≃
∂ logP (x1|ĥ1)

∂θ
. (40)

If, as in CD, we then ignore the second expectation in eq. 39 (incurring a corresponding bias in the estimation
of the log-likelihood gradient), we then obtain the right-hand side of eq. 40 as an update direction, which is
minus the gradient of thereconstruction error,

− logP (x1|ĥ1)

typically used to train auto-encoders (see eq. 9 withc(x) = E[h|x])11.
So we have found that the truncation of the Gibbs chain gives rise to first approximation (one sample) to

roughly reconstruction error (through a biased mean-field approximation), with slightly better approximation
(two samples) to CD-1 (approximating the expectation by a sample), and with more terms to CD-k (still
approximating expectations by samples). Note that reconstruction error is deterministically computed and
for this reason has been used to track progress when trainingRBMs with CD.

5.4.4 Model Samples Are Negative Examples

Here we argue that training an energy-based model can be achieved by solving a series of classification
problems in which one tries to discriminate training examples from samples generated by the model. In the
Boltzmann machine learning algorithms, as well as in Contrastive Divergence, an important element is the
ability to sample from the model, maybe approximately. An elegant way to understand the value of these
samples in improving the log-likelihood was introduced in Welling, Zemel, and Hinton (2003), using a con-
nection with boosting. We start by explaining the idea informally and then formalize it, justifying algorithms
based on training the generative model with a classificationcriterionseparating model samples from training
examples. The maximum likelihood criterion wants the likelihood to be high on the training examples and
low elsewhere. If we already have a model and we want to increase its likelihood, the contrast between where
the model puts high probability (represented by samples) and where the training examples are indicates how

11It is debatable whether or not one would take into account thefact thatĥ1 depends onθ when computing the gradient in the
mean-field approximation of eq. 40, but it must be the case to draw a direct link with auto-encoders.
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to change the model. If we were able to approximately separate training examples from model samples with
a decision surface, we could increase likelihood by reducing the value of the energy function on one side
of the decision surface (the side where there are more training examples) and increasing it on the other side
(the side where there are more samples from the model). Mathematically, consider the gradient of the log-
likelihood with respect to the parameters of theFreeEnergy(x) (orEnergy(x) if we do not introduce explicit
hidden variables), given in eq. 20. Now consider a highly regularized two-class probabilistic classifier which
is only able to produce an output probabilityq(x) = P (y = 1|x) barely different from1

2 (hopefully on the
right side more often than not). Letq(x) = sigm(−a(x)), i.e.,−a(x) is the discriminant function or an un-
normalized conditional log-probability, just like the free energy. Let̃P denote the empirical distribution over
(x, y) pairs, andP̃i the distribution overx wheny = i. Assume that̃P (y = 1) = P̃ (y = 0) = 1

2 , so that
∀f, EP̃ [f(x, y)] = EP̃1

[f(x, 1)]P̃ (y = 1) + EP̃0
[f(x, 0)]P̃ (y = 0) = 1

2 (EP̃1
[f(x, 1)] + EP̃0

[f(x, 0)]).
Using this, the average conditional log-likelihood gradient for this probabilistic classifier is written

EP̃

[
∂ logP (y|x)

∂θ

]
= EP̃

[
∂(y log q(x) + (1 − y) log(1− q(x)))

∂θ

]

=
1

2

(
EP̃1

[
(q(x) − 1)

∂a(x)

∂θ

]
+ EP̃0

[
q(x)

∂a(x)

∂θ

])

≈
1

4

(
−EP̃1

[
∂a(x)

∂θ

]
+ EP̃0

[
∂a(x)

∂θ

])
(41)

where the last equality is when the classifier is highly regularized: when the output weights are small,a(x)
is close to 0 andq(x) ≈ 1

2 , so that(1 − q(x)) ≈ q(x). This expression for the log-likelihood gradient
corresponds exactly to the one obtained for energy-based models where the likelihood is expressed in terms
of a free energy (eq. 20), when we interpret training examples from P̃1 as positive examples (y = 1) (i.e.
P̃1 = P̂ ) and model samples as negative examples (y = 0, i.e. P̃0 = P ). The gradient is also similar in
structure to the contrastive divergence gradient estimator (eq. 37). One way to interpret this result is that if
we could improve a classifier that separated training samples from model samples, we could improve the log-
likelihood of the model, by putting more probability mass onthe side of training samples. Practically, this
could be achieved with a classifier whose discriminant function was defined as the free energy of a generative
model (up to a multiplicative factor), and assuming one could obtain samples (possibly approximate) from
the model. A particular variant of this idea has been used to justify a boosting-like incremental algorithm for
adding experts in products of experts (Welling et al., 2003).

6 Greedy Layer-Wise Training of Deep Architectures

6.1 Layer-Wise Training of Deep Belief Networks

A Deep Belief Network (Hinton et al., 2006) withℓ layers models the joint distribution between observed
vectorx andℓ hidden layershk as follows:

P (x,h1, . . . ,hℓ) =

(
ℓ−2∏

k=0

P (hk|hk+1)

)
P (hℓ−1,hℓ) (42)

wherex = h0, P (hk−1|hk) is a conditional distribution in an RBM associated with level k of the DBN, and
P (hℓ−1,hℓ) is the joint distribution in the top-level RBM. This is illustrated in Figure 11.

The conditional distributionsP (hk|hk+1) and the top-level joint (an RBM)P (hℓ−1,hℓ) define the gen-
erative model. In the following we introduce the letterQ for exact or approximate posteriors of that model,
which are used for inference and training. TheQ posteriors are all approximate except for the top level
Q(hℓ|hℓ−1) which is equal to the trueP (hℓ|hℓ−1) because(hℓ,hℓ−1) form an RBM, where exact inference
is possible.
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Algorithm 2

TrainUnsupervisedDBN(P̂ , ǫ, ℓ,W,b, c, mean-field-computation)
Train a DBN in a purely unsupervised way, with the greedy layer-wise procedure in which each added layer
is trained as an RBM (e.g. by contrastive divergence).
P̂ is the input training distribution for the network
ǫ is a learning rate for the RBM training
ℓ is the number of layers to train
W k is the weight matrix for levelk, for k from 1 toℓ
bk is the visible units offset vector for RBM at levelk, for k from 1 toℓ
ck is the hidden units offset vector for RBM at levelk, for k from 1 toℓ
mean-field-computation is a boolean that is true iff training data at each additional level is obtained by a
mean-field approximation instead of stochastic sampling

for k = 1 to ℓ do
• initializeW k = 0, bk = 0, ck = 0
while not stopping criteriondo
• sampleh0 = x from P̂
for i = 1 to k − 1 do

if mean-field-computationthen
• assignhi

j toQ(hi
j = 1|hi−1), for all elementsj of hi

else
• samplehi

j fromQ(hi
j |h

i−1), for all elementsj of hi

end if
end for
• RBMupdate(hk−1, ǫ,W k,bk, ck) {thus providingQ(hk|hk−1) for future use}

end while
end for
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Figure 11: Deep Belief Network as a generative model (generative path withP distributions, full arcs) and a
means to extract multiple levels of representation of the input (recognition path withQ distributions, dashed
arcs). The top two layersh2 andh3 form an RBM (for their joint distribution). The lower layersform a
directed graphical model (sigmoid belief neth2 ⇒ h1 ⇒ x) and the prior for the penultimate layerh2 is
provided by the top-level RBM.Q(hk+1|hk) approximatesP (hk+1|hk) but can be computed easily.

When we train the DBN in a greedy layerwise fashion, as illustrated with the pseudo-code of Algo-
rithm 2, each layer is initialized as an RBM, and we denoteQ(hk,hk−1) thek-th RBM trained in this way,
whereasP (. . .) denotes probabilities according to the DBN. We will useQ(hk|hk−1) as an approximation
of P (hk|hk−1), because it is easy to compute and sample fromQ(hk|hk−1) (which factorizes), and not
from P (hk|hk−1) (which does not). TheseQ(hk|hk−1) can also be used to construct a representation of
the input vectorx. To obtain an approximate posterior or representation for all the levels, we use the fol-
lowing procedure. First sampleh1 ∼ Q(h1|x) from the first-level RBM, or alternatively with a mean-field
approach usêh1 = E[h1|x] instead of a sample ofh1, where the expectation is over the RBM distribution
Q(h1|x). This is just the output probabilities of the hidden units, in the common case where they are bi-
nomial units: ĥ1

i = sigm(b1 + W 1
i x). Taking either the mean-field vectorĥ1 or the sampleh1 as input

for the second-level RBM, computêh2 or a sampleh2, etc. until the last layer. Once a DBN is trained as
per Algorithm 2, the parametersW i (RBM weights) andci (RBM hidden unit offets) for each layer can be
used to initialize a deep multi-layer neural network. Theseparameters can then be fine-tuned with respect to
another criterion (typically a supervised learning criterion).

A sample of the DBN generative model forx can be obtained as follows:

1. Sample a visible vectorhℓ−1 from the top-level RBM. This can be achieved approximately by running
a Gibbs chain in that RBM alternating betweenhℓ ∼ P (hℓ|hℓ−1) andhℓ−1 ∼ P (hℓ−1|hℓ), as
outlined in Section 5.3.1. By starting the chain from a representationhℓ−1 obtained from a training
set example (through theQ′s as above), fewer Gibbs steps might be required.

2. Fork = ℓ−1 down to 1, samplehk−1 givenhk according to the level-k hidden-to-visible conditional
distributionP (hk−1|hk).

3. x = h0 is the DBN sample.
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6.2 Training Stacked Auto-Encoders

Auto-Encoders have been used as building blocks to build andinitialize a deep multi-layer neural net-
work (Bengio et al., 2007; Ranzato et al., 2007; Larochelle et al., 2007; Vincent et al., 2008). The training
procedure is similar to the one for Deep Belief Networks:

1. Train the first layer as an auto-encoder to minimize some form of reconstruction error of the raw input.
This is purely unsupervised.

2. The hidden units’ outputs (i.e. the codes) of the auto-encoder are now used as input for another layer,
also trained to be an auto-encoder. Again, we only need unlabeled examples.

3. Iterate as in (2) to initialize the desired number of additional layers.

4. Take the last hidden layer output as input to a supervised layer and initialize its parameters (either
randomly or by supervised training, keeping the rest of the network fixed).

5. Fine-tune all the parameters of this deep architecture with respect to the supervised criterion. Alter-
nately, unfold all the auto-encoders into a very deep auto-encoder and fine-tune the global reconstruc-
tion error, as in (Hinton & Salakhutdinov, 2006b).

The hope is that the unsupervised pre-training in this greedy layer-wise fashion has put the parameters of
all the layers in a region of parameter space from which a good12 local optimum can be reached by local
descent. This indeed appears to happen in a number of tasks (Bengio et al., 2007; Ranzato et al., 2007;
Larochelle et al., 2007; Vincent et al., 2008).

The principle is exactly the same as the one previously proposed for training DBNs, but using auto-
encoders instead of RBMs. Comparative experimental results suggest that Deep Belief Networks typically
have an edge over Stacked Auto-Encoders (Bengio et al., 2007; Larochelle et al., 2007; Vincent et al.,
2008). This may be because CD-k is closer to the log-likelihood gradient than the reconstruction error
gradient. However, since the reconstruction error gradient has less variance than CD-k (because no sampling
is involved), it might be interesting to combine the two criteria, at least in the initial phases of learning. Note
also that the DBN advantage disappeared in experiments where the ordinary auto-encoder was replaced by
a denoising auto-encoder (Vincent et al., 2008), which is stochastic (see Section 7.2).

An advantage of using auto-encoders instead of RBMs as the unsupervised building block of a deep
architecture is that almost any parametrization of the layers is possible, as long as the training criterion
is continuous in the parameters. On the other hand, the classof probabilistic models for which CD or
other known tractable estimators of the log-likelihood gradient can be applied is currently more limited. A
disadvantage of Stacked Auto-Encoders is that they do not correspond to a generative model: with generative
models such as RBMs and DBNs, samples can be drawn to check qualitatively what has been learned, e.g.,
by visualizing the images or word sequences that the model sees as plausible.

6.3 Semi-Supervised and Partially Supervised Training

With DBNs and Stacked Auto-Encoders two kinds of training signals are available, and can be combined:
the local layer-wise unsupervised training signal (from the RBM or auto-encoder associated with the layer),
and a global supervised training signal (from the deep multi-layer network sharing the same parameters
as the DBN or Stacked Auto-Encoder). In the algorithms presented above, the two training signals are
used in sequence: first an unsupervised training phase, and second a supervised fine-tuning phase. Other
combinations are possible.

One possibility is to combine both signals during training,and this is called partially supervised training
in Bengio et al. (2007). It has been found useful (Bengio et al., 2007) when the true input distributionP (X)
is believed to be not strongly related toP (Y |X). To make sure that an RBM preserves information relevant

12Good at least in the sense of generalization.
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to Y in its hidden representation, the CD update is combined withthe classification log-probability gradient,
and for some distributions better predictions are thus obtained.

7 Variants of RBMs and Auto-Encoders

We review here some of the variations that have been proposedon the basic RBM and auto-encoder models
to extend and improve them.

We have already mentioned that it is straightforward to generalize the conditional distributions associated
with visible or hidden units in RBMs, e.g., to any member of the exponential family (Welling et al., 2005).
Gaussian units and exponential or truncated exponential units have been proposed or used in Freund and
Haussler (1994), Welling et al. (2003), Bengio et al. (2007), Larochelle et al. (2007). With respect to the
analysis presented here, the equations can be easily adapted by simply changing the domain of the sum
(or integral) for thehi andxi. Diagonal quadratic terms (e.g., to yield Gaussian or truncated Gaussian
distributions) can also be added in the energy function without losing the property that the free energy
factorizes.

7.1 Sparse Representations in Auto-Encoders and RBMs

Sparsity has become a concept of great interest recently, not only in machine learning but also in statistics
and signal processing, in particular with the work on compressed sensing (Candes & Tao, 2005; Donoho,
2006), but it was introduced earlier in computational neuroscience in the context of sparse coding in the
visual system (Olshausen & Field, 1997), and has been a key element of a variant of auto-encoders (Ranzato
et al., 2007, 2007; Ranzato & LeCun, 2007; Ranzato et al., 2008; Mairal et al., 2009) with a sparse distributed
representation.

7.1.1 Why a Sparse Representation?

We argue here that if one is going to have fixed-size representations, then sparse representations are more
efficient (than non-sparse ones) to allow for varying numberof bits per example. According to learning
theory (Vapnik, 1995; Li & Vitanyi, 1997), to obtain good generalization it is enough that the total number
of bits needed to encode thewhole training setbe small, compared to the size of the training set. In many
domains of interest different examples require different number of bits when compressed.

On the other hand, dimensionality reduction algorithms, whether linear such as PCA and ICA, or non-
linear such as LLE and Isomap, map each example to the same low-dimensional space. In light of the above
argument, it would be more efficient to map each example to a variable-length representation. To simplify
the argument, assume this representation is a binary vector. If we are required to map each example to a
fixed-length representation, a good solution would be to choose that representation to have enough degrees
of freedom to represent the vast majority of the examples, while at the same allowing to compress that fixed-
length bit vector to a smaller variable-size code for most ofthe examples. We now have two representations:
the fixed-length one, which we might use as input to make predictions and make decisions, and a smaller,
variable-size one, which can in principle be obtained from the fixed-length one through a compression step.
For example, if the bits in our fixed-length representation vector have a high probability of being 0 (i.e. a
sparsity condition), then for most examples it is easy to compress the fixed-length vector (in average by the
amount of sparsity). For a given level of sparsity, the number of configurations of sparse vectors is much
smaller than when less sparsity (or none at all) is imposed, so the entropy of sparser codes is smaller.

Another argument in favor of sparsity is that the fixed-length representation is going to be used as input
for further processing, so that it should be easy to interpret. A highly compressed encoding is usually highly
entangled, so that no subset of bits in the code can really be interpreted unless all the other bits are taken into
account. Instead, we would like our fixed-length sparse representation to have the property that individual
bits or small subsets of these bits can be interpreted, i.e.,correspond to meaningful aspects of the input, and
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capture factors of variation in the data. For example, with aspeech signal as input, if some bits encode the
speaker characteristics and other bits encode generic features of the phoneme being pronounced, we have
disentangled some of the factors of variation in the data, and some subset of the factors might be sufficient
for some particular prediction tasks.

Another way to justify sparsity of the representation was proposed in Ranzato et al. (2008), in the con-
text of models based on auto-encoders. This view actually explains how one might get good models even
though the partition function is not explicitly minimized,or only minimized approximately, as long as other
constraints (such as sparsity) are used on the learned representation. Suppose that the representation learned
by an auto-encoder is sparse, then the auto-encoder cannot reconstruct well every possible input pattern, be-
cause the number of sparse configurations is necessarily smaller than the number of dense configurations. To
minimize the average reconstruction error on the training set, the auto-encoder then has to find a representa-
tion which captures statistical regularities of the data distribution. First of all, Ranzato et al. (2008) connect
the free energy with a form of reconstruction error (when onereplaces summing over hidden unit configu-
rations by maximizing over them). Minimizing reconstruction error on the training set therefore amounts to
minimizing free energy, i.e., maximizing the numerator of an energy-based model likelihood (eq. 17). Since
the denominator (the partition function) is just a sum of thenumerator over all possible input configurations,
maximizing likelihood roughly amounts to making reconstruction error high for most possible input config-
urations, while making it low for those in the training set. This can be achieved if the encoder (which maps
an input to its representation) is constrained in such a way that it cannot represent well most of the possible
input patterns (i.e., the reconstruction errormust be highfor most of the possible input configurations). Note
how this is already achieved when the code is much smaller than the input. Another approach is to impose a
sparsity penalty on the representation (Ranzato et al., 2008), which can be incorporated in the training crite-
rion. In this way, the term of the log-likelihood gradient associated with the partition function is completely
avoided, and replaced by a sparsity penalty on the hidden unit code. Interestingly, this idea could potentially
be used to improve CD-k RBM training, which only uses anapproximateestimator of the gradient of the
log of the partition function. If we add a sparsity penalty tothe hidden representation, we may compensate
for the weaknesses of that approximation, by making sure we increase the free energy of most possible input
configurations, and not only of the reconstructed neighborsof the input example that are obtained in the
negative phase of Contrastive Divergence.

7.1.2 Sparse Auto-Encoders and Sparse Coding

There are many ways to enforce some form of sparsity on the hidden layer representation. The first success-
ful deep architectures exploiting sparsity of representation involved auto-encoders (Ranzato et al., 2007).
Sparsity was achieved with a so-called sparsifying logistic, by which the codes are obtained with a nearly
saturating logistic whose bias is adapted to maintain a low average number of times the code is significantly
non-zero. One year later the same group introduced a somewhat simpler variant (Ranzato et al., 2008) based
on a Student-t prior on the codes. The Student-t prior has been used in the past to obtain sparsity of the MAP
estimates of the codes generating an input (Olshausen & Field, 1997) in computational neuroscience models
of the V1 visual cortex area. Another approach also connected to computational neuroscience involves two
levels of sparse RBMs (Lee et al., 2008). Sparsity is achieved with a regularization term that penalizes a
deviation of the expected activation of the hidden units from a low fixed level. Whereas Olshausen and Field
(1997) had already shown that one level of sparse coding of images led to filters very similar to those seen
in V1, Lee et al. (2008) find that when training a sparse Deep Belief Network (i.e. two sparse RBMs on top
of each other), the second level appears to learn to detect visual features similar to those observed in area
V2 of visual cortex (i.e., the area that follows area V1 in themain chain of processing of the visual cortex of
primates).

In the compressed sensing literature sparsity is achieved with theℓ1 penalty on the codes, i.e., given bases
W (each column ofW is a basis) we typically look for codesh such that the input signalx is reconstructed
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with low ℓ2 reconstruction error whileh is sparse:

min
h
||x−Wh||22 + λ||h||1 (43)

where||h||1 =
∑

i |hi|. The actual number of non-zero components ofh would be given by theℓ0 norm,
but minimizing with it is combinatorially difficult, and theℓ1 norm is the closestp-norm that is also convex,
making the overall minimization in eq. 43 convex. As is now well understood (Candes & Tao, 2005; Donoho,
2006), theℓ1 norm is a very good proxy for theℓ0 norm and naturally induces sparse results, and it can even
be shown torecover exactlythe true sparse code (if there is one), under mild conditions. Note that theℓ1
penalty corresponds to a Laplace prior, and that the posterior does not have a point mass at 0, but because
of the above properties, themodeof the posterior (which is recovered when minimizing eq. 43)is often at
0. Although minimizing eq. 43 is convex, minimizing jointlythe codes and the decoder basesW is not
convex, but has been done successfully with many different algorithms (Olshausen & Field, 1997; Lewicki
& Sejnowski, 2000; Doi et al., 2006; Grosse, Raina, Kwong, & Ng, 2007; Raina, Battle, Lee, Packer, & Ng,
2007; Mairal et al., 2009).

Like directed graphical models (such as the sigmoid belief networks discussed in Section 4.4), sparse
coding performs a kind ofexplaining away: it chooses one configuration (among many) of the hidden codes
that could explain the input. These different configurations compete, and when one is selected, the others
are completely turned off. This can be seen both as an advantage and as a disadvantage. The advantage
is that if a cause is much more probable than the other, than itis the one that we want to highlight. The
disadvantage is that it makes the resulting codes somewhat unstable, in the sense that small perturbations of
the inputx could give rise to very different values of the optimal codeh. This unstability could spell trouble
for higher levels of learned transformations or a trained classifier that would takeh as input. Indeed it could
make generalization more difficult if very similar inputs can end up being represented very differently in
the sparse code layer. There is also a computational weakness of these approaches that some authors have
tried to address. Even though optimizing eq. 43 is efficient it can be hundreds of time slower than the kind
of computation involved in computing the codes in ordinary auto-encoders or RBMs, making both training
and recognition very slow. Another issue connected to the stability question is the joint optimization of the
basesW with higher levels of a deep architecture. This is particularly important in view of the objective of
fine-tuning the encoding so that it focusses on the most discriminant aspects of the signal. As discussed in
Section 9.1.2, significant classification error improvements were obtained when fine-tuning all the levels of a
deep architecture with respect to a discriminant criterionof interest. In principle one can compute gradients
through the optimization of the codes, but if the result of the optimization is unstable, the gradient may not
exist or be numerically unreliable. To address both the stability issue and the above fine-tuning issue, Bagnell
and Bradley (2009) propose to replace theℓ1 penalty by a softer approximation which only gives rise to
approximately sparse coefficients (i.e., many very small coefficients, without actually converging to 0).

Keep in mind that sparse auto-encoders and sparse RBMs do notsuffer from any of these sparse coding
issues: computational complexity (of inferring the codes), stability of the inferred codes, and numerical
stability and computational cost of computing gradients onthe first layer in the context of global fine-
tuning of a deep architecture. Sparse coding systems only parametrize the decoder: the encoder is defined
implicitly as the solution of an optimization. Instead, an ordinary auto-encoder or an RBM has an encoder
part (computingP (h|x)) and a decoder part (computingP (x|h)). A middle ground between ordinary auto-
encoders and sparse coding is proposed in a series of papers on sparse auto-encoders (Ranzato et al., 2007,
2007; Ranzato & LeCun, 2007; Ranzato et al., 2008) applied inpattern recognition and machine vision
tasks. They propose to let the codesh be free (as in sparse coding algorithms), but include a parametrized
encoder (as in ordinary auto-encoders and RBMs) and a penalty for the difference between the free codesh

and the outputs of the parametrized encoder. In this way, theoptimized codesh try to satisfy two objectives:
reconstruct well the input (like in sparse coding), while not being too far from the output of the encoder
(which is stable by construction, because of the simple parametrization of the encoder). In the experiments
performed, the encoder is just an affine transformation followed by a non-linearity like the sigmoid, and
the decoder is linear as in sparse coding. Experiments show that the resulting codes work very well in the
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context of a deep architecture (with supervised fine-tuning) (Ranzato et al., 2008), and are more stable (e.g.
with respect to slight perturbations of input images) than codes obtained by sparse coding (Kavukcuoglu,
Ranzato, & LeCun, 2008).

7.2 Denoising Auto-Encoders

The denoising auto-encoder (Vincent et al., 2008) is a stochastic version of the auto-encoder where the input
is stochastically corrupted, but the uncorrupted input is still used as target for the reconstruction. Intuitively,
a denoising auto-encoder does two things: try to encode the input (preserve the information about the input),
and try to undo the effect of a corruption process stochastically applied to the input of the auto-encoder. The
latter can only be done by capturing the statistical dependencies between the inputs. In fact, in (Vincent
et al., 2008), the stochastic corruption process consists in randomly setting some of the inputs (as many as
half of them) to zero. Hence the denoising auto-encoder is trying to predict the missing values from the
non-missing values, for randomly selected subsets of missing patterns. The training criterion for denoising
auto-encoders is expressed as a reconstruction log-likelihood,

− logP (x|c(x̃)) (44)

wherex is the uncorrupted input,̃x is the stochastically corrupted input, andc(x̃) is the code obtained
from x̃. Hence the output of the decoder is viewed as the parameter for the above distribution (over of the
uncorrupted input). In the experiments performed (Vincentet al., 2008), the distribution is factorized and
binomial (one bit per pixel), and input pixel intensities are interpreted as probabilities.

Consider a randomd-dimensional vectorX , S a set ofk indices,XS = (XS1
, . . .XSk

) the sub-elements
selected byS, and letX−S all the sub-elements except those inS. Note that the set of conditional distribu-
tionsP (XS |X−S) for some choices ofS fully characterize the joint distributionP (X), and this is exploited
for example in Gibbs sampling. Note that bad things can happen when|S| = 1 and some pairs of input
are perfectly correlated: the predictions can be perfect even though the joint has not really been captured,
and this would correspond to a Gibbs chain that does not mix, i.e., does not converge. By considering
random-size subsets and also insisting on reconstructing everything (like ordinary auto-encoders), this type
of problem may be avoided in denoising auto-encoders.

Interestingly, in a series of experimental comparisons over 8 vision tasks, stacking denoising auto-
encoders into a deep architecture fine-tuned with respect toa supervised criterion yielded generalization
performance that was systematically better than stacking ordinary auto-encoders, and comparable or supe-
rior to Deep Belief Networks (Vincent et al., 2008).

An interesting property of the denoising auto-encoder is that it can be shown to correspond to a genera-
tive model. Its training criterion is a bound on the log-likelihood of that generative model. Several possible
generative models are discussed in (Vincent et al., 2008). Asimple generative model is semi-parametric:
sample a training example, corrupt it stochastically, apply the encoder function to obtain the hidden repre-
sentation, apply the decoder function to it (obtaining parameters for a distribution over inputs), and sample
an input. This is not very satisfying because it requires to keep the training set around (like non-parametric
density models). Another generative model (that is not semi-parametric, i.e. does not involve explicitly the
training set) looks more like a sigmoid belief net, but with an extra generative step that maps the uncorrupted
input to the corrupted input. The training criterion for thedenoising auto-encoder can then be seen as a
variational bound for that generative model. However, because training the denoising auto-encoder does not
involve learning the prior on the hidden units involved in this generative model, it is unlikely that generating
from this model would yield very plausible patterns. Instead, in the semi-parametric case, the prior on the
hidden units is obtained by stochastically transforming the training set (through the random corruption and
the encoder), so the prior on the hidden units is more interesting.

Another interesting property of the denoising auto-encoder is that it naturally lends itself to data with
missing values or multi-modal data (when a subset of the modalities may be available for any particular
example). This is because it istrainedwith inputs that have “missing” parts (when corruption consists in
randomly hiding some of the input values).
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7.3 Lateral Connections

The RBM can be made slightly less restricted by introducing interaction terms or “lateral connections” be-
tween visible units. Samplingh from P (h|x) is still easy but samplingx from P (x|h) is now generally
more difficult, and amounts to sampling from a Markov Random Field which is also a fully observed Boltz-
mann machine, in which the offsets are dependent on the valueof h. Osindero and Hinton (2008) propose
such a model for capturing image statistics and their results suggest that Deep Belief Nets (DBNs) using
such modules generate more realistic image patches than DBNs using ordinary RBMs. Their results also
show that the resulting distribution has marginal and pairwise statistics for pixel intensities that are similar
to those observed on real image patches.

These lateral connections capture pairwise dependencies that can be more easily captured this way than
using hidden units, saving the hidden units for capturing higher-order dependencies. In the case of the first
layer, it can be seen that this amounts to a form of whitening,which has been found useful as a preprocessing
step in image processing systems (Olshausen & Field, 1997).The idea proposed by Osindero and Hinton
(2008) is to use lateral connections at all levels of a DBN (which can now be seen as a hierarchy of Markov
random fields). The generic advantage of this type of approach would be that the higher level factors rep-
resented by the hidden units do not have to encode all the local “details” that the lateral connections at the
levels below can capture. For example, when generating an image of a face, the approximate locations of the
mouth and nose might be specified at a high level whereas theirprecise location could be selected in order
to satisfy the pairwise preferences encoded in the lateral connections at a lower level. This appears to yield
generated images with sharper edges and generally more accuracy in the relative locations of parts, without
having to expand a large number of higher-level units.

In order to sample fromP (x|h), we can start a Markov chain at the current example (which presumably
already has pixel co-dependencies similar to those represented by the model, so that convergence should be
quick) and only run a short chain. DenoteU the square matrix of visible-to-visible connections, as per the
general Boltzmann Machine energy function in eq. 25. To reduce sampling variance in CD for this model,
Osindero and Hinton (2008) used five damped mean-field steps instead of an ordinary Gibbs chain on the
x’s: xt = αxt−1 + (1− α)sigm(b + Uxt−1 +W ′h), with α ∈ (0, 1).

7.4 Conditional RBMs and Temporal RBMs

A Conditional RBMis an RBM where some of the parameters are not free but are instead parametrized func-
tions of a conditioning random variable. For example, consider an RBM for the joint distributionP (x,h)
between observed vectorx and hidden vectorh, with parameters(b, c,W ) as per eq. 25, respectively for
input offsetsb, hidden units offsetsc, and the weight matrixW . This idea has been introduced by Taylor,
Hinton, and Roweis (2006) for context-dependent RBMs in which the hidden units offsetsc are affine func-
tions of a context variablez. Hence the RBM representsP (x,h|z) or, marginalizing overh, P (x|z). In
general the parametersθ = (b, c,W ) of an RBM can be written as a parametrized functionθ = f(z;ω), i.e.,
the actual free parameters of the conditional RBM with conditioning variablez are denotedω. Generalizing
RBMs to conditional RBMs allows building deep architectures in which the hidden variables at each level
can be conditioned on the value of other variables (typically representing some form of context).

The Contrastive Divergence algorithm for RBMs can be easilygeneralized to the case of Conditional
RBMs. The CD gradient estimator∆θ on a parameterθ can be simply back-propagated to obtain a gradient
estimator onω:

∆ω = ∆θ
∂θ

∂ω
. (45)

In the affine casec = β + Mz (with c, β andz column vectors andM a matrix) studied by Taylor et al.
(2006), the CD update on the conditional parameters is simply

∆β = ∆c

∆M = ∆c z′ (46)
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Figure 12: Example of Temporal RBM for modeling sequential data, including dependencies between the
hidden states. The double-arrow full arcs indicate an undirected connection, i.e. an RBM. The single-arrow
dotted arcs indicate conditional dependency: the(xt,ht) RBM is conditioned by the values of the past inputs
and past hidden state vectors.

where the last multiplication is an outer product (applyingthe chain rule on derivatives), and∆c is the update
given by CD-k on hidden units offsets.

This idea has been successfully applied to model conditional distributionsP (xt|xt−1,xt−2,xt−3) in
sequential data of human motion (Taylor et al., 2006), wherext is a vector of joint angles and other ge-
ometric features computed from motion capture data of humanmovements such as walking and running.
Interestingly, this allowsgeneratingrealistic human motionsequences, by successively sampling thet-th
frame given the previously sampledk frames, i.e. approximating

P (x1,x2, . . . ,xT ) ≈ P (x1, . . .xk)

T∏

t=k+1

P (xt|xt−1, . . .xt−k). (47)

The initial frames can be generated by using special null values as context or using a separate model for
P (x1, . . .xk).

As demonstrated by Memisevic and Hinton (2007), it can be useful to make not just the offsets but also
the weights conditional on a context variable. In that case we greatly increase the number of degrees of
freedom, introducing the capability to model three-way interactions between an input unitxi, a hidden unit
hj , and a context unitzk through interaction parametersζijk . This approach has been used withx an image
andz the previous image in a video, and the model learns to captureflow fields(Memisevic & Hinton, 2007).

Probabilistic models of sequential data with hidden variablesht (calledstate) can gain a lot by capturing
the temporal dependencies between the hidden state at different timest in the sequence. This is what allows
Hidden Markov Models(HMMs) (Rabiner & Juang, 1986) to capture dependencies in a long sequence even
if the model only considers the hidden state sequence to be a Markov chain of order 1 (where the direct
dependence is only betweenht andht+1). Whereas the hidden state representationht in HMMs is local
(all the possible values ofht are enumerated and specific parameters associated with eachof these values),
Temporal RBMshave been proposed (Sutskever & Hinton, 2007) to construct adistributed representation of
the state. The idea is an extension of the Conditional RBM presented above, but where the context includes
not only past inputs but also past values of the state, e.g., we build a model of

P (ht,xt|ht−1,xt−1, . . . ,ht−k,xt−k) (48)

where the context iszt = (ht−1,xt−1, . . . ,ht−k,xt−k), as illustrated in Figure 12. Although sampling
of sequences generated by Temporal RBMs can be done as in Conditional RBMs (with the same MCMC
approximation used to sample from RBMs, at each time step), exact inference of the hidden state sequence
given an input sequence is no longer tractable. Instead, Sutskever and Hinton (2007) propose to use a
mean-field filtering approximation of the hidden sequence posterior.
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7.5 Factored RBMs

In several probabilistic language models, it has been proposed to learn a distributed representation of each
word (Deerwester, Dumais, Furnas, Landauer, & Harshman, 1990; Miikkulainen & Dyer, 1991; Bengio
et al., 2001, 2003; Schwenk & Gauvain, 2002; Xu et al., 2003; Schwenk, 2004; Schwenk & Gauvain,
2005; Mnih & Hinton, 2009). For an RBM that models a sequence of words, it would be convenient to
have a parametrization that leads to automatically learning a distributed representation for each word in the
vocabulary. This is essentially what Mnih and Hinton (2007)propose. Consider an RBM inputx that is
the concatenation of one-hot vectorsvt for each wordwt in a fixed-size sequence(w1, w2, . . . , wk), i.e.,
vt contains all 0’s except for a 1 at positionwt, andx = (v′

1,v
′
2, . . . ,v

′
k)′. Mnih and Hinton (2007) use

a factorization of the RBM weight matrixW into two factors, one that depends on the locationt in the
input subsequence, and one that does not. Consider the computation of the hidden units’ probabilities given
the input subsequence(v1,v2, . . . ,vk). Instead of applying directly a matrixW to x, do the following.
First, each word symbolwt is mapped through a matrixR to ad-dimensional vectorR.,wt

= Rvt, for t ∈
{1 . . . k}; second, the concatenated vectors(R′

.,w1
, R′

.,w2
, . . . , R′

.,wk
)′ are multiplied by a matrixB. Hence

W = BDiag(R), whereDiag(R) is a block-diagonal matrix filled withR on the diagonal. This model
has produced n-grams with better log-likelihood (Mnih & Hinton, 2007, 2009), with further improvements
in generalization performance when averaging predictionswith state-of-the-art n-gram models (Mnih &
Hinton, 2007).

7.6 Generalizing RBMs and Contrastive Divergence

Let us try to generalize the definition of RBM so as to include alarge class of parametrizations for which
essentially the same ideas and learning algorithms (such asContrastive Divergence) that we have discussed
above can be applied in a straightforward way. We generalizeRBMs as follows: aGeneralized RBMis an
energy-based probabilistic model with input vectorx and hidden vectorh whose energy function is such
thatP (h|x) andP (x|h) both factorize. This definition can be formalized in terms ofthe parametrization of
the energy function, which is also proposed by Hinton et al. (2006):

Proposition 7.1. The energy function associated with a model of the form of eq.15 such thatP (h|x) =∏
i P (hi|x) andP (x|h) =

∏
j P (xj |h) must have the form

Energy(x,h) =
∑

j

φj(xj) +
∑

i

ξi(hi) +
∑

i,j

ηi,j(hi,xj). (49)

This is a direct application of the Hammersley-Clifford theorem (Hammersley & Clifford, 1971; Clifford,
1990). Hinton et al. (2006) also showed that the above form isa necessary and sufficient condition to obtain
complementary priors. Complementary priors allow the posterior distributionP (h|x) to factorize by a
proper choice ofP (h).

In the case where the hidden and input values are binary, thisnew formulation does not actually bring
any additional power of representation. Indeed,ηi,j(hi,xj), which can take at most four different values
according to the2 × 2 configurations of(hi,xj) could always be rewritten as a second order polynomial in
(hi,xj): a + bxj + chi + dhixj . However,b andc can be folded into the offset terms anda into a global
additive constant which does not matter (because it gets cancelled by the partition function).

On the other hand, whenx or h are real vectors, one could imagine higher-capacity modeling of the
(hi,xj) interaction, possibly non-parametric, e.g., gradually adding terms toηi,j so as to better model the
interaction. Furthermore, sampling from the conditional densitiesP (xj |h) or P (hi|x) would be tractable
even if theηi,j are complicated functions, simply because these are 1-dimensional densities from which
efficient approximate sampling and numerical integration are easy (e.g., by computing cumulative sums of
the density over nested subintervals or bins).

This analysis also highlights the basic limitation of RBMs,which is that its parametrization only con-
siders pairwise interactions between variables. It is because theh are hidden and because we can choose

45



the number of hidden units, that we still have full expressive power over possible marginal distributions in
x (in fact we can represent any discrete distribution (Le Roux& Bengio, 2008)). Other variants of RBMs
discussed in Section 7.4 allow three-way interactions (Memisevic & Hinton, 2007).

What would be a Contrastive Divergence update in this generalized RBM formulation? To simplify
notations we note that theφj ’s andξi’s in eq. 49 can be incorporated within theηi,j ’s, so we ignore them in
the following. Theorem 5.1 can still be applied with

FreeEnergy(x) = − log
∑

h

exp



−
∑

i,j

ηi,j(hi,xj)



 .

The gradient of the free energy of a samplex is thus

∂FreeEnergy(x)

∂θ
=

∑

h

exp
(
−
∑

i,j ηi,j(hi,xj)
)

∑
h̃

exp
(
−
∑

i,j ηi,j(h̃i,xj)
)
∑

i,j

∂ηi,j(hi,xj)

∂θ

=
∑

h

P (h|x)
∑

i,j

∂ηi,j(hi,xj)

∂θ

= Eh




∑

i,j

∂ηi,j(hi,xj)

∂θ

∣∣∣∣∣∣
x



 .

Thanks to Proposition 7.1, a Gibbs chain can still be run easily. Truncating the log-likelihood gradient
expansion (eq. 38) afterk steps of the Gibbs chain, and approximating expectations with samples from this
chain, one obtains an approximation of the log-likelihood gradient at training pointx1 that depends only on
Gibbs samplesh1, hk+1 andxk+1:

∂ logP (x1)

∂θ
≃ −

∂FreeEnergy(x1)

∂θ
+
∂FreeEnergy(xk+1)

∂θ

≃



−
∑

i,j

∂ηi,j(h1,i,x1,j)

∂θ
+
∑

i,j

∂ηi,j(hk+1,i,xk+1,j)

∂θ



 ∝ ∆θ

with ∆θ the update rule for parametersθ of the model, corresponding to CD-k in such a generalized RBM.
Note that in most parametrizations we would have a particular element ofθ depend onηi,j ’s in such a way
that no explicit sum is needed. For instance (taking expectation overhk+1 instead of sampling) we recover
Algorithm 1 when

ηi,j(hi,xj) = −Wijhixj −
bjxj

nh
−

cihi

nx

wherenh andnx are respectively the numbers of hidden and visible units, and we also recover the other
variants described by Welling et al. (2005), Bengio et al. (2007) for different forms of the energy and allowed
set of values for hidden and input units.

8 Stochastic Variational Bounds for Joint Optimization of DBN Lay-
ers

In this section we discuss mathematical underpinnings of algorithms for training a DBN as a whole. The log-
likelihood of a DBN can be lower bounded using Jensen’s inequality, and as we discuss below, this can justify
the greedy layer-wise training strategy introduced in (Hinton et al., 2006) and described in Section 6.1. We
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will use eq. 42 for a DBN joint distribution, writingh for h1 (the first level hidden vector) to lighten notation,
and introducing an arbitrary conditional distributionQ(h|x). First multiply logP (x) by 1 =

∑
h
Q(h|x),

then useP (x) = P (x,h)
P (h|x) , and multiply by1 = Q(h|x)

Q(h|x) and expand the terms:

logP (x) =

(
∑

h

Q(h|x)

)
logP (x) =

∑

h

Q(h|x) log
P (x,h)

P (h|x)

=
∑

h

Q(h|x) log
P (x,h)

P (h|x)

Q(h|x)

Q(h|x)

= HQ(h|x) +
∑

h

Q(h|x) logP (x,h) +
∑

h

Q(h|x) log
Q(h|x)

P (h|x)

= KL(Q(h|x)||P (h|x)) +HQ(h|x) +
∑

h

Q(h|x) (logP (h) + logP (x|h)) (50)

whereHQ(h|x) is the entropy of the distributionQ(h|x). Non-negativity of the KL divergence gives the
inequality

logP (x) ≥ HQ(h|x) +
∑

h

Q(h|x) (logP (h) + logP (x|h)) , (51)

which becomes an equality whenP andQ are identical, e.g. in the single-layer case (i.e., an RBM).Whereas
we have chosen to useP to denote probabilities under the DBN, we useQ to denote probabilities under an
RBM (the first level RBM), and in the equations chooseQ(h|x) to be the hidden-given-visible conditional
distribution of that first level RBM. We define that first levelRBM such thatQ(x|h) = P (x|h). In general
P (h|x) 6= Q(h|x). This is because although the marginalP (h) on the first layer hidden vectorh1 = h is
determined by the upper layers in the DBN, the RBM marginalQ(h) only depends on the parameters of the
RBM.

8.1 Unfolding RBMs into Infinite Directed Belief Networks

Before using the above decomposition of the likelihood to justify the greedy training procedure for DBNs,
we need to establish a connection betweenP (h1) in a DBN and the corresponding marginalQ(h1) given by
the first level RBM. The interesting observation is that there exists a DBN whoseh1 marginal equals the first
RBM’s h1 marginal, i.e.P (h1) = Q(h1), as long the dimension ofh2 equals the dimension ofh0 = x. To
see this, consider a second-level RBM whose weight matrix isthe transpose of the first-level RBM (that is
why we need the matching dimensions). Hence, by symmetry of the roles of visible and hidden in an RBM
joint distribution (when transposing the weight matrix), the marginal distribution over the visible vector of
the second RBM is equal to the marginal distributionQ(h1) of the hidden vector of the first RBM.

Another interesting way to see this is given by Hinton et al. (2006): consider the infinite Gibbs sampling
Markov chain starting att = −∞ and terminating att = 0, alternating betweenx andh1 for the first RBM,
with visible vectors sampled on event and hidden vectors on oddt. This chain can be seen as an infinite
directed belief network with tied parameters (all even steps use weight matrixW ′ while all odd ones use
weight matrixW ). Alternatively, we can summarize any sub-chain fromt = −∞ to t = τ by an RBM with
weight matrixW orW ′ according to the parity ofτ , and obtain a DBN with1− τ layers (not counting the
input layer), as illustrated in Figure 13. This argument also shows that a 2-layer DBN in which the second
level has weights equal to the transpose of the first level weights is equivalent to a single RBM.

8.2 Variational Justification of Greedy Layerwise Training

Here we discuss the argument made by Hinton et al. (2006) thatadding one RBM layer improves the like-
lihood of a DBN. Let us suppose we have trained an RBM to modelx, which provides us with a model
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Figure 13: An RBM can be unfolded as an infinite directed belief network with tied weights (see text). Left:
the weight matrixW or its transpose are used depending on the parity of the layerindex. This sequence
of random variables corresponds to a Gibbs Markov chain to generatext (for t large). On the right, the
top-level RBM in a DBN can also be unfolded in the same way, showing that a DBN is an infinite directed
graphical model in whichsomeof the layers are tied (all except the bottom few ones).
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Q(x) expressed through two conditionalsQ(h1|x) andQ(x|h1). Exploiting the argument in the previ-
ous subsection, let us now initialize an equivalent 2-layerDBN, i.e., generatingP (x) = Q(x), by taking
P (x|h1) = Q(x|h1) andP (h1,h2) given by a second-level RBM whose weights are the transpose of the
first-level RBM. Now let us come back to eq. 50 above, and the objective of improving the DBN likelihood by
changingP (h1), i.e., keepingP (x|h1) andQ(h1|x) fixed but allowing the second level RBM to change. In-
terestingly, increasing the KL divergence termincreasesthe likelihood. Starting fromP (h1|x) = Q(h1|x),
the KL term is zero (i.e., can only increase) and the entropy term in eq. 50 does not depend on the DBN
P (h1), so small improvements to the term withP (h1) guarantee an increase inlogP (x). We are also
guaranteed that further improvements of theP (h1) term (i.e. further training of the second RBM, detailed
below) cannot bring the log-likelihood lower than it was before the second RBM was added. This is simply
because of the positivity of the KL and entropy terms: further training of the second RBM increases a lower
bound on the log-likelihood (eq. 51), as argued by Hinton et al. (2006). This justifies training the second
RBM to maximize the expectation over the training set of

∑
h1 Q(h1|x) logP (h1).

The second-level RBM is thus trained to maximize
∑

x,h1

P̂ (x)Q(h1|x) logP (h1) (52)

with respect toP (h1). This is the maximum-likelihood criterion for a model that sees examplesh1 obtained
as marginal samples from the joint distribution̂P (x)Q(h1|x). If there was no constraint onP (h1), the
maximizer of the above training criterion would be its “empirical” or target distribution

P ∗(h1) =
∑

x

P̂ (x)Q(h1|x). (53)

If we keep the first-level RBM fixed, then the second-level RBMcould therefore be trained as follows:
samplex from the training set, then sampleh1 ∼ Q(h1|x), and consider thath1 as a training sample for the
second-level RBM (i.e. as an observation for its ’visible’ vector).

The same argument can be made to justify adding a third layer,etc. We obtain the greedy layer-wise
training procedure outlined in Section 6.1. In practice therequirement that layer sizes alternate is not satis-
fied, and consequently neither is it common practice to initialize the newly added RBM with the transpose of
the weights at the previous layer (Hinton et al., 2006; Bengio et al., 2007), although it would be interesting
to verify experimentally (in the case where the size constraint is imposed) whether the initialization with the
transpose of the previous layer helps to speed up training.

Note that as we continue training the top part of the model (and this includes adding extra layers),
there is no guarantee thatlogP (x) (in average over the training set) will monotonically increase. As our
lower bound continues to increase, the actual log-likelihood could start decreasing. Let us examine more
closely how this could happen. It would require the KL term todecrease as the second RBM continues to
be trained. However, this is unlikely in general: as the DBN’s P (h1) deviates more and more from the
first RBM’s marginalQ(h1) on h1, it is likely that the posteriorsP (h1|x) (from the DBN) andQ(h1|x)
(from the RBM) deviate more and more (sinceP (h1|x) ∝ P (x|h1)P (h1)), making the KL term in eq. 50
increase. As the training likelihood for the second RBM increases,P (h1) moves smoothly fromQ(h1)
towardsP ∗(h1). Consequently, it seems very plausible that continued training of the second RBM is going
to increase the DBN’s likelihood (not just initially) and bytransitivity, adding more layers will also likely
increase the DBN’s likelihood. However, it is not true that increasing the training likelihood for the second
RBM starting from any parameter configuration guarantees that the DBN likelihood will increase, since at
least one pathological counter-example can be found (I. Sutskever, personal communication). Consider the
case where the first RBM has very large hidden biases, so thatQ(h1|x) = Q(h1) = 1

h1=h̃
= P ∗(h1),

but large weights and small visible offsets so thatP (xi|h) = 1xi=hi
, i.e., the hidden vector is copied to

the visible units. When initializing the second RBM with thetranspose of the weights of the first RBM, the
training likelihood of the second RBM cannot be improved, nor can the DBN likelihood. However, if the
second RBM was started from a “worse” configuration (worse inthe sense of its training likelihood, and
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also worse in the sense of the DBN likelihood), thenP (h1) would move towardsP ∗(h1) = Q(h1), making
the second RBM likelihood improve while the KL term would decrease and the DBN likelihood would
decrease. These conditions could not happen when initializing the second RBM properly (with a copy of
the first RBM). So it remains an open question whether we can find conditions (excluding the above) which
guarantee that while the likelihood of the second RBM increases, the DBN likelihood also increases.

Another argument to explain why the greedy procedure works is the following (Hinton, NIPS’2007
tutorial). The training distribution for the second RBM (samplesh1 from P ∗(h1)) looks more like data
generated by an RBM than the original training distributionP̂ (x). This is becauseP ∗(h1) was obtained by
applying one sub-step of an RBM Gibbs chain on examples fromP̂ (x), and we know that applying many
Gibbs steps would yield data from that RBM.

Unfortunately, when we train an RBM that will not be the top-level level of a DBN, we are not taking into
account the fact that more capacity will be added later to improve the prior on the hidden units. Le Roux and
Bengio (2008) have proposed considering alternatives to Contrastive Divergence for training RBMs destined
to initialize intermediate layers of a DBN. The idea is to consider thatP (h) will be modeled with a very high
capacity model (the higher levels of the DBN). In the limit case of infinite capacity, one can write down what
that optimalP (h) will be: it is simply the stochastic transformation of the empirical distribution through the
stochastic mappingQ(h|x) of the first RBM (or previous RBMs). Plugging this back into the expression
for logP (x), one finds that a good criterion for training the first RBM is the KL divergence between the
data distribution and the distribution of the stochastic reconstruction vectors after one step of the Gibbs
chain. Experiments (Le Roux & Bengio, 2008) confirm that thiscriterion yields better optimization of the
DBN (initialized with this RBM). Unfortunately, this criterion is not tractable since it involves summing
over all configurations of the hidden vectorh. Tractable approximations of it might be considered, since
this criterion looks like a form of reconstruction error on astochastic auto-encoder (with a generative model
similar to one proposed for denoising auto-encoders (Vincent et al., 2008)). Another interesting alternative,
explored in the next section, is to directly work on joint optimization of all the layers of a DBN.

8.3 Joint Unsupervised Training of All the Layers

We discuss here how one could train a whole deep architecturesuch as a DBN in an unsupervised way, i.e.
to represent well the input distribution.

8.3.1 The Wake-Sleep Algorithm

The Wake-Sleep algorithm (Hinton et al., 1995) was introduced to train sigmoidal belief networks (i.e. where
the distribution of the top layer units factorizes). It is based on a “recognition” modelQ(h|x) (along with
Q(x) the training set distribution) that acts as a variational approximation to the generative modelP (h,x).
In a DBN,Q(h|x) is as defined above (sec. 6.1), obtained by propagating samples upward (from input to
higher layers) at each layer. In the Wake-Sleep algorithm, we decouple the recognition parameters (upward
weights, used to computeQ(h|x)) from the generative parameters (downward weights, used tocompute
P (x|h)). The basic idea of the algorithm is simple:

1. Wake phase: samplex from the training set, generateh ∼ Q(h|x) and use this(h,x) as fully
observed data for trainingP (x|h) andP (h). This corresponds to doing one stochastic gradient step
with respect to ∑

h

Q(h|x) logP (x,h). (54)

2. Sleep phase: sample(h,x) from the modelP (x,h), and use that pair as fully observed data for
trainingQ(h|x). This corresponds to doing one stochastic gradient step with respect to

∑

h,x

P (h,x) logQ(h|x). (55)
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The Wake-Sleep algorithm has been used for DBNs in (Hinton etal., 2006), after the weights associated with
each layer have trained as RBMs as discussed earlier. For a DBN with layers(h1, . . . ,hℓ), the Wake phase
updates for the weights of the top RBM (betweenhℓ−1 andhℓ) is done by considering thehℓ−1 sample
(obtained fromQ(h|x)) as training data for the top RBM.

A variational approximation can be used to justify the Wake-Sleep algorithm. The log-likelihood decom-
position in eq. 50

logP (x) = KL(Q(h|x)||P (h|x)) +HQ(h|x) +
∑

h

Q(h|x) (logP (h) + logP (x|h)) (56)

shows that the log-likelihood can be bounded from below by the opposite of the Helmholtz free energy (Hin-
ton et al., 1995; Frey, Hinton, & Dayan, 1996)F :

logP (x) = KL(Q(h|x)||P (h|x)) − F (x) ≥ −F (x) (57)

where
F (x) = −HQ(h|x) −

∑

h

Q(h|x) (logP (h) + logP (x|h)) (58)

and the inequality is tight whenQ = P . The variational approach is based on maximizing the lower bound
−F while trying to make the bound tight, i.e.,minimizingKL(Q(h|x)||P (h|x)). When the bound is tight,
an increase of−F (x) is more likely to yield an increase oflogP (x). Since we decouple the parameters of
Q and ofP , we can now see what the two phases are doing. In the Wake phasewe considerQ fixed and
do a stochastic gradient step towards maximizing the expected value ofF (x) over samplesx of the training
set, with respect to parameters ofP (i.e. we do not care about the entropy ofQ). In the Sleep phase we
would ideally like to makeQ as close toP as possible in the sense of minimizingKL(Q(h|x)||P (h|x))
(i.e. takingQ as the reference), but instead we minimizeKL(P (h,x)||Q(h,x)), takingP as the reference,
becauseKL(Q(h|x)||P (h|x)) is intractable.

8.3.2 Transforming the DBN into a Boltzmann Machine

Another approach was recently proposed, yielding in at least one case results superior to the use of the
Wake-Sleep algorithm (Salakhutdinov & Hinton, 2009). After initializing each layer as an RBM as already
discussed in section 6.1, the DBN is transformed into a corresponding deep Boltzmann machine. Because in
a Boltzmann machine each unit receives input from above as well as from below, it is proposed to halve the
RBM weights when initializing the deep Boltzmann machine from the layerwise RBMs. The authors then
propose approximations for the positive phase and negativephase gradients of the Boltzmann machine (see
section 5.2 and eq. 26). For the positive phase (which in principle requires holdingx fixed and sampling from
P (h|x)), they propose a variational approximation correspondingto a mean-field relaxation (propagating
probabilities associated with each unit given the others, rather than samples, and iterating a few dozen times
to let them settle). For the negative phase (which in principle requires sampling from the jointP (h,x))
they propose to use the idea of a persistent MCMC chain already discussed in section 5.4.1 and introduced
in Tieleman (2008). The idea is to keep a set of(h,x) states (or particles) that are updated by one Gibbs
step according to the current model (i.e. sample each unit according to its probability given all the others at
the previous step). Even though the parameters keep changing (very slowly), we continue the same Markov
chain instead of starting a new one (as in the old Boltzmann machine algorithm (Hinton et al., 1984; Ackley
et al., 1985; Hinton & Sejnowski, 1986)). This strategy seems to work very well, and (Salakhutdinov
& Hinton, 2009) report an improvement over DBNs on the MNIST dataset, both in terms of data log-
likelihood (estimated using annealed importance sampling(Salakhutdinov & Murray, 2008)) and in terms of
classification error (after supervised fine-tuning), bringing down the error rate from 1.2% to 0.95%.
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9 Looking Forward

9.1 Global Optimization Strategies

As discussed Section 4.2, part of the explanation for the better generalization observed with unsupervised
pre-training in deep architectures could well be that they help to better optimize the lower layers (near the
input), by initializing supervised training in regions of parameter space associated with better unsupervised
models.

Here, we draw connections between existing work and approaches that could help to deal with difficult
optimization problems, based on the principle ofcontinuation methods(Allgower & Georg, 1980). Al-
though they provide no guarantee to obtain the global optimum, these methods have been particularly useful
in computational chemistry to find approximate solutions todifficult optimization problems involving the
configurations of molecules (Coleman & Wu, 1994; More & Wu, 1996; Wu, 1997). The basic idea is to
first solve a smoothed version of the problem and gradually consider less smoothing, with the intuition that
a smooth version of the problem reveals the global picture, just like with simulated annealing (Kirkpatrick,
Jr., , & Vecchi, 1983). One defines a single-parameter familyof cost functionsCλ(θ) such thatC0 can be
optimized easily (maybe convex inθ), whileC1 is the criterion that we actually wish to minimize. One first
minimizesC0(θ) and then gradually increasesλ while keepingθ at a local minimum ofCλ(θ). Typically
C0 is a highly smoothed version ofC1, so thatθ gradually moves into the basin of attraction of a dominant
(if not global) minimum ofC1.

9.1.1 Greedy Layerwise Training of DBNs as a Continuation Method

The greedy layerwise training algorithm for DBNs describedin Section 6.1 can be viewed as an approximate
continuation method, as follows. First of all recall (Section 8.1) that the top-level RBM of a DBN can
be unfolded into an infinite directed graphical model with tied parameters. At each step of the greedy
layerwise procedure, we untie the parameters of the top-level RBM from the parameters of the penultimate
level. So one can view the layerwise procedure as follows. The model structure remains the same, an
infinite chain of sigmoid belief layers, but we change the constraint on the parameters at each step of the
layerwise procedure. Initially all the layers are tied. After training the first RBM (i.e. optimizing under this
constraint), we untie the first level parameters from the rest. After training the second RBM (i.e. optimizing
under this slightly relaxed constraint), we untie the second level parameters from the rest, etc. Instead
of a continuum of training criteria, we have a discrete sequence of (presumably) gradually more difficult
optimization problems. By making the process greedy we fix the parameters of the firstk levels after they
have been trained and only optimize the(k+1)-th, i.e. train an RBM. For this analogy to be strict we would
need to initialize the weights of the newly added RBM with thetranspose of the previous one. Note also
that instead of optimizing all the parameters, the greedy layer-wise approach only optimizes the new ones.
But even with these approximations, this analysis suggestsan explanation for the good performance of the
layerwise training approach in terms of reaching better solutions.

9.1.2 Unsupervised to Supervised Transition

The experiments in many papers clearly show that an unsupervised pre-training followed by a supervised
fine-tuning works very well for deep architectures. Whereasprevious work on combining supervised and
unsupervised criteria (Lasserre et al., 2006) focus on the regularization effect of an unsupervised criterion
(and unlabeled examples, in semi-supervised learning), the discussion of Section 4.2 suggests that part of
the gain observed with unsupervised pre-training of deep networks may arise out of better optimization of
the lower layers of the deep architecture.

Much recent work has focussed on starting from an unsupervised representation learning algorithm (such
as sparse coding) and fine-tuning the representation with a discriminant criterion or combining the discrimi-
nant and unsupervised criteria (Larochelle & Bengio, 2008;Mairal et al., 2009; Bagnell & Bradley, 2009).
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In Larochelle and Bengio (2008), an RBM is trained with a two-part visible vector that includes both
the inputx and the target classy. Such an RBM can either be trained to model the jointP (x, y) (e.g.
by contrastive divergence) or to model the conditionalP (y|x) (the exact gradient of the conditional log-
likelihood is tractable). The best results reported (Larochelle & Bengio, 2008) combine both criteria, but the
model is initialized using the non-discriminant criterion.

In Mairal et al. (2009), Bagnell and Bradley (2009) the task of learning the decoder bases in a sparse
coding system is coupled with a classification problem. After initializing the decoder bases using non-
discriminant learning, they can be fine-tuned using a discriminant criterion that is applied jointly on the
representation parameters (i.e., the first layer bases, that gives rise to the sparse codes) and a set of classifier
parameters (e.g., a linear classifier that takes the representation codes as input). According to Mairal et al.
(2009), trying to directly optimize the supervised criterion without first initializing with the non-discriminant
training yielded very poor results. In fact, they propose asmooth transitionfrom the non-discriminant crite-
rion to the discriminant one, hence performing a kind of continuation method to optimize the discriminant
criterion.

9.1.3 Controlling Temperature

Even optimizing the log-likelihood of a single RBM might be adifficult optimization problem. It turns out
that the use of stochastic gradient (such as the one obtainedfrom CD-k) and small initial weights is again
close to a continuation method, and could easily be turned into one. Consider the family of optimization
problems corresponding to theregularization path(Hastie, Rosset, Tibshirani, & Zhu, 2004) for an RBM,
e.g., withℓ2 regularization of the parameters, the family of training criteria parametrized byλ ∈ (0, 1]:

Cλ(θ) = −
∑

i

logPθ(xi)− ||θ||
2 logλ. (59)

Whenλ → 0, we haveθ → 0, and it can be shown that the RBM log-likelihood becomes convex in θ.
Whenλ → 1, there is no regularization (note that some intermediate value of λ might be better in terms
of generalization, if the training set is small). Controlling the magnitude of the offsets and weights in an
RBM is equivalent to controlling thetemperaturein a Boltzmann machine (a scaling coefficient for the
energy function). High temperature corresponds to a highlystochastic system, and at the limit a factorial
and uniform distribution over the input. Low temperature corresponds to a more deterministic system where
only a small subset of possible configurations are plausible.

Interestingly, one observes routinely that stochastic gradient descent starting from small weights grad-
ually allows the weights to increase in magnitude, thus approximately following the regularization path.
Early stoppingis a well-known and efficient capacity control technique based on monitoring performance
on a validation set during training and keeping the best parameters in terms of validation set error. The
mathematical connection between early stopping andℓ2 regularization (along with margin) has already been
established (Zinkevich, 2003; Collobert & Bengio, 2004): starting from small parameters and doing gradient
descent yields gradually larger parameters, corresponding to a gradually less regularized training criterion.
However, with ordinary stochastic gradient descent (with no explicit regularization term), there is no guar-
antee that we would be tracking the sequence of local minima associated with a sequence of values ofλ
in eq. 59. It might be possible to slightly change the stochastic gradient algorithm to make it track better
the regularization path, (i.e. make it closer to a continuation method), by controllingλ explicitly, gradually
increasingλ when the optimization is near enough a local minimum for the current value ofλ. Note that
the same technique might be extended for other difficult non-linear optimization problems found in machine
learning, such as training a deep supervised neural network. We want to start from a globally optimal so-
lution and gradually track local minima, starting from heavy regularization and moving slowly to little or
none.
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9.1.4 Shaping: Training with a Curriculum

Another continuation method may be obtained by gradually transforming the training task, from an easy
one (maybe convex) where examples illustrate the simpler concepts, to the target one (with more difficult
examples). Humans need about two decades to be trained as fully functional adults of our society. That
training is highly organized, based on an education system and a curriculum which introduces different
concepts at different times, exploiting previously learned concepts to ease the learning of new abstractions.
The idea of training a learning machine with a curriculum canbe traced back at least to (Elman, 1993). The
basic idea is tostart small, learn easier aspects of the task or easier sub-tasks, and then gradually increase
the difficulty level. From the point of view of building representations, advocated here, the idea is to learn
representations that capture low-level abstractions first, and then exploit them and compose them to learn
slightly higher-level abstractions necessary to explain more complex structure in the data. By choosing
which examples to present and in which order to present them to the learning system, one canguidetraining
and remarkably increase the speed at which learning can occur. This idea is routinely exploited inanimal
training and is calledshaping(Skinner, 1958; Peterson, 2004; Krueger & Dayan, 2009).

Shaping and the use of a curriculum can also be seen as continuation methods. For this purpose, consider
the learning problem of modeling the data coming from a training distributionP̂ . The idea is to reweight the
probability of sampling the examples from the training distribution, according to a given schedule that starts
from the “easiest” examples and moves gradually towards examples illustrating more abstract concepts. At
point t in the schedule, we train from distribution̂Pt, with P̂1 = P̂ andP̂0 chosen to be easy to learn. Like
in any continuation method, we move along the schedule when the learner has reached a local minimum at
the current pointt in the schedule, i.e., when it has sufficiently mastered the previously presented examples
(sampled fromP̂t). Making small changes int corresponds to smooth changes in the probability of sampling
examples in the training distribution, so we can construct acontinuous path starting from an easy learning
problem and ending in the desired training distribution. This idea is developed further in Bengio, Louradour,
Collobert, and Weston (2009), with experiments showing better generalization obtained when training with
a curriculum leading to a target distribution, compared to training only with the target distribution, on both
vision and language tasks.

There is a connection between the shaping/curriculum idea and the greedy layer-wise idea. In both cases
we want to exploit the notion that a high level abstraction can more conveniently be learned once appropriate
lower-level abstractions have been learned. In the case of the layer-wise approach, this is achieved by
gradually adding more capacity in a way that builds upon previously learned concepts. In the case of the
curriculum, we control the training examples so as to make sure that the simpler concepts have actually been
learned before showing many examples of the more advanced concepts. Showing complicated illustrations
of the more advanced concepts is likely to be generally a waste of time, as suggested by the difficulty for
humans to grasp a new idea if they do not first understand the concepts necessary to express that new idea
compactly.

With the curriculum idea we introduce a teacher, in additionto the learner and the training distribution or
environment. The teacher can use two sources of informationto decide on the schedule: (a) prior knowledge
about a sequence of concepts that can more easily be learned when presented in that order, and (b) monitoring
of the learner’s progress to decide when to move on to new material from the curriculum. The teacher has
to select a level of difficulty for new examples which is a compromise between “too easy” (the learner will
not need to change its model to account for these examples) and “too hard” (the learner cannot make an
incremental change that can account for these examples so they will most likely be treated as outliers or
special cases, i.e. not helping generalization).

9.2 Why Unsupervised Learning is Important

One of the claims of this paper is that powerful unsupervisedor semi-supervised learning is a crucial com-
ponent in building successful learning algorithms for deeparchitectures aimed at approaching AI. We briefly
cover the arguments in favor of this hypothesis here:
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• Unknown future tasks: if a learning agent does not know what future learning tasks it will have to
deal with in the future, but it knows that the task will be defined with respect to a world (i.e. random
variables) that it can observe now, it would appear very rational to collect as much information as
possible about this world so as to learn what makes it tick.

• Once a good high-level representation is learned, other learning tasks (e.g., supervised or reinforce-
ment learning) could be much easier. We know for example thatkernel machines can be very powerful
if using an appropriate kernel, i.e. an appropriate featurespace. Similarly, we know powerful rein-
forcement learning algorithms which have guarantees in thecase where the actions are essentially
obtained through linear combination of appropriate features. We do not know what the appropriate
representation should be, but one would be reassured if it captured the salient factors of variation in
the input data, and disentangled them.

• Layer-wise unsupervised learning: this was argued in Section 4.3. Much of the learning could be done
using information available locally in one layer or sub-layer of the architecture, thus avoiding the
hypothesized problems with supervised gradients propagating through long chains with large fan-in
elements.

• Connected to the two previous points is the idea that unsupervised learning could put the parameters
of a supervised or reinforcement learning machine in a region from which gradient descent (local
optimization) would yield good solutions. This has been verified empirically in several settings, in
particular in the experiment of Figure 7 and in Bengio et al. (2007), Larochelle et al. (2009), Erhan
et al. (2009).

• The extra constraints imposed on the optimization by requiring the model to capture not only the
input-to-target dependency but also the statistical regularities of the input distribution might be helpful
in avoiding some poor local minima (those that do not correspond to good modeling of the input
distribution). Note that in general extra constraints may also create more local minima, but we observe
experimentally (Bengio et al., 2007) that both training andtest error can be reduced by unsupervised
pre-training, suggesting that the unsupervised pre-training moves the parameters in a region of space
closer to local minima corresponding to learning better representations (in the lower layers).

• Less prone to overfitting: it has been argued (Hinton, 2006) (but is debatable) that unsupervised learn-
ing is less prone to overfitting than supervised learning. Deep architectures have typically been used
to construct a supervised classifier, and in that case the unsupervised learning component can clearly
be seen as a regularizer or a prior (Ng & Jordan, 2001; Lasserre et al., 2006; Liang & Jordan, 2008)
that forces the resulting parameters to make sense not only to model classes given inputs but also to
capture the structure of the input distribution.

9.3 Open Questions

Research on deep architectures is still young and many questions remain unanswered. The following are
potentially interesting.

1. Can the results pertaining to the role of computational depth in circuits be generalized beyond logic
gates and linear threshold units?

2. Is there a depth that is mostly sufficient for the computations necessary to approach human-level
performance of AI tasks?

3. How can the theoretical results on depth of circuits with afixed size input be generalized to dynamical
circuits operating in time, with context and the possibility of recursive computation?

4. Why is gradient-based training of deep neural networks from random initialization often unsuccessful?
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5. Are RBMs trained by CD doing a good job of preserving the information in their input (since they
are not trained as auto-encoders they might lose information about the input that may turn out to be
important later), and if not how can that be fixed?

6. Is the presence of local minima an important issue in training RBMs?

7. Could we replace RBMs and auto-encoders by algorithms that would be proficient at extracting good
representations but involving an easier optimization problem, perhaps even a convex one?

8. Should the number of Gibbs steps in Contrastive Divergence be adjusted during training?

9. Besides reconstruction error, are there other more appropriate ways to monitor progress during train-
ing of RBMs and DBNs? Equivalently, are there tractable approximations of the partition function in
RBMs and DBNs? Recent work in this direction (Salakhutdinov& Murray, 2008; Murray & Salakhut-
dinov, 2009) using annealed importance sampling is encouraging.

10. Could RBMs and auto-encoders be improved by imposing some form of sparsity penalty on the rep-
resentations they learn, and what would be good ways to do so?

11. Without increasing the number of hidden units, can the capacity of an RBM be increased using non-
parametric forms of its energy function?

12. Since we only have a generative model for single denoising auto-encoders, is there a probabilistic
interpretation to models learned inStackedAuto-Encoders orStackedDenoising Auto-Encoders?

13. How efficient is the greedy layer-wise algorithm for training Deep Belief Networks (in terms of max-
imizing the training data likelihood)? Is it too greedy?

14. Can we obtain low variance and low bias estimators of the log-likelihood gradient in Deep Belief
Networks and related deep generative models, i.e., can we jointly train all the layers (with respect to
the unsupervised objective)?

15. Can optimization strategies based on continuation methods deliver significantly improved training of
deep architectures?

16. Are there other efficiently trainable deep architectures besides Deep Belief Networks, Stacked Auto-
Encoders, and deep Boltzmann machines?

17. Is a curriculum needed to learn the kinds of high-level abstractions that humans take years or decades
to learn?

18. Can the principles discovered to train deep architectures be applied or generalized to train recurrent
networks or dynamical belief networks, which learn to represent context and long-term dependencies?

19. How can deep architectures be generalized to represent information that, by its nature, might seem not
easily representable by vectors, because of its variable size and structure (e.g. trees, graphs)?

20. Although Deep Belief Networks are in principle well suited for the semi-supervised setting, how
should their algorithms be adapted to this setting and how would they fare compared to existing semi-
supervised algorithms?

21. When labeled examples are available, how should supervised and unsupervised criteria be combined
to learn the model’s representations of the input?

22. Can we find analogs of the computations necessary for Contrastive Divergence and Deep Belief Net
learning in the brain?
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23. The cortex is not at all like a feedforward neural networkin that there are significant feedback connec-
tions (e.g. going back from later stages of visual processing to earlier ones) and these may serve a role
not only in learning (as in RBMs) but also in integrating contextual priors with visual evidence (Lee
& Mumford, 2003). What kind of models can give rise to such interactions in deep architectures, and
learn properly with such interactions?

10 Conclusion

This paper started with a number of motivations: first to use learning to approach AI, then on the intuitive
plausibility of decomposing a problem into multiple levelsof computation and representation, followed
by theoretical results showing that a computational architecture that does not have enough of these levels
can require a huge number of computational elements, and a learning algorithm that relies only on local
generalization is unlikely to generalize well when trying to learn highly-varying functions.

Turning to architectures and algorithms, we first motivateddistributed representations of the data, in
which a huge number of possible configurations of abstract features of the input are possible, allowing a
system to compactly represent each example, while opening the door to a rich form of generalization. The
discussion then focused on the difficulty of successfully training deep architectures for learning multiple
levels of distributed representations. Although the reasons for the failure of standard gradient-based methods
in this case remain to be clarified, several algorithms have been introduced in recent years that demonstrate
much better performance than was previously possible with simple gradient-based optimization, and we have
tried to focus on the underlying principles behind their success.

Although much of this paper has focused on deep neural net anddeep graphical model architectures, the
idea of exploring learning algorithms for deep architectures should be explored beyond the neural net frame-
work. For example, it would be interesting to consider extensions of decision tree and boosting algorithms
to multiple levels.

Kernel-learning algorithms suggest another path which should be explored, since a feature space that
captures the abstractions relevant to the distribution of interest would be just the right space in which to apply
the kernel machinery. Research in this direction should consider ways in which the learned kernel would
have the ability to generalize non-locally, to avoid the curse of dimensionality issues raised in Section 3.1
when trying to learn a highly-varying function.

The paper focused on a particular family of algorithms, the Deep Belief Networks, and their component
elements, the Restricted Boltzmann Machine, and very near neighbors: different kinds of auto-encoders,
which can also be stacked successfully to form a deep architecture. We studied and connected together
estimators of the log-likelihood gradient in Restricted Boltzmann machines, helping to justify the use of the
Contrastive Divergence update for training Restricted Boltzmann Machines. We highlighted an optimization
principle that has worked well for Deep Belief Networks and related algorithms such as Stacked Auto-
Encoders, based on a greedy, layerwise, unsupervised initialization of each level of the model. We found that
this optimization principle is actually an approximation of a more general optimization principle, exploited
in so-called continuation methods, in which a series of gradually more difficult optimization problems are
solved. This suggested new avenues for optimizing deep architectures, either by tracking solutions along a
regularization path, or by presenting the system with a sequence of selected examples illustrating gradually
more complicated concepts, in a way analogous to the way students or animals are trained.
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Gärtner, T. (2003). A survey of kernels for structured data. ACM SIGKDD Explorations Newsletter, 5(1).

Geman, S., & Geman, D. (1984). Stochastic relaxation, gibbsdistributions, and the bayesian restoration of
images.IEEE Transactions on Pattern Analysis and Machine Intelligence, 6.

Grosse, R., Raina, R., Kwong, H., & Ng, A. Y. (2007). Shift-invariant sparse coding for audio classification.
In Proceedings of the Twenty-third Conference on Uncertaintyin Artificial Intelligence.

Hadsell, R., Chopra, S., & LeCun, Y. (2006). Dimensionalityreduction by learning an invariant mapping.
In Proc. Computer Vision and Pattern Recognition Conference (CVPR’06). IEEE Press.

Hadsell, R., Erkan, A., Sermanet, P., Scoffier, M., Muller, U., & LeCun, Y. (2008). Deep belief net learning in
a long-range vision system for autonomous off-road driving. In Proc. Intelligent Robots and Systems
(IROS’08).

Hammersley, J. M., & Clifford, P. (1971). Markov field on finite graphs and lattices. Unpublished
manuscript.
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